湖南省2023年中考备考数学一轮复习 一元一次不等式(组) 练习题
中考数学一轮复习《一元一次方程》练习题(含答案)

中考数学一轮复习《一元一次方程》练习题(含答案)一、单选题1.下列方程中解是2x =的方程是( )A .360x +=B .240x -+=C .122x =D .240x += 2.关于x 的不等式21x a +≥的解集如图所示,则a 的值是( )A .-1B .1C .2D .33.已知a =b ,根据等式的性质,错误的是( )A .22a b +=+B .ac bc =C .a b c c =D .2211a b c c =++ 4.若方程()2180m m x---=是关于x 的一元一次方程,则m =( ) A .1 B .2 C .3 D .1或35.下列命题中是真命题的是( )A .同位角相等,两直线平行B .钝角三角形的两个锐角互余C .若实数a ,b 满足a 2=b 2,则a =bD .若实数a ,b 满足a <0,b >0,则ab >06.某车间原计划用15小时生产一批零件,实际每小时多生产了10件,用了13小时不但完成了任务,而且还多生产了80件,设原计划每小时生产x 个零件,那么下列方程正确的是( )A .11(10)801513x x =++B .11(10)801513x x +=+ C .1513(10)80x x =++D .13(10)1580x x +=+ 7.若a b =,下列变形错误的是( )A .11a b +=+B .a m b m -=-C .22a b =D .23a b = 8.《孙子算经》中记载:今有百鹿入城,家取一鹿,不尽,又三家共鹿适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?设有x 户人家,可列方程为( )A .3100x x +=B .3100x x -=C .1003x x -=D .1003x x += 9.已知点P 的坐标为()2,3x x +,点M 的坐标为()1,2x x -,PM 平行于y 轴,则P 点的坐标为( )A .()2,2-B .()6,6C .()2,2-D .()6,6--10.在平面直角坐标系中,若直线y x m =-+不经过第一象限,则关于x 的方程210mx x ++=的实数根的个数为( )A .0个B .1个C .2个D .1或2个11.如图,将4张形状、大小完全相同的小长方形纸片分别以图1、图2的方式放入长方形ABCD 中,若图1中的阴影部分周长比图2的阴影部分周长少1,则图中BE 的长为( )A .14B .12C .1D .212.小江去商店购买签字笔和笔记本(其中签字笔和笔记本的单价相同).若购买20支签字笔和15本笔记本,则他身上的钱还缺25元;若购买19支签字笔和12本笔记本,则他身上的钱会剩下15元.若小江购买17支签字笔和9本笔记本,则( )A .他身上的钱还缺65元B .他身上的钱会剩下65元C .他身上的钱还缺115元D .他身上的钱会剩下115元二、填空题13.已知等式285x y -+=,则32x y -+=______.14.若方程2x -m =1和方程3x =2(x -1)的解相同,则m 的值为__________.15.一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是___ 1621x -5x 的值为 _____.17.若()235k y k x -=-+是一次函数,则k =_________.18.已知x =﹣2时,二次三项式x 2﹣2mx +4的值等于﹣4,当x =_____时,这个二次三项式的值等于﹣1.19.对于实数a ,b ,定义运算“※”如下:a ※b =a 2﹣ab ,例如,5※3=52﹣5×3=10.若(1)x +※(4)10x -=,则x 的值为_____.20.一个装有红豆和黄豆共计200颗的瓶子,现将瓶中豆子充分摇匀,再从瓶中取出80颗豆子时,发现其中有20颗红豆,根据实验估计该瓶装有红豆大约_________颗.三、解答题21.解方程:(1)2﹣3x =5﹣2x ;(2)3(3x ﹣2)=4(1+x ).22.解下列方程:(1)4385-=+x x ; (2)7531132y y --=-.23.一个正数a 的两个不相等的平方根分别是21b -和4b +.(1)求b 的值;(2)求a b +的立方根.24.我们规定一种运算=-a b ad cb c d,如232534245=⨯-⨯=-,再如14224-=-+-x x .按照这种运算规定,解答下列各题:(1)计算3245--=___________;(2)若22235-=-x x,求x 的值;(3)若88123332--+-mx x与51--n x的值始终相等,求m,n的值.25.某移动公司设了两类通讯业务,A类收费标准为不管通话时间多长使用者都应缴50元月租费,然后每通话1分钟,付0.4元,B类收费标准为用户不缴月租费,每通话1分钟,付话费0.6元,若一个月通讯x分钟,两种方式费用分别是A y,B y元.(1)分别写出A y,B y与x之间的函数关系式.(2)某人估计一个月通话时间为300分钟,应选哪种通讯方式合算些,请书写计算过程.(3)小明用的A卡,他计算了一下,若是B卡,他本月话费将会比现在多100元,请你算一下小明实际话费是多少元?26.接种疫苗是阻断新冠病毒传播的有效途径,为保障人民群众的身体健康,我市启动新冠疫苗加强针接种工作,已知今年3月甲接种点平均每天接种加强针的人数比乙接种点平均每天接种加强针的人数多20%,两接种点平均每天共有440人接种加强针.(1)求3月平均每天分别有多少人前往甲、乙两接种点接种加强针?(2)4月份,甲接种点平均每天接种加强针的人数比3月少10m人,乙接种点平均每天接种加强针的人数比3月多30%,在m天期间,甲、乙两接种点共有2250人接种加强针,求m 的值.27.冰墩墩(BingDwenDwen),是2022年北京冬季奥运会的吉祥物.将熊猫形象与富有超能量的冰晶外壳相结合,头部外壳造型取自冰雪运动头盔,装饰彩色光环,整体形象酷似航天员.冬奥会来临之际,冰墩墩玩偶非常畅销.小冬在某网店选中A,B两款冰墩墩玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如下表:进货价(元/个)20 15 销售价(元/个)28 20(1)第一次小冬550元购进了A ,B 两款玩偶共30个,求两款玩偶各购进多少个.(2)第二次小冬进货时,网店规定A 款玩偶进货数量不得超过B 款玩偶进货数量的一半.小冬计划购进两款玩偶共30个,应如何设计进货方案才能获得最大利润,最大利润是多少?28.对于数轴上的点P ,Q ,给出如下定义:若点P 到点Q 的距离为d (0d ≥),则称d 为点P 到点Q 的追击值,记作[]d PQ .例如,在数轴上点P 表示的数是5,点Q 表示的数是2,则点P 到点Q 的追击值为[]3d PQ =.(1)点M ,N 都在数轴上,点M 表示的数是1,且点N 到点M 的追击值[]d MN a =(0a ≥),则点N 表示的数是______(用含a 的代数式表示);(2)如图,点C 表示的数是1,在数轴上有两个动点A ,B 都沿着正方向同时移动,其中A 点的速度为每秒4个单位,B 点的速度为每秒1个单位,点A 从点C 出发,点B 从表示数b 的点出发,且数b 不超过5,设运动时间为t (0t ≥).①当4b =且t =______时,点A 到点B 的追击值[]2d AB =;②当时间t 不超过3秒时,求点A 到点B 的追击值[]d AB 的最大值是多少?(用含b 的代数式表示)参考答案1.B2.D3.C4.C5.A6.D7.D8.D9.A10.D11.B12.B13.614.-515.100元16.317.-318.﹣1或﹣519.120.5021.(1)2﹣3x =5﹣2x2352x x -=-3x -=解得3x =-(2)3(3x ﹣2)=4(1+x )9644x x -=+9446x x -=+510x =2x =22.(1)解:4385-=+x x4835-=+x x48x -=2x =-.(2)解:7531132y y --=- ()()2756331y y -=--1410693y y -=-+1096314y y -+=+-5y -=-5y =.23.(1)解:一个正数a 的两个不相等的平方根分别是21b -和4b +,21(4)0b b +∴-=+,解得1b .(2)解:由(1)已得:1b, []22(21)2(1)19a b ∴=-=⨯--=,9(1)8a b +=+-=∴,a b ∴+的立方根2=.24.(1)解:根据题意354(2)73245---⨯⨯-=-=-, 故答案为:7-(2)解:根据题意22235-=-x x, 转化为2(5)3(2)2x x ⨯--⨯-=, 解方程,得12x =-. (3)解:88123833(81)(2)243732332mx x mx x mx x --+=----+=--+-; 515(1)()5x n x n n x -=---=--;根据题意24375mx x x n --+=-恒成立,即(243)75m x x n --+=-,2435m --=,7n -=, 解得,13m =-,7n =-. 25.(1)解:根据题意得,A 类的费用是月租费加上通话费,即500.4A y x =+; B 类的费用是通话费与时间的乘积,即0.6B y x =,∴500.4A y x =+,0.6B y x =.(2)解:通话时间为300分钟,根据(1)中的结论得,500.4500.4300170A y x =+=+⨯=(元),0.60.6300180B y x ==⨯=(元)∵A B y y <,∴选择A 类.(3)解:根据题意得,100A B y y +=,∴500.41000.6x x ++=,解方程得,750x =,即小明打电话的时间为750分钟, ∴500.4500.4750350A y x =+=+⨯=(元),∴小明实际话费是350元.26.(1)解:设3月平均每天有x 人前往乙接种点接种加强针,则3月平均每天有(1+20%)x 人前往甲接种点接种加强针,依题意得:(1+20%)x +x =440,解得:x =200,∴(1+20%)x =(1+20%)×200=240.答:3月平均每天有240人前往甲接种点接种加强针,有200人前往乙接种点接种加强针;(2)解:依题意得:(240-10m )m +200×(1+30%)m =2250,整理得:m 2-50m +225=0,解得:m 1=5,m 2=45.当m =5时,240-10m =240-10×5=190>0,符合题意;当m =45时,240-10m =240-10×45=-210<0,不符合题意,舍去.答:m 的值为5.27.(1)解:设A 款玩偶购进x 个,B 款玩偶购进(30)x -个,由题意,得2015(30)550x x +-=,解得:20x .302010-=(个).答:A 款玩偶购进20个,B 款玩偶购进10个;(2)解:设A 款玩偶购进a 个,B 款玩偶购进(30)a -个,获利y 元,由题意,得(2820)(2015)(30)3150y a a a =-+--=+. A 款玩偶进货数量不得超过B 款玩偶进货数量的一半.1(30)2a a ∴-, 10a ∴,3150y a =+.30k ∴=>,y ∴随a 的增大而增大.10a ∴=时,180y =最大元.B ∴款玩偶为:301020-=(个).答:按照A 款玩偶购进10个、B 款玩偶购进20个的方案进货才能获得最大利润,最大利润是180元.28.(1)由题意可得:点M 到点N 的距离为a , 当N 在M 左侧时,则N 表示的数为1a -, 当N 在M 右侧时,则N 表示的数为1a +, 故答案为1a -或1a +;(2)①由题意可得:点A 表示的数为14t +,点B 表示的数为4t + 当点A 在B 的左侧时,即144t t +<+,解得1t <, ∵[]2d AB =,∴()4142t t +-+=,解得13t = 当点A 在B 的右侧时,即144t t +>+,解得1t >, ∵[]2d AB =,∴()1442t t +-+=,解得2t = 综上,53t =或13t =时,[]2d AB =; 故答案为:53或13; ②由题意可得:点A 表示的数为14t +,点B 表示的数为b t + 当点B 在点A 的左侧或重合时,此时1b ≤,随着t 的增大,A 与B 之间的距离越来越大, ∵03t ≤≤时,即3t =时,[]143(3)10d AB b b =+⨯-+=-, ∵b 不超过5,∴105b -≥当点B 在点A 的右侧时,此时1b >,在AB 、不重合的情况下,A B 、之间的距离越来越小,[]d AB 最大为初始状态,即0=t 时,[]1d AB b =-,∵b 不超过5,∴14b -≤在AB 、可以重合的情况下,14t b t +=+,13b t =+,b 的最大值为10,又数b 不超过5, ∴,A B 不重合,综上, []d AB 最大值是10b -.。
人教版2023年中考数学专题复习练习解不等式(组)专题

第 31 讲 解不等式(组)专题一.试题(共20小题)1.(2022秋•姑苏区校级期末)解不等式,并把它的解集在数轴上表示出来.3x +1<2(x +1).2.(2023•秦都区校级一模)求一元一次不等式1−8+x 3≤x 2的负整数解. 3.(2023•未央区校级二模)解不等式组:{3(x +2)≥2x +5x 3−1<x−22并把它的解集在数轴上表示出来.4.(2023•碑林区校级三模)解不等式组:{3(x −1)≥x −7x+32>2x −3. 5.(2023•济南模拟)解不等式组:{5x −3<4x①x 8−14≤x+12②,并把它的解集在数轴上表示出来.6.(2022秋•婺城区期末)解不等式组{4x +6≥3x +73x+144>2x −9. 7.(2023•雁塔区校级二模)解不等式组{2(x −3)<4x 5x−12−1≤2x+13. 8.(2023•苏州模拟)解不等式组:{2x −1<3x+12−x ≤0并把它的解集在数轴上表示出来.9.(2022秋•郴州期末)解不等式组:{2x ≥−2,x +3<4,并把不等式组的解集在数轴上表示出来.10.(2023•碑林区校级一模)解不等式组:{2(x −1)<x +3x+13−x <3.11.(2022秋•慈溪市期末)解不等式组{7−3x ≤12x−13>x−22.12.(2022秋•汉台区期末)求不等式组{5x −1≤3(x +1)1+2x 3≥x −1的最大整数解. 13.(2022秋•婺城区期末)解不等式:1+x 2−2x+13≤1.14.(2023•商洛一模)解不等式组{1−12(3−x)<x 2(x +5)≥6(x −1)并把解集在数轴上表示出来. 15.(2022秋•道县期末)解不等式组{3x −2<4①2(x −1)≤3x +1②,并求出它的非负整数解. 16.(2022秋•金东区期末)解不等式组:{12(x +4)≤2x −3(x −1)>5. 17.(2023•市中区开学)解不等式组:{3(x +1)<5x +1x+12≥2x −4. 18.(2022秋•宁波期末)解不等式组:{2+x <6−3xx ≤4+x 2.19.(2022秋•湘潭县期末)求不等式组{4x −7<5(x −1)2x ≤18−3x +7的正整数解. 20.(2022秋•市中区校级期末)解不等式组{3x +6>x +8x 4≥x−13,并写出不等式组的整数解.第31 讲解不等式(组)专题参考答案一.试题(共20小题)1.x<1,数轴见解答.;2.﹣2,﹣1.;3.x>0;数轴见解析.;4.﹣2≤x<3.;5.﹣2≤x<3,数轴表示见解析.;6.1≤x<10.;7.﹣3<x≤1.;8.1≤x<2,数轴见解析.;9.﹣1≤x<1.;10.4<x<5.;11.x≥2.;12.2.;13.x≥﹣5.;14.﹣1<x≤4,数轴见解析;15.﹣3≤x<2;0,1.;16.x<﹣1.;17.1<x≤3.;18.x<1.;19.﹣2<x≤5,正整数解:1,2,3,4,5;20.1<x≤4,整数解为:2,3,4.;。
