第四章:三角函数 第二单元 和差倍角公式测试题

第四章:三角函数    第二单元 和差倍角公式测试题
第四章:三角函数    第二单元 和差倍角公式测试题

第四章:三角函数 第二单元 和差倍角公式测试题

一、选择题:

1.(05春北京)在△ABC 中,已知2sinAcosB =sinC ,则△ABC 一定是 ( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .正三角形 2.2cos10°-sin20°sin70°的值是

( ) A .12

B .

32

C . 3

D . 2 3.f(x)=sinx cosx

1+sinx +cosx 的值域为

( )

A .(―3―1,―1) ∪(―1, 3―1)

B .[-2-12,―1] ∪(―1, 2-1

2)

C .(-3-12,3-12

)

D .[-2-12,2-1

2]

4.已知x ∈(-π2,0),cosx =4

5,则tan2x 等于

( ) A .7

24

B .-7

24

C .24

7

D .-247

5.(2004春北京)已知sin(θ+π)<0,cos(θ-π)>0,则下列不等关系中必定成立的是( )

A .tan θ2<cot θ

2

B .tan θ2>cot θ2

C .sin θ2<cos θ2,

D .sin θ2>cos θ

2

6.(04江苏)已知0<α<π2,tan α2+cot α2=52,则sin(α-π

3)的值为

( ) A .4+33

10

B .4-3310

C .33-410

D .-4+3310

7.等式sin α+3cos α=4m -6

4-m 有意义,则m 的取值范围是

( ) A .(-1,7

3

)

B .[-1,7

3

]

C .[-1,7

3

]

D .[―7

3,―1]

8.在△ABC 中,tanA tanB >1是△ABC 为锐角三角形的

( ) A .充要条件 B .仅充分条件 C .仅必要条件 D .非充分非必要条

9.已知α.β是锐角,sin α=x ,cos β=y ,cos(α+β)=-3

5,则y 与x 的函数关系式为( )

A .y =―351―x 2+45x (3

5

<x <1) B .y =―

351―x 2+4

5

x (0<x <1) C .y =―

351―x 2―45x (0<x <3

5= D .y =―351―x 2―4

5

x (0<x <1=

10.已知α∈(0,π),且sin α+cos α=1

5,则tan α的值为

( ) A .-4

3

B .-43 或-34

C .-3

4

D .43 或-34

11.(05全国)在△ABC 中,已知tan A +B

2=sinC ,则以下四个命题中正确的是

( )

(1)tanA ·cotB =1.(2)1<sinA +sinB ≤2.(3)sin 2A +cos 2B =1.(4)cos 2A +cos 2B =sin 2C . A .①③ B .②④ C .①④ D .②③ 12.(2003⑷) 函数)cos (sin sin 2x x x y +=的最大值为

( )

(A )21+ (B )12- (C )2 (D )2

二、填空题:

13.(03上海)若x =π

3是方程2cos(x +α)=1的解,α∈(0,2π),则α=______.

14.已知cos θ+cos 2θ=1,则sin 2θ+sin 6θ+sin 8θ=____________。 15.函数y =5sin(x +20°)-5sin(x +80°)的最大值是_________。

16.若圆内接四边形的四个顶点A 、B 、C 、D 把圆周分成AB ︵∶BC ︵∶CD ︵∶DA ︵

=4∶3∶8∶5,则四边形四个内角A 、B 、C 、D 的弧度数为___________________。

三、解答题

17.设cos(α-β2)=-19,sin(α2-β)=2

3,且π2<α<π,0<β<π2,求cos (α+β).

18.已知f(x)=2asin 2x -22asinx +a +b 的定义域是[0, π

2

],值域是[-5,1],求a 、b 的值.

19.(04湖北)已知6sin 2α+sin αcos α-2cos 2α=0,α∈[π2,π],求sin(2α+π

3)的值.

20.(05北京)在△ABC 中,sinA +cosA =2

2

,AC =2,AB =3,求tanA 的值和△ABC 的面积.

21.在矩形ABCD 中,AB =a ,BC =2a ,在BC 上取一点P ,使得AB +BP =PD ,求tan ∠APD 的值.

22.是否存在锐角α和β,使α+2β=2π3①,且tan α

2tan β=2-3②,同时成立?若存

在,求出α和β的值;若不存在,请说明理由.

参考答案:

1.B 由2sinAcosB =sin(A +B)?sin(B -A)=0?B =A .

2.C 原式=2cos(30°―20°)―sin20°cos20°=3cos20°

cos20°=3.

3.B 令t =sin x +cos x =2sin(x +π

4)∈[―2,―1]∪(―1, 2).

则f(x)=t 2-121+t

=t -12∈[-2-12,―1]∪(―1, 2-1

2).

