UASB工艺设计算

合集下载

UASB反应器

UASB反应器

UASB反应器UASB反应器,污水处理设备,水处理设备一、UASB原理UASB反应器废水被尽可能均匀的引入反应器的底部,污水向上通过包含颗粒污泥或絮状污泥的污泥床。

厌氧反应发生在废水和污泥颗粒接触的过程。

在厌氧状态下产生的沼气(主要是甲烷和二氧化碳)引起了内部的循环,这对于颗粒污泥的形成和维持有利。

在污泥层形成的一些气体附着在污泥颗粒上,附着和没有附着的气体向反应器顶部上升。

上升到表面的污泥撞击三相反应器气体发射器的底部,引起附着气泡的污泥絮体脱气。

气泡释放后污泥颗粒将沉淀到污泥床的表面,附着和没有附着的气体被收集到反应器顶部的三相分离器的集气室。

置于极其使单元缝隙之下的挡板的作用为气体发射器和防止沼气气泡进入沉淀区,否则将引起沉淀区的絮动,会阻碍颗粒沉淀。

包含一些剩余固体和污泥颗粒的液体经过分离器缝隙进入沉淀区。

由于分离器的斜壁沉淀区的过流面积在接近水面时增加,因此上升流速在接近排放点降低。

由于流速降低污泥絮体在沉淀区可以絮凝和沉淀。

累积在三相分离器上的污泥絮体在一定程度上将超过其保持在斜壁上的摩擦力,其将滑回反应区,这部分污泥又将与进水有机物发生反应。

二、UASB反应器的构成UASB反应器包括以下几个部分:进水和配水系统、反应器的池体和三相分离器。

在UASB反应器中最重要的设备是三相分离器,这一设备安装在反应器的顶部并将反应器分为下部的反应区和上部的沉淀区。

为了在沉淀器中取得对上升流中污泥絮体/颗粒的满意的沉淀效果,三相分离器第一个主要的目的就是尽可能有效地分离从污泥床/层中产生的沼气,特别是在高负荷的情况下,在集气室下面反射板的作用是防止沼气通过集气室之间的缝隙逸出到沉淀室,另外挡板还有利于减少反应室内高由于反应器的高度推荐范围为4~6m,表2-1给出了5m高的反应器的尺寸选择的系列。

从原则上讲安排2m×5m的三相分离器的平面布置还可以有其他多种的平面配合形式如,宽度可以以2m为模数,而长度以10m为模数。

UASB工艺流程

UASB工艺流程

UASB工艺简介升流式厌氧污泥床UASB( Up-flow Anaerobic Sludge Bed,注:以下简称UASB)工艺由于具有厌氧过滤及厌氧活性污泥法的双重特点,作为能够将污水中的污染物转化成再生清洁能源——沼气的一项技术。

1971年荷兰瓦格宁根(Wageningen)农业大学拉丁格(Lettinga)教授通过物理结构设计,利用重力场对不同密度物质作用的差异,发明了三相分离器。

使活性污泥停留时间与废水停留时间分离,形成了上流式厌氧污泥床(UASB)反应器的雏型。

1974年荷兰CSM公司在其6m3反应器处理甜菜制糖废水时,发现了活性污泥自身固定化机制形成的生物聚体结构,即颗粒污泥(granular sludge)。

颗粒污泥的出现,不仅促进了以UASB为代表的第二代厌氧反应器的应用和发展,而且还为第三代厌氧反应器的诞生奠定了基础。

UASB工艺对于不同含固量污水的适应性也强,且其结构、运行操作维护管理相对简单,造价也相对较低,技术已经成熟,正日益受到污水处理业界的重视,得到广泛的欢迎和应用。

UASB由污泥反应区、气液固三相分离器(包括沉淀区)和气室三部分组成。

在底部反应区内存留大量厌氧污泥,具有良好的沉淀性能和凝聚性能的污泥在下部形成污泥层。

要处理的污水从厌氧污泥床底部流入与污泥层中污泥进行混合接触,污泥中的微生物分解污水中的有机物,把它转化为沼气。

沼气以微小气泡形式不断放出,微小气泡在上升过程中,不断合并,逐渐形成较大的气泡,在污泥床上部由于沼气的搅动形成一个污泥浓度较稀薄的污泥和水一起上升进入三相分离器,沼气碰到分离器下部的反射板时,折向反射板的四周,然后穿过水层进入气室,集中在气室沼气,用导管导出,固液混合液经过反射进入三相分离器的沉淀区,污水中的污泥发生絮凝,颗粒逐渐增大,并在重力作用下沉降。

沉淀至斜壁上的污泥沼着斜壁滑回厌氧反应区内,使反应区内积累大量的污泥,与污泥分离后的处理出水从沉淀区溢流堰上部溢出,然后排出污泥床。

uasb加生物接触氧化池的工艺流程

uasb加生物接触氧化池的工艺流程

uasb加生物接触氧化池的工艺流程下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!UASB加生物接触氧化池的工艺流程概述在污水处理领域,UASB(上升式厌氧污泥床)和生物接触氧化池是常见的处理工艺。

