时间序列分析——最经典的

合集下载

统计学-第十章 时间序列分析

统计学-第十章  时间序列分析

1
38(a1)
2
42(a2)
3
39(a3)
4
37(a4)
5
41(a5)
解: a 38 42 39 37 41 39.(4 台/天) 11111
三、平均发展水平
3.由绝对数时间序列计算的序时平均数
(2)由时点序列计算序时平均数
②间隔不相等的连续的时点数列
a af
季度在某地区销售量的走势 250 200
图。
150
100
那么,如何预测该品牌 50
空调2018年各个季度在该地 0
区的销售量呢?
单位:销售量(百台)
3
第一节 时间序列概述
一、时间序列概述
1.定义:将表明社会经济现象在不同时间发展 变化的某同一指标数值,按时间先后顺序排列所形 成的序列。(规模和水平)
③序列中每个指标的数值,通 常通过连续不断的登记取得。
由反映某种现象在一定 时点(瞬间)上发展状况的总量 指标所构成的绝对数动态序列所 处的数量水平。其中时点序列无 时点长度;两个相邻时点间的时 间距离称为时点间隔。也可为 日、周、旬、季、年等。
①序列中各个指标的 数值不可以直接相加;
②序列中指标数值的大小与其 时间间隔长短没有直接联系;
表9.3 我国普通高校毕业生数(时期序列)
年份 1912-1948 1978 1995 2000 2004 2014 2016
毕业生数(万人) 21.08 16.5 80.5 95 239.1 669.4 756
10
第二节 时间序列分析的基本原 理 一、时间序列分析的意义
:以时间序列为依据,对影响动态序列变 动过程的主要因素及其相互关系进行分解与综合, 以认识社会经济现象发展变量的规律性,借以鉴别 过去、预测未来的分析研究工作。

时间序列分析

时间序列分析

趋 势
1000 500 0
1986 1988 1990 1992 1994 1996 1998 2000 2002 2004
季 节
4000 3000 2000 1000 0 1 3 5 7 9 11 13 15 17 19
5000 4000 3000 2000 1000 0 1 3 5 7 9 11 13 15 17 19
ˆ a bt Y t
ˆ —时间序列的预测值 Y t t —时间标号 a—趋势线在Y 轴上的截距 b—趋势线的斜率,表示时间 t 变动一个 单位时观察值的平均变动数量
线性模型法
(a 和 b 的求解方程)
1. 根据最小二乘法得到求解 a 和 b 的标准方程为
Y na b t 2 tY a t b t
t 1 m t m 1
Y
2m
t
, S3
t 2 m 1
Y
3m
t
2. 根据三和法求得
1 S3 S 2 m b S 2 S1 b 1 a S S 2 1 2 m b b 1 m 1 ab b 1 K S1 m b 1
季 节 与 趋 势
时间序列的分解模型
1. 乘法模型
Yi=Ti×Si×Ci×Ii
2. 加法模型
Yi=Ti+Si+Ci+Ii
4.2 趋势型序列的预测
4.2.1 线性趋势预测 4.2.2 非线性趋势预测
趋势序列及其预测方法
1. 趋势(trend)

持续向上或持续下降的状态或规律
2. 有线性趋势和非线性趋势 3. 方法主要有

第八章 时间序列分析法(一)

第八章 时间序列分析法(一)

2004
178
第三节 移动平均数
在算术平均法的基础上发展而来,采取分段移动平均 的方法,从时间序列第一期数据开始,数次按一定跨越期由 前向后有序移动求出每个跨越期的平均数,通过比较误差, 以确定一个最佳跨越期,即一组最佳的数据来求预测值。 移动平均法的优点是通过移动平均消除异常值的一些 影响。


三、几何平均数法
当预测目标的历史时间序列的逐期环比速度大致相同 时,我们可以用几何平均法计算出平均发展速度,以此为基 础求出预测期的预测值。
课堂练习


1、某公司近四年的销售量分别为198、206、212、 188万件,预测今年销售量。 2、根据下列数据,计算员工平均工资。
组别 1 2 3 4 5 基本工资 400 500 600 800 1000 每组人数 15 22 32 10 5


