博世汽车SPC

合集下载

陈立迅:“谁越接近终端客户,谁就越容易赢得市场”

陈立迅:“谁越接近终端客户,谁就越容易赢得市场”

栏目编辑:马骏 *****************40·January-CHINA “博世持续投资于中国汽车售后市场,以进一步增强本土实力。

通过一系列投资举措,博世力求为中国汽车制造商、贸易伙伴、维修站以及汽车用户提供全面的解决方案,以期推动中国汽车售后市场的繁荣与发展。

”郑兆和:“博世致力于为用户提供全面的解决方案”在Automechanika Shanghai 2012上,博世携其集“配件+诊断+服务“于一体的汽车售后市场整体解决方案亮相,这是博世与其旗下品牌百斯巴特、优立博首次同厅展出。

通过全新的iPad展示方式及用于现场演示专业诊断服务的展示车,博世展出了涵盖博世汽车售后市场业务的全系列配件、专业诊断设备以及服务网络的汽车售后市场整体解决方案。

博世汽车售后市场业务部大中华区副总裁郑兆和表示:“我们看好中国汽车后市场的发展前景,因此在此市场也在不断加大投资。

博世汽车售后市场业务部门凭借‘配件+诊断+服务’的售后市场整体解决方案,力求为消费者提供更便捷、更可靠的服务。

”郑兆和对“配件+诊断+服务”做了进一步阐述。

他说,在配件方面,博世将不断加强产品创新,并将面向中国市场提供更多针对性的产品,博世在售后市场主要提供电子产品、柴油喷射系统、汽油喷射系统、底盘系统、ESP、制动系统(包括刹车片、制动液)、滤清系统、照明系统以及其他产品(包括火花塞、全系列的雨刮片、起动机发电机等等)等九大类产品。

目前也开展了很多本土化工作,比如,博世南京工厂将很快投产,届时将成为博世全球最大的火花塞生产基地。

在诊断方面,博世在不断寻找合作伙伴,并相继收购了百斯巴特、金德、SPX 等,目前旗下拥有博世、百斯巴特和优立博三大诊断品牌,本次首次在同一展厅中展出。

博世希望通过收购这些公司提升诊断技术与产品的研发能力,以及提升博世在中国的市场份额。

在服务方面,博世汽车专业维修(BCS)网络将服务广大消费者。

“BCS可以做到整辆车的维修,并且,博世不只提供一个品牌,而能够提供多品牌的产品与服务。

VDA4.3德国汽车工业项目管理课程大纲

VDA4.3德国汽车工业项目管理课程大纲
8
6.莱茵公司已培训部分著名企业名录
汽车主机厂
§北京奔驰 §华晨宝马 §北京戴姆勒 §上海大众 §上海通用汽车 §沃尔沃 §一汽大众 §广州本田 §南京汽车集团 §南京依维柯 §哈尔滨哈飞 §现代汽车 §东风康明斯 §江铃汽车 §长安福特马自达 §沈阳金杯华晨 §奇瑞汽车
汽车零部件
里程碑 Meilenst ei
生产资 源的采 购和制 造放行
Freigabe
批量生 产放行
Freigabe zur
13
VDA 4.3 德国汽车工业产品开发项目管理
课程背景:
VDA4.3 是德国汽车工业联合会的红皮书之一,是 VDA 对汽车工业项目供应商进行新 产品开发的项目管理指南,满足国际汽车工业巨头德国汽车工业联合会的特殊要求,是 进入德国汽车工业主机厂的必备条件,同时 ISO/TS16949 也提出项目管理为新产品开发 的管理方法之一。
课程目的:
掌握汽车工业产品开发中项目管理的要求 了解国际汽车工业产品开发中项目管理基本要求,尤其是德国汽车工业产品开发的项目 规划要求 通过实例分析系统掌握如何针对新产品进行全面的策划和控制(包括成本、质量、进度 监控)
课程收益:
通过培训可以使企业的工程师、管理人员能够有效利用汽车工业产品开发的项目管 理及 FMEA 等工具和开发流程实现设计开发阶段的风险预防、质量提升、成本降低,提升 公司开发能力和水平,并推动公司的不断的持续改进。
TÜV Rheinland Group TÜV Rheinland Training and Consulting
TÜV 莱茵集团 TÜV 莱茵 培训与咨询
专为
一汽海马动力有限公司
度身定制
VDA 4.3 德国汽车工业项目管理培训 培训课程方案