含详细解析答案初中数学一元一次不等式组解法练习40道.pdf

初中数学一元一次不等式组解法练习1.求不等式组的整数解.解不等式组:.2.求不等式组:的整数解.3.解下列不等式组并将不等式组的解集在数轴上表示出来.(1);(2).4.解不等式组,并将它的解集在数轴上表示出来.5.试确定实数a的取值范围,使不等式组恰有两个整数解.6.求不等式组的正整数解.7.解不等式(组),并把它们的解集在数轴上表示出来(1)2x-1<3x+2;(2).8.解下列不等式(组):(1)2(x+3)>4x-(x-3)(2)9..10.解不等式组:,并在数轴上表示出不等式组的解集.11.若关于x的不等式组恰有三个整数解,求实数a的取值范围.12.解不等式组:.13.解不等式组并把它的解集在数轴上表示出来.14.解不等式组:15.已知关于x、y的方程组a为常数.(1)求方程组的解;(2)若方程组的解x>y>0,求a的取值范围.16.解不等式组.17.解不等式组,并写出该不等式组的整数解.18.解下列不等式(组),并把它们的解集在数轴上表示出来.(1);(2).19.解不等式组:,并把解集在数轴上表示出来.20.已知方程组的解x、y都是正数,且x的值小于y的值,求m的取值范围.21.满足不等式-1≤3-2x<6的所有x的整数的和是多少?22.(1)解方程组:(2)解不等式组:23.已知关于x,y的方程组,其中-3≤a≤1.(1)当a=-2时,求x,y的值;(2)若x≤1,求y的取值范围.24.解不等式组:.25.解下列不等式和不等式组(1)-1(2)26.解不等式组(注:必须通过画数轴求解集)27.解不等式组:并写出它的所有整数解.28.解不等式组,并把解集在数轴上表示出来.29.解不等式组:30.解下面的不等式组,并把它们的解集在数轴上表示出来:(1)(2)31.若不等式组的解集为,求a,b的值.32.(1)解不等式-1(2)解不等式,并将解集在数轴上表示.33.解不等式组:34.解不等式组35.解不等式组:并写出它的所有的整数解.36.解不等式组把它的解集在数轴上表示出来,并写出不等式组的非负整数解.37.(1)解方程组(2)解不等式组并把解集在数轴上表示出来.38.若关于x,y的方程组的解满足x<0且y<0,求m的范围.39.解不等式组:并写出它的所有整数解.40.解不等式组:并写出它的所有整数解.初中数学一元一次不等式组解法练习答案1.求不等式组的整数解.【答案】解:由①,解得:x≥-2;由②,解得:x<3,∴不等式组的解集为-2≤x<3,则不等式组的整数解为-2、-1、0、1、2.【解析】求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了一元一次不等式组的整数解,熟练掌握不等式的解法是解本题的关键.2.解不等式组:.【答案】解:,由①得,x>-1,由②得,x≤2,所以,原不等式组的解集是-1<x≤2.【解析】先求出两个不等式的解集,再求其公共解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).3.求不等式组:的整数解.【答案】解:由x-3(x-2)≤8得x≥-1由5-x>2x得x<2∴-1≤x<2∴不等式组的整数解是x=-1,0,1.【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.解下列不等式组并将不等式组的解集在数轴上表示出来.(1);(2).【答案】解:(1),解①得x<1,解②得x≤-2,所以不等式组的解集为x≤-2,用数轴表示为:;(2),解①得x>-2,解②得x≤2,所以不等式组的解集为-2<x≤2,用数轴表示为:.【解析】(1)分别解两个不等式得到x<1和x≤-2,然后根据同小取小确定不等式组的解集,再利用数轴表示解集;(2)分别解两个不等式得到x>-2和x≤2,然后根据大于小的小于大的取中间确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.5.解不等式组,并将它的解集在数轴上表示出来.【答案】解:由①得:-2x≥-2,即x≤1,由②得:4x-2<5x+5,即x>-7,所以-7<x≤1.在数轴上表示为:【解析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条数轴表示出来.本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.6.试确定实数a的取值范围,使不等式组恰有两个整数解.【答案】解:由>0,两边同乘以6得3x+2(x+1)>0,解得x>-,由x+>(x+1)+a,两边同乘以3得3x+5a+4>4(x+1)+3a,解得x<2a,∴原不等式组的解集为-<x<2a.又∵原不等式组恰有2个整数解,即x=0,1;则2a的值在1(不含1)到2(含2)之间,∴1<2a≤2,∴0.5<a≤1.【解析】先求出不等式组的解集,再根据x的两个整数解求出a的取值范围即可.此题考查的是一元一次不等式的解法,得出x的整数解,再根据x的取值范围求出a的值即可.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.求不等式组的正整数解.【答案】解:由①得4x+4+3>x解得x>- ,由②得3x-12≤2x-10,解得x≤2,∴不等式组的解集为- <x≤2.∴正整数解是1,2.【解析】本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.先解每一个不等式,求出不等式组的解集,再求出正整数解即可.8.解不等式(组),并把它们的解集在数轴上表示出来(1)2x-1<3x+2;(2).【答案】解:(1)移项得,2x-3x<2+1,合并同类项得,-x<3,系数化为1得,x>-3 (4分)在数轴上表示出来:(6分)(2),解①得,x<1,解②得,x≥-4.5在数轴上表示出来:不等式组的解集为-4.5≤x<1,【解析】本题考查了不等式与不等式组的解法,是基础知识要熟练掌握.(1)先移项,再合并同类项、系数化为1即可;(2)先求两个不等式的解集,再求公共部分即可.9.解下列不等式(组):(1)2(x+3)>4x-(x-3)(2)【答案】解:(1)去括号,得:2x+6>4x-x+3,移项,得:2x-4x+x>3-6,合并同类项,得:-x>-3,系数化为1,得:x<3;(2),解不等式①,得:x<2,解不等式②,得:x≥-1,则不等式组的解集为-1≤x<2.【解析】本题考查的是解一元一次不等式和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解来确定不等式组的解集.10. ..【答案】解:,由①得:x≥1,由②得:x<-7,∴不等式组的解集是空集.【解析】根据不等式性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.11.解不等式组:,并在数轴上表示出不等式组的解集.【答案】解:解①得:x>3,解②得:x≥1,则不等式组的解集是:x>3;在数轴上表示为:【解析】分别解两个不等式得到x>3和x≥1,然后利用同大取大确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.若关于x的不等式组恰有三个整数解,求实数a的取值范围.【答案】解:,由①得:x>-,由②得:x<2a,则不等式组的解集为:-<x<2a,∵不等式组只有3个整数解为0、1、2,∴2<2a≤3,∴1<a≤,故答案为:1<a≤.【解析】首先利用a表示出不等式组的解集,根据解集中的整数恰好有3个,即可确定a的值.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.13.解不等式组:.【答案】解:由(1)得:x>-2把(2)去分母得:4(x+2)≥5(x-1)去括号整理得:x≤13∴不等式组的解集为-2<x≤13.【解析】先解不等式组中的每一个不等式,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.解不等式组并把它的解集在数轴上表示出来.【答案】解:解不等式①得x>-2,解不等式②得x≤3,数轴表示解集为:所以不等式组的解集是-2<x≤3.【解析】分别解两个不等式得到x>-2和x≤3,再利用数轴表示解集,然后根据大小小大中间找确定不等式组的解集.本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.解不等式组:【答案】解:解不等式2x+9<5x+3,得:x>2,解不等式-≤0,得:x≤7,则不等式组的解集为2<x≤7.【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.已知关于x、y的方程组a为常数.(1)求方程组的解;(2)若方程组的解x>y>0,求a的取值范围.【答案】解:(1),①+②,得:3x=6a+3,解得:x=2a+1,把x=2a+1代入②,得:y=a-2,所以方程组的解为;(2)∵x>y>0,∴,解得:a>2.【解析】本题主要考查解一元一次不等式组和二元一次方程组,解题的关键是熟练掌握消元法解二元一次方程和解一元一次不等式组的能力.(1)两方程相加求出x、两方程相减可求得y;(2)由(1)中所求x、y结合x>y>0可得关于k的不等式组,解之可得.17.解不等式组.【答案】解:解不等式①得x<1解不等式②得x>-3所以原不等式组的解集为-3<x<1.【解析】把不等式组的不等式在数标轴上表示出来,看两者有无公共部分,从而解出解集.此题考查解不等式的一般方法,移项、合并同类项、系数化为1等求解方法,较为简单.18.解不等式组,并写出该不等式组的整数解.【答案】解:由得x≤1,由1-3(x-1)<8-x得x>-2,所以-2<x≤1,则不等式组的整数解为-1,0,1.【解析】首先把两个不等式的解集分别解出来,再根据大大取大,小小取小,比大的小比小的大取中间,比大的大比小的小无解的原则,求得不等式的解集,再求其整数解.本题主要考查不等式组的解集,以及在这个范围内的整数解.同时,一元一次不等式(组)的解法及不等式(组)的应用是一直是各省市中考的考查重点.19.解下列不等式(组),并把它们的解集在数轴上表示出来.(1);(2).【答案】解:(1)15-3x≥14-2x,-3x+2x≥14-15,-x≥-1,解得:x≤1,数轴表示如下:(2)解不等式①得:x≥-1,解不等式②得:x<3,∴不等式组的解集为-1≤x<3,数轴表示如下:.【解析】这是一道考查一元一次不等式与不等式组的解法的题目,解题关键在于正确解出不等式,并在数轴上表示出解集.(1)先去分母,移项,合并同类项,注意要改变符号;(2)求出每个不等式的解集,再求出公共部分,即可求出答案.20.解不等式组:,并把解集在数轴上表示出来.【答案】解:,解①得x>-3,解②得x≤2,所以不等式组的解集为-3<≤2,用数轴表示为:【解析】先分别解两个不等式得到x>-3和x≤2,再根据大小小大中间找得到不等式组的解集,然后利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.已知方程组的解x、y都是正数,且x的值小于y的值,求m的取值范围.【答案】解:方程组解得:,根据题意得:且2m-1<m+8,解得:<m<9.【解析】将m看做已知数,表示出x与y,根据题意列出不等式,求出不等式的解集即可得到m的范围.此题考查了解一元一次不等式组,以及解二元一次方程组,弄清题意是解本题的关键.22.满足不等式-1≤3-2x<6的所有x的整数的和是多少?【答案】解:根据题意得:,解①得:x≤2,解②得:x>-,则不等式组的解:-<x≤2,则整数解是:-1,0,1,2.则整数和是:-1+0+1+2=2.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解,然后求和即可.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.23.(1)解方程组:(2)解不等式组:【答案】解:(1),整理得,解得 .(2),解①得:,解②得:.则不等式组的解集为.【解析】本题考查了一元一次不等式的解法及解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.(1)方程组整理后,利用加减消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.24.已知关于x,y的方程组,其中-3≤a≤1.(1)当a=-2时,求x,y的值;(2)若x≤1,求y的取值范围.【答案】解:(1),①-②,得:4y=4-4a,解得:y=1-a,将y=1-a代入②,得:x-1+a=3a,解得:x=2a+1,则,∵a=-2,∴x=-4+1=-3,y=1+2=3;(2)∵x=2a+1≤1,即a≤0,∴-3≤a≤0,即1≤1-a≤4,则1≤y≤4.【解析】(1)先解关于x、y的方程组,再将a的值代入即可得;(2)由x≤1得出关于a≤0,结合-3≤a≤1知-3≤a≤0,从而得出1≤1-a≤4,据此可得答案.此题考查了解二元一次方程组与一元一次不等式组,解题的关键是根据题意得出用a表示的x、y.25.解不等式组:.【答案】解:解不等式2x+1≥x-1,得:x≥-2,解不等式<3-x,得:x<2,∴不等式组的解集为-2≤x<2.【解析】分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26.解下列不等式和不等式组(1)-1(2)【答案】解:(1)3(x+3)≤5(2x-5)-15,3x+9≤10x-25-15,3x-10x≤-25-15-9,-7x≤-49,x≥7;(2)解不等式1-2(x-1)≤5,得:x≥-1,解不等式<x+1,得:x<4,则不等式组的解集为-1≤x<4.【解析】(1)依据解一元一次不等式的步骤依次计算可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.