高中数学解题模型大全
高中数学选择题的解题方法详解高中数学20个模型解法

高中数学选择题的解题方法详解高中数学20个模型解法高中数学选择题的解题方法方法一:直接法所谓轻易法,就是轻易从题设的条件启程,运用有关的概念、定义、性质、定理、法则和公式等科学知识,通过严格的推理小说与排序比起出题目的结论,然后再对照题目Rewa的四个选项去“对号入座”.其基本策略就是由因导果,轻易解.方法二:特例法特例法的理论依据就是:命题的一般性结论为真的先决条件就是它的特定情况为真,即为普通性微旨特殊性之中,所谓特例法,就是用特定值(特定图形、特定边线)替代题设广泛条件,得出结论特定结论,对各个选项展开检验,从而做出恰当的推论.常用的特例Barbezieux特定数值、特定数列、特定函数、特定图形、特定角、特定边线等.这种方法实际就是一种“小题大搞”的解题策略,对答疑某些选择题有时往往十分奏效.注意:在题设条件都设立的情况下,用特定值(获得越直观越不好)展开探究,从而准确、便捷地获得恰当的答案,即为通过对特定情况的研究去推论通常规律,就是答疑本类选择题的更佳策略.近几年中考选择题中需用或融合特例法去答疑的约占到30%.因此,特例法就是解选择题的不好一招.方法三:排除法数学选择题的解题本质就是去伪存真,抛弃不合乎题目建议的选项,找出合乎题意的恰当结论.筛选法(又叫做排除法)就是通过观察分析或推理小说运算各项提供更多的信息或通过特例,对于错误的选项,逐一剔出,从而赢得恰当的结论.注意:排除法适应环境于定性型或难于轻易解的选择题.当题目中的条件多于一个时,先根据某些条件在选项中找到显著与之矛盾的,不予驳斥,再根据另一些条件在增大选项的范围内找到矛盾,这样逐步甄选,直至得出结论恰当的答案.它与特例法、图解法等融合采用就是求解选择题的常用方法,近几年中考选择题中占据非常大的比重.方法四:数形结合法数形融合,其实质就是将抽象化的数学语言与直观的图形融合出来,并使抽象思维与形象思维融合出来,通过对图形的处置,充分发挥直观对抽象化的积极支持促进作用,同时实现抽象概念与具体内容形象的联系和转变,化难为易,化抽象化为直观.方法五:估算法在选择题中作精确排序难于时,可以根据题干提供更多的信息,估计出来结果的大致值域范围,确定错误的选项.对于客观性试题,合理的估计往往比盲目的精确排序和细致推理小说更为有效率,堪称“一叶知秋”.方法六:综合法当单一的解题方法无法并使试题快速获解时,我们可以将多种方法融为一体,交叉采用,试题便能够迎刃而解.根据题干提供更多的信息,难于找出解题思路时,我们可以从选项里打听解题启发.高中数学高分的技巧1.特值检验法对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
高中数学抛物线的一个重要模型(模型解题法)

DO yAFBClx【模型解题法】高中数学抛物线焦点弦模型【模型思考】过抛物线焦点的直线,交抛物线于A B 、两点,则称线段AB 为抛物线的焦点弦。
过抛物线)0(22>=p px y 的焦点弦AB 的端点,A B 分别抛物线准线l 的垂线,交l 于D C 、,构成直角梯形ABCD (图1).这个图形是抛物线 问题中极为重要的一个模型,围绕它可以生出许 多重要的问题,抓住并用好这个模型,可以帮助 我们学好抛物线的基本知识与基本方法,同时, 它又体现了解析几何的重要思想方法。
在图1中, 有哪些重要的几何量可以算出来?又可以获得哪 些重要结论呢?【模型示例】设直线AB 的倾角为θ,当=90AB x θ⊥轴()时,称弦AB 为通径。
例1. 求通径长. 例2. 求焦点弦AB 长. 例3. 求AOB ∆的面积.例4. 连,(2)CF DF CF DF ⊥,求证图.例5. 设准线l 与x 轴交于点E ,求证:FE 是CE 与DE 的比例中项,即 2FE CE DE =⋅.例6. 如图3,直线AO 交准线于C ,求证:直线 x BC //轴. (多种课本中的题目) 例7.设抛物线)0(22>=p px y 的焦点为F ,经过点F 的直线交抛物线于B A ,两点.点C在抛物线的准线上,且x BC //轴. 证明直线AC 经过原点. 例8. 证明:梯形中位线MN 长为2sin pθ. 例9. 连,AN BN AN BN ⊥、图(5),证明:. 例10. 求证:以线段AB 为直径的圆与准线相切. 例11. 连NF ,证明:NF ⊥AB ,且2NFAF BF =⋅.例12. 已知抛物线y x 42=的焦点为F ,AB 是抛物线的焦点弦,过A 、B 两点分别作抛物线的切线,设其交点为M.(I )证明:点M 在抛物线的准线上; (Ⅱ)求证:FM →·AB →为定值; FBAy图1【模型解析】设直线AB 的倾角为θ,当=90AB x θ⊥轴()时,称弦AB 为通径。
(完整word版)高中数学12个答题模板

答题方法和考试技巧选择填空题易错点归纳九大模块易混淆难记忆考点分析,如概率和频率概念混淆、数列求和公式记忆错误等,强化基础知识点记忆,避开因为知识点失误造成的客观性解题错误。
针对审题、解题思路不严谨如集合题型未考虑空集情况、函数问题未考虑定义域等主观性因素造成的失误进行专项训练。
答题方法选择题十大速解方法排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;填空题四大速解方法直接法、特殊化法、数形结合法、等价转化法。
解答题一、三角变换与三角函数的性质问题1、解题路线图①不同角化同角②降幂扩角③化f(x)=Asin(ωx+φ)+h④结合性质求解。
2、构建答题模板①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。
二、解三角形问题1、解题路线图(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。
(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
2、构建答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
三、数列的通项、求和问题1、解题路线图①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
2、构建答题模板①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
高中数学通用模型解题方法

13. 反函数存在的条件是什么? (一一对应函数)求反函数的步骤掌握了吗? (①反解x ;②互换x 、y ;③注明定义域) 14. 反函数的性质有哪些? 反函数性质: 1、 反函数的定义域是原函数的值域 (可扩展为反函数中的x 对应原函数中的y )2、 反函数的值域是原函数的定义域(可扩展为反函数中的y 对应原函数中的x )3、反函数的图像和原函数关于直线=x 对称(难怪点(x,y )和点(y ,x )关于直线y=x 对称①互为反函数的图象关于直线y =x 对称; ②保存了原来函数的单调性、奇函数性;由反函数的性质,可以快速的解出很多比较麻烦的题目,如(04. 上海春季高考)已知函数)24(log )(3+=xx f ,则方程4)(1=-x f 的解=x __________.1对于这一类题目,其实方法特别简单,呵呵。