【免费下载】8D问题解决法

【免费下载】8D问题解决法

8D问题解决法招生对象---------------------------------企业的各级管理者、质量工程师、产品工程师、工艺工程师、生产控制工程师等。

此课程常年循环在北京、苏州、上海、深圳及广州等地开课,也可以邀请老师去企业进行相应的内部培训,有需要请联系我们。

【主办单位】中国电子标准协会培训中心w w w. W a y s. O r g. C n 【协办单位】深圳市威硕企业管理咨询有限公司课程目标:课程内容---------------------------------课程特点:注重实用,把握基础,避免常见的枯燥无味的灌输型讲课,采用企业的实际案例和课堂练习、点评,帮助学员更好的理解和掌握知识点,并提升知识实际运用的能力。

课程收益:通过培训可以帮助企业的各级管理者、工程师和班组长等人员能够有效的采用8D工作方法对不符合进行描述、分析和实施纠正措施,提升其分析问题、解决问题的能力,有效的提升公司的质量管理水平,提高顾客满意度,实现质量能力、顾客满意度的全面提升和成本的有效降低。

课程大纲:1.什么是8D?2.8D工作方法介绍3. 8D主要步骤3.1 小组成立什么是团队团队的基本要求如何进行团队管理3.2 问题描述什么是问题如何陈述问题系统提问法(5WIH)课堂练习和企业的案例点评3.3 实施并验证临时措施PDCA工作法如何制定防堵计划课堂练习及企业案例点评3.4 确定并验证根本原因鱼骨图的分析要领鱼骨图的来源鱼骨图的绘图要求鱼骨图的分析要领如何寻找根本原因—5Why方法如何寻找原因的区域---层别法层别法的来源层别的设置如何根据问题来层别以找到失效的起因 课堂练习及企业案例点评如何理清系统原因---关联图、矩阵图 何时选用关联图关联图的分析方法关联图的结果分析矩阵图的作用矩阵图的分析方法如何确认要因---散布图散布图的目的散布图的分析方法散布图的应用课堂练习及企业案例点评3.5 选择并验证永久纠正措施防错技术什么是防错技术如何在产品设计和过程设计中采用防错技术来杜绝和减少失效的发生如何验证措施的有效性---SPC什么是SPC控制图的制作和分析的方法过程能力Cpk的计算和分析如何采用控制图及过程能力的计算来验证措施的有效性课堂练习及企业案例点评3.6实施永久纠正措施3.7 预防再发生:课堂练习及企业案例点评3.8 小组祝贺4. 案例分析5. 课堂练习及老师点评6. 什么是G8D讲师介绍---------------------------------刘老师资深质量、生产管理培训专家。

EQH共轨发动机买点价值

EQH共轨发动机买点价值


选用博世核心部件 ——成熟可靠的欧洲技术
电控单元
高压油泵
传感器
共轨管
喷油器
7

EQH共轨发动机优势
8
EQH共轨发动机优势——动力升级
1
1
动 力 升 级
EQH发动机排量4.75L。140马力机型最大功率103Kw,最大扭矩500N.m。 160马力机型最大功率118Kw,最大扭矩650N.m。
2
第一类:外置EGR路线
第二类:内置EGR路线 该技术经过测算,通过控制发 动机凸轮轴的机械运行,使气 缸排气门在进气时保持3~6% 的开度,从而达到溢出废气与 进气按不同比例混合的效果, 使发动机排放实现国3。代表 性企业包括一汽锡柴、玉柴、 东风风神、东风康明斯。
以机械泵和冷却式废气再循 环技术为典型特征,以重汽、 大柴道依茨为代表,通过在 发动机壳外安装电控EGR 阀和电控单元,根据顺时工 况和废气控制电磁阀开度, 以达到国3排放标准。
燃油雾化效果更佳,燃烧更充分,发动机更节油。
根据发动机所处的工况精确调整喷油正时和喷油量,不浪 费一滴油,实实在在为用户省钱。 底速时仍有高的喷油压力,低速扭矩大,轻轻点油门就有强劲的 动力输出,加速快。大扭矩区域宽,持续大扭矩输出,拉的更多、 跑得更快。 预喷射从根本上减少了噪音的产生,开共轨柴油车就像开小轿车。 后喷射减少尾气排放,真正实现绿色排放,保护地球、保护家园。 减少活塞运动频率,减少疲劳磨损,发动机寿命延长。 ,
采用德国博世电控高压共轨系 统,实现了发动机在 精确 的 时刻 ,以 精确 的 压力 ,将 精确 质量 的柴油喷入汽缸,实现 燃油充分燃烧,惜油如金.
智能控制 高速、带档滑行更省油
流更省油。
发动机比油耗≤200g/kW.h 的转速区1300~2000r,与动 力区1200~1800r重叠。满足 动力输出时整车低速、中速、 高速都有良好的节油效果。 低风阻流线型驾驶室设计, 选装导流罩,省油有高招。