UASB简介

UASB简介

UASB简介一、引言厌氧生物处理过程能耗低;有机容积负荷高,一般为5-10kgCOD/m3.d,最高的可达30-50kgCOD/m3.d;剩余污泥量少;厌氧菌对营养需求低、耐毒性强、可降解的有机物分子量高;耐冲击负荷能力强;产出的沼气是一种清洁能源。

在全社会提倡循环经济,关注工业废弃物实施资源化再生利用的今天,厌氧生物处理显然是能够使污水资源化的优选工艺。

近年来,污水厌氧处理工艺发展十分迅速,各种新工艺、新方法不断出现,包括有厌氧接触法、升流式厌氧污泥床、档板式厌氧法、厌氧生物滤池、厌氧膨胀床和流化床,以及第三代厌氧工艺EGSB和IC厌氧反应器,发展十分迅速。

而升流式厌氧污泥床UASB( Up-flow Anaerobic Sludge Bed,注:以下简称UASB)工艺由于具有厌氧过滤及厌氧活性污泥法的双重特点,作为能够将污水中的污染物转化成再生清洁能源——沼气的一项技术。

对于不同含固量污水的适应性也强,且其结构、运行操作维护管理相对简单,造价也相对较低,技术已经成熟,正日益受到污水处理业界的重视,得到广泛的欢迎和应用。

本文试图就UASB的运行机理和工艺特征以及UASB的设计启动等方面作一简要阐述。

二、UASB的由来1971年荷兰瓦格宁根(Wageningen)农业大学拉丁格(Lettinga)教授通过物理结构设计,利用重力场对不同密度物质作用的差异,发明了三相分离器。

使活性污泥停留时间与废水停留时间分离,形成了上流式厌氧污泥床(UASB)反应器的雏型。

1974年荷兰CSM公司在其6m3反应器处理甜菜制糖废水时,发现了活性污泥自身固定化机制形成的生物聚体结构,即颗粒污泥(granular sludge)。

颗粒污泥的出现,不仅促进了以UASB为代表的第二代厌氧反应器的应用和发展,而且还为第三代厌氧反应器的诞生奠定了基础。

三、UASB工作原理基本原理UASB由污泥反应区、气液固三相分离器(包括沉淀区)和气室三部分组成。

例:课程设计说明书(UASB)

例:课程设计说明书(UASB)

例:供参考本设计为10000m3/d药厂污水处理厂的工艺设计,主要是UASB反应器,沉淀池的设计1 总论1.1.污水处理简介1.2 ----污水概况水质和水量也存在着较大差异。

一般情况下,制药工业废水按医药产品特点和水质特点可分为四大类。

即:(1)合成药物生产废水此种废水的水质水量变化大,大多含难生物降解物和微生物生长抑制剂。

(2)生物法制药生产发酵废水生物法制药生产中发酵废水,根据其生产特点可分为:提取废水、洗涤废水、维生素C生产废水和其它废水,其中提取废水的有机物浓度和抑菌物质最高,为该类废水的主要污染源,属较难处理废水。

(3)中成药生产废水中成药生产废水水质波动很大,CODCr 可高达6000mg/L, BOD5达2500 mg/L,此类废水中主要含天然有机污染物。

(4)各类制剂生产过程中的洗涤水及冲洗水这类废水一般污染程度不大,主要来自原料洗涤水、原药煎汁残液和地面冲洗水。

1.2.3 制药废水的特点制药废水,特别是制药工业的化工合成工艺所产生的废水往往具有如下特点:(1)水质成分复杂医药产品生产的特点是流程长、反应复杂、副产物多、反应原料常为溶剂类物质或环状结构的化合物,使得废水中的污染物质组分繁多复杂,增加了废水的处理难度。

(2)废水中污染物质含量高制药工业生产过程本身大量使用各种化工原料,但由于多步反应、原料利用率低,大部分随废水排放,往往造成废水中的污染物含量居高不下。

值高(3) CODCr在几万、几十万毫克/升的废水是经常可以见到的。

这是由于在制药工业中,CODCr原料反应不完全所造成的大量副产物和原料或是生产过程中使用的大量溶剂介质进入了废水体系中所引起的。

(4)有毒有害物质多制药废水中有许多有机污染物对微生物是有毒有害的,如卤素化合物、硝基化合物、有机氮化合物、叔按及季按盐类化合物、具有杀菌作用的分散剂或表面活性剂等。

(5)生物难降解物质多制药废水中的有机污染物大部分属于生物难以降解的物质,如卤素化合物、醚类化合物、硝基化合物、偶氮化合物、叔按及季按盐类化合物、硫醚及矾类化合物、某些杂环化合物等。

uasb工艺及工程实例

uasb工艺及工程实例

uasb工艺及工程实例一、 UASB 工艺概述UASB是指压力缓慢加氧沉淀池,全称为Up-flow Anaerobic Sludge Blanket,即上流式厌氧污泥床。