已知反函数的y,不就是原函数的x 吗?那代进去阿,答案是不是已经出来了呢?(也可能是告诉你反函数的x 值,那方法也一样,呵呵。
自己想想,不懂再问我 15 . 如何用定义证明函数的单调性? (取值、作差、判正负)判断函数单调性的方法有三种: (1)定义法:根据定义,设任意得x 1,x 2,找出f(x 1),f(x 2)之间的大小关系可以变形为求1212()()f x f x x x --的正负号或者12()()f x f x 与1的关系(2)参照图象:①若函数f(x)的图象关于点(a ,b)对称,函数f(x)在关于点(a ,0)的对称区间具有相同的单调性;(特例:奇函数)②若函数f(x)的图象关于直线x=a对称,则函数f(x)在关于点(a,0)的对称区间里具有相反的单调性。
(特例:偶函数)(3)利用单调函数的性质:①函数f(x)与f(x)+c(c是常数)是同向变化的②函数f(x)与cf(x)(c是常数),当c>0时,它们是同向变化的;当c<0时,它们是反向变化的。
③如果函数f1(x),f2(x)同向变化,则函数f1(x)+f2(x)和它们同向变化;(函数相加)④如果正值函数f1(x),f2(x)同向变化,则函数f1(x)f2(x)和它们同向变化;如果负值函数f1(2)与f2(x)同向变化,则函数f1(x)f2(x)和它们反向变化;(函数相乘)在f(x)的同号区间里反向变化。
高考数学外接球与内切球十大模型(例题+练习共10个专题)(学生版+解析版)

专题一 墙角模型如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点与难点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径.并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.球的内切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.当球与多面体的各个面相切时,注意球心到各面的距离相等即球的半径,求球的半径时,可用球心与多面体的各顶点连接,球的半径为分成的小棱锥的高,用体积法来求球的半径.空间几何体的外接球与内切球十大模型1.墙角模型;2.对棱相等模型;3.汉堡模型;4.垂面模型;5.切瓜模型;6.斗笠模型;7.鳄鱼模型;8.已知球心或球半径模型;9.最值模型;10.内切球模型.【方法总结】墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长(在长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.),秒杀公式:R 2=a 2+b 2+c 24.可求出球的半径从而解决问题.有以下四种类型:【例题选讲】[例] (1)已知三棱锥A -BCD 的四个顶点A ,B ,C ,D 都在球O 的表面上,AC ⊥平面BCD ,BC ⊥CD ,且AC =3,BC =2,CD =5,则球O 的表面积为( )A .12πB .7πC .9πD .8π答案 A 解析 由AC ⊥平面BCD ,BC ⊥CD 知三棱锥A -BCD 可构造以AC ,BC ,CD 为三条棱的长方体,设球O 的半径为R ,则有(2R )2=AC 2+BC 2+CD 2=3+4+5=12,所以S 球=4πR 2=12π,故选A .(2)若三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球半径为( ). A .3 B .6 C .36 D .9ABC D A 1B 1C 1D 1类型ⅠA BC DA 1B 1C 1D 1类型ⅡABC D A 1B 1C 1D 1类型ⅢABC D A 1B 1C 1D 1例外型答案 A 解析 616164)2(2=++=R ,3=R ,故选A .(3)已知S ,A ,B ,C ,是球O 表面上的点,SA ⊥平面ABC ,AB ⊥BC ,SA =AB =1,BC,则球O 的表面积等于( ).A .4πB .3πC .2πD .π 答案 解析由已知,22R =, 244S R π∴==球π.(4)在正三棱锥S -ABC 中,M ,N 分别是棱SC ,BC 的中点,且AM MN ⊥,若侧棱SA =三棱锥S -ABC 外接球的表面积是________.答案 π36 解析 MN AM ⊥,MN SB //,∴SB AM ⊥, SB AC ⊥,∴⊥SB 平面SAC ,∴SA SB ⊥,SC SB ⊥, SA SB ⊥,SA BC ⊥,∴⊥SA 平面SBC ,∴SC SA ⊥,故三棱锥ABC S -的三棱条侧棱两两互相垂直,222(2)R ∴=+2+36=,即3642=R ,∴正三棱锥ABC S -外接球的表面积是π36.(5)(2019全国Ⅰ)已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( ).A. B. C. D答案 D 解析 解法一:, PA PB PC ABC ==△为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥平面PAC ,∴PB ⊥平面PAC, APB PA PB PC ∴∠=90︒,∴===P ABC ∴-为正方体的一部分,2R,=,即344π33R V R π=∴==,故选D .解法二:设2PA PB PC x ===,, E F 分别为, PA AB 的中点,EF PB ∴∥,且12EF PB x ==,ABC△为边长为2的等边三角形,CF ∴=,又90CEF ∠=︒,12CE AE PA x ∴==,AEC △中,ABCSMN ABCP EF(解法一)AC(解法二)由余弦定理可得()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =,D ∴为AC 的中点,cos E ∠12AD AC PA x ==,2243142x x x x +-+∴=,221212 2x x x ∴+=∴==,,,PA PB PC ∴===2AB BC AC ===,, , PA PB PC ∴两两垂直,2R ∴,R ∴,34433V R ππ∴==⨯==,故选D . (6)已知二面角α-l -β的大小为π3,点P ∈α,点P 在β 内的正投影为点A ,过点A 作AB ⊥l ,垂足为点B ,点C ∈l ,BC =22,P A =23,点D ∈β,且四边形ABCD 满足∠BCD +∠DAB =π.若四面体P ACD 的四个顶点都在同一球面上,则该球的体积为________.