VDA6.3过程审核标准P6要素

VDA6.3过程审核标准P6要素

中的数字为每个子要素包括的条款(提问)数。
6.4.1 6.4.2* 6.4.3 6.4.4
4
6.5.1 6.5.2 6.5.3* 6.5.4*
4
6.6.1* 6.6.2 6.6.3 6.6.4
4
二、以过程为导向的审核策划 乌龟图
Page 8
二、以过程为导向的审核策划
1、过程风险的识别
P6.4
用哪些材料资源实现过程?
Page 16
四、 P6要素审核重点内容
P6.1、过程输入(什么输入到过程中去?)
P6.1.1 是否在开发和批量生产之间进行了项目交接?* 最低要求/与评价有关的问题点
1)在开发与量产生产间,进行了项目交接(对于遗留的问题,有无对策措施)。 1.1)对过程/产品FMEA开展管理,更新了所有的特殊特性。
制造过程审核依 据VDA6.3 标准 的 P6要素开展
说明:1、括号中的数字为每个要素中的条款(提问)数。 2、P1为潜在供应商分析,条款摘自P2—P7的6个过程要素,是不打分的,通过红、黄、绿灯评价。
Page 6
一、VDA6.3标准简介
6、VDA6.3 P6要素架构
VDA6.3 P6过程分析/生产
过程 (Process)
产品 (Product)
VDA 6.3 (2010版) 过程审核
VDA 6.7 (2005版) 过程审核--单件生产
VDA 6.5 产品审核
Page 3
一、VDA6.3标准简介
3、各种审核方式的对比
审核方式
审核对象
目的
备注
体系审核 质量管理体系
对基本要求的完整性 侧重符合标准要求、按标准执行;
VDA(德国汽车工业联合会)的 构成

VDA 6.3的过程审核应用教学

VDA 6.3的过程审核应用教学

VDA 6.3的过程审核应用教学2021/12/122低级问题?客户审核…审疲于应付怎么审?3质量体系审核过程审核产品审核审核分类为什么要进行过程审核?过程审核的目的是 (4)对质量能力进行评定使过程具有能力并受控,而且在各种因素的影响下仍然稳定地运行导入情形?5•新供应商导入•新项目量产•新场地投入新•重大变更•重大质量事故发生•未达到质量目标变•体系要求的定期评审•客户要求的例行评审•客户审核前的备审持6怎么审?VDA6.3是专门的过程审核标准手册,指导进行过程审核。