4.D .5.B ∵sin θ>0,cos θ<0,tan θ2-cot θ2=sin

θ2cos θ2-cos θ

2sin

θ2

=-2cos θsin θ

>0.∴tan

θ

2>cot θ

2.

6.B tan

α2+cot α2=2sin α=52.∴sin α=45.cos α=35. sin(α-π3)=12sin α-32

cos α=4-3310

. 7.C 8.A

9.A y =cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α =―351―x 2+45x >0?4x >31―x 2?3

5<x <1.

10.A 解:当α∈(0,

π2)时,sin α+cos α=2sin(α+π4)>1.故α∈(π

2

,π). ∴sin α>0,cos α<0.且|sin α|>|cos α|∴|tan α|>1. 由(sin α+cos α)2=

125?sin2α=-2425?2tan α1+tan 2

α=-2425?tan α=-43或tan α=-34

(舍). 11.B 解:由tan A +B 2=1-cos(A +B)sin(A +B)=1+cosC sinC =sinC 。∴cosC =0,C =π

2.

∴A +B =π2.故①式=tan 2A ≠1。②式=sinA +cosA =2sin(A +π

4)∈(1,2),

③式=2sin 2A ≠1,④式=cos 2A +sin 2A =1=sin 2C .

12.A

2142s i n

212s i n 2c

o s 1c o s s i n 2s

i n 22

+≤??? ?

?

-+=+-=+=πx x x x x x y 。

13.4π

3。 14.1 解:cos θ=sin 2θ,∴sin 6θ=cos 3θ,sin 8θ=cos 4θ.

∴sin 2θ+sin 6θ+sin 8θ=cos θ+cos 3θ+cos 4θ=cos θ+cos 2θ(cos θ+cos 2θ) =cos θ+cos 2θ=1.

15.7 解:y =3sin(x +20°)+5[sin(x +20°)cos60°+cos(x +20°)sin60°] =112sin(x +20°)+532

cos(x +20°)=7sin(x +20°+φ)≤7.

16.

2011π,13π20,9π20,7π

20

,解∵2π4+3+8+5=π10.故四条弧所对圆心角分别为4π10,3π10,8π10,

10

. 四内角分别为12(3π10+8π10)=1120π.12(8π10+5π

10)=13π20,9π20,7π20.

17.分析:∵α+β2=(α―β2)―(α

2

-β).

解:∵α∈(π2,π)β∈(0, π2).∴π4<α-β2<π,-π4<α2-β<π

2

∴由cos(α-β2)=-19得sin(α-β2)=459,由sin(α2-β)=23.得cos(α2-β)=5

3.

∴cos α+β2=cos[(α―β2)―(α2―β)]=…=7527.∴cos(α+β)=2×(7527)2-1=-239

729.

18.解:令sinx =t ,∵x ∈[0, π2].∴t ∈[0,1]. f(x)=g(t)=2at 2-22at +a +b =2a(t -2

2

)2+b .

当a >0时,则???b =-5a +b =1 ????a =6b =-5 当a <0时,则???b =1a +b =-5 ????a =-6

b =1

. 19.解:依题知α≠π2,cos α≠0.方程可化为6tan 2α+tan α-2=0.?tan α=-23或1

2 (舍). ∴sin(2α+π3)=sin2αcos π3+cos2α·sin π3=sin αcos α+3

2

(cos 2α-sin 2α)

=sin αcos αsin 2α+cos 2α

+32·cos 2α-sin 2α cos 2α+sin 2α=tan α1+tan 2α+32×1-tan 2

α1+tan 2α=-613+5326. 20.解:sinA +cosA =2cos(A -45°)=

22, ∴cos(A -45°)=1

2

. ∵0°<A <180°,∴A -45°=60°,A =105°,

∴tanA =tan(60°+45°)=―2―3, sinA =sin(60°+45°)=6+2

4

, ∴S △ABC =12AC ·AB .sinA =1

2×2×3×6+24=34

(6+2).

21.解:如图作PE ⊥AD 于E .设BP =X . 则x +a =(2a -x)2+a 2,∴x =2a

3,

∴AE =BP =2a 3,DE =PC =4

3a ,∴tan ∠APD =tan(∠1+∠2)=23+431-23×4

3=18.

22.解1:由①得α2+β=π3,∴tan(α

2+β)=tan α

2+tan β1-tan α

2

tan β

=3.

将②代入得tan α2+tan β=3-3.∴tan α

2

,tan β是方程x 2―(3―3)x +2-3

=0的两根.

解得x 1=1,x 2=2-3.若tan α2=1,则α=π2与α为锐角矛盾.∴tan β=1, tan α

2=2-3,

∴β=π4.代入①得α=π6.满足tan α

2

=2-3.