此题考查一元一次不等式解集的求法,切记同乘负数时变号;一元一次不等式组的解集求法,其简单的求法就是利用口诀求解,“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”.27.解不等式组(注:必须通过画数轴求解集)【答案】解:解不等式①,得:x≥2,解不等式②,得:x<4,在数轴上表示两解集如下:所以,原不等式组的解集为2≤x<4.【解析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.28.解不等式组:并写出它的所有整数解.【答案】解:,解不等式①,得x<1,解不等式②,得x≥-2,所以不等式组的解集为-2≤x<1,所以它的所有整数解为-2,-1,0.【解析】本题主要考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.29.解不等式组,并把解集在数轴上表示出来.【答案】解:,解不等式①得,x≤2,解不等式②得,x>-1,∴不等式组的解集是-1<x≤2.用数轴表示如下:【解析】根据一元一次不等式组的解法,求出两个不等式的解集,然后求出公共解集即可.本题主要考查了一元一次不等式组的解法,注意在数轴上表示时,有等号的用实心圆点表示,没有等号的用空心圆圈表示.30.解不等式组:【答案】解:解不等式1-x>3,得:x<-2,解不等式<,得:x>12,所以不等式组无解.【解析】先分别求出各不等式的解集,再求出其公共解集即可.主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).31.解下面的不等式组,并把它们的解集在数轴上表示出来:(1)(2)【答案】解:(1),解不等式①,得x≤4,解不等式②,得x>-1,不等式①②的解集在数轴上表示如下:(2),解不等式①,得,解不等式②,得x>1,不等式①②的解集在数轴上表示如下:【解析】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.(1)分别求出各不等式的解集,再求出其公共解集,然后在数轴上表示出来即可;(2)别求出各不等式的解集,再求出其公共解集,然后在数轴上表示出来即可.32.若不等式组的解集为,求a,b的值.【答案】解:解第一个不等式,得:,解第二个不等式,得:,∵不等式组的解集为1≤x≤6,∴,2b=1,解得:a=12,b=.【解析】此题考查的是含有待定字母的一元一次不等式的解法,解决此题要先求出每个不等式的解集,再找出它们的公共部分,根据给出的解集转化为关于a和b的方程求解即可.33.(1)解不等式-1(2)解不等式,并将解集在数轴上表示.【答案】解:(1)去分母,得:4(x+1)<5(x-1)-6,去括号,得:4x+4<5x-5-6,移项,得:4x-5x<-5-6-4,合并同类项,得:-x<-15,系数化为1,得:x>15;(2)解不等式2x-1≥x,得:x≥1,解不等式4-5(x-2)>8-2x,得:x<2,∴不等式组的解集为1≤x<2,将解集表示在数轴上如下:【解析】(1)根据解不等式的基本步骤求解可得;(2)分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.34.解不等式组:【答案】解:由(1)得,x>3由(2)得,x≤4故原不等式组的解集为3<x≤4.【解析】分别求出各不等式的解集,再求其公共解集即可.求不等式组的解集应遵循以下原则:“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.35.解不等式组【答案】解:解不等式-2x+1>-11,得:x<6,解不等式-1≥x,得:x≥1,则不等式组的解集为1≤x<6.【解析】分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.36.解不等式组:并写出它的所有的整数解.【答案】解:,解不等式①得,x≥1,解不等式②得,x<4,所以,不等式组的解集是1≤x<4,所以,不等式组的所有整数解是1、2、3.【解析】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).先求出两个不等式的解集,再求其公共解,然后写出整数解即可.37.解不等式组把它的解集在数轴上表示出来,并写出不等式组的非负整数解.【答案】解:,由①得:x≥-1,由②得:x<3,∴不等式组的解集为-1≤x<3,在数轴上表示,如图所示,则其非负整数解为0,1,2.【解析】求出不等式组的解集,表示在数轴上,确定出非负整数解即可.此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.38.(1)解方程组(2)解不等式组并把解集在数轴上表示出来.【答案】解:(1),①+②,得:6x=18,解得:x=3,②-①,得:4y=4,解得:y=1,所以方程组的解为;(2)解不等式x-4≤(2x-1),得:x;解不等式2x-<1,得:x<3,则不等式组的解集为-≤x<3,将解集表示在数轴上如下:【解析】(1)利用加减消元法求解可得;(2)分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则及加减消元法解二元一次方程组是解答此题的关键.39.若关于x,y的方程组的解满足x<0且y<0,求m的范围.【答案】解:,①+②,得:6x=3m-18,解得:x=,②-①,得:10y=-m-18,解得:y=,∵x<0且y<0,∴,解得:-18<m<6.【解析】先解出方程组,然后根据题意列出不等式组即可求出m的范围.本题考查学生的计算能力,解题的关键是熟练运用方程组与不等式组的解法,本题属于基础题型.40.解不等式组:并写出它的所有整数解.【答案】解:,解不等式①,得,解不等式②,得x<2,∴原不等式组的解集为,它的所有整数解为0,1.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.第21页,共21页。
2021年中考数学 一轮专题训练:一元一次不等式(组)(含答案)

2021中考数学 一轮专题训练:一元一次不等式(组)一、选择题(本大题共10道小题)1. 若x +5>0,则( )A. x +1<0B. x -1<0C. x5<-1 D. -2x <122. 一个不等式组的解集在数轴上表示出来如图,则下列符合条件的不等式组为( )A.B.2,1x x <⎧⎨>-⎩C.2,1x x <⎧⎨≥-⎩D.2,1x x <⎧⎨≤-⎩3. 不等式组的解集在数轴上表示正确的是 ( )4. 红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有 ( )A .3种B .4种C .5种D .6种5. 直线l 1:y =k 1x +b与直线l 2:y =k 2x +c 在同一平面直角坐标系中的图象如图X2-2-3,则关于x 的不等式k 1x +b <k 2x +c 的解集为( )A .x >1B .x <1C .x >-2D .x <-26. 已知点M (1-2m ,m -1)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是()7. (2019·聊城)若不等式组11324x xx m +⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为A .2m ≤B .2m <C .2m ≥D .2m >8. 不等式组24339x x x x <+⎧⎨+≥+⎩的解集在数轴上用阴影表示正确的是A .B .C .D .9. 若不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x +>++﹣成立,则m 的取值范围是A .35m >-B .15m <-C .35m <-D .15m >-10. (2019•呼和浩特)若不等式253x+-1≤2-x的解集中x的每一个值,都能使关于x的不等式3(x-1)+5>5x+2(m+x)成立,则m的取值范围是A.m>-35B.m<-15C.m<-35D.m>-15二、填空题(本大题共7道小题)11. 不等式组的最小整数解是.12. 若关于x的不等式组2,xx m⎧⎨⎩>>的解集是x>2,则m的取值范围是________.13. (2019•甘肃)不等式组2021xx x-≥⎧⎨>-⎩的最小整数解是__________.14. (2019•鄂州)若关于x、y的二元一次方程组34355x y mx y-=+⎧⎨+=⎩的解满足x+y≤0,则m的取值范围是__________.15. 已知不等式组29611x xx k+>-+⎧⎨->⎩的解集为1x>-,则k的取值范围是__________.16. (2019•荆州)对非负实数x“四舍五入”到个位的值记为(x),即当n为非负整数时,若n-0.5≤x<n+0.5,则(x)=n.如(1.34)=1,(4.86)=5.若(0.5x-1)=6,则实数x的取值范围是__________.17. 已知关于x的方程2x=m的解满足⎩⎨⎧x-y=3-nx+2y=5n(0<n<3),若y>1,则m的取值范围是________.三、解答题(本大题共4道小题)18. 试确定实数a的取值范围,使不等式组123544(1)33x xax x a+⎧+>⎪⎪⎨+⎪+>++⎪⎩恰有两个整数解.19. 某校计划组织240名师生到红色教育基地开展革命传统教育活动.旅游公司有A,B两种客车可供租用,A型客车每辆载客量45人,B型客车每辆载客量3 0人.若租用4辆A型客车和3辆B型客车共需费用10700元;若租用3辆A 型客车和4辆B型客车共需费用10300元.(1)求租用A,B两型客车,每辆费用分别是多少元;(2)为使240名师生有车坐,且租车总费用不超过1万元,你有哪几种租车方案?哪种方案最省钱?20. 某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗棵数比甲种树苗棵数的2倍少40棵,购买两种树苗的总金额为9000元.(1)求购买甲、乙两种树苗各多少棵?(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过2 30元,求可能的购买方案?21. 为了对学生进行爱国主义教育,某校组织学生去看演出,有甲、乙两种票,已知甲、乙两种票的单价比为4∶3,单价和为42元.(1)甲乙两种票的单价分别是多少元?(2)学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,且规定购买甲种票必须多于15张,有哪几种购买方案?2021中考数学一轮专题训练:一元一次不等式(组)-答案一、选择题(本大题共10道小题)1. 【答案】D【解析】,若x+5>0,则x>-5.逐项分析如下:A∵x +1>-4,∴x +1<0不能确定×B ∵x -1>-6,∴x -1<0不能确定×C ∵x>-5,∴x5>-1 × D∵x>-5,-2x<10<12√2. 【答案】C3. 【答案】B[解析]解不等式2x -6<3x ,得x>-6,解不等式≥0,得x ≤13,故选B .4. 【答案】C[解析]设该店购进甲种商品x 件,则购进乙种商品(50-x )件,根据题意,得:解得20≤x<25.∵x 为正整数,∴x=20,21,22,23,24, ∴该店进货方案有5种,故选C .5. 【答案】B6. 【答案】A解析:由题意得,点M 关于x 轴对称的点的坐标为(1-2m ,1-m ).又∵M (1-2m ,m -1)关于x 轴的对称点在第一象限,∴⎩⎨⎧1-2m >0,1-m >0.解得⎩⎪⎨⎪⎧m <12,m <1.在数轴上表示为.故选A.7. 【答案】A【解析】解不等式1132x x+<--,得:x>8,∵不等式组无解,∴4m≤8,解得m≤2,故选A .8. 【答案】C【解析】不等式组整理得:43x x <⎧⎨≤-⎩,∴不等式组的解集为3x ≤-,故选C .9. 【答案】C【解析】解不等式25123x x +-≤-得:45x ≤, ∵不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,∴12mx -<,故选C.10. 【答案】C【解析】解不等式253x+-1≤2-x得:x≤45,∵不等式253x+-1≤2-x的解集中x的每一个值,都能使关于x的不等式3(x-1)+5>5x+2(m+x)成立,∴x<12m-,∴12m->45,解得:m<-35,故选C.二、填空题(本大题共7道小题)11. 【答案】x=012. 【答案】m≤213. 【答案】0【解析】不等式组整理得:21xx≤⎧⎨>-⎩,∴不等式组的解集为-1<x≤2,则最小的整数解为0,故答案为:0.14. 【答案】m≤-2【解析】34355x y m x y -=+⎧⎨+=⎩①②,①+②得2x+2y=4m+8,则x+y=2m+4,根据题意得2m+4≤0,解得m≤-2. 故答案为:m≤-2.15. 【答案】2k ≤-【解析】29611x x x k +>-+⎧⎨->⎩①②,由①得1x >-; 由②得1x k >+.∵不等式组29611x x x k +>-+⎧⎨->⎩的解集为1x >-,∴11k +≤-, 解得2k ≤-. 故答案为:2k ≤-.16. 【答案】13≤x<15【解析】依题意得:6-0.5≤0.5x -1<6+0.5,解得13≤x<15.故答案为:13≤x<15.17. 【答案】25<m <23 【解析】解原方程组,得⎩⎨⎧x =n +2y =2n -1.∵y >1,∴2n -1>1,即n >1.∵0<n <3,∴1<n <3,∴3<x <5.当x =3时,m =2x =23;当x =5时,m =2x =25.∵当x >0时,m 随x 的增大而减小,∴25<m <23.三、解答题(本大题共4道小题)18. 【答案】解:⎩⎪⎨⎪⎧x 2+x +13>0, ①x +5a +43>43x +1+a . ②解不等式①,得x >-25. 解不等式②,得x <2a .由该不等式有实数解,得该不等式组的解集为-25<x <2a . 又由该不等式恰有两个整数解,得1<2a ≤2. 解得12<a ≤1.∴实数a 的取值范围为12<a ≤1.19. 【答案】(1)设租用A ,B 两型客车,每辆费用分别是x 元、y 元,43107003410300x y x y +=⎧⎨+=⎩, 解得,17001300x y =⎧⎨=⎩,答:租用A ,B 两型客车,每辆费用分别是1700元、1300元. (2)设租用A 型客车a 辆,租用B 型客车b 辆,45302401700130010000a b a b +≥⎧⎨+≤⎩,解得,25a b =⎧⎨=⎩,42a b =⎧⎨=⎩,51a b =⎧⎨=⎩, ∴共有三种租车方案,方案一:租用A 型客车2辆,B 型客车5辆,费用为9900元, 方案二:租用A 型客车4辆,B 型客车2辆,费用为9400元, 方案三:租用A 型客车5辆,B 型客车1辆,费用为9800元, 由上可得,方案二:租用A 型客车4辆,B 型客车2辆最省钱.20. 【答案】(1)设购买甲种树苗x 棵,购买乙种树苗(240)x -棵, 由题意可得,3020(240)9000x x +-=,509800x =,196x =,∴购买甲种树苗196棵,乙种树苗352棵.(2)设购买甲树苗y 棵,乙树苗(10)y -棵, 根据题意可得,3020(10)230y y +-≤,1030y ≤, ∴3y ≤,∵y 为自然数,∴y=3、2、1、0,有四种购买方案,购买方案1:购买甲树苗3棵,乙树苗7棵;购买方案2:购买甲树苗2棵,乙树苗8棵;购买方案3:购买甲树苗1棵,乙树苗9棵; 购买方案4:购买甲树苗0棵,乙树苗10棵.21. 【答案】解:(1)设甲票价为4x 元,则乙为3x 元.∴3x +4x =42,解得x =6.∴4x =24,3x =18.∴甲、乙两种票的单价分别是24元、18元.(2)设甲票有y 张,根据题意,得⎩⎨⎧ 24y +1836-y ≤750,y >15.解得15<y ≤17.∵x 为整数,∴y =16或17.∴有两种购买方案:甲种票16张,乙种票20张;甲种票17张,乙种票19张.。