Y4=(3*35+2*45+1*38)/(1+2+3)=38.83 Y5= (3*49+2*35+1*45)/(1+2+3)=43.67 。 。 。 Y12= (3*64+2*68+1*45)/(1+2+3)=62.17
三、二次移动平均法
在一次平均值的基础上,再进行二次移动平均,利用两 次移动平均的滞后偏差规律,求得移动系数,建立线性预测 模型。 二次移动平均法是对一次移动平均值再进行二次移动平 均,并在最后两个移动平均值的基础上,求得参数并进行预 测。要注意的是在二次移动平均法中,一次移动平均值和二 次移动平均值不可以直接作为预测值,它是用来求移动参数 的;在二次移动平均法中,依然有一个确定N值的问题。
一、一次指数平滑法

时间序列分析讲义

时间序列分析讲义
• 推荐软件——SAS
– 在SAS系统中有一个专门进行计量经济与时间序列分析 的模块:SAS/ETS。SAS/ETS编程语言简洁,输出功能强 大,分析结果精确,是进行时间序列分析与预测的理 想的软件
– 由于SAS系统具有全球一流的数据仓库功能,因此在进 行海量数据的时间序列分析时它具有其它统计软件无 可比拟的优势
例2.3自相关图
时间序列分析讲义
例2.4时序图
时间序列分析讲义
例2.4 自相关图
时间序列分析讲义
例2.5时序图
时间序列分析讲义
例2.5自相关图
时间序列分析讲义
• 例2.3时序为非平稳的,有趋势; • 例2.4时序非平稳性,有趋势 • 例2.5时序是一个平稳的
时间序列分析讲义
非平稳性序列的平稳化
时间序列分析讲义
2020/11/16
时间序列分析讲义
第一章 时间序列分析基本概 念
时间序列分析讲义
第一章 时间序列分析基本概念
1.1 时间序列的定义
• 随机序列:按时间顺序排列的一组随机变量
• 观察值序列:随机序列的 个有序观察值,称之为 序列长度为 的观察值序列
• 随机序列和观察值序列的关系
– 观察值序列是随机序列的一个实现 – 我们研究的目的是想揭示随机时序的性质 – 实现的手段都是通过观察值序列的性质进行推断
满足下列条件的随机序列称为白噪声序列,也称 为纯随机序列:
注1:白噪声序列也是平稳时间序列中的特例. 注2:由于白噪声序列不同时刻的值相互独立,那么 这样的序列数值不能对于将来进行推断与预测,所以 白噪声是不能建立模型的。 时序图1.3符合白噪声序列特征
时间序列分析讲义
若满足时间序列满足: 称该时间序列是周期为T的时间序列.

时间序列分析课件-07-ARIMA模型、疏系数模型、季节模型

时间序列分析课件-07-ARIMA模型、疏系数模型、季节模型
• 假设序列如下
xt 0 1t at
• 考察一阶差分后序列和二阶差分序列 的平稳性与方差
比较
• 一阶差分
– 平稳
xt xt xt1
1 at at1 – 方差小
• 二阶差分(过差分)
– 平稳
2 xt xt xt1 at 2at1 at2
– 方差大
Var(xt ) Var(at at1)
• 参数估计
(1 0.44746 B 0.28132 B4 )(1 B)(1 B4 )xt t
模型检验
残差白噪声检验
参数显著性检验
延迟 阶数
2统 计量
P值
待估 t 统
参数 计量
P值
6
2.09 0.7191 1
12 10.99 0.3584 4
5.48 <0.0001 -3.41 <0.0001
2 2
Var(2xt ) Var(at 2at1 at2 )
6 2
ARIMA模型
• ARIMA模型结构 • ARIMA模型性质 • ARIMA模型建模 • ARIMA模型预测 • 疏系数模型 • 季节模型
ARIMA模型结构
• 使用场合
– 差分平稳序列拟合
• 模型结构
( B) d
E( t )
Tt 0 1 xtm l xtlm
• 简单/复杂季节模型 • X-11 • etc
• AR • MA • ARMA • WN • etc
3.考虑残差
获 得 观 察 值 序
Y
Y
平稳性 检验
白噪声 检验
分 析