解2:由①得α2=π3-β,代入②得:tan(π3-β)·tan β=2-3?3-tan β

1+3tan β·tan β=2

-3.

?tan 2β―(3―3)tan β+2-3=0;tan β=1或2-3. 若tan β=1,则β=π4,α=π

6

若tan β=2-3.代入②得cot α2=1,则α=π2不合题意.故存在α=π6,β=π

4使①、

②同时成立.

三角函数诱导公式、万能公式、和差化积公式、倍角公式等公式总结及其推导

三角函数诱导公式: 诱导公式记忆口诀:“奇变偶不变,符号看象限”。 “奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n?(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。 符号判断口诀: “一全正;二正弦;三两切;四余弦”。这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切和余切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。 “ASCT”反Z。意即为“all(全部)”、“sin”、“cos”、“tan”按照将字母Z反过来写所占的象限对应的三角函数为正值。 三角函数诱导公式- 其他三角函数知识 同角三角函数的基本关系式 倒数关系 tanα?cotα=1 sinα?cscα=1 cosα?secα=1 商的关系 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系 sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 同角三角函数关系六角形记忆法 构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。 倒数关系 对角线上两个函数互为倒数; 商数关系 六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。 平方关系 在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。 两角和差公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tan(α+β)=(tanα+tanβ )/(1-tanα ?tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα ?tanβ) 二倍角的正弦、余弦和正切公式 sin2α=2sinαcosα

三角函数和差公式练习题

第12课时 三角函数和差公式及辅助角公式 1.函数y=sin (2x+6π)+cos (2x+3 π)的最小正周期和最大值分别为( ) A π,1 B π,2 C 2π,1 D 2π,2 2、)4sin(2cos παα -=-22,则cos α+sin α的值为( ) 3.函数y=sin (x+3π)sin (x+2 π)的最小正周期T 是( ) 4、函数的最小正周期是________ . 5.函数的最大值为 _________________-。 6.已知函数()cos(2)2sin()sin()344 f x x x x πππ=-+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122ππ -上的值域 7.已知函数f (x )=)0,0)(cos()sin(3><<+-+ω??ω?ωπx x 本小题满分12分)为偶函数,且函数y =f (x )图象的两相邻对称轴间的距离为 .2π (Ⅰ)美洲f (8 π)的值; (Ⅱ)将函数y =f (x )的图象向右平移 6π个单位后,再将得到的图象上各点的横坐标舒畅长到原来的4倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )的单调递减区间. 8.已知函数。 (Ⅰ)求 的最小正周期: (Ⅱ)求在区间上的最大值和最小值。 2()sin(2)4f x x x π =--sin()cos()26y x x ππ=+-()4cos sin()16f x x x π=+-()f x ()f x ,64ππ??-????

9.已知函数 (1)求 的值; (2)设求的值. 10、已知函数 (1)求的最小正周期和最小值; 11.已知函数f (x )=2cos (x+ 4π)cos (x-4 π)+3sin2x ,求它的值域和最小正周期 12.已知cos ? ???α- π4=14,则sin2α的值为 ( ) A.78 B .-78 C.34 D .-34 13.已知sin ????α-π3=13,则cos ????π6+α的值为 ( ) A.13 B .-13 C.233 D .-233 14.函数f (x )=sin ? ???2x -π4-22sin 2x 的最小正周期是________. 15.y =sin(2x -π3 )-sin2x 的一个单调递增区间是( ) A .[-π6,π3]B .[π12,712π]C .[512π,1312 π] D .[π3,5π6 ] 16.设函数f (x )=22cos(2x +π4)+sin 2x (Ⅰ)求函数f (x )的最小正周期; (2)写出函数f (x )的单调递增区间. 18.已知函数 ()cos cos()3f x x x π=?-. (1)求2()3f π的值; (2) 求对称轴和对称中心; (3) 求使1()4f x <成立的x 的取值集合. 1()2sin(),.36f x x x R π=-∈5()4f π106,0,,(3),(32),22135f a f ππαββπ??∈+=+=???? cos()αβ+73()sin()cos(),44f x x x x R ππ=++-∈()f x