答案 86π 解析 ∵∠BCD +∠DAB =π,∴A ,B ,C ,D 四点共圆,直径为AC ,∵P A ⊥平面β,AB ⊥l ,∴易得PB ⊥l ,即∠PBA 为二面角α-l -β的平面角,即∠PBA =π3,∵P A =23,∴BA =2,∵BC=22,∴AC =23.设球的半径为R ,则23-R 2-()32=R 2-()32,∴R =6,V =4π3(6)3=86π.【对点训练】1.点A ,B ,C ,D 均在同一球面上,且AB ,AC ,AD 两两垂直,且AB =1,AC =2,AD =3,则该球的 表面积为( )A .7πB .14πC .72πD .714π32.等腰△ABC 中,AB =AC =5,BC =6,将△ABC 沿BC 边上的高AD 折成直二面角B -AD -C ,则三棱 锥B -ACD 的外接球的表面积为( )A .5πB .203π C .10π D .34π3.已知球O 的球面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体 积等于________.4.已知四面体P -ABC 四个顶点都在球O 的球面上,若PB ⊥平面ABC ,AB ⊥AC ,且AC =1,AB =PB =2,则球O 的表面积为________.5.三棱锥P -ABC 中,△ABC 为等边三角形,P A =PB =PC =3,P A ⊥PB ,三棱锥P -ABC 的外接球的体 积为( )A .272πB .2732π C .273π D .27π6.在空间直角坐标系Oxyz 中,四面体ABCD 各顶点的坐标分别为A (2,2,1),B (2,2,-1),C (0,2, 1),D (0,0,1),则该四面体外接球的表面积是( )A .16πB .12πC .43πD .6π7.在平行四边形ABCD 中,∠ABD =90°,且AB =1,BD =2,若将其沿BD 折起使平面ABD ⊥平面BC D ,则三棱锥A -BDC 的外接球的表面积为( D )A .2πB .8πC .16πD .4π8.在正三棱锥S-ABC中,点M是SC的中点,且AM⊥SB,底面边长AB=22,则正三棱锥S-ABC的外接球的表面积为()A.6πB.12πC.32πD.36π9.在古代将四个面都为直角三角形的四面体称之为鳖臑,已知四面体A-BCD为鳖臑,AB⊥平面BCD,且AB=BC=36CD,若此四面体的体积为833,则其外接球的表面积为________.10.在长方体ABCD-A1B1C1D1中,底面ABCD是边长为32的正方形,AA1=3,E是线段A1B1上一点,若二面角A-BD-E的正切值为3,则三棱锥A-A1D1E外接球的表面积为________.专题一 墙角模型如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点与难点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径.并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.球的内切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.当球与多面体的各个面相切时,注意球心到各面的距离相等即球的半径,求球的半径时,可用球心与多面体的各顶点连接,球的半径为分成的小棱锥的高,用体积法来求球的半径.空间几何体的外接球与内切球十大模型1.墙角模型;2.对棱相等模型;3.汉堡模型;4.垂面模型;5.切瓜模型;6.斗笠模型;7.鳄鱼模型;8.已知球心或球半径模型;9.最值模型;10.内切球模型.【方法总结】墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长(在长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.),秒杀公式:R 2=a 2+b 2+c 24.可求出球的半径从而解决问题.有以下四种类型:【例题选讲】[例] (1)已知三棱锥A -BCD 的四个顶点A ,B ,C ,D 都在球O 的表面上,AC ⊥平面BCD ,BC ⊥CD ,且AC =3,BC =2,CD =5,则球O 的表面积为( )A .12πB .7πC .9πD .8π答案 A 解析 由AC ⊥平面BCD ,BC ⊥CD 知三棱锥A -BCD 可构造以AC ,BC ,CD 为三条棱的长方体,设球O 的半径为R ,则有(2R )2=AC 2+BC 2+CD 2=3+4+5=12,所以S 球=4πR 2=12π,故选A .(2)若三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球半径为( ). A .3 B .6 C .36 D .9ABC D A 1B 1C 1D 1类型ⅠA BC DA 1B 1C 1D 1类型ⅡABC D A 1B 1C 1D 1类型ⅢABC D A 1B 1C 1D 1例外型答案 A 解析 616164)2(2=++=R ,3=R ,故选A .(3)已知S ,A ,B ,C ,是球O 表面上的点,SA ⊥平面ABC ,AB ⊥BC ,SA =AB =1,BC,则球O 的表面积等于( ).A .4πB .3πC .2πD .π答案 解析由已知,22R =, 244S R π∴==球π.(4)在正三棱锥S -ABC 中,M ,N 分别是棱SC ,BC 的中点,且AM MN ⊥,若侧棱SA =三棱锥S -ABC 外接球的表面积是________.答案 π36 解析 MN AM ⊥,MN SB //,∴SB AM ⊥, SB AC ⊥,∴⊥SB 平面SAC ,∴SA SB ⊥,SC SB ⊥, SA SB ⊥,SA BC ⊥,∴⊥SA 平面SBC ,∴SC SA ⊥,故三棱锥ABC S -的三棱条侧棱两两互相垂直,222(2)R ∴=+2+36=,即3642=R ,∴正三棱锥ABC S -外接球的表面积是π36.(5)(2019全国Ⅰ)已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( ).A. B. C. D答案 D 解析 解法一:, PA PB PC ABC ==△为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CEAC C EF =∴⊥平面PAC ,∴PB ⊥平面PAC, APB PA PB PC ∴∠=90︒,∴===P ABC∴-为正方体的一部分,2R,即344π33R V R π∴===,故选D .