2023年全国各地中考数学真题分类汇编之不等式(组)及其应用(含解析)

不等式(组)及其应用一、单选题1.(2023·内蒙古·统考中考真题)关于的一元一次不等式的解集在数轴上的表示如图所示,则的值为()A.3B.2C.1D.02.(2023·湖南常德·统考中考真题)不等式组的解集是()A.B.C.D.3.(2023·湖北·统考中考真题)不等式组的解集是()A.B.C.D.4.(2023·广东·统考中考真题)一元一次不等式组的解集为()A.B.C.D.5.(2023·湖北宜昌·统考中考真题)解不等式,下列在数轴上表示的解集正确的是().A.B.C.D.6.(2023·浙江宁波·统考中考真题)不等式组的解在数轴上表示正确的是()A.B.C.D.7.(2023·四川眉山·统考中考真题)关于x的不等式组的整数解仅有4个,则m的取值范围是()A.B.C.D.8.(2023·四川遂宁·统考中考真题)若关于x的不等式组的解集为,则a的取值范围是()A.B.C.D.二、填空题9.(2023·全国·统考中考真题)不等式的解集为__________.10.(2023·辽宁大连·统考中考真题)的解集为_______________.11.(2023·四川乐山·统考中考真题)不等式的解集是__________.12.(2023·黑龙江·统考中考真题)关于的不等式组有3个整数解,则实数的取值范围是__________.13.(2023·广东·统考中考真题)某商品进价4元,标价5元出售,商家准备打折销售,但其利润率不能少于,则最多可打_______折.14.(2023·山东聊城·统考中考真题)若不等式组的解集为,则m的取值范围是______.15.(2023·湖南·统考中考真题)关于的不等式的解集为_______.16.(2023·山东滨州·统考中考真题)不等式组的解集为___________.17.(2023·浙江温州·统考中考真题)不等式组的解是___________.18.(2023·重庆·统考中考真题)若关于x的一元一次不等式组,至少有2个整数解,且关于y的分式方程有非负整数解,则所有满足条件的整数a的值之和是___________.19.(2023·四川泸州·统考中考真题)关于,的二元一次方程组的解满足,写出的一个整数值___________.20.(2023·四川凉山·统考中考真题)不等式组的所有整数解的和是_________.21.(2023·四川宜宾·统考中考真题)若关于x的不等式组所有整数解的和为,则整数的值为___________.三、解答题22.(2023·湖南·统考中考真题)解不等式组:,并把它的解集在数轴上表示出来.23.(2023·山东·统考中考真题)解不等式组:.24.(2023·福建·统考中考真题)解不等式组:25.(2023·湖北武汉·统考中考真题)解不等式组请按下列步骤完成解答.(1)解不等式①,得________;(2)解不等式②,得________;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是________.26.(2023·浙江·统考中考真题)解一元一次不等式组:.27.(2023·湖南永州·统考中考真题)解关于x的不等式组28.(2023·江苏苏州·统考中考真题)解不等式组:29.(2023·湖南·统考中考真题)解不等式组:30.(2023·湖南岳阳·统考中考真题)解不等式组:31.(2023·江苏扬州·统考中考真题)解不等式组并把它的解集在数轴上表示出来.32.(2023·上海·统考中考真题)解不等式组33.(2023·甘肃武威·统考中考真题)解不等式组:34.(2023·内蒙古赤峰·统考中考真题)某集团有限公司生产甲乙两种电子产品共8万件,准备销往东南亚国家和地区.已知2件甲种电子产品与3件乙种电子产品的销售额相同:3件甲种电子产品比2件乙种电子产品的销售多元.(1)求甲种电子产品与乙种电子产品销售单价各多少元?(2)若使甲乙两种电子产品的销售总收入不低于万元,则至少销售甲种电子产品多少件?35.(2023·内蒙古通辽·统考中考真题)某搬运公司计划购买A,B两种型号的机器搬运货物,每台A型机器比每台B型机器每天少搬运10吨货物,且每台A型机器搬运450吨货物与每台B型机器搬运500吨货物所需天数相同.(1)求每台A型机器,B型机器每天分别搬运货物多少吨?(2)每台A型机器售价1.5万元,每台B型机器售价2万元,该公司计划采购两种型号机器共30台,满足每天搬运货物不低于2880吨,购买金额不超过55万元,请帮助公司求出最省钱的采购方案.36.(2023·广东深圳·统考中考真题)某商场在世博会上购置A,B两种玩具,其中B玩具的单价比A玩具的单价贵25元,且购置2个B玩具与1个A玩具共花费200元.(1)求A,B玩具的单价;(2)若该商场要求购置B玩具的数量是A玩具数量的2倍,且购置玩具的总额不高于20000元,则该商场最多可以购置多少个A玩具?37.(2023·河南·统考中考真题)某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由.(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价.(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a元,请直接写出a的取值范围.38.(2023·湖北荆州·统考中考真题)荆州古城旁“荆街”某商铺打算购进,两种文创饰品对游客销售.已知1400元采购种的件数是630元采购种件数的2倍,种的进价比种的进价每件多1元,两种饰品的售价均为每件15元;计划采购这两种饰品共600件,采购种的件数不低于390件,不超过种件数的4倍.(1)求,饰品每件的进价分别为多少元?(2)若采购这两种饰品只有一种情况可优惠,即一次性采购种超过150件时,种超过的部分按进价打6折.设购进种饰品件,①求的取值范围;②设计能让这次采购的饰品获利最大的方案,并求出最大利润.39.(2023·山东聊城·统考中考真题)今年五一小长假期间,我市迎来了一个短期旅游高峰.某热门景点的门票价格规定见下表:人们的环保观念也在逐渐加深.绿色出行成为大家的生活理念,乙两种型号的自行车,其中甲型自行车进货价格为每台元,乙型自行车进货价格为每台元.该公司销售台甲型自行车和台乙型自行车,可获利元,销售台甲型自行车和台乙型自行车,可获利元.该公司销售一台甲型、一台乙型自行车的利润各是多少元?为满足大众需求,该公司准备加购甲、乙两种型号的自行车共台,且资金不超过元,最少需要备,每套设备由1个A部件和3个B部件组成,这种设备必须成套运输.已知1个A部件和2个B部件的总质量为2.8吨,2个A部件和3个B部件的质量相等.(1)求1个A部件和1个B部件的质量各是多少;(2)卡车一次最多可运输多少套这种设备通过此大桥?42.(2023·天津·统考中考真题)解不等式组请结合题意填空,完成本题的解答.(1)解不等式①,得________________;(2)解不等式②,得________________;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为________________.43.(2023·湖南怀化·统考中考真题)某中学组织学生研学,原计划租用可坐乘客人的种客车若干辆,则有人没有座位;若租用可坐乘客人的种客车,则可少租辆,且恰好坐满.(1)求原计划租用种客车多少辆?这次研学去了多少人?(2)若该校计划租用、两种客车共辆,要求种客车不超过辆,且每人都有座位,则有哪几种租车方案?(3)在(2)的条件下,若种客车租金为每辆元,种客车租金每辆元,应该怎样租车才最合算?44.(2023·江西·统考中考真题)今年植树节,某班同学共同种植一批树苗,如果每人种3棵,则剩余20棵;如果每人种4棵,则还缺25棵.(1)求该班的学生人数;(2)这批树苗只有甲、乙两种,其中甲树苗每棵30元,乙树苗每棵40元.购买这批树苗的总费用没有超过5400元,请问至少购买了甲树苗多少棵?45.(2023·云南·统考中考真题)蓝天白云下,青山绿水间,支一顶帐篷,邀亲朋好友,听蝉鸣,闻清风,话家常,好不惬意.某景区为响应文化和旅游部《关于推动露营旅游休闲健康有序发展的指导意见》精神,需要购买两种型号的帐篷.若购买种型号帐篷2顶和种型号帐篷4顶,则需5200元;若购买种型号帐篷3顶和种型号帐篷1顶,则需2800元.(1)求每顶种型号帐篷和每顶种型号帐篷的价格;(2)若该景区需要购买两种型号的帐篷共20顶(两种型号的帐篷均需购买),购买种型号帐篷数量不超过购买种型号帐篷数量的,为使购买帐篷的总费用最低,应购买种型号帐篷和种型号帐篷各多少顶?购买帐篷的总费用最低为多少元?46.(2023·四川眉山·统考中考真题)习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然正气.”某校为提高学生的阅读品味,现决定购买获得矛盾文学奖的甲、乙两种书共100本,已知购买2本甲种书和1本乙种书共需100元,购买3本甲种书和2本乙种书共需165元.(1)求甲,乙两种书的单价分别为多少元:(2)若学校决定购买以上两种书的总费用不超过3200元,那么该校最多可以购买甲种书多少本?47.(2023·四川凉山·统考中考真题)凉山州雷波县是全国少有的优质脐橙最适生态区.经过近20年的发展,雷波脐橙多次在中国西部农业博览会上获得金奖,雷波县也被誉名为“中国优质脐橙第一县”,某水果商为了解雷波脐橙的市场销售情况,购进了雷波脐橙和资中血橙进行试销.在试销中,水果商将两种水果搭配销售,若购买雷波脐橙3千克,资中血橙2千克,共需78元人民币;若购买雷波脐橙2千克,资中血橙3千克,共需72元人民币.(1)求雷波脐橙和资中血橙每千克各多少元?(2)一顾客用不超过1440元购买这两种水果共100千克,要求雷波脐橙尽量多,他最多能购买雷波脐橙多少千克?48.(2023·四川广安·统考中考真题)“广安盐皮蛋”是小平故里的名优特产,某超市销售两种品牌的盐皮蛋,若购买9箱种盐皮蛋和6箱种盐皮蛋共需390元;若购买5箱种盐皮蛋和8箱种盐皮蛋共需310元.(1)种盐皮蛋、种盐皮蛋每箱价格分别是多少元?(2)若某公司购买两种盐皮蛋共30箱,且种的数量至少比种的数量多5箱,又不超过种的2倍,怎样购买才能使总费用最少?并求出最少费用.参考答案一、单选题1.【答案】B【分析】先求出不等式的解集,然后对比数轴求解即可.【详解】解:解得,由数轴得:,解得:,故选:B.【点拨】题目主要考查求不等式的解集及参数,熟练掌握求不等式解集的方法是解题关键.2.【答案】C【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】解不等式①,移项,合并同类项得,;解不等式②,移项,合并同类项得,故不等式组的解集为:.故选:C.【点拨】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.【答案】A【分析】先求出每个不等式的解集,再根据“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集.【详解】解:解不等式①得:,解不等式②得:,∴不等式组的解集为,故选:A.【点拨】本题主要考查了解一元一次不等式组,正确求出每个不等式的解集是解题的关键.4.【答案】D【分析】第一个不等式解与第二个不等式的解,取公共部分即可.【详解】解:解不等式得:结合得:不等式组的解集是,故选:D.【点拨】本题考查解一元一次不等式组,掌握解一元一次不等式组的一般步骤是解题的关键.5.【答案】D【分析】按去分母、去括号、移项、合并同类项,未知数系数化为的步骤求出解集,再把解集在数轴上表示出来,注意包含端点值用实心圆点,不包含端点值用空心圆点,即可求解.【详解】解:,解集在数轴上表示为故选:D.【点拨】本题考查了一元一次不等式的解法及解集在数轴上的表示方法,掌握解法及表示方法是解题的关键.6.【答案】C【分析】根据一元一次不等式组的解法先求出不等式组的解集,再在数轴上表示即可得到答案.【详解】解:,由①得;由②得;原不等式组的解集为,在数轴上表示该不等式组的解集如图所示:,故选:C.【点拨】本题考查一元一次不等式组解集的求法及在数轴上的表示,熟练掌握不等式组解集的求解原则“同大取大、同小取小、大小小大中间找、大大小小无解了”是解决问题的关键.7.【答案】A【分析】不等式组整理后,表示出不等式组的解集,根据整数解共有4个,确定出m的范围即可.【详解】解:,由②得:,解集为,由不等式组的整数解只有4个,得到整数解为2,1,0,,∴,∴;故选:A.【点拨】本题主要考查解一元一次不等式组,一元一次不等式组的整数解等知识点的理解和掌握,能根据不等式组的解集得到是解此题的关键.8.【答案】D【分析】分别求出各不等式的解集,再根据不等式组的解集是求出a的取值范围即可.【详解】解:解不等式①得:,解不等式②得:,∵关于的不等式组的解集为,∴,故选:D.【点拨】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二、填空题9.【答案】【分析】根据移项、化系数为1,的步骤解一元一次不等式即可求解.【详解】解:解得:,故答案为:.【点拨】本题考查了求一元一次不等式的解集,熟练掌握不等式的性质是解题的关键.10.【答案】【分析】根据不等式的性质解不等式即可求解.【详解】解:,解得:,故答案为:.【点拨】本题考查了求不等式的解集,熟练掌握不等式的性质是解题的关键.11.【答案】【分析】直接移项即可得解.【详解】解:∵,∴,故答案为:.【点拨】本题主要考查了解一元一次不等式,熟练掌握解一元一次不等式的步骤是解答本题的关键.12.【答案】/【分析】解不等式组,根据不等式组有3个整数解得出关于m的不等式组,进而可求得的取值范围.【详解】解:解不等式组得:,∵关于的不等式组有3个整数解,∴这3个整数解为,,,∴,解得:,故答案为:.