UASB工艺是利用厌氧反应器的物理-化学-生物降解特性,在厌氧环境中建立了一个床层系统,用以完成污泥、有机物混合物的水质净化,这种反应装置被广泛用于污水处理,是以厌氧菌为主导的有机物去除技术。

UASB 主要的工艺组成部分有污泥床, 稳定床层,缓冲区,除污池,净化池,及清水放流系统等, UASB 系统的床层设计通常为一个深度为 3m- 4m 的床层,床层的深度对有机物去除率会有影响,上部的床层深度越深,去除率越高,但容易把流入的污水破坏床层结构。

二、 UASB工艺工程实例以河南省洛阳市的一座纺织厂工程为例,该厂有机物排放量约2000m3/d,氨氮约 100mg/L,BOD5约 500mg/L,SS约 1000mg/L 。

该厂采用UASB工艺污水处理,包括厌氧污泥床反应器、缓冲池、活性污泥池、及清水放流池,该系统的工艺流程如下:(1) 进水清理系统:污水先经过池内的沉淀剂,后再流入厌氧污泥床系统;(2) 厌氧污泥床系统:污水先流入缓冲池,再进入厌氧污泥床反应器,厌氧污泥床系统由 3 个反应池组成,每个反应池的池容量2200m3,厌氧污泥床的高度 2m,其中第一、二个反应池的床层结构为垫一粗一细,第三个反应池的床层结构为垫二细,流量率 0.5m/d;(3) 活性污泥系统:污水经厌氧污泥床处理后,再流入活性污泥池,活性污泥池为容积积累型,由 4 个池组成,反应池的池容量7800m3,反应池深度 2.5m,反应池床层结构为垫三细,流量率 0.3m/d;(4) 清水放流系统:污水经活性污泥系统治理后,由清水放流池直接放流,有效生态水质监测加以保证。

该厂采用的UASB工艺工程,有机物(BOD5、COD、总氮、总磷等)的净化效果达到排放标准,氨氮可降至 10mg/L 以下, SS可达到10mg/L以下,净化效果达到预期要求。

UASB工艺流程

UASB工艺简介升流式厌氧污泥床UASB( Up-flow Anaerobic Sludge Bed,注:以下简称UASB)工艺由于具有厌氧过滤及厌氧活性污泥法的双重特点,作为能够将污水中的污染物转化成再生清洁能源——沼气的一项技术。

1971年荷兰瓦格宁根(Wageningen)农业大学拉丁格(Lettinga)教授通过物理结构设计,利用重力场对不同密度物质作用的差异,发明了三相分离器。

使活性污泥停留时间与废水停留时间分离,形成了上流式厌氧污泥床(UASB)反应器的雏型。

1974年荷兰CSM公司在其6m3反应器处理甜菜制糖废水时,发现了活性污泥自身固定化机制形成的生物聚体结构,即颗粒污泥(granular sludge)。

颗粒污泥的出现,不仅促进了以UASB为代表的第二代厌氧反应器的应用和发展,而且还为第三代厌氧反应器的诞生奠定了基础。

UASB工艺对于不同含固量污水的适应性也强,且其结构、运行操作维护管理相对简单,造价也相对较低,技术已经成熟,正日益受到污水处理业界的重视,得到广泛的欢迎和应用。

UASB由污泥反应区、气液固三相分离器(包括沉淀区)和气室三部分组成。

在底部反应区内存留大量厌氧污泥,具有良好的沉淀性能和凝聚性能的污泥在下部形成污泥层。

要处理的污水从厌氧污泥床底部流入与污泥层中污泥进行混合接触,污泥中的微生物分解污水中的有机物,把它转化为沼气。

沼气以微小气泡形式不断放出,微小气泡在上升过程中,不断合并,逐渐形成较大的气泡,在污泥床上部由于沼气的搅动形成一个污泥浓度较稀薄的污泥和水一起上升进入三相分离器,沼气碰到分离器下部的反射板时,折向反射板的四周,然后穿过水层进入气室,集中在气室沼气,用导管导出,固液混合液经过反射进入三相分离器的沉淀区,污水中的污泥发生絮凝,颗粒逐渐增大,并在重力作用下沉降。

沉淀至斜壁上的污泥沼着斜壁滑回厌氧反应区内,使反应区内积累大量的污泥,与污泥分离后的处理出水从沉淀区溢流堰上部溢出,然后排出污泥床。

UASB设计

毕业设计(论文)XXXXX化学科技有限公司的含氰高浓度有机废水处理工艺设计学院: 化工与材料学院专业:姓名:指导老师:环境工程学号:职称:中国·二○一一年五月XXXXXXX毕业设计诚信承诺书本人郑重承诺:我所呈交的毕业设计《XXXXXX化学科技有限公司的含氰高浓度有机废水处理工艺设计》是在指导教师的指导下,独立开展研究取得的成果,文中引用他人的观点和材料,均在文后按顺序列出其参考文献,设计使用的数据真实可靠。