解法二:设2PA PB PC x ===,, E F 分别为, PA AB 的中点,EF PB ∴∥,且12EF PB x ==,ABC △为边长为2的等边三角形,CF ∴=,又90CEF ∠=︒,12CE AE PA x ∴==,AEC △中,ABCSMN ACP EF(解法一)AC(解法二)由余弦定理可得()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =,D ∴为AC 的中点,cos E ∠12AD AC PA x ==,2243142x x x x +-+∴=,221212 2x x x ∴+=∴==,,,PA PB PC ∴===2AB BC AC ===,, , PA PB PC ∴两两垂直,2R ∴,R ∴,34433V R ππ∴==⨯==,故选D . (6)已知二面角α-l -β的大小为π3,点P ∈α,点P 在β 内的正投影为点A ,过点A 作AB ⊥l ,垂足为点B ,点C ∈l ,BC =22,P A =23,点D ∈β,且四边形ABCD 满足∠BCD +∠DAB =π.若四面体P ACD 的四个顶点都在同一球面上,则该球的体积为________.答案 86π 解析 ∵∠BCD +∠DAB =π,∴A ,B ,C ,D 四点共圆,直径为AC ,∵P A ⊥平面β,AB ⊥l ,∴易得PB ⊥l ,即∠PBA 为二面角α-l -β的平面角,即∠PBA =π3,∵P A =23,∴BA =2,∵BC=22,∴AC =23.设球的半径为R ,则23-R 2-()32=R 2-()32,∴R =6,V =4π3(6)3=86π.【对点训练】1.点A ,B ,C ,D 均在同一球面上,且AB ,AC ,AD 两两垂直,且AB =1,AC =2,AD =3,则该球的 表面积为( )A .7πB .14πC .72πD .714π31.答案 B 解析 三棱锥A -BCD 的三条侧棱两两互相垂直,所以把它补为长方体,而长方体的体对角 线长为其外接球的直径.所以长方体的体对角线长是12+22+32=14,它的外接球半径是142,外接球的表面积是4π×⎝⎛⎭⎫1422=14π.2.等腰△ABC 中,AB =AC =5,BC =6,将△ABC 沿BC 边上的高AD 折成直二面角B -AD -C ,则三棱 锥B -ACD 的外接球的表面积为( )A .5πB .203π C .10π D .34π2.答案 D 解析 依题意,在三棱锥B -ACD 中,AD ,BD ,CD 两两垂直,且AD =4,BD =CD =3, 因此可将三棱锥BACD 补形成一个长方体,该长方体的长、宽、高分别为3,3,4,且其外接球的直径2R =32+32+42=34,故三棱锥B -ACD 的外接球的表面积为4πR 2=34π3.已知球O 的球面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体 积等于________. 3.答案6π 解析 如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径.∴CD =(2)2+(2)2+(2)2=2R ,因此R =62,故球O 的体积V =4πR 33=6π.4.已知四面体P -ABC 四个顶点都在球O 的球面上,若PB ⊥平面ABC ,AB ⊥AC ,且AC =1,AB =PB =2,则球O 的表面积为________.4.答案 9π 解析 由PB ⊥平面ABC ,AB ⊥AC ,可得图中四个直角三角形,且PC 为△PBC ,△P AC 的公共斜边,故球心O 为PC 的中点,由AC =1,AB =PB =2,PC =3,∴球O 的半径为32,其表面积为9π.5.三棱锥P -ABC 中,△ABC 为等边三角形,P A =PB =PC =3,P A ⊥PB ,三棱锥P -ABC 的外接球的体 积为( )A .272πB .2732π C .273π D .27π5.答案 B 解析 因为三棱锥P -ABC 中,△ABC 为等边三角形,P A =PB =PC =3,所以△P AB ≌△PBC ≌△P AC .因为P A ⊥PB ,所以P A ⊥PC ,PC ⊥PB .以P A ,PB ,PC 为过同一顶点的三条棱作正方体(如图所示),则正方体的外接球同时也是三棱锥P -ABC 的外接球.因为正方体的体对角线长为32+32+32=33,所以其外接球半径R =332.因此三棱锥P -ABC 的外接球的体积V =4π3×⎝⎛⎭⎫3323=2732π,故选B .6.在空间直角坐标系Oxyz 中,四面体ABCD 各顶点的坐标分别为A (2,2,1),B (2,2,-1),C (0,2, 1),D (0,0,1),则该四面体外接球的表面积是( )A .16πB .12πC .43πD .6π6.答案 B 解析 在空间直角坐标系内画出A ,B ,C ,D 四个点,可得BA ⊥AC ,DC ⊥平面ABC , 因此可以把四面体ABCD 补成一个棱为2的正方体,其外接球的半径R =22+22+222= 3.所以外接球的表面积为4πR 2=12π,故选B.7.在平行四边形ABCD 中,∠ABD =90°,且AB =1,BD =2,若将其沿BD 折起使平面ABD ⊥平面BCD ,则三棱锥A -BDC 的外接球的表面积为( D )A .2πB .8πC .16πD .4π 7.答案 D 解析 画出对应的平面图形和立体图形,如图所示.AAB BC CD DO在立体图形中,设AC 的中点为O ,连接OB ,OD ,因为平面ABD ⊥平面BCD ,CD ⊥BD ,所以CD ⊥平面ABD ,又AB ⊥BD ,所以AB ⊥平面BCD ,所以△CDA 与△CBA 都是以AC 为斜边的直角三角形,所以OA =OC =OB =OD ,所以点O 为三棱锥A -BDC 的外接球的球心.于是,外接球的半径r =12AC=12CD 2+DA 2=1212+(3)2=1.故外接球的表面积S =4πr 2=4π.故选D .8.在正三棱锥S -ABC 中,点M 是SC 的中点,且AM ⊥SB ,底面边长AB =22,则正三棱锥S -ABC 的 外接球的表面积为( )A .6πB .12πC .32πD .36π8.答案 B 解析 因为三棱锥S -ABC 为正三棱锥,所以SB ⊥AC ,又AM ⊥SB ,AC ∩AM =A ,AC ,AM ⊂平面SAC ,所以SB ⊥平面SAC ,所以SB ⊥SA ,SB ⊥SC ,同理SA ⊥SC ,即SA ,SB ,SC 三线两两垂直,且AB =22,所以SA =SB =SC =2,所以(2R )2=3×22=12,所以球的表面积S =4πR 2=12π,故选B.9.在古代将四个面都为直角三角形的四面体称之为鳖臑,已知四面体A -BCD 为鳖臑,AB ⊥平面BCD , 且AB =BC =36CD ,若此四面体的体积为833,则其外接球的表面积为________. 9.答案 56π 解析 四面体A -BCD 为鳖臑,则由题意可知△BCD 中只能∠BCD 为直角,则四面体A -BCD 的体积为13×12×CD ·36CD ·36CD =833,解得CD =43.易知外接球的球心为AD 的中点,易求得AD =214,所以球的半径为14,所以球的表面积为56π.10.在长方体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为32的正方形,AA 1=3,E 是线段A 1B 1上一点,若二面角A -BD -E 的正切值为3,则三棱锥A -A 1D 1E 外接球的表面积为________.10.