【点拨】本题考查了解一元一次不等式组,一元一次不等式组的整数解,正确得出关于m的不等式组是解题的关键.13.【答案】8.8【分析】设打x折,由题意可得,然后求解即可.【详解】解:设打x折,由题意得,解得:;故答案为:8.8.【点拨】本题主要考查一元一次不等式的应用,熟练掌握一元一次不等式的应用是解题的关键.14.【答案】【分析】分别求出两个不等式的解集,根据不等式组的解集即可求解.【详解】解:,解不等式①得:,解不等式②得:,∵不等式组的解集为:,∴.故答案为:.【点拨】本题考查了解一元一次不等式组,根据不等式的解求参数的取值范围,熟练掌握解不等式组解集的口诀:同大取大,同小取小大小小大中间找,大大小小找不到(无解)是解题的关键.15.【答案】【分析】根据一元一次不等式的解法即可得出结果.【详解】解:,移项,得,系数化为1,得.故答案为:.【点拨】本题考查了一元一次不等式的解法,熟练掌握不等式的性质是本题的关键.16.【答案】【分析】分别解两个不等式,再取两个解集的公共部分即可.【详解】解:,由①得:,由②得:,∴不等式组的解集为:;故答案为:【点拨】本题考查的是一次不等式组的解法,掌握一元一次不等式组的解法步骤与方法是解本题的关键.17.【答案】【分析】根据不等式的性质先求出每一个不等式的解集,再求出它们的公共部分即可.【详解】解不等式组:解:由①得,;由②得,所以,.故答案为:.【点拨】本题主要考查解一元一次不等式组,正确求出每一个不等式解集是基础,熟知求公共解的原则是解题关键.18.【答案】4【分析】先解不等式组,确定a的取值范围,再把分式方程去分母转化为整式方程,解得,由分式方程有正整数解,确定出a的值,相加即可得到答案.【详解】解:解不等式①得:,解不等式②得:,∴不等式的解集为,∵不等式组至少有2个整数解,∴,解得:;∵关于y的分式方程有非负整数解,∴即且,解得:且∴a的取值范围是,且∴a可以取:1,3,∴,故答案为:4.【点拨】本题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解题关键.19.【答案】7(答案不唯一)【分析】先解关于x、y的二元一次方程组的解集,再将代入,然后解关于a的不等式的解集即可得出答案.【详解】将两个方程相减得,∵,∴,∴,∵,∴,∴,∴的一个整数值可以是7.故答案为:7(答案不唯一).【点拨】本题主要考查了解二元一次方程组和解一元一次不等式,整体代入的思想方法是解答本题的亮点.20.【答案】7【分析】先分别解不等式组中的两个不等式,得到不等式组的解集,再确定整数解,最后求和即可.【详解】解:,由①得:,∴,由②得:,整理得:,解得:,∴不等式组的解集为:,∴不等式组的整数解为:,,0,1,2,3,4;∴,故答案为:7【点拨】本题考查的是求解一元一次不等式组的整数解,熟悉解一元一次不等式组的方法与步骤是解本题的关键.21.【答案】或【分析】根据题意可求不等式组的解集为,再分情况判断出的取值范围,即可求解.【详解】解:由①得:,由②得:,不等式组的解集为:,所有整数解的和为,①整数解为:、、、,,解得:,为整数,.②整数解为:,,,、、、,,解得:,为整数,.综上,整数的值为或故答案为:或.【点拨】本题考查了含参数的一元一次不等式组的整数解问题,掌握一元一次不等式组的解法,理解参数的意义是解题的关键.三、解答题22.【答案】不等式组的解集为:.画图见解析【分析】先解不等式组中的两个不等式,再在数轴上表示两个不等式的解集,从而可得答案.【详解】解:,由①得:,由②得:,∴,在数轴上表示其解集如下:∴不等式组的解集为:.【点拨】本题考查的是一元一次不等式组的解法,在数轴上表示不等式组的解集,掌握不等式组的解法与步骤是解本题的关键.23.【答案】【分析】分别求出各个不等式的解,再取各个解集的公共部分,即可.【详解】解:解得:,解得:,∴不等式组的解集为.【点拨】本题主要考查解一元一次不等式组,熟练掌握解不等式组的基本步骤,是解题的关键.24.【答案】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式①,得.所以原不等式组的解集为.【点拨】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键.25.【答案】(1)(2)(3)见解析(4)【分析】(1)直接解不等式①即可解答;(2)直接解不等式①即可解答;(3)在数轴上表示出①、②的解集即可;(3)数轴上表示的不等式的解集,确定不等式组的解集即可.【详解】(1)解:,.故答案为:.(2)解:,.故答案为:.(3)解:把不等式和的解集在数轴上表示出来:(4)解:由图可知原不等式组的解集是.故答案为:.【点拨】本题考查的是解一元一次不等式组,正确求出每一个不等式解集和在数轴上表示不等式的解集是解答本题的关键.26.【答案】【分析】根据不等式的性质,解一元一次不等式,然后求出两个解集的公共部分即可.【详解】解:解不等式②,得,∴原不等式组的解是.【点拨】本题主要考查解一元一次不等式组,掌握不等式的性质,解一元一次不等式的方法是解题的关键.27.【答案】【分析】分别解不等式组的两个不等式,再取两个不等式的解集的公共部分,即为不等式组的解集.【详解】解:,解①得,,解②得,,原不等式组的解集为.【点拨】本题考查了解一元一次不等式组的解集,取两个不等式的解集的公共部分的口诀为:“大大取大,小小取小,大小小大取中间,大大小小则无解”,熟知上述口诀是解题的关键.28.【答案】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式①得:解不等式②得:∴不等式组的解集为:【点拨】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键.29.【答案】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式①得:∴不等式组的解集为:.【点拨】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键.30.【答案】【分析】按照解不等式组的基本步骤求解即可.【详解】∵,解①的解集为;解②的解集为,∴原不等式组的解集为.【点拨】本题考查了不等式组的解法,熟练掌握解不等式组的基本步骤是解题的关键.31.【答案】,数轴表示见解析【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式①得·,解不等式②,得:,把不等式①和②的解集在数轴上表示出来:则不等式组的解集为:.【点拨】本题考查的是解一元一次不等式组,在数轴上表示不等式的解集,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.32.【答案】【分析】先分别求出两个不等式的解集,再找出它们的公共部分即为不等式组的解集.【详解】解:,解不等式②得:,则不等式组的解集为.【点拨】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键.33.【答案】【分析】先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集.【详解】解:解不等式组:,解不等式①,得.解不等式②,得.因此,原不等式组的解集为.【点拨】本题考查了一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解答本题的关键.34.【答案】(1)甲种电子产品的销售单价是元,乙种电子产品的单价为元;(2)至少销售甲种电子产品万件【分析】(1)设甲种电子产品的销售单价元,乙种电子产品的销售单价元,根据等量关系:件甲种电子产品与件乙种电子产品的销售额相同,件甲种电子产品比件乙种电子产品的销售多元,列出方程组求解即可;(2)可设销售甲种电子产品万件,根据甲、乙两种电子产品的销售总收入不低于万元,列出不等式求解即可.【详解】(1)解:设甲种电子产品的销售单价是元,乙种电子产品的单价为元.根据题意得:,解得:;答:甲种电子产品的销售单价是元,乙种电子产品的单价为元.(2)解:设销售甲种电子产品万件,则销售乙种电子产品万件.根据题意得:.解得:.答:至少销售甲种电子产品万件.【点拨】本题考查一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系及等量关系.35.【答案】(1)每台A型机器,B型机器每天分别搬运货物90吨和100吨;(2)当购买A型机器人12台,B 型机器人18台时,购买总金额最低是54万元.【分析】(1)设每台B型机器每天搬运x吨,则每台A型机器每天搬运吨,根据题意列出分式方程,解方程、检验后即可解答;(2设公司计划采购A型机器m台,则采购B型机器台,再题意列出一元一次不等式组,解不等式组求出m的取值范围,再列出公司计划采购A型机器m台与采购支出金额w的函数关系式,最后利用一次函数的增减性求最值即可.【详解】(1)解:设每台B型机器每天搬运x吨,则每台A型机器每天搬运吨,由题意可得:,解得:经检验,是分式方程的解每台A型机器每天搬运吨答:每台A型机器,B型机器每天分别搬运货物90吨和100吨(2)解:设公司计划采购A型机器m台,则采购B型机器台由题意可得:,解得:,公司采购金额:∵∴w随m的增大而减小∴当时,公司采购金额w有最小值,即,∴当购买A型机器人12台,B型机器人18台时,购买总金额最低是54万元.【点拨】本题主要考查了分式方程的应用、不等式组的应用、一次函数的应用等知识点,理解题意正确列出分式方程、不等式组和一次函数解析式是解答本题的关键.36.【答案】(1)A.B玩具的单价分别为50元、75元;(2)最多购置100个A玩具.。
最新中考数学总复习:一元一次不等式(组)--巩固练习(含答案解析)

中考总复习:一元一次不等式(组)—巩固练习【巩固练习】一、选择题1. 不等式-x-5≤0的解集在数轴上表示正确的是()A B C D2.若实数a>1,则实数M=a,N=23a+,P=213a+的大小关系为()A.P>N>M B.M>N>P C.N>P>M D.M>P>N3.如图所示,一次函数y=kx+b的图象经过A,B两点,则不等式kx+b>0•的解集是()A.x>0 B.x>2 C.x>-3 D.-3<x<24.如果不等式213x++1>13ax-的解集是x<53,则a的取值范围是()A.a>5 B.a=5 C.a>-5 D.a=-55.(2015•杭州模拟)已知整数x满足是不等式组,则x的算术平方根为()A.2 B.±2 C. D.46.不等式组3(2)423xa xxx+--≤⎧>⎪⎨⎪⎩无解,则a的取值范围是()A.a<1 B.a≤1 C.a>1 D.a≥1二、填空题7.若不等式ax<a的解集是x>1,则a的取值范围是__ ____.8.(2014春•北京校级月考)若(m﹣1)x|2m﹣1|﹣8>5是关于x的一元一次不等式,则m= .9.已知3x+4≤6+2(x-2),则│x+1│的最小值等于__ ____.10.若不等式a(x-1)>x-2a+1的解集为x<-1,则a的取值范围是____ __.11.满足22x+≥213x-的x的值中,绝对值不大于10的所有整数之和等于__ ____.12.有10名菜农,每个可种甲种蔬菜3亩或乙种蔬菜2亩,•已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元,若要总收入不低于15.6万元,•则最多只能安排_______人种甲种蔬菜.三、解答题13.解下列不等式(组),并把解集在数轴上表示出来.(1)x-3≥354x -. (2)解不等式组14. 若0231<-+x x ,求x 的取值范围.15.(2015•东莞)某电器商场销售A 、B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A 、B 两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A 、B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?16. 如图所示,一筐橘子分给若干个儿童,如果每人分4个,•则剩下9个;如果每人分6个,则最后一个儿童分得的橘子数少于3个,问共有几个儿童,•分了多少个橘子?【答案与解析】一、选择题1.【答案】B ;【解析】解不等式得x ≥-5,故选B.2.【答案】D ;【解析】方法一:取a=2,则M=2,N=43,P=53,由此知M>P>N,应选D.方法二:由a>1知a-1>0.又M-P=a-213a+=13a->0,∴M>P;P-N=213a+-23a+=13a->0,∴P>N.∴M>P>N,应选D.3.【答案】C;【解析】不等式kx+b>0•的解集即y>0的解集,观察图象得x>-3.4.【答案】B;【解析】化简原不等式得(2-a)x>-5,因为原不等式解集是x<53,所以2-a<0,且5523a-=-,解得a>2,且a=5.5.【答案】A;【解析】解:,解①得:x>3,解②得:x<5,则不等式组的解集是:3<x<5.则x=4.x的算术平方根是:2.故选A.6.【答案】B;【解析】解不等式组得x≥1,x<a, 因为不等式组无解,所以a≤1.二、填空题7.【答案】a<0;【解析】结果不等号的方向改变了,故a<0.8.【答案】0;【解析】由(m﹣1)x|2m﹣1|﹣8>5是关于x的一元一次不等式,得,解得m=0,故答案为:0.9.【答案】1;【解析】解不等式得x≤-2,当x=-2时,│x+1│有最小值,有最小值等于1.10.【答案】a<1;【解析】解不等式得(a-1)x>1-a, 因为不等式a(x-1)>x-2a+1的解集为x<-1,所以a-1<0,即a<1.11.【答案】-19;【解析】解不等式得x≤8,绝对值不大于10的所有整数之和为(-9)+(-10)=-19.12.【答案】4.三、解答题13.【答案与解析】(1)x ≥7, 数轴上表示略;(2)由不等式组:34.............121.......25x x x x +>⎧⎪⎨--≤⎪⎩①②解不等式①,得2x >-.解不等式②,得3x ≤.由图可知不等式组的解集为:23x -<≤.14.【答案与解析】 解:由0231<-+x x得⎩⎨⎧<->+023,01x x 或⎩⎨⎧>-<+023,01x x∴⎪⎩⎪⎨⎧<->32,1x x 或⎪⎩⎪⎨⎧>-<32,1x x (无解)即321<<-x .15.【答案与解析】解:(1)设A 种型号计算器的销售价格是x 元,B 种型号计算器的销售价格是y 元,由题意得:,解得:;答:A 种型号计算器的销售价格是42元,B 种型号计算器的销售价格是56元;(2)设购进A 型计算器a 台,则购进B 台计算器:(70﹣a )台,则30a+40(70﹣a )≤2500,解得:a≥30,答:最少需要购进A 型号的计算器30台.16.【答案与解析】解:设共有x 个儿童,则共有(4x+9)个橘子,依题意,得0≤4x+9-6(x-1)<3 解这个不等式组,得6<x ≤7.5.-2 3因为x为整数,所以x取7.所以4x+9=4×7+9=37.答:共有7个儿童,分了37个橘子.。