三角函数的和差公式推导过程

三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。接下来分享三角函数的和差公式推导过程。 三角函数的和差公式 sin(a+b)=sinacosb+cosasinb sin(a-b)=sinacosb-cossinb cos(a+b)=cosacosb-sinasinb cos(a-b)=cosacosb+sinasinb tan(a+b)=(tana+tanb)/(1-tanatanb) tan(a-b)=(tana-tanb)/(1+tanatanb) 三角函数的和差公式推导过程 sin(a+b)=sinacosb+cosasinb sin(a-b)=sinacosb-cosasinb 两式相加得:sinacosb=1/2[sin(a+b)+sin(a-b)] (1) 两式相减得:cosasinb=1/2[sin(a+b)-sin(a-b)] (2) cos(a+b)=cosacosb-sinasinb cos(a-b)=cosacosb+sinasinb 两式相加得:cosacosb=1/2[cos(a+b)+cos(a-b)] (3) 两式相减得:sinasinb=-1/2[cos(a+b)-cos(a-b)] (4) 用(a+b)/2、(a-b)/2分别代替上面四式中的a,b就可得到和差化积的四个式子。如:(1)式可变为: sina+sinb=2sin[(a+b)/2]*cos[(a-b)/2]其它依次类推即可。 三角函数积化和差公式 sinasinb=-[cos(a+b)-cos(a-b)]/2 cosacosb=[cos(a+b)+cos(a-b)]/2

三角函数恒等变换练习题与答案详解

两角和与差的正弦、余弦、正切 1. 利用两角和与差的正弦、余弦、正切公式进行三角变换;2?利用三角变换讨论三角函数的图象和性质 2.1.牢记和差公式、倍角公式,把握公式特征;2?灵活使用(正用、逆用、变形用)两角和与差的正弦、余弦、正切公式进行三角变换,三角变换中角的变换技巧是解题的关键? 知识点回顾 1 ?两角和与差的余弦、正弦、正切公式 cos( a—0)= cos acos0+ sin ocsin0(C a- 0 cos( a+ 0)= cos. acos _ 0— sin__ asin_ 0(C a+ 0 sin( a—0 = sin a cos0- cos ocsin (S a—0 sin( a+ 0 = sin a cos0+ cos ocsin0(S a+ 0 tan a—tan 卩 tan( a—? ;(T a—0 1 + tan atan 卩 tan a+ tan 卩 tan(%+ ? = (T a + 0 1 —tan %tan 0 2 ?二倍角公式 sin 2 a= 2sin : cos:; cos 2 a= cos2a—sin2a= 2cos 2a—1 = 1 —2sin2a; 2ta n a tan 2 a= . 1 —tan a 3 ?在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等?如 T a±0可变形为 tan a± tan 0= tan( a± 0(1? tan_ %tan_ 0, tan a+ tan 0 tan a—tan 0 tan %tan 0= 1 —= —1. tan a+ 0 tan a—0 4 ? 函数f( a= a cos a+ b sin a(a, b 为常数),可以化为f( a = \i a2+ b2sin( a+ 0)或f( %)=':::[a2+

考研必备三角函数公式

三角函数诱导公式 常用的诱导公式有以下几组: 公式一: 设α为人意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα

公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα

tan(π/2-α)=cotα cot(π/2-α)=tanα 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于k·π/2±α(k∈Z)的个三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号。 (符号看象限) 例如: sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。 当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。 所以sin(2π-α)=-sinα 上述的记忆口诀是: 奇变偶不变,符号看象限。 公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α 所在象限的原三角函数值的符号可记忆

两角和与差的三角函数及倍角公式练习及答案

两角和与差的三角函数及倍角公式练习及答案 一、选择题: 1、若)tan(,21tan ),2(53sin βαβπαπα-=<<= 则的值是 A .2 B .-2 C .211 D .-211 2、如果sin cos ,sin cos x x x x =3那么·的值是 A .16 B .15 C .29 D .310 3、如果的值是那么)4tan(,41)4tan(,52)tan(παπββα+=-= + A .1318 B .322 C .1322 D .-1318 4、若f x x f (sin )cos ,=?? ?? ?232则等于 A .-12 B .-32 C .12 D .32 5、在?ABC A B A B 中,··sin sin cos cos ,<则这个三角形的形状是 A .锐角三角形 B .钝角三角形 C .直角三角形 D .等腰三角形 二、填空题: 6、角αβαβ终边过点,角终边过点,则(,)(,)sin()4371--+= ; 7、若αα23tan ,则=所在象限是 ; 8、已知=+-=??? ??+θθθθθπsin 2cos cos sin 234cot ,则 ; 9、=??-?+?70tan 65tan 70tan 65tan · 10、化简3232sin cos x x += 。 三、解答题: 11、求的值。·??+?100csc 240tan 100sec

12、的值。,求已知)tan 1)(tan 1(43βαπβα--=+ 13、已知求的值。cos ,sin cos 23544θθθ=+ 14、已知)sin(2)(sin 053tan ,tan 22βαβαβα+++=-+的两个根,求是方程x x ·cos()αβ+的值。