答案 35π 解析 过点E 作EF ∥AA 1交AB 于F ,过F 作FG ⊥BD 于G ,连接EG ,则∠EGF 为二面角A -BD -E 的平面角,∵tan ∠EGF =3,∴EFFG=3,∵EF =AA 1=3,∴FG =1,则BF =2=B 1E ,∴A 1E =22,则三棱锥A -A 1D 1E 外接球的直径为8+9+18=35,因此三棱锥A -A 1D 1E 外接球的表面积S =35π.专题二 对棱相等模型【方法总结】对棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长,即2R =长方体的长、宽、高分别为a 、b 、c ).秒杀公式:R 2=x 2+y 2+z 28(三棱锥的三组对棱长分别为x 、y 、z ).可求出球的半径从而解决问题.【例题选讲】[例] (1)________. 答案解析 这是特殊情况,但也是对棱相等的模式,放入长方体中,32=R ,23=R ,ππ2383334=⋅=V .(2)在三棱锥A -BCD 中,AB =CD =2,AD =BC =3,AC =BD =4,则三棱锥BCD A -外接球的表面积为________.答案292π 解析 构造长方体,三个长度为三对面的对角线长,设长宽高分别为c b a ,,,则922=+b a ,422=+c b ,1622=+a c ∴291649)(2222=++=++c b a ,291649)(2222=++=++c b a ,229222=++c b a ,22942=R ,π229=S . (3)在三棱锥A -BCD 中,AB =CD =6,AC =BD =AD =BC =5,则该三棱锥的外接球的体积为____. 答案43436π解析 依题意得,该三棱锥的三组对棱分别相等,因此可将该三棱锥补形成一个长方体,设该长方体的长、宽、高分别为a 、b 、c ,且其外接球的半径为R ,则⎩⎪⎨⎪⎧a 2+b 2=62,b 2+c 2=52,c 2+a 2=52,得a 2+b 2+c 2=43,即(2R )2=a 2+b 2+c 2=43,易知432R =,即为该三棱锥的外接球的半径,所以该三棱锥的外接球的表面积为34434336R ππ=.(4)在正四面体A BCD -中,E 是棱AD 的中点,P 是棱AC 上一动点,BP PE +,则该正四面体的外接球的体积是( )A B .6π C D .32π AB C D A 1B 1C 1D 1答案 A 解析 将侧面ABC ∆和ACD ∆展成平面图形,如图所示:设正四面体的棱长为a ,则BP PE +的最小值为1cos1202BE a a ===,2a ∴=.在正四面体A BCD -的边长为2,外接球的半径R ==,外接球的体积343V R π=.(5)已知三棱锥A BCD -,三组对棱两两相等,且1AB CD ==,AD BC ==A BCD -的外接球表面积为92π.则AC =________.答案解析 将四面体A BCD -放置于长方体中,四面体A BCD -的顶点为长方体八个顶点中的四个,∴长方体的外接球就是四面体A BCD -的外接球,1AB CD ==,AD BC ==棱两两相等,∴设AC BD x ==,可得外接球的直径2R =R =,三棱锥A BCD -的外接球表面积为92π,2942R ππ∴=,解得4R ==,解之得x AC BD == 【对点训练】1.已知正四面体ABCD 的外接球的体积为86π,则这个四面体的表面积为________.2.表面积为( )A .B .12πC .8πD .3.已知四面体ABCD 满足AB =CD =6,AC =AD =BC =BD =2,则四面体ABCD 的外接球的表面积是 ________.4.三棱锥中S -ABC ,SA =BC =13,SB =AC =5,SC =AB =10.则三棱锥的外接球的表面积为______. 5.已知一个四面体ABCD 的每个顶点都在表面积为9π的球O 的表面上,且AB =CD =a ,AC =AD =BC =BD =5,则a =________.6.正四面体ABCD 中,E 是棱AD 的中点,P 是棱AC 上一动点,BP PE + 体的外接球表面积是( )A .12πB .32πC .8πD . 24π专题二 对棱相等模型【方法总结】对棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长,即2R =长方体的长、宽、高分别为a 、b 、c ).秒杀公式:R 2=x 2+y 2+z 28(三棱锥的三组对棱长分别为x 、y 、z ).可求出球的半径从而解决问题.【例题选讲】[例] (1)________. 答案解析 这是特殊情况,但也是对棱相等的模式,放入长方体中,32=R ,23=R ,ππ2383334=⋅=V .(2)在三棱锥A -BCD 中,AB =CD =2,AD =BC =3,AC =BD =4,则三棱锥BCD A -外接球的表面积为________.答案292π 解析 构造长方体,三个长度为三对面的对角线长,设长宽高分别为c b a ,,,则922=+b a ,422=+c b ,1622=+a c ∴291649)(2222=++=++c b a ,291649)(2222=++=++c b a ,229222=++c b a ,22942=R ,π229=S . (3)在三棱锥A -BCD 中,AB =CD =6,AC =BD =AD =BC =5,则该三棱锥的外接球的体积为____. 答案43436π解析 依题意得,该三棱锥的三组对棱分别相等,因此可将该三棱锥补形成一个长方体,设该长方体的长、宽、高分别为a 、b 、c ,且其外接球的半径为R ,则⎩⎪⎨⎪⎧a 2+b 2=62,b 2+c 2=52,c 2+a 2=52,得a 2+b 2+c 2=43,即(2R )2=a 2+b 2+c 2=43,易知432R =,即为该三棱锥的外接球的半径,所以该三棱锥的外接球的表面积为34434336R ππ=.(4)在正四面体A BCD -中,E 是棱AD 的中点,P 是棱AC 上一动点,BP PE +,则该正四面体的外接球的体积是( )A B .6π C D .32π AB C D A 1B 1C 1D 1答案 A 解析 将侧面ABC ∆和ACD ∆展成平面图形,如图所示:设正四面体的棱长为a ,则BP PE +的最小值为1cos1202BE a a ==,2a ∴=.在正四面体A BCD -的边长为2,外接球的半径R =,外接球的体积343V R π=.(5)已知三棱锥A BCD -,三组对棱两两相等,且1AB CD ==,AD BC ==A BCD -的外接球表面积为92π.则AC =________.答案解析 将四面体A BCD -放置于长方体中,四面体A BCD -的顶点为长方体八个顶点中的四个,∴长方体的外接球就是四面体A BCD -的外接球,1AB CD ==,AD BC ==棱两两相等,∴设AC BD x ==,可得外接球的直径2R =R =,三棱锥A BCD -的外接球表面积为92π,2942R ππ∴=,解得R ==,解之得x AC BD == 【对点训练】1.