2021年中考数学 一轮专题汇编:一元一次不等式(组)(含答案)

2021中考数学 一轮专题汇编:一元一次不等式(组)一、选择题1. 下列各数轴上表示的x 的取值范围可以是不等式组2(21)60x a a x +>⎧⎨--<⎩的解集的是A .B .C .D .2. 直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的图象如图X2-2-3,则关于x 的不等式k 1x +b <k 2x +c 的解集为( )A .x >1B .x <1C .x >-2D .x <-23. (2019·滨州)已知点3()2P a a --,关于原点对称的点在第四象限,则a 的取值范围在数轴上表示正确的是A .B .C .D .4. 为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共几只A .55B .72C .83D .895. (2019•山西)不等式组13224x x ->⎧⎨-<⎩的解集是A .x>4B .x>-1C .-1<x<4D .x<-16. (2019•常德)小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜.甲说:“至少15元.”乙说:“至多12元.”丙说:“至多10元.”小明说:“你们三个人都说错了”.则这本书的价格x (元)所在的范围为 A .10<x<12B .12<x<15C .10<x<15D .11<x<147. 若关于x 的不等式组26040x m x m -+<⎧⎨->⎩有解,则在其解集中,整数的个数不可能是A .1B .2C .3D .48. (2019•呼和浩特)若不等式253x +-1≤2-x 的解集中x 的每一个值,都能使关于x 的不等式3(x -1)+5>5x+2(m+x )成立,则m 的取值范围是A .m>-35B .m<-15C .m<-35D .m>-15二、填空题9. 不等式3x+1>2(x+4)的解集为 .10. 若关于x 的不等式组的解集是x >2,则m 的取值范围是________.11. (2019•株洲)若a 为有理数,且2-a 的值大于1,则a 的取值范围为__________.12. 如果不等式组的解集是x<a -4,则a 的取值范围是 .13. 若关于x ,y 的二元一次方程组的解满足x +y <2,则实数a 的取值范围为______.2,x x m⎧⎨⎩>>31,33x y a x y +=+⎧⎨+=⎩14. (2019•鄂州)若关于x 、y 的二元一次方程组34355x y m x y -=+⎧⎨+=⎩的解满足x+y≤0,则m 的取值范围是__________.15. 不等式组的整数解是____________.16. 已知不等式组29611x x x k +>-+⎧⎨->⎩的解集为1x >-,则k 的取值范围是__________.三、解答题17. (2019•江西)解不等式组: 2(1)7122x x x x +>⎧⎪⎨+-≥⎪⎩并在数轴上表示它的解集.18. 某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗棵数比甲种树苗棵数的2倍少40棵,购买两种树苗的总金额为9000元.(1)求购买甲、乙两种树苗各多少棵?(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案?19. 某电器商城“(1)伯到该商场购买了冰箱、彩电各一台,可以享受多少元的补贴?(2)为满足农民需求,商场决定用不超过85 000元采购冰箱、彩电共40台,且冰14,2124x x +⎧≤⎪⎨⎪-<⎩箱的数量不少于彩电数量的56.若使商场获利最大,请你帮助商场计算应该购进冰箱、彩电各多少台?最大获利是多少?20. (2019•哈尔滨)寒梅中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用.若购买3副围棋和5副中国象棋需用98元;若购买8副围棋和3副中国象棋需用158元.(1)求每副围棋和每副中国象棋各多少元;(2)寒梅中学决定购买围棋和中国象棋共40副,总费用不超过550元,那么寒梅中学最多可以购买多少副围棋?21. 为了对学生进行爱国主义教育,某校组织学生去看演出,有甲、乙两种票,已知甲、乙两种票的单价比为4∶3,单价和为42元.(1)甲乙两种票的单价分别是多少元?(2)学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,且规定购买甲种票必须多于15张,有哪几种购买方案?2021中考数学一轮专题汇编:一元一次不等式(组)-答案一、选择题1. 【答案】B【解析】由x+2>a得x>a–2,A.由数轴知x>–3,则a=–1,∴–3x–6<0,解得x>–2,与数轴不符;B.由数轴知x>0,则a=2,∴3x–6<0,解得x<2,与数轴相符合;C.由数轴知x>2,则a=4,∴7x–6<0,解得x<67,与数轴不符;D.由数轴知x>–2,则a=0,∴–x–6<0,解得x>–6,与数轴不符,故选B.2. 【答案】B3. 【答案】C【解析】∵点3()2P a a --,关于原点对称的点在第四象限,∴点3()2P a a --,在第二象限,∴3020a a -<⎧⎨->⎩,解得:2a <.则a 的取值范围在数轴上表示正确的是:.故选C .4. 【答案】C【解析】设该村共有x 户,则母羊共有(517)x +只, 由题意知,5177(1)05177(1)3x x x x +-->⎧⎨+--<⎩, 解得:21122x <<, ∵x 为整数,∴11x =,则这批种羊共有115111783+⨯+=(只),故选C .5. 【答案】 A【解析】13224x x ->⎧⎨-<⎩①②,由①得:x>4,由②得:x>-1,不等式组的解集为:x>4,故选A .6. 【答案】B【解析】根据题意可得:151210x x x ≤⎧⎪≥⎨⎪≥⎩,可得:12≤x≤15,∴12<x<15,故选B .7. 【答案】 C【解析】解不等式2x-6+m<0,得:解不等式4x-m>0,得:∵不等式组有解,解得m<4,如果m=2,整数解为x=1,有1个;如果m=0,则不等式组的解集为0<m<3,整数解为x=1,2,有2个;如果m=-1,整数解为x=0,1,2,3,有4个,故选C.8. 【答案】C【解析】解不等式253x+-1≤2-x得:x≤45,∵不等式253x+-1≤2-x的解集中x的每一个值,都能使关于x的不等式3(x-1)+5>5x+2(m+x)成立,∴x<12m-,∴12m->45,解得:m<-35,故选C.二、填空题9. 【答案】x>710. 【答案】m≤211. 【答案】a<1且a为有理数【解析】根据题意知2-a>1,解得a<1,故答案为:a<1且a为有理数.12. 【答案】a≥-3[解析]因为不等式组的解集为x<a-4,所以3a+2≥a-4,解这个不等式得a≥-3.13. 【答案】a <414. 【答案】m≤-2【解析】34355x y m x y -=+⎧⎨+=⎩①②,①+②得2x+2y=4m+8,则x+y=2m+4,根据题意得2m+4≤0,解得m≤-2.故答案为:m≤-2.15. 【答案】-1,0,1 解析:解原不等式组,得-32<x ≤1,所以x 取-1,0,1.16. 【答案】2k ≤- 【解析】29611x x x k +>-+⎧⎨->⎩①②, 由①得1x >-;由②得1x k >+.∵不等式组29611x x x k +>-+⎧⎨->⎩的解集为1x >-, ∴11k +≤-,解得2k ≤-.故答案为:2k ≤-.三、解答题17. 【答案】2(1)7122x x x x +>⎧⎪⎨+-≥⎪⎩①②, 解①得:x>-2,解②得:x≤-1,故不等式组的解为:-2<x≤-1,在数轴上表示出不等式组的解集为:.18. 【答案】(1)设购买甲种树苗x 棵,购买乙种树苗(240)x -棵, 由题意可得,3020(240)9000x x +-=,509800x =,196x =,∴购买甲种树苗196棵,乙种树苗352棵.(2)设购买甲树苗y 棵,乙树苗(10)y -棵, 根据题意可得,3020(10)230y y +-≤,1030y ≤, ∴3y ≤,∵y 为自然数,∴y=3、2、1、0,有四种购买方案,购买方案1:购买甲树苗3棵,乙树苗7棵;购买方案2:购买甲树苗2棵,乙树苗8棵;购买方案3:购买甲树苗1棵,乙树苗9棵;购买方案4:购买甲树苗0棵,乙树苗10棵.19. 【答案】解:(1)(2 420+1 980)×13%=572(元).(2)①设冰箱采购x 台,则彩电采购(40-x )台.根据题意,得 ⎩⎪⎨⎪⎧2 320x +1 900(40-x)≤85 000,x≥56(40-x). 解不等式组,得18211≤x ≤2137.因为x 为整数,所以x =19或20或21.方案一:冰箱购买19台,彩电购买21台;方案二:冰箱购买20台,彩电购买20台;方案一:冰箱购买21台,彩电购买19台.②设商场获得总利润为y 元,则y =(2 420-2 320)x +(1 980-1 900)(40-x )=20x +3 200.∵k =20>0,∴y 随x 的增大而增大.∴当x =21时,y 最大=20×21+3 200=3 620.20. 【答案】(1)设每副围棋x 元,每副中国象棋y 元,根据题意得: 359883158x y x y +=⎧⎨+=⎩, ∴1610x y =⎧⎨=⎩, ∴每副围棋16元,每副中国象棋10元;(2)设购买围棋z 副,则购买象棋(40-z )副, 根据题意得:16z+10(40-z )≤550,∴z≤25,∴最多可以购买25副围棋.21. 【答案】解:(1)设甲票价为4x 元,则乙为3x 元.∴3x +4x =42,解得x =6.∴4x =24,3x =18.∴甲、乙两种票的单价分别是24元、18元.(2)设甲票有y 张,根据题意,得⎩⎨⎧ 24y +1836-y ≤750,y >15.解得15<y ≤17.∵x 为整数,∴y =16或17.∴有两种购买方案:甲种票16张,乙种票20张;甲种票17张,乙种票19张.。
备考2022年中考数学一轮复习-一元一次不等式的应用-综合题专训及答案

备考2022年中考数学一轮复习-一元一次不等式的应用-综合题专训及答案一元一次不等式的应用综合题专训1、(2016内蒙古自治区.中考真卷) 我市为全面推进“十个全覆盖”工作,绿化提质改造工程如火如荼地进行,某施工队计划购买甲、乙两种树苗共600棵对某标段道路进行绿化改造,已知甲种树苗每棵100元,乙种树苗每棵200元.(1)若购买两种树苗的总金额为70000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?2、(2015抚顺.中考真卷) 某中学组织学生去福利院慰问,在准备礼品时发现,购买1个甲礼品比购买1个乙礼品多花40元,并且花费600元购买甲礼品和花费360元购买乙礼品的数量相等.(1)求甲、乙两种礼品的单价各为多少元?(2)学校准备购买甲、乙两种礼品共30个送给福利院的老人,要求购买礼品的总费用不超过2000元,那么最多可购买多少个甲礼品?3、(2017哈尔滨.中考真卷) 威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B 两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?4、(2011温州.中考真卷) 2011年5月20日是第22个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题.(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.5、(2016南平.中考模拟) 2016年春季,建阳区某服装商店分两次从批发市场购进同一款服装,数量之比是2:3,且第一、二次进货价分别为每件50元、40元,总共付了4400元的货款.(1)求第一、二次购进服装的数量分别是多少件?(2)由于该款服装刚推出时,很受欢迎,按每件70元销售了x件;后来,由于该服装滞销,为了及时处理库存,缓解资金压力,其剩余部分的按每件30元全部售完.当x的值至少为多少时,该服装商店才不会亏本.6、(2020杭州.中考模拟) 六•一前夕,某幼儿园园长到厂家选购A、B两种品牌的儿童服装,每套A品牌服装进价比B品牌服装每套进价多25元,用2000元购进A种服装数量是用750元购进B种服装数量的2倍.(1)求A、B两种品牌服装每套进价分别为多少元?(2)该服装A品牌每套售价为130元,B品牌每套售价为95元,服装店老板决定,购进B品牌服装的数量比购进A品牌服装的数量的2倍还多4套,两种服装全部售出后,可使总的获利超过1200元,则最少购进A品牌的服装多少套?7、(2018南宁.中考模拟) 今年奉节脐橙喜获丰收,某村委会将全村农户的脐橙统一装箱出售.经核算,每箱成本为40元,统一零售价定为每箱50元,可以根据买家订货量的多少给出不同的折扣价销售.(1)问最多打几折销售,才能保证每箱脐橙的利润率不低于10%?(2)该村最开始几天每天可卖5000箱,因脐橙的保鲜周期短,需要尽快打开销路,减少积压,村委会决定在零售价基础上每箱降价3m%,这样每天可多销售m%;为了保护农户的收益与种植积极性,政府用“精准扶贫基金”给该村按每箱脐橙m元给予补贴进行奖励,结果该村每天脐橙销售的利润为49000元,求m 的值.8、(2017港南.中考模拟) 小明所在的学校加强学生的体育锻炼,准备从某体育用品商店一次购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个篮球和3个足球共需310元,购买5个篮球和2个足球共需500元.(1)每个篮球和足球各需多少元?(2)根据实际情况,需从该商店一次性购买篮球和足球功60个,要求购买篮球和足球的总费用不超过4000元,那么最多可以购买多少个篮球?9、(2017桂林.中考模拟) 某校为丰富学生的校园生活,准备从某体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.(1)购买一个足球,一个篮球各需多少元?(2)根据学校的实际情况,需从该体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?10、(2011玉林.中考真卷) 上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元.(1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元?(利润率= )11、(2017贵港.中考真卷) 某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?12、(2017官渡.中考模拟) 某体育用品商场采购员要到厂家批发购进篮球和排球共100只,付款总额不得超过11 815元.