三角函数的两角和差及倍角公式练习题

三角函数的两角和差及倍角公式练习题 一、选择题: 1、若)tan(,21tan ),2(53sin βαβπαπα-=<<= 则的值是 A .2 B .-2 C .211 D .-211 2、如果sin cos ,sin cos x x x x =3那么·的值是 A .16 B .15 C .29 D .310 3、如果的值是那么)4tan(,41)4tan(,52)tan(παπββα+=-= + A .1318 B .322 C .1322 D .-1318 4、若f x x f (sin )cos ,=?? ?? ?232则等于 A .-12 B .-32 C .12 D .32 5、在?ABC A B A B 中,··sin sin cos cos ,<则这个三角形的形状是 A .锐角三角形 B .钝角三角形 C .直角三角形 D .等腰三角形 二、填空题: 6、角αβαβ终边过点,角终边过点,则(,)(,)sin()4371--+= ; 7、若αα23tan ,则=所在象限是 ; 8、已知=+-=??? ??+θθθθθπsin 2cos cos sin 234cot ,则 ; 9、=??-?+?70tan 65tan 70tan 65tan · ; 10、化简3232sin cos x x += 。 三、解答题: 11、求的值。·??+?100csc 240tan 100sec

12、的值。,求已知)tan 1)(tan 1(43βαπβα--=+ 13、已知求的值。cos ,sin cos 23544θθθ=+ 14、已知)sin(2)(sin 053tan ,tan 22βαβαβα+++=-+的两个根,求是方程x x ·cos()αβ+的值。

三角函数公式大全

三角函数公式大全 三角函数定义 锐角三角函数任意角三角函数 图形 直 任 角三角形 意角三角函数 正弦(sin) 余弦(cos) 正切(tan 或tg) 余切(cot 或ctg) 正割(sec) 余割(csc) 函数关系 倒数关系: 商数关系: 平方关系: . 诱导公式 公式一:设为任意角,终边相同的角的同一三角函数的值相等:

公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限: 其中的奇偶是指的奇偶倍数,变余不变试制三角函数的名称变化若变,则是正弦变余弦,正切变余切------------------奇变偶不变 根据教的围以及三角函数在哪个象限的争锋,来判断三角函数的符号-------------符号看象限 记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终 边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数 值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得 到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终 边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的 三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负 值.这样,就得到了诱导公式四. 诱导公式的应用:运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角 的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要项数要 最少,次数要最低,函数名最少,分母能最简,易求值最好。

三角函数习题及答案

第四章 三角函数 §4-1 任意角的三角函数 一、选择题: 1.使得函数lg(sin cos )y θθ=有意义的角在( ) (A)第一,四象限 (B)第一,三象限 (C)第一、二象限 (D)第二、四象限 2.角α、β的终边关于У轴对称,(κ∈Ζ)。则 (A)α+β=2κπ (B)α-β=2κπ (C)α+β=2κπ-π (D)α-β=2κπ-π 3.设θ为第三象限的角,则必有( ) (A)tan cot 2 2 θ θ (B)tan cot 2 2 θ θ (C)sin cos 2 2 θ θ (D)sin cos 2 2 θ θ 4.若4 sin cos 3 θθ+=-,则θ只可能是( ) (A)第一象限角 (B)第二象限角 (C )第三象限角 (D)第四象限角 5.若tan sin 0θθ 且0sin cos 1θθ+ ,则θ的终边在( ) (A)第一象限 (B )第二象限 (C )第三象限 (D )第四象限 二、填空题: 6.已知α是第二象限角且4sin 5α= 则2α是第▁▁▁▁象限角,2 α 是第▁▁▁象限角。 7.已知锐角α终边上一点A 的坐标为(2sina3,-2cos3),则α角弧度数为▁▁▁▁。 8.设1 sin ,(,)sin y x x k k Z x π=+ ≠∈则Y 的取值范围是▁▁▁▁▁▁▁。 9.已知cosx-sinx<-1,则x 是第▁▁▁象限角。 三、解答题: 10.已知角α的终边在直线y =上,求sin α及cot α的值。 11.已知Cos(α+β)+1=0, 求证:sin(2α+β)+sin β=0。 12.已知()()cos ,5n f n n N π +=∈,求?(1)+?(2)+?(3)+……+?(2000)的值。 §4-2 同角三角函数的基本关系式及诱导公式 一、选择题: 1.()sin 2cos 22ππ?? --- ??? 化简结果是( ) (A )0 (B )1- (C )2sin 2 ()2s i n 2 D - 2.若1 sin cos 5 αα+= ,且0απ ,则tan α的值为( ) ()43A - ()34B - ()34C ()43D -或34 - 3. 已知1sin cos 8αα=,且42 ππ α ,则cos sin αα-的值为( )