N
束 N

差分 运算
拟合
ARMA 模型

第八章时间序列分析

第八章时间序列分析
过程。
1、ADF检验
p
ADF检验的模型1 :xt xt1 ixti t i1 p
ADF检验的模型2 :xt xt1 ixti t i1 p
ADF检验的模型3: xt txt 1 i xtit i 1
三个模型检验的原假设和备择假设都是:H0: =0; H1: <0。只要上述三个模型中有一个能拒绝原
第二节 平稳性检验
平稳性检验的方法可分为两类:一类是根据时间 序列图和自相关图显示的特征作出判断的图形检验 法;另一类是通过构造检验统计量进行定量检验的 单位根检验法 (unit root test)。
一、图形检验法
1、时间序列图检验
根据平稳时间序列均值、方差为常数的特点, 可知平稳序列的时间序列图应该围绕其均值随机 波动,且波动的范围有界。如果所考察的时间序 列的时间序列图具有明显的趋势性或者周期性, 那么通常认为该序列是不平稳的。
则称该时间序列是严格平稳的。
2、弱平稳
由于在实践中上述联合概率分布很难确定,我
们用随机变量xt(t=1,2,…)的均值、方差和协方
差代替之。一个时间序列是“弱平稳的”,如果:
三、五种经典的时间序列类型
1、白噪声( White noise)
最简单的随机平稳时间序列是一具有零均值同方 差的独立分布序列:
npgdp(yuan) 20000
16000
12000
8000
4000
0 86 88 90 92 94 96 98 00 02 04 06 year
2、序列自相关函数的图形检验
对于一个时间序列来讲,其样本自相关函数 (autocorrelation function, ACF)可表示为:
nk
(xt x)(xtk x)

关于时间序列分析

关于时间序列分析

1.全然概念(1)一般概念:系统中某一变量的瞧测值按时刻顺序〔时刻间隔相同〕排列成一个数值序列,展示研究对象在一定时期内的变动过程,从中寻寻和分析事物的变化特征、开展趋势和规律。

它是系统中某一变量受其它各种因素碍事的总结果。

(2)研究实质:通过处理推测目标本身的时刻序列数据,获得事物随时刻过程的演变特性与规律,进而推测事物的今后开展。

它不研究事物之间相互依存的因果关系。

(3)假设根底:惯性原那么。

即在一定条件下,被推测事物的过往变化趋势会连续到今后。

暗示着历史数据存在着某些信息,利用它们能够解释与推测时刻序列的现在和今后。

近大远小原理〔时刻越近的数据碍事力越大〕和无季节性、无趋势性、线性、常数方差等。

(4)研究意义:许多经济、金融、商业等方面的数据根基上时刻序列数据。

时刻序列的推测和评估技术相对完善,其推测情景相对明确。

尤其关注推测目标可用数据的数量和质量,即时刻序列的长度和推测的频率。

2.变动特点(1)趋势性:某个变量随着时刻进展或自变量变化,呈现一种比立缓慢而长期的持续上升、下落、停留的同性质变动趋向,但变动幅度可能不等。

(2)周期性:某因素由于外部碍事随着自然季节的交替出现顶峰与低谷的规律。

(3)随机性:个不为随机变动,整体呈统计规律。

(4)综合性:实际变化情况一般是几种变动的叠加或组合。

推测时一般设法过滤除往不规那么变动,突出反映趋势性和周期性变动。

3.特征识不熟悉时刻序列所具有的变动特征,以便在系统推测时选择采纳不同的方法。

(1)随机性:均匀分布、无规那么分布,可能符合某统计分布。

(用因变量的散点图和直方图及其包含的正态分布检验随机性,大多数服从正态分布。

)(2)平稳性:样本序列的自相关函数在某一固定水平线四面摆动,即方差和数学期瞧稳定为常数。

样本序列的自相关函数只是时刻间隔的函数,与时刻起点无关。

其具有对称性,能反映平稳序列的周期性变化。

特征识不利用自相关函数ACF:ρk =γk/γ其中γk是y t的k阶自协方差,且ρ0=1、-1<ρk<1。

基于时间序列分析的ARIMA模型分析及预测

基于时间序列分析的ARIMA模型分析及预测

基于时间序列分析的ARIMA模型分析及预测ARIMA(Autoregressive Integrated Moving Average)模型是一种常用于时间序列分析和预测的经典模型。