已知正四面体ABCD 的外接球的体积为86π,则这个四面体的表面积为________.1.答案 163 解析 将正四面体ABCD 放在一个正方体内,设正方体的棱长为a ,设正四面体ABCD 的外接球的半径为R ,则43πR 3=86π,解得R =6,因为正四面体ABCD 的外接球和正方体的外接球是同一个球,则有3a =2R =26,所以a =22.而正四面体ABCD 的每条棱长均为正方体的面对角线长,所以正四面体ABCD 的棱长为2a =4,因此,这个正四面体的表面积为4×12×42×sin π3=163.2.表面积为( )A .B .12πC .8πD .2.答案 B 解析 表面积为将正四面体补成一个正方体,则正方体的棱长为2,正方体的对角线长为正四面体的外接球的直径为正方体的对角线长,∴外接球的表面积的值为24(3)12ππ=.3.已知四面体ABCD 满足AB =CD =6,AC =AD =BC =BD =2,则四面体ABCD 的外接球的表面积是 ________.3.答案 7π 解析 在四面体ABCD 中,取线段CD 的中点为E ,连接AE ,BE .∵AC =AD =BC =BD =2,∴AE ⊥CD ,BE ⊥CD .在Rt △AED 中,CD =6,∴AE =102.同理BE =102,取AB 的中点为F ,连接EF .由AE =BE ,得EF ⊥AB .在Rt △EF A 中,∵AF =12AB =62,AE =102,∴EF =1,取EF 的中点为O ,连接OA ,则OF =12.在Rt △OF A 中,OA =72.同理得OA =OB =OC =OD ,∴该四面体的外接球的半径是72,∴外接球的表面积是7π. 4.三棱锥中S -ABC ,SA =BC =13,SB =AC =5,SC =AB =10.则三棱锥的外接球的表面积为______. 4.答案 14π 解析 如图,在长方体中,设AE =a ,BE =b ,CE =c .则SC =AB =a 2+b 2=10,SA =BC =b 2+c 2=13,SB =AC =a 2+c 2=5,从而a 2+b 2+c 2=14=(2R )2,可得S =4πR 2=14π.故所求三棱锥的外接球的表面积为14π.5.已知一个四面体ABCD 的每个顶点都在表面积为9π的球O 的表面上,且AB =CD =a ,AC =AD =BC =BD =5,则a =________.5.答案 22 解析 由题意可知,四面体ABCD 的对棱都相等,故该四面体可以通过补形补成一个长 方体,如图所示.设AF =x ,BF =y ,CF =z ,则x 2+z 2=y 2+z 2=5,又4π×⎝ ⎛⎭⎪⎫x 2+y 2+z 222=9π,可得x =y =2,∴a =x 2+y 2=22.6.正四面体ABCD 中,E 是棱AD 的中点,P 是棱AC 上一动点,BP PE + 体的外接球表面积是( )A .12πB .32πC .8πD .24π6.答案 A 解析 将三角形ABC 与三角形ACD 展成平面,BP PE +的最小值,即为BE 两点之间连线的距离,则BE =2AB a =,则120BAD ∠=︒,由余弦定理221414222a a a a +--=,解得a =,则正四面体棱长为4倍,所以,设外接球半径为R ,则223R =,则表面积244312S R πππ===.专题三 汉堡模型【方法总结】汉堡模型是直棱柱的外接球、圆柱的外接球模型,用找球心法(多面体的外接球的球心是过多面体的两个面的外心且分别垂直这两个面的直线的交点.一般情况下只作出一个面的垂线,然后设出球心用算术方法或代数方法即可解决问题.有时也作出两条垂线,交点即为球心.)解决.以直三棱柱为例,模型如下图,由对称性可知球心O 的位置是△ABC 的外心O 1与△A 1B 1C 1的外心O 2连线的中点,算出小圆O 1的半径AO 1=r ,OO 1=2h ,2224h R r ∴=+.【例题选讲】[例] (1) (2013辽宁)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上.若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( ).AB. C .132D. 答案 C 解析 如图所示,由球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =⎝⎛⎭⎫522+62=132.另解 过C 点作AB 的平行线,过B 点作AC 的平行线,交点为D ,同理过C 1作A 1B 1的平行线,过B 1作A 1C 1的平行线,交点为D 1,连接DD 1,则ABCD -A 1B 1C 1D 1恰好成为球的一个内接长方体,故球的半径r 132=.故选C . (2)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( ).O 1C 1AA 1B 1O BC Rrh2hO 2A .2a πB .273a πC .2113a πD .237a π答案 B 解析 222222274312a a R OB OE BE a ==+=+=,22743S a a ππ∴==.故选B .(3)(2009全国Ⅰ)直三棱柱ABC -A 1B 1C 1的各顶点都在同一球面上,若AB =AC =AA 1=2,∠BAC =120°,则此球的表面积等于( ).A .10πB .20πC .30πD .40π答案 B 解析 如图,先由余弦定理求出BC =23,再由正弦定理求出r =AO 1=2,外接球的直径R =12+22=5,所以该球的表面积为4πR 2=20π.故选B .(4)已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( )A .4πB .16π3C .32π3D .16π答案 D 解析 由题意知圆柱的中心O 为这个球的球心,于是,球的半径r =OB =OA 2+AB 2=12+(3)2=2.故这个球的表面积S =4πr 2=16π.故选D .(5)若一个圆柱的表面积为12π,则该圆柱的外接球的表面积的最小值为( )A .12)πB .C .3)πD .16π 答案 A 解析 设圆柱的底面半径为r ,高为h ,则22212r rh πππ+=,则6h r r=-.设该圆柱的外接球的半径为R ,则222222222165959()()32332444h R r r r r r r r r=+=+-=+--=,当且仅当22594r r=,即4365r =时,等号成立.故该圆柱的外接球的表面积的最小值为43)12)ππ=-. 【对点训练】1.一直三棱柱的每条棱长都是2,且每个顶点都在球O 的表面上,则球O 的表面积为( ) A .28π3 B .22π3 C .43π3D .7π2.