承诺人签名:日期:年月日XXXXXXXX化学科技有限公司——含氰高浓度有机废水处理工艺设计摘要含氰高浓度有机废水在化工废水中占有一定比例,属难处理废水之一。

该废水的企业主要以制药和印染企业居多,由于此废水对地表水污染十分严重,国家已明令严禁直接排放。

氰乙酸甲酯是一种印染医药中间体,其生产废水成分复杂、有机物浓度高、废水中含有少量的氰化物的特点,通过对比论证,在使用NaClO氯化法破氰后,进一步采用UASB 厌氧处理和BAF好氧处理的组合工艺进行生化处理。

经过工艺计算和经济核算,结果表明:系统工艺选择参数合理,操作简单,运行稳定,出水水质达到《污水综合排放标准》(GB8978-1996)的一级标准。

关键词:氰化物次氯酸钠 UASB BA FThe Cyanogen High Concentration Organic Wastewater TreatmentProcess Design Of Chemical Technology Tompany In ZhuhaiABSTRACTHigh concentrations of organic waste water contained CN-holds some proportion in chemical waste water,and its treatment progress is a difficulty in industrial waste water treatment. The pollution of this kind of waste water, which is in the majority charged by medicinal and textile industry enterprises, is extremely serious to surface water. As a result, the national public proclaim that this kind of waste strictly prohibited directly discharging.CNCH2COOCH3 is a kind of medicinal and textile intermedia , the waste water discharged by the production of CNCH2COOCH3 often contains a lot of compounds and always gets high organic density , it also contains certain concentration of cyanide .Being contrasted among some popular methods of chemical water treatment, the treatment craft that author chooses is :first, use NaClO to remove the CN-in the water, than pick the treatment of UASB, at last, use BAF treatment that the water passed by may reach the standard. Through craft computation and economic check, the author think chosen of the treatment is available. Water which is treated by the method can meet the sewage discharging standards.Key word: cyanide hypochlorous natrium UASB BAF目录摘要 (I)ABSTRACT ............................................... I I 1 项目概况 (1)1.1项目地理情况 (1)1.1.1XX市概况 (1)1.1.2自然条件 (1)1.2设计任务 (2)1.3设计规模 (2)2 废水处理工艺的选择 (4)2.1工艺选择的依据和原理 (4)2.1.1设计参数及依据 (4)2.1.2设计内容 (4)2.1.3设计要求 (5)2.1.4工艺确定 (5)2.2工艺流程简图及说明 (19)3 工艺设计与计算 (21)3.1主要构筑物的设计计算 (21)3.1.1调节池 (21)3.1.2事故池 (22)3.1.3反应池 (23)3.1.4 UASB反应器 (24)3.1.5曝气生物滤池 (33)3.1.6药剂投配系统 (39)3.1.7污泥处理系统 (40)3.1.8集水池 (41)3.2水力计算 (41)3.2.1调节池水力计算 (41)3.2.2 UASB进水水泵扬程 (43)3.2.3集水池到调节池水泵扬程 (44)4 操作运行及处理效果说明 (45)4.1 接触反应池运行说明 (45)4.2 UASB反应器的运行管理 (45)4.2.1 UASB厌氧生物处理装置的启动 (45)4.2.2 UASB反应器正常与异常时的运行管理及对策 (46)4.3曝气生物滤池运行管理 (47)4.4处理效果说明 (47)5 经济可行性分析 (48)5.1工程造价 (48)5.1.1设备部分与土建部分及估价(见表5-1) (48)5.1.2其他费用(见表5-2) (48)5.1.3工程总投资 (49)5.2运行费用 (49)5.2.1工艺处理费用 (49)5.2.2 维护费用 (50)6 设计中存在的不足与问题 (51)6.1 破氰过程中存在的问题 (51)参考文献 (52)附录 (53)谢辞 (53)1 项目概况1.1项目地理情况1.1.1XX市概况XX市位于广东省南部,珠江出海口西岸,毗邻南海,东与深圳、香港隔海相望,南与澳门陆路相通,北距广州140公里,行政辖区范围总面积约为7653平方公里,其中陆域面积约1687.8平方公里。