它结合了自回归(AR)、差分(I)和移动平均(MA)这三种方法,可以较好地处理非平稳时间序列数据。

ARIMA模型的基本思想是根据时间序列数据的自相关(AR)和趋势性(MA)来预测未来的值。

它的建模过程包括确定模型的阶数、参数估计和模型诊断。

首先,ARIMA模型的阶数由p、d和q这三个参数决定。

其中,p代表自回归阶数,d代表差分阶数,q代表移动平均阶数。

p和q决定了时间序列的自相关和移动平均相关的程度,而d决定了时间序列是否平稳。

确定这些参数可以通过观察ACF(自相关函数)和PACF(偏自相关函数)图来进行。

接下来,参数估计是ARIMA模型中关键的一步。

常用的估计方法有最小二乘法(OLS)和最大似然估计法(MLE)。

最小二乘法适用于平稳时间序列,最大似然估计法适用于非平稳时间序列。

完成参数估计后,还需要进行模型诊断。

模型诊断主要是通过残差序列来判断模型是否拟合良好。

通常,残差序列应满足如下条件:残差序列应是白噪声序列,即残差之间应该没有相关性;残差序列的均值应接近于零,方差应保持不变。

最后,通过使用ARIMA模型预测未来的值。

根据模型对未来的预测,我们可以得到未来一段时间内的时间序列预测结果。

ARIMA模型的优点是可以对非平稳时间序列进行建模和预测。

它几乎可以应用于任何时间序列数据,如股票价格、气温、销售量等。

然而,ARIMA模型也有一些限制。

首先,ARIMA模型假设时间序列的结构是稳定的,但实际上很多时间序列数据都是非稳定的。

其次,ARIMA 模型对数据的准确性和完整性有较高的要求,如果数据中存在缺失值或异常值,建模的准确性会受到影响。

总结来说,ARIMA模型是一种经典的时间序列分析和预测方法。

它能够处理非平稳时间序列数据,并且可以通过确定阶数、参数估计和模型诊断来进行预测。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【时间简“识”】 说明:本文摘自于经管之家(原人大经济论坛) 作者:胖胖小龟宝。原版请到经管之家(原人大经济论坛) 查看。 1.带你看看时间序列的简史 现在前面的话——

时间序列作为一门统计学,经济学相结合的学科,在我们论坛,特别是五区计量经济学中是热门讨论话题。本月楼主推出新的系

列专题——时间简“识”,旨在对时间序列方面进行知识扫盲(扫盲,仅仅扫盲而已……),同时也想借此吸引一些专业人士能够协

助讨论和帮助大家解疑答惑。 在统计学的必修课里,时间序列估计是遭吐槽的重点科目了,其理论性强,虽然应用领域十分广泛,但往往在实际操作中会遇到很多“令人发指”的问题。所以本帖就从基础开始,为大家絮叨絮叨那些关于“时间”的故事! Long long ago,有多long?估计大概7000年前吧,古埃及人把尼罗河涨落的情况逐天记录下来,这一记录也就被我们称作所谓的时间序列。记录这个河流涨落有什么意义?当时的人们并不是随手一记,而是对这个时间序列进行了长期的观察。结果,他们发现尼罗河的涨落非常有规律。掌握了尼罗河泛滥的规律,这帮助了古埃及对农耕和居所有了规划,使农业迅速发展,从而创建了埃及灿烂的史前文明。

好~~从上面那个故事我们看到了 1、时间序列的定义——按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时间序列。 2、时间序列分析的定义——对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。

既然有了序列,那怎么拿来分析呢? 时间序列分析方法分为描述性时序分析和统计时序分析。 1、描述性时序分析——通过直观的数据比较或绘图观测,寻找 序列中蕴含的发展规律,这种分析方法 就称为描述性时序分析