三角函数和差公式

1、同角三角函数基本关系 ⒈同角三角函数的基本关系式 倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) ⒉两角与与差的三角函数公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tan(α+β)=(tanα+tanβ)/(1-tanα ·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα ·tanβ) 倍角公式 ⒊二倍角的正弦、余弦与正切公式(升幂缩角公式) sin2α=2sinαcosα cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) 2tanα tan2α=————— 1-tan^2(α) 半角公式 ⒋半角的正弦、余弦与正切公式(降幂扩角公式) 1-cosα sin^2(α/2)=————— 2 1+cosα cos^2(α/2)=————— 2 1-cosα tan^2(α/2)=————— 1+cosα 万能公式 ⒌万能公式 2tan(α/2)

sinα=—————— 1+tan^2(α/2) 1-tan^2(α/2) cosα=—————— 1+tan^2(α/2) 2tan(α/2) tanα=—————— 1-tan^2(α/2) 万能公式推导 附推导: sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))、、、、、、*, (因为cos^2(α)+sin^2(α)=1) 再把*分式上下同除cos^2(α),可得sin2α=tan2α/(1+tan^2(α)) 然后用α/2代替α即可。 同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。三倍角公式 ⒍三倍角的正弦、余弦与正切公式 sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα 3tanα-tan^3(α) tan3α=—————— 1-3tan^2(α) 三倍角公式推导 附推导: tan3α=sin3α/cos3α =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα) =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα) 上下同除以cos^3(α),得: tan3α=(3tanα-tan^3(α))/(1-3tan^2(α)) sin3α=sin(2α+α)=sin2αcosα+cos2αsinα =2sinαcos^2(α)+(1-2sin^2(α))sinα =2sinα-2sin^3(α)+sinα-2sin^2(α) =3sinα-4sin^3(α) cos3α=cos(2α+α)=cos2αcosα-sin2αsinα =(2cos^2(α)-1)cosα-2cosαsin^2(α) =2cos^3(α)-cosα+(2cosα-2cos^3(α)) =4cos^3(α)-3cosα 即 sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα 三倍角公式联想记忆

高考数学-三角函数和差公式练习

两角和与差 的正弦、余弦、正切 一、选择题. 1.Sin165o等于 ( ) A .21 B .23 C . 426+ D . 4 26- 2.Sin14ocos16o+sin76ocos74o的值是( ) A .23 B .21 C .23 D .-2 1 3.sin 12π-3cos 12 π的值是. ( ) A .0 B . —2 C . 2 D . 2 sin 125π 4. △ABC 中,若2cosBsinA=sinC 则△ABC 的形状一定是( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等边三角形 5.函数y=sinx+cosx+2的最小值是 ( ) A .2- 2 B .2+ 2 C .0 D .1 二、填空题. 6.οο 15 tan 115tan 1+-=__________________________. 7.如果cos θ= - 13 12 )23,(ππθ∈,那么 cos )4(πθ+=________. 8.已知βα,为锐角,且cos α=71 cos )(βα+= -1411, 则cos β=_________. 9.tan20o+tan40o+3tan20otan40o的值是____________. 10.函数y=cosx+cos(x+ 3π)的最大值是__________. 三、解答题. 11.若βα,是同一三角形的两个内角,cos β= - 31 ,cos()βα+=-294.求cot α的值. 12.在△ABC 中,若cosA=53 ,cosB=13 12 , 试判断三角形的形状.

两角和与差 的正弦、余弦、正切答案 一、 选择题: 1.D 2.B 3.B 4.C 5.A 二、填空题: 6:33 7:2627- 8:2 1 9:3 10:3 三、解答题: 11、 解:∵βα,是同一三角形的两个内角 ∴ 0<βα +<π ∵cos()βα+=-294 ∴sin()βα+=)(cos 12βα+-=97 ∵cos β= - 3 1 ∴sin β=β2cos 1-=32 2 ∴sin α= sin()ββα-+=sin()βα+cos β- cos()βα+sin β= 31 ∴cos α=α2sin 1-= 322 ∴tan α= ααcos sin =42 ∴cot α=22 12、解:∵在△ABC 中,若cosA=53>0 ,cosB=13 12>0 ∴A ,B 为锐角 sinA=A 2cos 1-=54 sinB=B 2cos 1-=13 5 ∵ cosC=cos[π-(A+B)]=-cos(A+B)=-(cosAcosB-sinAsinB )=65 16- < 0 ∴2 π< C <π 即C 为钝角 ∴△ABC 为钝角三角形.