UASB工艺

U A SB 是升流式厌氧污泥床反应器的简称,由于U A SB 反应器具有工艺结构紧凑,处理能力大, 无机械搅拌装置, 处理效果好及投资省等特点, U A SB 反应器是目前研究最多, 应用日趋广泛的新型污水厌氧处理工艺1 .(1) 污泥床污泥床位于整个U A SB 反应器的底部, 污泥床内具有很高的污泥生物量, 其污泥浓度(M L SS) 般为40 000~80 000 m g￶L. 污泥床中的污泥由活性生物量( 或细菌) 占70%~80% 以上的高度发展的颗粒污泥组成. 正常运行的U A SB 中的颗粒污泥的粒径一般在0. 5~5. 0 mm 之间, 具有优良的沉降性能, 其沉降速度一般为1. 2~ 1. 4 cm ￶s, 其典型的污泥容积指数(SV I) 为10~20 mL ￶g. 颗粒污泥中的生物相组成比较复杂, 主要是杆菌、球菌和丝状菌等. 污泥床的容积一般占整个U A SB 反应器容积的30% 左右, 但他对U A SB 反应器的整体处理效率起着极为重要的作用, 对反应器中有机物的降解量占到整个反应器全部降解量的70%~90%. (2) 污泥悬浮层污泥悬浮层位于污泥床的上部. 他占据整个U A SB 反应器容积的70% 左右, 其中的污泥浓度要低于污泥床, 通常为15 000~30 000 m g ￶L, 由高度絮凝的污泥组成, 一般为非颗粒状污泥, 其沉降要明显小于颗粒污泥的沉速, 污泥容积指数一般在30~40 mL ￶g 之间. 靠来自污泥床中上升的气泡使此层污泥得到良好的混合. 污泥悬浮层中絮凝污泥的浓度呈自下而上逐渐减小的分布状态.这一层污泥担负着整个U A SB 反应器有机物降解量的10%~30%.(3) 沉淀区沉淀区位于U A SB 反应器的顶部, 其作用是使由于水流的夹带作用而随上升水流进入出水区的固体颗粒(主要是污泥悬浮层中的絮凝性污泥) 在沉淀区沉淀下来, 并沿沉淀区底部的斜壁滑下而重新回到反应区内( 包括污泥床和污泥悬浮层) , 以保证反应器中污泥不致流失而同时保证污泥床中污泥的浓度. 沉淀区的另一个作用是可以通过合理调整沉淀区的水位高度来保证整个反应器集气室的有效空间高度而防止集气空间的破坏.(4) 三相分离器三相分离器一般设在沉淀区的下部, 但有时也可将其设在反应器的项部. 三相分离器的主要作用是将气体(反应过程中产生的沼气)、固体(反应器中的污泥) 和液体(被处理的废水) 等三相加以分离. 将沼气引入集气室, 将处理出水引入出水区, 将固体颗粒导入反应区. 他由气体收集器和折流挡板组成. 有三相分离器是U A SB 反应器污水厌氧处理工艺的主要特点之一. 他相当于传统污水处理工艺中的二次沉淀池, 并同时具有污泥回流的功能. 因而三相分离器的合理设计是保证其正常运行的一个重要内容.U A SB 的工作原理如图所示, 废水由反应器的底部进入后, 由于废水以一定的流速自下而上流动以及厌氧过程产生的大量沼气的搅拌作用, 废水与污泥充分混合, 有机质被吸附分解, 所产沼气经由反应器上部三相分离器的集气室排出, 含有悬浮污泥的废水进入三相分离器的沉降区, 由于沼气已从废水中分离, 沉降区不再受沼气搅拌作用的影响. 废水在平稳上升过程中, 其中沉淀性能良好的污泥经沉降面返回反应器主体部分, 从而保证了反应器内高的污泥浓度. 含有少量较轻污泥的废水从反应器上方排出. U A SB 反应器中可以形成沉淀性能非常好的颗粒污泥, 能够允许较大的上流速度和很高的容积负荷. U A SB 反应器运行的3 个重要的前提是: ①反应器内形成沉降性能良好的颗粒污泥或絮状污泥; ②出产气和进水的均匀分布所形成良好的自然搅拌作用; ③设计合理的三相分离器, 能使沉淀性能良好的污泥保留在反应器内.U ASB反应器是目前各种厌氧处理工艺中所能达到的处理负荷最高的高浓度有机废水处理装置.他之所以有如此高的处理能力, 是因为在反应器内以甲烷菌为主体的厌氧微生物形成了粒径为1~5mm的颗粒污泥, 即污泥的颗粒化是UASB的基本特征. 颗粒污泥能够长期保持其形态上的稳定性及良好的沉降性能.UA SB反应器和其他厌氧处理装置一样, 在实际运行中必须对有关的操作和运转条件加以严格地控制. UASB反应器的运行过程中, 影响污泥颗粒化及处理效能的因素很多. 总的来讲, U A SB 反应器的工艺运行主要受接种污泥的性质及数量、进水水质(有机基质浓度及种类、营养比、悬浮团体含量、有毒有害物质)、反应器的工艺条件(处理负荷, 包括水力负荷、污泥负荷和有机负荷. 反应器温度、pH 值与碱度、挥发酸含量) 等的影响.UASB反应器处理工艺是目前研究较多、应用日趋广泛的新型污水厌氧处理工艺, 他除了具有厌氧处理的优点, 如工艺结构紧凑、处理能力大、,无机械搅拌装置、处理效果好、投资省等优点外, 还具有其他厌氧处理工艺( 厌氧流化床、厌氧滤池等) 难以比拟的优点: ①可实现污泥的颗粒化; ②生物固体体的停留时间可长达100 d; ③气、固、液的分离实现了一体化; ④通常情况下不发生堵塞, 因而他具有很高的处理能力和处理效率, 尤其适用于各种高浓度有机废水的处理, 现已被列为国家重点推广技术表1 UA S B 反应器在处理不同废水中的应用资料温度￶℃去除率￶%反应器容积￶m3规模废水类型容积负荷k g C OD ￶m3 ·dH R T ￶h牛奶废水7. 56-88400生产型土豆加工废水3. 021. 23585 2 200生产型纸板废水6. 62. 53075. 6 1 000生产型甜菜糖废水20. 75. 63582 1 800生产型土豆淀粉废水-203587 5 000生产型香槟酒废水156. 83091-生产型造纸废水4. 4~5. 05. 52875~83 2 200生产型蒸馏厂废水6-35-12半生产型浸麻废水8-35-12半生产型制糖废水22. 563094-半生产型酿酒厂废水95--83-半生产型土豆废水25~4543593-半生产型垃圾渗滤液。