• 描述性时序分析方法具有操作简单、直观有效的特点,它通常是人们进行统计 时序分析的第一步。 2、统计时序分析

(1)频域分析方法 • 原理:假设任何一种无趋势的时间序列都可以分解成若干不同频率的周期波动 • 发展过程: 1)早期的频域分析方法借助富里埃分析从频率的角度揭示时间 序列的规律 2)后来借助了傅里叶变换,用正弦、余弦项之和来逼近某个函数 3)20世纪60年代,引入最大熵谱估计理论,进入现代谱分析阶段 • 特点:非常有用的动态数据分析方法,但是由于分析方法复杂,结 果抽象,有一定的使用局限性 (2)时域分析方法

• 原理:事件的发展通常都具有一定的惯性,这种惯性用统 计的语言来描述就是序列值之间存在着一定的相关 关系,这种相关关系通常具有某种统计规律。

• 目的:寻找出序列值之间相关关系的统计规律,并拟合出 适当的数学模型来描述这种规律,进而利用这个拟 合模型预测序列未来的走势

• 特点:理论基础扎实,操作步骤规范,分析结果易于解 释,是时间序列分析的主流方法 楼主,说了半天,你终于到正题了,时域分析才是我们经常接触的,你赶紧说说怎么做吧? ★时域分析方法的分析步骤: • 考察观察值序列的特征 • 根据序列的特征选择适当的拟合模型 • 根据序列的观察数据确定模型的口径 • 检验模型,优化模型 • 利用拟合好的模型来推断序列其它的统 计性质或预测序列将来的发展

时域分析方法的发展过程 • 基础阶段—— G.U.Yule:1927年,AR模型 G.T.Walker:1931年,MA模型,ARMA模型 • 核心阶段——G.E.P.Box和G.M.Jenkins 1970年,出版《Time Series Analysis Forecasting and Control》 提出ARIMA模型(Box—Jenkins 模型) Box—Jenkins模型实际上是主要运用于单变量、同方差场合的线性模型 • 完善阶段—— 异方差场合:Robert F.Engle,1982年,ARCH模型 Bollerslov,1985年GARCH模型 多变量场合:C.Granger ,1987年,提出了协整(co- integration)理论 非线性场合:汤家豪等,1980年,门限自回归模型

用哪些软件可以做时间序列分析呢? S-plus,Matlab,Gauss,TSP,Eviews 和SAS 上述软件楼主觉得Eviews是基础版,Gauss是小众版,Matlab&S-pluss是正常小青年~~SAS,万能的软件BOSS啊~~~ 下一辑——时间序列的预处理!敬请关注! 【时间简“识”】2.那些必不可少的预处理 - 计量经济学与统计软件 - 经管之家(原人大经济论坛) bbs.pinggu.org 2012-7-27 本帖最后由

经管之家(原人大经济论坛)

胖胖小龟宝 于 2014-12-12 09:12 编辑 上一辑预告说啦~~本期的主题是时间序列的预处理~~序列在建模前到底要做哪些预处理呢?首先,大伙都知道的平稳性检验是必须的! 说到平稳,其实有两种平稳—— 宽平稳、严平稳 严平稳相较于宽平稳来说,条件更多更严格,而我们时常运用的时间序列,大多宽平稳就够了~~ 什么是严平稳: 是在固定时间和位置的概率分布与所有时间和位置的概率分布相同的随机过程。这样,数学期望和方差这些参数也不随时间和位置变化。(比如白噪声) 什么是宽平稳: 宽平稳是使用序列的特征统计量来定义的一种平稳性。它认为序列的统计性质主要由它的低阶矩决定,所以只要保证序列低阶矩平稳(二阶),就能保证序列的主要性质近似稳定。

两者关系: 一般关系: 严平稳条件比宽平稳条件苛刻,通常情况下,严平稳(低阶矩存在)能推出宽平稳成立,而宽平稳序列不能反推严平稳成立。 特例: 不存在低阶矩的严平稳序列不满足宽平稳条件,例如服从柯西分布的严平稳序列就不是宽平稳序列。当序列服从多元正态分布时,宽平稳可以推出严平稳。