已知两种球厂家的批发价和商场的零售品名厂家批发价(元/只)市场零售价(元/只)篮球130 160排球100 120(2)若该商场把这100只球全部以零售价售出,为使商场获得的利润不低于2580元,则采购员至少要购篮球多少只,该商场最多可盈利多少元?13、(2020如皋.中考模拟) 近期猪肉价格不断走高,引起市民与政府的高度关注,当市场猪肉的平均价格达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%,某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2) 5月20日猪肉价格为每千克40元,5月21日,某市决定投入储备猪肉,并规定其销售价格在5月20日每千克40元的基础上下调a%出售,某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比5月20日提高了,求a的值.14、(2020永州.中考模拟) 某服装店用4000元购进一批某品牌的文化衫若干件,很快售完,该店又用6300元钱购进第二批这种文化衫,所进的件数比第一批多40%,每件文化衫的进价比第一批每件文化衫的进价多10元,请解答下列问题:(1)求购进的第一批文化衫的件数;(2)为了取信于顾客,在这两批文化衫的销售中,售价保持了一致.若售完这两批文化衫服装店的总利润不少于4100元钱,那么服装店销售该品牌文化衫每件的最低售价是多少元?15、(2020宁夏回族自治区.中考真卷) 在“抗击疫情”期间,某学校工会号召广大教师积极开展了“献爱心捐款”活动,学校拟用这笔捐款购买A、B两种防疫物品.如果购买A种物品60件,B种物品45件,共需1140元;如果购买A种物品45件,B种物品30件,共需840元.(1)求A、B两种防疫物品每件各多少元;(2)现要购买A、B两种防疫物品共600件,总费用不超过7000元,那么A种防疫物品最多购买多少件?一元一次不等式的应用综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南省2023年中考备考数学一轮复习 一元一次不等式(组) 练习题一、单选题1.(2022·湖南湘潭·统考中考真题)若a b >,则下列四个选项中一定成立的是( )A .22a b +>+B .33a b ->-C .44ab< D .11a b -<-2.(2022·湖南长沙·模拟预测)在框中解分式方程的4个步骤中,步骤③的根据是( )A .等式性质1B .等式性质2C .加法交换律D .乘法分配律3.(2022·湖南株洲·一模)关于x 的一元一次不等式58x x ≥+的解集在数轴上表示为( )A .B .C .D .4.(2022·湖南株洲·统考中考真题)不等式410x -<的解集是( ).A .>4xB .4x <C .14x > D .14x <5.(2022·湖南湘西·校考模拟预测)一元一次不等式组101102x x -≤⎧⎪⎨+>⎪⎩的解集在数轴上表示出来,正确的是()A .B .C .D .6.(2022·湖南株洲·统考一模)不等式组23112(2)x x x -≥-⎧⎨-≥-+⎩的解集为( )A .无解B .1x ≤C .1x ≥-D .11x -≤≤7.(2022·湖南邵阳·统考模拟预测)不等式组1026x x +<⎧⎨-≤⎩的解集在数轴上可表示为( ) A . B .C .D .8.(2022·湖南邵阳·统考中考真题)关于x 的不等式组()1233111222x x x a ⎧->-⎪⎪⎨⎪-<-⎪⎩有且只有三个整数解,则a 的最大值是( )A .3B .4C .5D .69.(2022·湖南邵阳·统考三模)若不等式组643x x x m +>-⎧⎨<⎩的解集是3x <,则m 的取值范围是( ) A .3m > B .3m ≥ C .3m ≤ D .3m <10.(2022·湖南娄底·统考一模)不等式组51341233x x x x ->-⎧⎪⎨-≤-⎪⎩的整数解的和为( ) A .1 B .0 C .-1 D .-2二、填空题11.(2022·湖南张家界·统考二模)不等式30x -+>的最大整数解是______12.(2022·湖南张家界·统考一模)如果不等式组324x a x a +⎧⎨-⎩<<的解集是x <a ﹣4,则a 的取值范围是_______. 13.(2022·湖南娄底·统考模拟预测)不等式2217x x >⎧⎨+≤⎩的正整数解为______. 14.(2022·湖南永州·统考一模)若关于x ,y 的方程组23127x y k x y +=-⎧⎨+=⎩解满足05x y <+<,则k 的取值范围是______.三、解答题15.(2022·湖南邵阳·统考中考真题)2022年2月4日至20日冬季奥运会在北京举行.某商店特购进冬奥会纪念品“冰墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,“冰墩墩”挂件的(1)若购进“冰墩墩”摆件和挂件共花费了11400元,请分别求出购进“冰墩墩”摆件和挂件的数量.(2)该商店计划将“冰墩墩”摆件售价定为100元/个,“冰墩墩”挂件售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,且至少盈利2900元,求购进的“冰墩墩”挂件不能超过多少个?16.(2022·湖南长沙·模拟预测)某校积极筹备“爱成都•迎大运”体育节活动决定购买一批篮球和足球共60个.已知在线下商店购买50个篮球和10个足球共需4600元,购买30个篮球和30个足球共需4200元.(1)分别求在线下商店购买篮球和足球的单价;(2)经过市场调查分析,发现在线上商店购买更划算,已知线上商店篮球的单价和线下商店一样,但线上商店足球有优惠活动,足球的单价是线下的八折,若学校要求购买篮球的个数不得少于足球的个数的2倍,那么学校在线上商店应分别购买多少数量的篮球和足球才能使得所花费用最少?并求出该费用的最小值?17.(2022·湖南郴州·统考中考真题)为响应乡村振兴号召,在外地创业成功的大学毕业生小姣毅然返乡当起了新农人,创办了果蔬生态种植基地.最近,为给基地蔬菜施肥,她准备购买甲、乙两种有机肥.已知甲种有机肥每吨的价格比乙种有机肥每吨的价格多100元,购买2吨甲种有机肥和1吨乙种有机肥共需1700元.(1)甲、乙两种有机肥每吨各多少元?(2)若小姣准备购买甲、乙两种有机肥共10吨,且总费用不能超过5600元,则小姣最多..能购买甲种有机肥多少吨?18.(2022·湖南岳阳·统考中考真题)为迎接湖南省第十四届运动会在岳阳举行,某班组织学生参加全民健身线上跳绳活动,需购买A,B两种跳绳若干.若购买3根A种跳绳和1根B种跳绳共需140元;若购买5根A种跳绳和3根B种跳绳共需300元.(1)求A,B两种跳绳的单价各是多少元?(2)若该班准备购买A,B两种跳绳共46根,总费用不超过1780元,那么至多可以购买B种跳绳多少根?19.(2022·湖南益阳·统考中考真题)在某市组织的农机推广活动中,甲、乙两人分别操控A、B两种型号的收割机参加水稻收割比赛.已知乙每小时收割的亩数比甲少40%,两人各收割6亩水稻,乙则比甲多用0.4小时完成任务;甲、乙在收割过程中对应收稻谷有一定的遗落或破损,损失率分别为3%,2%.(1)甲、乙两人操控A、B型号收割机每小时各能收割多少亩水稻?(2)某水稻种植大户有与比赛中规格相同的100亩待收水稻,邀请甲、乙两人操控原收割机一同前去完成收割任务,要求平均损失率不超过2.4%,则最多安排甲收割多少小时?20.(2022·湖南长沙·模拟预测)圆圆预测一种应季衬衫能畅销市场,就用12000元购进了一批这种衬衫,面市后果然供不应求,圆圆又用30000元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单(1)圆圆购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按四折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?21.(2022·湖南湘西·统考二模)某高校共有5个大餐厅和2个小餐厅,若同时开放1个大餐厅、2个小餐厅,可供1600名学生就餐;若同时开放2个大餐厅、1个小餐厅,可供2000名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐?(2)按照疫情防控的就餐要求,每个大餐厅只能容纳原来就餐人数的40%,每个小餐厅只能容纳原来就餐人数的30%,若同时开放5个餐厅,能否供返校的1200名毕业生同时就餐?若能,请给出具体方案,若不能,请说明理由.22.(2022·湖南永州·统考一模)某商场计划经销A、B两种新型节能台灯共50盏,这两种台灯的进价、售价如表所示:(1)若该商场购进这批台灯共用去2500元,问这两种台灯各购进多少盏?(2)在每种台灯销售利润不变的情况下,若该商场销售这批台灯的总利润不少于1400元,问至少购进B 种台灯多少盏?23.(2022·湖南娄底·统考一模)为落实“五育并举”,提升学生的身体素质,娄底某校在课后服务中大力开展球类运动,现需要购买一批足球、篮球,已知购买1个足球和1个篮球共需140元;购买2个足球和3个篮球共需340元.(1)求每个足球和每个篮球的价格各是多少元;(2)若该学校需一次性购买足球、篮球共100个,且购买总资金不超过6800元,学校最多可以购买多少个足球?24.(2022·湖南邵阳·统考三模)为改善城市人居环境,某区域原来每天需要处理生活垃圾732吨,刚好被12个A型和10个B型预处置点位进行初筛、压缩等处理,已知一个A型点位比一个B型点位每天多处理6吨生活垃圾.(1)求每个B型点位每天处理生活垃圾的吨数;(2)自《生活垃圾管理条例》的施行,垃圾分类要求提高,在每个点位每天将少处理7吨生活垃圾,同时由于市民环保意识增强,该区域每天需要处理的生活垃圾比原来少20吨,若该区域计划增设A型、B型点位共5个,试问至少需要增设几个A 型点位才能当日处理完所有生活垃圾?25.(2022·湖南怀化·统考中考真题)解不等式组,并把解集在数轴上表示出来.()51313221x x x x ⎧->+⎨-≤+⎩①②26.(2022·湖南长沙·统考中考真题)解不等式组:38?2(1)6x x x >--⎧⎨-≤⎩①②27.(2022·湖南邵阳·统考一模)新修订的《中人民共和国森林法》明确每年3月12日为植树节.2022年植树节,某班开展植树活动,欲购买甲、乙两种树苗.已知购买25棵甲种树苗和10棵乙种树苗共需1250元,购买15棵甲种树苗和5棵乙种树苗共需700元.(1)求购买的甲、乙两种树苗的单价.(2)经商量、决定用不超过1600元的费用购买甲、乙两种树苗共40棵,其中乙种树苗的数量不少于甲种树苗数量的13,求购买的甲种树苗数量的取值范围. 28.(2022·湖南湘西·统考二模)解不等式组:2644113x x x -+≥⎧⎪+⎨>-⎪⎩,并将其解集在数轴上表示出来.29.(2022·湖南永州·统考中考真题)解关于x 的不等式组:()142151x x +>⎧⎨-->⎩参考答案:1.A【分析】根据不等式的基本性质1来判断A 和D ,根据不等式的基本性质2来求解B 的C .【详解】解:A .因为a b >,不等边两边同时加上2得到22a b +>+,故原选项正确,此项符合题意; B .因为a b >,不等边两边同时乘-3得到33a b -<-,故原选项错误,此项不符合题意;C .因为a b >,不等边两边同时除以4得到44a b >,故原选项错误,此项不符合题意; D .因为a b >,不等边两边同时减1得到11a b ->-,故原选项错误,此项不符合题意.故选:A .【点睛】本题主要考查了不等式的基本性质,理解不等式的基本性质是解答关键.不等式的基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变;不等式的基本性质2:不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变;不等式的基本性质3:不等式两边同时乘以(或除以)同一个小于0的整式,不等号方向改变.2.A【分析】根据不等式的性质1“等式的两边加(或减)同一个数(或式子),结果是相等的”进行解答即可得.【详解】解:③是根据等式的性质1,等式的两边都加同一个整式(3)x -,结果不变,故选A .【点睛】本题考查了解方式方程,解题的关键是掌握不等式的性质.3.B【分析】求出不等式的解集,并表示出数轴上即可.【详解】58x x ≥+解得2x ≥将2x ≥表示在数轴上,如图故选B【点睛】本题考查了解一元一次不等式,并将不等式的解集表示在数轴上,数形结合是解题的关键.4.D【分析】直接移项、合并同类项、不等号两边同时除以4即可求解.【详解】解:4x −1<0移项、合并同类项得:4x <1不等号两边同时除以4,得:x <14故选:D .【点睛】本题考查解一元一次不等式,掌握不等式的基本性质是解题的关键.5.B 【详解】解:10{1102x x ①②-+>, 由③得:x ⩽1;由③得:x>−2,③不等式组的解集为21x -<≤表示在数轴上,如图所示:故选:B.6.D【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式2−3x≥−1,得:x≤1,解不等式x−1≥−2(x +2),得:x≥−1,则不等式组的解集为−1≤x≤1,故选:D .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.A【分析】根据一元一次不等式组的解题要求对两个不等式进行求解得到解集即可对照数轴进行选择.【详解】解不等式x +1<0,得x <-1,解不等式-26x ≤,得3x ≥-,所以这个不等式组的解集为-3-x ≤<1,在数轴上表示如选项A 所示,故选:A .【点睛】本题主要考查了一元一次不等式组的解,正确求解不等式组的解集并在数轴上表示是解决本题的关键.8.C【分析】分别对两个不等式进行求解,得到不等式组的解集为1x a <<,根据不等式组有且只有三个整数解的条件计算出a 的最大值. 【详解】解不等式1233x x ->-, 1233x x -+>, ③2233x >, ③1x >, 解不等式111(2)22x a -<-, 得11(2)122x a <-+, ③x a <, ③1233111(2)22x x x a ⎧->-⎪⎪⎨⎪-<-⎪⎩的解集为1x a <<, ③不等式组有且只有三个整数解,③不等式组的整数解应为:2,3,4,③45a <≤,③a 的最大值应为5故选:C .【点睛】本题考查不等式组的整数解,解题的关键是熟练掌握不等式组的相关知识.9.B【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式643x x +>-,得:3x <,x m <且不等式组的解集为3x <,3m ∴≥,故选:B .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.B【分析】先求出不等式组的解集,再从中找出整数求和即可.