三角函数所有公式

倒数关系:tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系:sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系:sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 平常针对不同条件的常用的两个公式sin^2(α)+cos^2(α)=1 tan α *cot α=1 一个特殊公式(sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ) 证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ) 坡度公式我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比),用字母i表示,即i=h / l, 坡度的一般形式写成l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作a(叫做坡角),那么i=h/l=tan a. 锐角三角函数公式正弦:sin α=∠α的对边/∠α 的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的 对边二倍角公式正弦sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2 (a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 即Cos2a=Cos^2(a)-Sin^2(a)=2C os^2(a)-1=1-2Sin^2(a) 正切tan2A=(2tanA)/(1-tan^2(A)) 三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导sin(3a) =sin(a+2a) =sin2acosa+cos2asina =2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin^3a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos2a-1)cosa-2(1-cos^a)cosa =4cos^3a-3cosa sin3a=3sina-4sin^3a =4sin a(3/4-sin2a) =4sina[(√3/2)2-sin2a] =4sina(sin260°-sin2a) =4sina(sin60°+sina)(sin60°-sina) =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a) cos3a=4cos^3a-3cosa =4cosa(cos2a-3/4) =4cosa[cos2a-(√3/2)^2] =4cosa(cos2a-cos230°) =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa*2cos[(a+30°)/2] cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°) =-4cosasi

三角函数的和差公式

1 / 2 第四~五课时 三角函数的和角公式、差角公式 [教学目标] 1、通过两角差的正弦公式的推导和证明,继而导出三角函数的和角公式、差角公 式,学生进一步理解与运用函数的思想,进一步渗透基本量的数学思想方法(基本量思想就是一种函数的思想)。 2、使学生掌握三角函数的和角公式、差角公式,并会应用这组公式解决一些有关三 角函数的求值问题。 3、在公式的推导过程中,使学生注意并学习严密而准确的数学思维方法及其数学表 达方式。 [教学重点与难点] 本节课的重点是使学生掌握三角函数的和角公式、差角公式。 难点是应用三角函数的和角公式、差角公式求三角函数值。 [教学过程设计] 一、三角函数的和角公式的推导与证明。 1、推导两角和的正弦公式。(参阅课本第75~76页)。 2、给出两角和的余弦公式。 3、利用同角三角函数恒等式,对正切函数可得两角和的正切公式。 (板书) 三角函数的和角公式 sin(α+β)=sin αcos β+ cos αsin β cos(α+β)= cos αcos β-sin αsin β tan(α+β)=β αβαtan tan -1tan tan + 二、三角函数的差角公式的推导。 直接用和角公式结合负角公式,导出三角函数的差角公式:(参阅课本第76页) (板书) 三角函数的差角公式 sin(α-β)=sin αcos β- cos αsin β cos(α-β)= cos αcos β+sin αsin β tan(α-β)=β αβαtan tan 1tan tan +- 三、和角、差角三角函数公式在计算三角函数式值中的应用。 1、求三角函数的值 例4:不使用计算器,求下列各式的值:(略——参阅课本第76页) 练习4:课本第76页,课内练习4) 2、已知角α、β的(部分)三角函数值,求和角、差角的三角函数值。 )tan(),cos(),sin(),23,(,43cos ),,2(,32sin 5βαβαβαππββππαα+++∈-=∈= 求已知例: (解略——参阅课本第78页) 练习5:课本第79页,课内练习5~1、2、3

三角函数公式练习题及答案详解

三角函数公式 1.同角三角函数基本关系式 sin2α+cos2α=1 sinα cosα =tanα tanαcotα=1 2.诱导公式 (奇变偶不变,符号看象限) (一)sin(π-α)=___________ sin(π+α)= ___________ cos(π-α)=___________ cos(π+α)=___________ tan(π-α)=___________ tan(π+α)=___________ sin(2π-α)=___________ sin(2π+α)=___________ cos(2π-α)=___________ cos(2π+α)=___________ tan(2π-α)=___________ tan(2π+α)=___________ (二) sin(π 2 -α)=____________ sin( π 2 +α)=____________ cos(π 2 -α)=____________ cos( π 2 +α)=_____________ tan(π 2 -α)=____________ tan( π 2 +α)=_____________ sin(3π 2 -α)=____________ sin( 3π 2 +α)=____________ cos(3π 2 -α)=____________ cos( 3π 2 +α)=____________ tan(3π 2 -α)=____________ tan( 3π 2 +α)=____________ sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα公式的配套练习 sin(7π-α)=___________ cos(5π 2 -α)=___________ cos(11π-α)=__________ sin(9π 2 +α)=____________ 3.两角和与差的三角函数 cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ

高中三角函数公式大全

高中三角函数公式大全 2009年07月12日 星期日 19:27 三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2 A )=2cos 1A - cos(2 A )=2cos 1A + tan(2 A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2 b a -

sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2 b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = -2 1[cos(a+b)-cos(a-b)] cosacosb = 2 1[cos(a+b)+cos(a-b)] sinacosb = 2 1[sin(a+b)+sin(a-b)] cosasinb = 2 1[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2 π-a) = cosa cos(2 π-a) = sina sin(2 π+a) = cosa cos(2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2(tan 1)2(tan 1a a +-