一个正六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该 六棱柱的体积为98,底面周长为3,则这个球的体积为________.3.已知正三棱柱ABC -A 1B 1C 1中,底面积为334,一个侧面的周长为63,则正三棱柱ABC -A 1B 1C 1外接球的表面积为( )A .4πB .8πC .16πD .32π4.已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =1,∠BAC =60°,AA 1=2,则该三棱柱的外接球的体积为( )A .40π3B .4030π27C .32030π27D .20π5.已知矩形ABCD 中,AB =2AD =2,E ,F 分别为AB ,CD 的中点,将四边形AEFD 沿EF 折起,使二 面角A -EF -C 的大小为120°,则过A ,B ,C ,D ,E ,F 六点的球的表面积为( ) A .6π B .5π C .4π D .3π6.已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,若AB =AC =1,AA 1=23,∠BAC =2π3,则球O 的体积为( )A .32π3B .3πC .4π3D .8π7.有一个圆锥与一个圆柱的底面半径相等,此圆锥的母线与底面所成角为60︒,若此圆柱的外接球的表面积是圆锥的侧面积的4倍,则此圆柱的高是其底面半径的( )A B .2倍 C . D .3倍 8.正四棱柱1111ABCD A B C D -中,2AB =,二面角11A BD C --的大小为3π,则该正四棱柱外接球的表面积为( )A .12πB .14πC .16πD .18π9.正四棱柱1111ABCD A B C D -中,AB =12AA =,设四棱柱的外接球的球心为O ,动点P 在正方 形ABCD 的边上,射线OP 交球O 的表面点M ,现点P 从点A 出发,沿着A B C D A →→→→运动一次,则点M 经过的路径长为________.10.已知圆柱的上底面圆周经过正三棱锥P ABC -的三条侧棱的中点,下底面圆心为此三棱锥底面中心O .若三棱锥P ABC -的高为该圆柱外接球半径的2倍,则该三棱锥的外接球与圆柱外接球的半径的比值为________.专题三 汉堡模型【方法总结】汉堡模型是直棱柱的外接球、圆柱的外接球模型,用找球心法(多面体的外接球的球心是过多面体的两个面的外心且分别垂直这两个面的直线的交点.一般情况下只作出一个面的垂线,然后设出球心用算术方法或代数方法即可解决问题.有时也作出两条垂线,交点即为球心.)解决.以直三棱柱为例,模型如下图,由对称性可知球心O 的位置是△ABC 的外心O 1与△A 1B 1C 1的外心O 2连线的中点,算出小圆O 1的半径AO 1=r ,OO 1=2h ,2224h R r ∴=+.【例题选讲】[例] (1) (2013辽宁)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上.若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( ).A.2 B. C .132D. 答案 C 解析 如图所示,由球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =⎝⎛⎭⎫522+62=132.另解 过C 点作AB 的平行线,过B 点作AC 的平行线,交点为D ,同理过C 1作A 1B 1的平行线,过B 1作A 1C 1的平行线,交点为D 1,连接DD 1,则ABCD -A 1B 1C 1D 1恰好成为球的一个内接长方体,故球的半径r 132=.故选C . (2)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( ).A .2a πB .273a πC .2113a πD .237a πO 1C 1AA 1B 1O BC Rrh2hO 2答案 B 解析 222222274312a a R OB OE BE a ==+=+=,22743S a a ππ∴==.故选B .(3)(2009全国Ⅰ)直三棱柱ABC -A 1B 1C 1的各顶点都在同一球面上,若AB =AC =AA 1=2,∠BAC =120°,则此球的表面积等于( ).A .10πB .20πC .30πD .40π答案 B 解析 如图,先由余弦定理求出BC =23,再由正弦定理求出r =AO 1=2,外接球的直径R =12+22=5,所以该球的表面积为4πR 2=20π.故选B .(4)已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( )A .4πB .16π3C .32π3D .16π答案 D 解析 由题意知圆柱的中心O 为这个球的球心,于是,球的半径r =OB =OA 2+AB 2=12+(3)2=2.故这个球的表面积S =4πr 2=16π.故选D .(5)若一个圆柱的表面积为12π,则该圆柱的外接球的表面积的最小值为( )A .12)πB .C .3)πD .16π 答案 A 解析 设圆柱的底面半径为r ,高为h ,则22212r rh πππ+=,则6h r r=-.设该圆柱的外接球的半径为R ,则222222222165959()()32332444h R r r r r r r r r=+=+-=+--=,当且仅当22594r r=,即4365r =时,等号成立.故该圆柱的外接球的表面积的最小值为43)12)ππ=-. 【对点训练】1.一直三棱柱的每条棱长都是2,且每个顶点都在球O 的表面上,则球O 的表面积为( ) A .28π3 B .22π3 C .43π3D .7π1.答案 A 解析 由题知此直棱柱为正三棱柱ABC -A 1B 1C 1,设其上下底面中心为O ′,O 1,则外接球 的球心O 为线段O ′O 1的中点,∵AB =2,∴O ′A =33AB =233,OO ′=12O ′O 1=1,∴OA =O ′O 2+O ′A 2=213,因此,它的外接球的半径为213,故球O 的表面积为28π3.故选A . 2.一个正六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该。
快解高中数学143模型

快解高中数学143模型数学模型在现实生活中扮演着重要的角色,能够帮助人们理解和解决各种实际问题。
在高中数学教学中,143模型被广泛地应用于各类数学题目的解决过程中。
本文将以实际案例为依据,通过快速解析高中数学143模型,帮助读者更好地理解和掌握该模型的应用。
案例一:图形的变换假设有一辆卡车,长为8m,宽为2m,高为3m,在运输过程中,将其放入一船箱中,该箱的尺寸为10m×3m×5m,问是否能够容纳?解析:这个问题可以转化为求箱子的体积是否大于卡车的体积。
我们可以先计算卡车的体积,即8m × 2m × 3m = 48m³。