UASB工艺流程

UASB工艺简介升流式厌氧污泥床UASB( Up-flow An aerobic Sludge Bed ,注:以下简称UASB )工艺由于具有厌氧过滤及厌氧活性污泥法的双重特点,作为能够将污水中的污染物转化成再生清洁能源------ 沼气的一项技术。

1971年荷兰瓦格宁根(Wageningen)农业大学拉丁格(Lett in ga)教授通过物理结构设计,利用重力场对不同密度物质作用的差异,发明了三相分离器。

使活性污泥停留时间与废水停留时间分离,形成了上流式厌氧污泥床(UASB )反应器的雏型。

1974年荷兰CSM公司在其6m3反应器处理甜菜制糖废水时,发现了活性污泥自身固定化机制形成的生物聚体结构,即颗粒污泥(granular sludge )。

颗粒污泥的出现,不仅促进了以UASB为代表的第二代厌氧反应器的应用和发展,而且还为第三代厌氧反应器的诞生奠定了基础。

UASB工艺对于不同含固量污水的适应性也强,且其结构、运行操作维护管理相对简单,造价也相对较低,技术已经成熟,正日益受到污水处理业界的重视, 得到广泛的欢迎和应用。

UASB^it 图UASB由污泥反应区、气液固三相分离器(包括沉淀区)和气室三部分组成。

在底部反应区内存留大量厌氧污泥,具有良好的沉淀性能和凝聚性能的污泥在下部形成污泥层。

要处理的污水从厌氧污泥床底部流入与污泥层中污泥进行混合接触,污泥中的微生物分解污水中的有机物,把它转化为沼气。

沼气以微小气泡形式不断放出,微小气泡在上升过程中,不断合并,逐渐形成较大的气泡,在污泥床上部由于沼气的搅动形成一个污泥浓度较稀薄的污泥和水一起上升进入三相分离器,沼气碰到分离器下部的反射板时,折向反射板的四周,然后穿过水层进入气室,集中在气室沼气,用导管导出,固液混合液经过反射进入三相分离器的沉淀区,污水中的污泥发生絮凝,颗粒逐渐增大,并在重力作用下沉降。

沉淀至斜壁上的污泥沼着斜壁滑回厌氧反应区内,使反应区内积累大量的污泥,与污泥分离后的处理出水从沉淀区溢流堰上部溢出,然后排出污泥床。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

UASB工艺系统设计方法探讨简介:本文全面的介绍了UASB系统的设计问题,介绍了厌氧预处理工艺和UASB反应器的负荷设计原则和设计方法。

重点介绍了混凝土结构的矩形UASB反应器各个部分尺寸的计算和确定原则。

对UASB的进水配水系统和布水方式进行了详细的介绍。

对于三相分离器和UASB建筑材料等问题也进行讨论。

关键字:UASB反应器,预处理,配水系统,三相分离器,建筑材料,设计简介:本文全面的介绍了UASB系统的设计问题,介绍了厌氧预处理工艺和UASB反应器的负荷设计原则和设计方法。