【详解】51341233x xx x->-⎧⎪⎨-≤-⎪⎩①②,解③得32 x>-,解③得x≤1,③31 2-<≤x,③整数解有:-1,0,1,③-1+0+1=0.故选B.【点睛】本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解. 11.2【详解】解:解不等式-x+3>0,得x<3,不等式的最大整数解为2.故答案为2.【点睛】此题主要考查了不等式的解法和整数解得确定,解题关键是利用不等式的基本性质3解不等式,然后才能从解集中确定出最大整数解.12.a≥﹣3.【分析】根据口诀“同小取小”可知不等式组32{4x ax a+-<<的解集,解这个不等式组得到关于a的不等式进行求解即可.【详解】解:因为这个不等式组的解集为x<a﹣4,则3a+2≥a﹣4,解这个不等式得a≥﹣3故答案为:a≥﹣3.【点睛】此题考查解一元一次不等式组,掌握运算法则是解题关键13.3【分析】直接解出各个不等式的解集,再取公共部分,再找正整数解即可.【详解】解:由217x+≤,解得:3x ≤,由2x >,∴原不等式的解集是:23x <≤.故不等式2217x x >⎧⎨+≤⎩的正整数解为:3, 故答案是:3.【点睛】本题考查了解一元一次不等式组的解集和求不等式组的正整数解,解题的关键是:掌握解不等式组的基本运算法则,求出解集后,找出满足条件的正整数解即可.14.23k -<<【分析】将两方程相加整理可得2x y k +=+,由05x y <+<可得025k <+<,解之即可得.【详解】解:将两方程相加可得3336x y k +=+,2x y k ∴+=+,05x y <+<,025k ∴<+<,解得:23k -<<,故答案为:23k -<<.【点睛】本题主要考查解一元一次不等式组和二元一次方程组,解题的关键是根据题意得出关于k 的不等式组.15.(1)购进“冰墩墩”摆件80件,“冰墩墩”挂件的100件;(2)购进的“冰墩墩”挂件不能超过70个.【分析】(1)设购进“冰墩墩”摆件x 件,“冰墩墩”挂件的y 件,利用总价=单价×数量,结合购买“冰墩墩”摆件和“冰墩墩”挂件共180个且共花费11400元,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购买“冰墩墩”挂件m 个,则购买“冰墩墩”摆件(180-m )个,利用总价=单价×数量,结合至少盈利2900元,即可得出关于m 的不等式,解之即可得出结论.【详解】(1)解:设购进“冰墩墩”摆件x 件,“冰墩墩”挂件的y 件,依题意得:180805011400x y x y +=⎧⎨+=⎩, 解得:80100x y =⎧⎨=⎩,答:购进“冰墩墩”摆件80件,“冰墩墩”挂件的100件;(2)解:设购买“冰墩墩”挂件m 个,则购买“冰墩墩”摆件(180-m )个,依题意得:(100-80)(180-m )+(60-50)m ≥2900,解得:m ≤70,答:购进的“冰墩墩”挂件不能超过70个.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.16.(1)篮球和足球的单价分别为80元、60元.(2)学校在线上商店应分别购买40个篮球和20个足球才能使得所花费用最少,费用的最小值为4160元.【分析】(1)设篮球和足球的单价分别为x 元、y 元,根据题意列方程即可;(2) 设学校在线上商店应分别购买篮球m 个和足球(60-m )个,根据题意列出不等式,确定m 的取值范围,再确定费用最小值即可.【详解】解:(1)设篮球和足球的单价分别为x 元、y 元,根据题意列方程得,5010460030304200x y x y +=⎧⎨+=⎩,解得8060x y =⎧⎨=⎩, 答:篮球和足球的单价分别为80元、60元.(2)设学校在线上商店应分别购买篮球m 个和足球(60-m )个,根据题意得,26()0m m ≥-,解得,40m ≥,购买篮球和足球所花费用为80600.8(60)322880m m m +⨯-=+,当40m =时,费用最小,最小费用为324028804160⨯+=(元),答:学校在线上商店应分别购买40个篮球和20个足球才能使得所花费用最少,费用的最小值为4160元.【点睛】本题考查了二元一次方程组的应用和一元一次不等式的应用,解题关键是准确理解题意,列出方程或不等式.17.(1)甲种有机肥每吨600元,乙种有机肥每吨500元(2)小妏最多能购买甲种有机用6吨【分析】(1)设甲种有机肥每吨x 元,乙种有机肥每吨y 元,根据甲种有机肥每吨的价格比乙种有机肥每吨的价格多100元,购买2吨甲种有机肥和1吨乙种有机肥共需1700元列出二元一次方程组求解即可; (2)设沟买甲种有机肥m 呠,则购实乙种有机肥()10m -吨,根据总费用不能超过5600元列不等式求解即可.【详解】(1)设甲种有机肥每吨x 元,乙种有机肥每吨y 元,根据题意,得10021700x y x y -=⎧⎨+=⎩, 解得600500x y =⎧⎨=⎩, 答:甲种有机肥每吨600元,乙种有机肥每吨500元.(2)设沟买甲种有机肥m 呠,则购实乙种有机肥()10m -吨,根据题意,得()600500105600m m +-≤,解得6m ≤.答:小姣最多能购买甲种有机用6吨.【点睛】本题考查二元一次方程组的应用和一元一次不等式的应用,解题的关键是:(1)正确找出等量关系,列出分式方程,(2)正确找出等量关系,列出不等式和一次函数关系式.18.(1)A 种跳绳的单价为30元,B 种跳绳的单价为50元(2)至多可以购买B 种跳绳20根【分析】(1)设A 种跳绳的单价为x 元,B 种跳绳的单价为y 元.由题意:若购买3根A 种跳绳和1根B 种跳绳共需140元;若购买5根A 种跳绳和3根B 种跳绳共需300元.列出二元一次方程组,解方程组即可; (2)设购买B 种跳绳a 根,则购买A 种跳绳()46a -根,由题意:总费用不超过1780元,列出一元一次不等式,解不等式即可.(1)解:设A 种跳绳的单价为x 元,B 种跳绳的单价为y 元.根据题意得:314053300x y x y +=⎧⎨+=⎩, 解得:3050x y =⎧⎨=⎩, 答:A 种跳绳的单价为30元,B 种跳绳的单价为50元.(2)设购买B 种跳绳a 根,则购买A 种跳绳()46a -根,由题意得:()3046501780a a -+≤,解得:20a ≤,答:至多可以购买B 种跳绳20根.【点睛】本题主要考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找出不等关系,正确列出一元一次不等式.19.(1)甲操控A型号收割机每小时收割10亩水稻,乙操控B型号收割机每小时收割6亩水稻(2)最多安排甲收割4小时【分析】(1)设甲操控A型号收割机每小时收割x亩水稻,则乙操控B型号收割机每小时收割(1﹣40%)x亩水稻,利用工作时间=工作总量÷工作效率,结合乙比甲多用0.4小时完成任务,即可得出关于x的分式方程,解之经检验后即可求出甲操控A型号收割机每小时收割水稻的亩数,再将其代入(1﹣40)x中即可求出乙操控B型号收割机每小时收割水稻的亩数;(2)设安排甲收割y小时,则安排乙收割100106y-小时,根据要求平均损失率不超过2.4%,即可得出关于y的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)解:设甲操控A型号收割机每小时收割x亩水稻,则乙操控B型号收割机每小时收割(1﹣40%)x亩水稻,依题意得:66 (140%)x x-=-0.4,解得:x=10,经检验,x=10是原方程的解,且符合题意,③(1﹣40%)x=(1﹣40%)×10=6.答:甲操控A型号收割机每小时收割10亩水稻,乙操控B型号收割机每小时收割6亩水稻.(2)设安排甲收割y小时,则安排乙收割100106y-小时,依题意得:3%×10y+2%×6×100106y-≤2.4%×100,解得:y≤4.答:最多安排甲收割4小时.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.20.(1)该商家购进的第一批衬衫是150件(2)每件衬衫的标价至少是125元【分析】(1)可设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,根据第二批的单价比第一批的单价贵20元,即可列方程解答;(2)可设每件衬衫的标价是y元,根据毛收入=进价×(1+利润率),即可列不等式解答.【详解】(1)解:设该商家购进的第一批衬衫是x 件,则购进第二批这种衬衫是2x 件, 依题意有3000012000202x x=+, 解得x =150,经检验,x =150是原方程的解,且符合题意.答:该商家购进的第一批衬衫是150件.(2)解:3x =3×150=450,设每件衬衫的标价为y 元,依题意有(450-50)y +50×0.4y ≥(30000+12000)×(1+25%),解得y ≥125.答:每件衬衫的标价至少是125元.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:找准数量关系,正确列出分式方程和一元一次不等式.21.(1)1个大餐厅可供800名学生就餐,1个小餐厅可供400名学生就餐;(2)同时开放5个餐厅,能供返校的1200名毕业生同时就餐.方案一:大餐厅开3个,小餐厅开2个;方案二:大餐厅开4个,小餐厅开1个;方案三:大餐厅开5个,小餐厅开0个.【分析】(1)设1个大餐厅可供x 名学生就餐,1个小餐厅可供y 名学生就餐,找出等量关系列方程组求解即可;(2)设开放大餐厅m 个,开放小餐厅(5)m 个,根据题意列出不等式,求解即可.(1)解:设1个大餐厅可供x 名学生就餐,1个小餐厅可供y 名学生就餐, 依题意,得:2160022000x y x y +=⎧⎨+=⎩, 解得:800400x y =⎧⎨=⎩ ③1个大餐厅可供800名学生就餐,1个小餐厅可供400名学生就餐.(2)解:设开放大餐厅m 个,开放小餐厅(5)m 个,由题意可知:80040%40030%(5)1200m m ⨯+⨯-≥,且50m -≥,解得:35m ≤≤, 所以m 的取值可以为:3、4、5,③同时开放5个餐厅,能供返校的1200名毕业生同时就餐.方案一:大餐厅开3个,小餐厅开2个;方案二:大餐厅开4个,小餐厅开1个;方案三:大餐厅开5个,小餐厅开0个.【点睛】本题考查二元一次方程组的应用以及不等式的实际应用,解题的关键是找出其中的等量关系列式子进行计算.22.(1)购进A种新型节能台灯30盏,购进B种新型节能台灯20盏;(2)至少购进B种台灯27盏【分析】(1)设购进A种新型节能台灯x盏,购进B种新型节能台灯y盏,根据总价=单价×数量结合该商城用2500元购进A、B两种新型节能台灯共50盏,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进B种新型节能台灯m盏,则购进A种新型节能台灯(50﹣m)盏,根据总利润=单盏利润×数量结合总利润不少于1400元,即可得出关于m的一元一次不等式,解之取其中的最小整数值即可得出结论.【详解】解:(1)设购进A种新型节能台灯x盏,购进B种新型节能台灯y盏,依题意,得:50 40652500x yx y+=⎧⎨+=⎩,解得:3020xy=⎧⎨=⎩.答:购进A种新型节能台灯30盏,购进B种新型节能台灯20盏.(2)设购进B种新型节能台灯m盏,则购进A种新型节能台灯(50﹣m)盏,依题意,得:(60﹣40)(50﹣m)+(100﹣65)m≥1400,解得:m≥803.③m为正整数,③m的最小值为27.答:至少购进B种台灯27盏.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.23.(1)足球的单价为80元,篮球的单价为60元(2)学校最多购买40个足球【分析】(1)设足球的单价为x元,篮球的单价为y元,然后按照题目描述的等量关系列出方程组,解方程组即可得到答案.(2)设购买足球m个,然后依题意列出不等式,解不等式即可得到答案.(1)解:设足球的单价为x元,篮球的单价为y元,依题意得:140 23340x yx y+=⎧⎨+=⎩,解得:8060xy=⎧⎨=⎩,答:足球的单价为80元,篮球的单价为60元.(2)解:设购买足球m个,则购买篮球(100-m)个,依题意得:80m+60(100-m)≤6800,解得:m≤40,答:学校最多购买40个足球.【点睛】本题考查二元一次方程组、一元一次不等式,熟练掌握相关知识是解题的关键.24.(1)每个B型点位每天处理生活垃圾为30吨数(2)至少需要增设4个A型点位才能当日处理完所有生活垃圾【分析】(1)设每个B型点位每天处理生活垃圾的吨数为x,则A型为x+6,由每天需要处理生活垃圾732吨列出方程求解即可;(2)设至少需要增设y个A型点位才能当日处理完所有生活垃圾.则B型为5-y,根据两种需要处理的生活垃圾和不低于712吨列不等式求解即可.(1)解:设每个B型点位每天处理生活垃圾的吨数为x,则A型为x+6,由题意得:10x+12(x+6)=732,解得:x=30,答:每个B型点位每天处理生活垃圾为30吨数;(2)设至少需要增设y个A型点位才能当日处理完所有生活垃圾.则B型为5-y.由题意得(12+y)(30+6-7)+(10+5-y)(30-7)≥732-20解得:y≥196,③y 为整数③至少需要增设4个A 型点位,答:至少需要增设4个A 型点位才能当日处理完所有生活垃圾.【点睛】本题考查一元一次方程以及一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出关系式是解题关键.25.23x <≤,数轴见解析【分析】根据解一元一次不等式组的方法步骤求解,然后在数轴上把解集表示出来即可.【详解】解:()51313221x x x x ⎧->+⎨-≤+⎩①② 由③得2x >,由③得3x ≤,该不等式组的解集为23x <≤,在数轴上表示该不等式组的解集为:【点睛】本题考查一元一次不等式组的解法步骤及用数轴表示不等式组的解集,熟练掌握相关解法步骤是解决问题的关键.26.24x -<≤【分析】分别解两个一元一次不等式,再写出不等式组的解集即可.【详解】解不等式③,得2x >-,解不等式③,得4x ≤,所以,不等式组的解集为24x -<≤.【点睛】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式的步骤是解题的关键.27.(1)购买的甲种树苗的单价是30元,乙种树苗的单价是50元(2)购买的甲种树苗数量的取值范围为2030a ≤≤【分析】(1)设甲种树苗每棵x 元,乙种树苗每棵y 元,根据:“购买甲、乙两种树苗.已知购买25棵甲种树苗和10棵乙种树苗共需1250元,购买15棵甲种树苗和5棵乙种树苗共需700元”列方程组求解可得;(2)设购买的甲种树苗a 棵,则购买乙种树苗(40-a )棵,由题意列出一元一次不等式组,则可得出答案.(1)设购买的甲种树苗的单价为x 元,乙种树苗的单价为y 元,依题意得:。