三角函数和差及倍角公式讲义.docx

教育学科教师辅导讲义 教学内容 一、 上次作业检查与讲解; 二、 学习要求及方法的培养: 三、 知识点分析、讲解与训练: Mite 一、两角和与差的正弦、余弦、正切公式及倍角公式: sin (° ± 0) = sin QCOS 0 土 cos osin 0 —令空?》sin 2a = 2 sin a cos a (o±0) = cosfzcos^ + sinc^sin p — cos2a = cos?(7-sin 2 a -2cos 2 a-\ = l-2sin 2 a 7 1+COS 2Q n cos 「a= ---------- 2 .9 l — cos2o sirr a= ---------- 2 r 2 tan a tan 2a = ------- - l-tarr a 二、三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。即首先观察角与角之间的关系, 注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三 观察代数式的结构特点。基本的技巧有: (1) 巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变 换.如 G = (Q + 0)-0 = (Q -0) + 0, 2Q = (G + 0) + (Q -0) , 2a = (0 + a)-(0-a), 心=2?呼,呼十号俘") ⑵三角函数名互化(切割化弦), ⑶公式变形使用(tana 土tan0 = tan (仅±0)(1^tanotan")。 1 I y zy I / cos 等),

(4)三角函数次数的降升(降幕公式:cos2 6Z = —-—, sin%= —与升幕公式: 2 2 1+ cos 2a = 2 cos2a , 1-cos 2a = 2 sin2a)。

两角和与差的三角函数练习题及答案

两角和与差的三角函数练习题及答案 一、选择题 1. sin 45°·cos 15°+cos 225°·sin 15°的值为 ( C ) A .- 32 B .-12 2.已知sin(45°+α)=5 5 ,则sin 2α等于 ( B ) A .-4 5 B .-35 3.已知cos ? ????π6-α=33,则sin 2? ????α-π6-cos ? ????5π6+α的值是 ( A ) B .-2+3 3 4.已知向量a =? ????sin ? ????α+π6,1,b =(4,4cos α-3),若a⊥b ,则sin ? ????α+4π3等于 ( B ) A .- 3 4 B .-14 5.已知sin ? ????π6-α=13,则cos ? ?? ??2π3+2α的值是 ( A ) A .-7 9 B .-13 6.在△ABC 中,角C =120°,tan A +tan B =2 33,则tan A tan B 的值为( B ) 二、填空题 7.若sin α+cos αsin α-cos α=3,tan(α-β)=2,则tan(β-2α)= 8. 3-sin 70°2-cos 2 10°=________. 2 9.已知α,β∈? ????3π4,π,sin(α+β)=-35, sin ? ????β-π4=1213,则cos ? ?? ??α+π4= ________. -56 65 三、解答题

(1)2sin ? ????π4-x +6cos ? ?? ??π4-x ; (2)2cos 2 α-1 2tan ? ????π4-αsin 2? ?? ? ?π 4+α. 解 (1)原式=22??????1 2sin ? ????π4 -x +32·co s ? ????π4-x =22??????sin π6sin ? ????π4-x +cos π6cos ? ????π4-x =22cos ? ????π6-π4+x =22cos ? ????x -π12. (2)原式=cos 2α1-tan α1+tan α??????1-cos ? ????π2+2α =cos 2α cos 2α1+sin 2α (1+sin 2α)=1. 11.已知函数f (x )=2sin 2? ?? ??π 4+x -3cos 2x . (1)求f (x )的周期和单调递增区间; (2)若关于x 的方程f (x )-m =2在x ∈??????π4,π2上有解,求实数m 的取值范围. 解 (1)f (x )=2sin 2? ????π 4+x -3cos 2x =1-cos ? ?? ??π2+2x -3cos 2x =1+sin 2x -3cos 2x =2sin ? ????2x -π3+1, 周期T =π;令2k π-π2≤2x -π3≤2k π+π 2, 解得单调递增区间为??????k π-π12,k π+5π12(k ∈Z ). (2)x ∈?? ????π4,π2,所以2x -π3∈??????π6,2π3, sin ? ????2x -π3∈???? ??12,1, 所以f (x )的值域为[2,3]. 而f (x )=m +2,所以m +2∈[2,3],即m ∈[0,1]. 12.已知向量a =(3sin α,cos α),b =(2sin α,5sin α-4cos α),α∈? ?? ? ?3π2,2π, 且a⊥b . (1)求tan α的值; (2)求cos ? ?? ??α2+π3的值. 解 (1)∵a⊥b ,∴a·b =0. 而a =(3sin α,cos α),b =(2sin α,5sin α-4cos α), 故a·b =6sin 2 α+5sin αcos α-4cos 2 α=0. 由于cos α≠0,∴6tan 2 α+5tan

相关文档
最新文档