重点介绍了混凝土结构的矩形UASB反应器各个部分尺寸的计算和确定原则。

对UASB的进水配水系统和布水方式进行了详细的介绍。

对于三相分离器和UASB建筑材料等问题也进行讨论。

关键字:UASB反应器,预处理,配水系统,三相分离器,建筑材料,设计一、概述厌氧处理已经成功地应用于各种高、中浓度的工业废水处理中。

虽然中、高浓度的废水在相当程度上得到了解决,但是当污水中含有抑制性物质时,如含有硫酸盐的味精废水在处理上仍有一定的难度。

在厌氧处理领域应用最为广泛的是UASB反应器,所以本文重点讨论UASB反应器的设计方法。

但是,其与其它的厌氧处理工艺有一定的共同点,例如,流化床和UASB都有三相分离器。

而UASB和厌氧滤床对于布水的要求是一致的,所以结果也可以作为其他反应器设计参考。

页脚内容1包含厌氧处理单元的水处理过程一般包括预处理、厌氧处理(包括沼气的收集、处理和利用)、好氧后处理和污泥处理等部分,可以用图1所示的流程表示。

二、UASB系统设计1、预处理设施一般预处理系统包括粗格栅、细格栅或水力筛、沉砂池、调节(酸化)池、营养盐和pH调控系统。

格栅和沉砂池的目的是去除粗大固体物和无机的可沉固体,这对对于保护各种类型厌氧反应器的布水管免于堵塞是必需的。

当污水中含有砂砾时,例如以薯干为原料的酿酒废水,怎么强调去除砂砾的重要性也不过分。

不可生物降解的固体,在厌氧反应器内积累会占据大量的池容,反应器池容的不断减少最终将导致系统完全失效。

由于厌氧反应对水质、水量和冲击负荷较为敏感,所以对于工业废水适当尺寸的调节池,对水质、水量的调节是厌氧反应稳定运行的保证。

调节池的作用是均质和均量,一般还可考虑兼有沉淀、混合、加药、中和和预酸化等功能。

在调节池中设有沉淀池时,容积需扣除沉淀区的体积;根据颗粒化和pH调节的要求,当废水碱度和营养盐不够需要补充碱度和营养盐(N、P)等;可采用计量泵自动投页脚内容2加酸、碱和药剂,通过调节池水力或机械搅拌达中和作用。

同时,酸化池或两相系统是去除和改变,对厌氧过程有抑制作用的物质、改善生物反应条件和可生化性也是厌氧预处理的主要手段,也是厌氧预处理的目的之一。

仅考虑溶解性废水时,一般不需考虑酸化作用。

对于复杂废水,可在调节池中取得一定程度的酸化,但是完全的酸化是没有必要的,甚至是有害处的。

因为达到完全酸化后,污水pH会下降,需采用投药调整pH值。

另外有证据表明完全酸化对UASB反应器的颗粒过程有不利的影响。

对以下情况考虑酸化或相分离可能是有利的:1) 当采用预酸化可去除或改变对甲烷菌有毒或抑制性化合物的结构时;2) 当废水存在有较高的Ca2+时,部分酸化可避免颗粒污泥表面产生CaCO3结垢;3) 当处理含高含悬浮物和/或采用高负荷,对非溶解性组分去除有限时;4)在调节池中取得部分酸化效果可以通过调节池的合理设计取得。

例如,上向流进水方式,在反应器底部形成污泥层(1.0m)。

底部布水孔口设计为5~10m2/孔即可。

2、UASB反应器体积的设计a)负荷设计法采用有机负荷(q)或水力停留时间(HRT)设计UASB反应器是目前最为主要的方法。

一旦q或HRT 确定,反应器的体积(V)可以很容易根据公式(1或2)计算。

对某种特定废水,反应器的容积负荷一般应通过试验确定。

V = QSo/q(1)V =KQ.HRT(2)式中:Q---废水流量,m3/d;页脚内容3So---进水有机物浓度,gCOD/L或gBOD5/L。

表1给出不同类型废水国内外采用UASB反应器处理的负荷数据,需要说明的是表中无法一一注明采用的预处理条件和厌氧污泥类型等情况,这些条件对选择设计负荷是至关重要的。

下表供设计人员设计时参考,选用前必须进行必要的实验和进一步查询有关的技术资料。

表1国内外生产性UASB装置的设计负荷统计表页脚内容4页脚内容5b) 经验公式方法Lettinga等人采用同样经验公式描述不同厌氧处理系统处理生活污水HRT与去除率(E)之间的关页脚内容6系,并且对不同反应器处理生活污水的数据进行了统计,得出了参数值。

式中:C1 ,C2——反应常数。

c) 动力学方法许多研究者致力于动力学的研究,Henxen和Harremoes(1983)根据众多研究结果汇总了酸性发酵和甲烷发酵过程重要的动力学常数(见表2)。

到目前为止,动力学理论的发展,还没有使它能够在选择和设计厌氧处理系统过程中成为有力的工具,通过评价所获得的实验结果的经验方法现在仍是设计和优化厌氧消化系统的唯一的选择。

表2厌氧动力学参数(Henxen和Harremoes,1982)培养mm(d-1)Y(mgVSS/mgCOD)Km[mgCOD/(mgVSS?d)]Ks(mgCOD/L)产酸菌20.1513200甲烷菌0.40.031350混合0.40.182---页脚内容73、UASB反应器的详细设计1) 反应器的体积和高度采用水力停留时间进行设计时,体积(V)按公式(1)或(2)计算。

选择反应器高度的原则是设计、运行和经济上综合考虑的结果。

从设计、运行方面考虑:高度会影响上升流速,高流速增加系统扰动和污泥与进水之间的接触。

但流速过高会引起污泥流失,为保持足够多的污泥,上升流速不能超过一定的限值,从而使反应器的高度受到限制;高度与CO2溶解度有关,反应器越高溶解的CO2浓度越高,因此,pH值越低。