如何判断序列是平稳的? 咱们这次先从图形法上看(通常越是简单的方法,往往越能看到问题,图形给出的第一感觉也许就是真相哦~~~~) 时序图,例如(eviews画滴): 分析:什么样的图不平稳,先说下什么是平稳,平稳就是围绕着一个常数上下波动。 看看上面这个图,很明显的增长趋势,不平稳。 我们还可以根据自相关和偏相关系数来查看: 还以上面的序列为例:用eviews得到自相关和偏相关图,Q统计量和伴随概率。 分析:平稳的序列的自相关图和偏相关图不是拖尾就是截尾。截尾就

是在某阶之后,系数都为 0 ,怎么理解呢,看上面偏相关的图,当阶数为 1 的时候,系数值还是很大, 0.914. 二阶长的时候突然就变成了 0.050. 后面的值都很小,认为是趋于 0 ,这种状况就是截尾。再就是拖尾,拖尾就是有一个衰减的趋势,但是不都为 0 。 自相关图既不是拖尾也不是截尾。以上的图的自相关是一个三角对称的形式,这种趋势是单调趋势的典型图形。

下面是通过自相关的其他功能 如果自相关是拖尾,偏相关截尾,则用 AR 算法 如果自相关截尾,偏相关拖尾,则用 MA 算法 如果自相关和偏相关都是拖尾,则用 ARMA 算法, ARIMA 是 ARMA 算法的扩展版,用法类似 。

一定有同学要问了:楼主检测出来不是平稳的怎么办啊?(楼主:当然要把它整平稳啦~~) 如果遇到数据检测出来不平稳,可以考虑使用差分这个最常用的办法(当然,还有好多种其他方法处理) 还是上面那个序列,两种方法都证明他是不靠谱的,不平稳的。确定不平稳后,依次进行1阶、2阶、3阶...差分,直到平稳位置。先来个一阶差分: 从图上看,一阶差分的效果不错,看着是平稳的。

在图形检验法中,我们能够较为直观的看到数据的一个大致变动趋势,如果它有周期或者上升等趋势,一般就不太平稳,需要做些处理,但图形始终是个主管判断为主的方法,这次,就来说说平稳检验的另一个方法:单位根检验(ADF检验)。 ADF检验简介: 检查序列平稳性的标准方法是单位根检验。有6种单位根检验方法:ADF检验、DFGLS检验、PP检验、KPSS检验、ERS检验和NP检验,本节将介绍DF检验、ADF检验。ADF检验和PP检验方法出现的比较早,在实际应用中较为常见,但是,由于这2种方法均需要对被检验序列作可能包含常数项和趋势变量项的假设,因此,应用起来带有一定的不便;其它几种方法克服了前2种方法带来的不便,在剔除原序列趋势的基础上,构造统计量检验序列是否存在单位根,应用起来较为方便。ADF检验是在Dickey-Fuller检验(DF检验)基础上发展而来的。因为DF检验只有当序列为AR(1)时才有效。如果序列存在高阶滞后相关,这就违背了扰动项是独立同分布的假设。在这种情况下,可以使用增广的DF检验方法(augmented Dickey-Fuller test )来检验含有高阶序列相关的序列的单位根。

检验步骤(一般进行ADF检验要分3步): 1 对原始时间序列进行检验,此时第二项选level,第三项选None.如果没通过检验,说明原始时间序列不平稳; 2 对原始时间序列进行一阶差分后再检验,即第二项选1st difference,第三项选intercept,若仍然未通过检验,则需要进行二次差分变换; 3 二次差分序列的检验,即第二项选择2nd difference ,第四项选择Trend and intercept.一般到此时间序列就平稳了! tips: 在进行ADF检验时,必须注意以下两个实际问题: (1)必须为回归定义合理的滞后阶数,通常采用AIC准则来确定给定时间序列模型的滞后阶数。在实际应用中,还需要兼顾其他的因素,如系统的稳定性、模型的拟合优度等。 (2)可以选择常数和线性时间趋势,选择哪种形式很重要,因为检验显著性水平的 t 统计量在原假设下的渐近分布依赖于关于这些项的定义。 ① 若原序列中不存在单位根,则检验回归形式选择含有常数,意味着所检验的序列的均值不为0;若原序

相关文档
最新文档