接下来计算箱子的体积,即10m × 3m × 5m =150m³。
由此可知,箱子的体积大于卡车的体积,因此可以容纳卡车。
案例二:数列的求和已知数列{an}的通项公式为an = 3n² + 2n + 1,试求该数列的前n项和。
解析:对于此类数列,我们可以利用143模型中的求和公式来求解。
首先,我们要明确该数列的首项和公差,通过观察可以得知,a₁ = 6,d = 4。
接下来,我们可以利用求和公式Sₙ = (a₁ + aₙ) * n/2来计算前n项和。
将已知的数值代入公式中,得到Sₙ = (6 + (3n² + 2n + 1)) * n/2。
化简后,得到Sₙ = (3n³ + 5n² + 3n)/2。
案例三:函数的应用某人在市场上购买一个商品,它的价格随销量的增加而变动。
已知当销量为10时,该商品的价格为100元,当销量为30时,价格为200元。
问当销量为20时,商品的价格是多少?解析:这个问题可以通过函数的应用来解决。
假设动态函数f(x)表示商品的价格,其中x表示销量。
根据已知信息,我们可以列出两个点的坐标:(10, 100)和(30, 200)。
利用两点式求出直线的方程为f(x) = 6x - 40,其中x表示销量,f(x)表示价格。
高中数学通用模型解题精编版

高中数学解题方法1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么?A 表示函数y=lgx 的定义域,B 表示的是值域,而C 表示的却是函数上的点的轨迹 2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况 注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
{}{}如:集合,A x x x B x ax =--===||22301若,则实数的值构成的集合为B A a ⊂ (答:,,)-⎧⎨⎩⎫⎬⎭1013显然,这里很容易解出A={-1,3}.而B 最多只有一个元素。
故B 只能是-1或者3。
根据条件,可以得到a=-1,a=1/3. 但是, 这里千万小心,还有一个B 为空集的情况,也就是a=0,不要把它搞忘记了。
3. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n要知道它的来历:若B 为A 的子集,则对于元素a 1来说,有2种选择(在或者不在)。
同样,对于元素a 2, a 3,……a n ,都有2种选择,所以,总共有2n种选择, 即集合A 有2n个子集。
当然,我们也要注意到,这2n种情况之中,包含了这n 个元素全部在何全部不在的情况,故真子集个数为21n-,非空真子集个数为22n-()若,;2A B A B A A B B ⊆⇔==I Y(3)德摩根定律:()()()()()()C C C C C C U UUUUUA B A B A B A B Y I I Y ==,有些版本可能是这种写法,遇到后要能够看懂,A B A B A B A B ==U I I U4. 你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式的解集为,若且,求实数x ax x aM M M a --<∈∉50352的取值范围。
【高中数学】解答题常考公式及答题模版

②若已知
an 1 an
q
和 a1
a ,则用等比数列通项公式 an
a1q n1
(2) an 与 Sn 的关系: an
S1 Sn
Sn1
,n 1 ,n2
b2 (a c)2 3ac 1 3 a c 2 1 3 1 1
2
44
1 b ac 1 2
b [ 1 ,1) 2
10、不常用的三角函数公式(很少用,可以不记哦^o^) (1)万能公式:
A
b2
c2
a2
2bc
变式: cos B a2 c2 b2
2ac
cos C
a2
b2
c2
2ab
3、面积公式: SABC
1 ab sin C 2
1 2
ac sin B
1 bc sin 2
A
a b cos C c cos B 4、射影定理: b a cos C c cos A
c a cos B b cos A
Tn b1 b2 b3 bn (31 21 4 1) (3 2 22 4 2) (3 3 23 4 3) (3n 2n 4n) 3(1 21 2 22 3 23 n 2n ) 4(1 2 3 n)
.
其实,兴趣才是最好的老师!☺
高中数学解答题答题模板
(3)错位相减法:形如“ an 等差×等比”的形式可用错位相减法
a1 2, an1 an 3 2n
{an }
bn nan
{bn }
Tn
a1 2, an1 an 3 2n
a2 a1 3 2 a3 a2 3 22 a4 a3 3 23
4a1 2a1
43 d 2
21 d 2
4a1 6d 2a1d
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学解题模型大全
随着高中数学的不断发展,解题技巧也在不断的深入探索。
高中数学的解题是一门系统性的研究,解题模型也是一个重要的组成部分。
解题模型是指用某种格式或形式,把问题解决的方法表达出来,且表达形式应当比较完整,从而使问题得到解决。
在解题模型的研究中,有一系列常用的、核心的解题模型,这些模型在高中数学解题中都有其重要的作用。
下面将介绍几种最常用的解题模型。
1、概率解题模型。
概率解题模型用来解决概率的计算问题,其
基本形式为:某事件的概率=此事件的发生的次数/可能发生的所有事件的次数。
概率解题模型在高中数学中有着广泛的应用。
2、数列解题模型。
数列解题模型是高中数学解题中最重要的一
种模型,用来解决数列的求和、求平均数等问题。
这种模型一般采用数列通项公式的形式,通过构造数列公式,对一定规律的数列求出其求和、求平均数等关键数据。
3、二次函数解题模型。
二次函数解题模型是高中数学中常见的
一种解题模型,指的是将二次函数的图像、周长、最大值、最小值、极值点、凹凸性等问题,用二次函数的函数表达式或变量关系来解决。
4、排列组合计算模型。
排列组合计算模型是指从所有可能的排
列组合中选出满足某一要求的排列组合的个数,此类问题通常采用“排列组合数公式”的形式进行求解。
5、几何解题模型。
几何解题模型是指用直线、圆、三角形、椭
圆等图形的性质来解决几何问题的模型,其中最重要的两个性质是“相似性”和“平行性”。
通过这两个性质,一些复杂的几何问题可以被轻松解决。
6、比例解题模型。
比例解题模型是指用比例关系解决问题的模型,它是高中数学中最常用的解题模型之一,它可以用来解决比例关系问题,如比例结合题、比例平分题、比例比较题等。
7、函数解题模型。
函数解题模型是指用函数的单调性和凹凸性来解决函数的一类问题,它是高中数学解题中常用的一种模型,有着广泛的应用。
以上就是高中数学解题模型大全,在高中数学解题中,这些模型都有重要的作用,对于学生们,要掌握这些模型,把它们正确的应用到解题中,以便解决问题。
只有掌握这些基本的解题模型,才能在解题中更好地发挥作用。