如pH值低于最优值,会危害系统的效率。

从经济上考虑:土方工程随池深增加而增加,但占地面积则相反;考虑当地的气候和地形条件,一般将反应器建造在半地下减少建筑和保温费用。

最经济的反应器高度(深度)一般是在4到6m之间,并且在大多数情况下这也是系统最优的运行范围。

2) 反应器的升流速度对于UASB反应器还有其他的流速关系(图2)。

对于日平均上升流速的推荐值见表3,应该注意对短时间(如2~6h)的高峰值是可以承受的(即暂时的高峰流量可以接收)。

表3UASB和EGSB允许上升流速(平均日流量)页脚内容83) 反应器的截面积和反应器的长、宽(或直径)在确定反应器的容积和高度(H)之后,可确定反应器的截面积(A)。

从而确定反应器的长和宽,在同样的面积下正方形池的周长比矩形池要小,矩形UASB需要更多的建筑材料。

以表面积为600m2的反应器为例,30×20m的反应器与15m×40m的反应器周长相差10%,这意味着建筑费用要增加10%。

但从布水均匀性考虑,矩形在长/宽比较大较为合适。

从布水均匀性和经济性考虑,矩形池在长/宽比在2:1以下较为合适。

长/宽比在4:1时费用增加十分显著。

圆形反应器在同样的面积下,其周长比正方形的少12%。

但这一优点仅仅在采用单个池子时页脚内容9才成立。

当建立两个或两个以上反应器时,矩形反应器可以采用共用壁。

对于采用公共壁的矩形反应器,池型的长宽比对造价也有较大的影响。

如果不考虑其他因素,这是一个在设计中需要优化的参数。

4) 单元反应器最大体积和分格化的反应器在UASB反应器的设计中,采用分格化对运行操作是有益的。

首先,分格化的单元尺寸不会过大,可避免体积过大带来的布水均匀性等问题;同时多个反应器对系统的启动也是有益的,可首先启动一个反应器,再用这个反应器的污泥去接种其他反应器;另外,有利于维护和检修,可放空一个反应器进行检修,而不影响系统的运行。

从目前实践看最大的单体UASB反应器(不是最优的)可为1000-20 00m3。

5) 单元反应器的系列化单元的标准化根据三相分离器尺寸进行,三相分离器的型式趋向于多层箱体的设备化结构。

以2×5m的三相分离器为例,原则上讲有多种配合形式。

但从标准化和系列化考虑,要求具有通用性和简单性。

所以,池子宽度是以5m为模数,长度方向是以2m为模数。

布置单元尺寸的方式可分成单池单个分离器和单池两个分离器的形式。

原则上如果采用管道或渠道布水,池子的长度是不受限制。

如前所述,由于长宽比涉及到反应器的经济性,所以要结合池子组数考虑适当的长宽比。

对宽度为10 m的单个反应器,2:1的长宽比的反应器可达到2000m3的池容。

对更大的反应器,如果需要也可采用双池共用壁的型式。

三、反应器的配水系统的设计1、配水孔口负荷一个进水点服务的最大面积问题是应该进行深入的实验研究。

对于UASB反应器Lettinga建议在完成了起动之后,每个进水点负担2.0到4.0m2对获得满意的去除效率是足够的。

但是在温度低于2页脚内容100℃或低负荷的情况,产气率较低并且污泥和进水的混合不充分时,需要较高密度的布水点。

对于城市污水De Man和Van der Last (1990)建议1~2m2/孔。

表4是Lettinga等人根据UASB反应器的大量实践推荐的进水管负荷。

表4采用UASB处理主要为溶解性废水时进水管口负荷页脚内容112、进水分配系统进水分配系统的合理设计对UASB处理厂的良好运转是至关重要的,进水系统兼有配水和水力搅拌的功能,为了这两个功能的实现,需要满足如下原则:a) 确保单位面积的进水量基本相同,以防止短路等现象发生;b) 尽可能满足水力搅拌需要,保证进水有机物与污泥迅速混合;c) 很容易观察到进水管的堵塞;d) 当堵塞被发现后,很容易被清除。

在生产装置中采用的进水方式大致可分为间歇式(脉冲式)、连续流、连续与间歇相结合等方式;从布水管的形式有一管多孔、一管一孔和分枝状等多种形式。

1) 连续进水方式(一管一孔)为了确保进水均匀分布,每个进水管线仅仅与一个进水点相连接,是最为理想的情况(图3a)。

为保证每一个进水点的流量相等,建议用高于反应器的水箱(或渠道式)进行分配,通过渠道或分配箱之间的三角堰来保证等量的进水。

这种系统的好处是容易观察到堵塞情况。

2) 脉冲进水方式页脚内容12我国UASB反应器与国外的最为显著的特点是很多采用脉冲进水方式。

有些研究者认为脉冲方式进水,使底层污泥交替进行收缩和膨胀,有助于底层污泥的混合。

图3a为北京环科院采用的一种脉冲布水器的原理图,该系统借鉴了给水中虹吸滤池的布水方式。

3) 一管多孔配水方式采用在反应器池底配水横管上开孔的方式布水,为了配水均匀,要求出水流速不小于2.0m/s。

相关文档
最新文档