9整车厂:Audi 奥迪Adam Opel 欧宝BMW 宝马DaimlerBenz 奔驰Porsche 保时捷Volkswagen 大众零部件商:Bosch 博世Hella 海拉ITT 埃梯梯Lemforder伦福德TRW 天合Continatel大陆……VDA-QMC=Verband der Automobilindustrie-Qualitats management Center德国汽车工业联合会-质量管理中心10ISO9000VDA 文献&ISO/TS16949特殊条款,…要求VDA 文献集:VDA1提供证明VDA2供货质量保证VDA3(第1和2部分)与汽车制造商和供应商一起,确保可靠性VDA4质量保证方法和工具介绍批量投产前的质量保证VDA5试验和测量系统的能力证明VDA6质量审核基础VDA 概述国际要求法律要求客户特殊要求汽车制造业要求依据和责任人员,事项,时间方法结果,有效性证明VDA 6.x 相互联系和区别VDA 6VDA 6.5产品审核有形产品/无形产品VDA 6.1质量管理体系审核(制造业)VDA6.2质量管理体系审核(服务业)VDA6.4质量管理体系审核(工装设备业)VDA 6.3过程审核批量生产/服务VDA6.7过程审核单件生产VDA概述质量审核基础审核流程审核准备审核落实审核评价问题关闭13在过程审核前会准备些什么?14收集信息审核计划审核小组过程界定编制检查表15●审核员资质●审核小组构成审核员资质16技能:VDA6.3的审核技能,具备审核员资质知识:过程的知识,质量的知识/TS16949独立:审核员地位的独立性审核小组构成17审核组长审核员1审核员2技术支持人员审核是不是一定要多人组成小组?审核小组18审核组长:木子李审核员:赵子龙审核员:川崎审核员:李白资质及分工:✓VDA6.3审核资质✓统筹全部审核过程✓主审批量生产过程(P6)资质及分工:✓VDA6.3审核资质✓主审顾客关怀、顾客满意、服务,供方管理(P5&P7)✓对过程提问项目进行评分资质及分工:✓过程管理工作经验✓协助编制过程审核检查表✓技术问题指导资质及分工:✓VDA6.3审核资质✓主审项目管理、产品过程开发(P3-P4)✓对过程提问项目进行评分例:2019年12月22日大众审核小组19在过程审核前一般需要收集哪些信息?20●组织架构/项目计划/生产计划●过程的流程/FMEA/控制计划●图纸/要求/规范●质量性能/问题记录/指标达成情况信息收集例:2019年12月22日大众审核信息收集序号信息/资料名称负责人1生产计划木子李2工序组织架构图木子李3过程流程图木子李木子李木子李王大大王大大22输入?过程过程:一组将输入转化为输出的相互关联或相互作用的活动塑胶颗粒输出?积木玩具23单独评价的过程应满足如下框架条件✓过程责权关系PV✓目标导向ZI24SMT 过程AB波峰焊过程装配过程例:德赛西威制造的主要过程标签打印/条码雕刻PCB 清洁锡膏印刷SPI元件贴装AOI回流焊接炉后检查手工插件波峰焊接手工焊接切板ICT装配部件打螺丝外观检查贴标签包装整机25如何确定审核的重点?●过往质量问题/历史审核问题等●产品和过程风险点如何查找产品和过程风险点?26输入评价指标输出资源人活动依据27锡膏印刷自动光学检测贴片多功能贴片自动光学检测回流焊自动光学检测例:SMT 主要过程28练习:使用乌龟图的方法分析生产过程,按照6大要素进行风险分析。

VDA6.3(2010新版)

VDA6.3过程审核(2010版)培训邀请函VDA6.3过程审核标准是汽车行业中应用最为广泛的过程审核标准,经过多年的运行,在以德国大众公司、宝马公司、德国博世公司等公司的多名专家支持下,在VDA6.3(1998)版的基础上进行了一定的修改,在2010年6月颁布了VDA6.3(2010新版)。

一、培训目的通过两天VDA6.3过程审核培训使学员掌握过程审核的原理、流程和每个过程的审核要点和方法。

二、培训大纲(一)VDA6.3(过程审核)过程审核(VDA6.3)概述体系审核、过程审核和产品审核的关系过程审核在第二方审核中的应用过程审核的评定方法和审核技巧控制计划(Control Plan)与过程审核过程审核员的资格要求过程审核提问表的编制技巧过程审核计分方法过程审核流程★审核准备★实施审核★末次会议★纠正措施及其有效性验证过程审核案例分析与研讨★产品诞生过程中的过程审核(APQP检查表4)★批量生产中的过程审核过程审核报告及存档管理VDA6.3(2010)新版更改内容详解。

★过程方法在生产过程审核中的运用★产品诞生阶段过程的更改★新标准按乌龟图模型的过程方法模式对审核要素进行了全面更新★等等培训对象:技术、质量、生产等相关人员开课地点:长春市新民大街12号省图204室(如有变更及时通知)开课时间: 2012年03月 21、22日(早8:30开始)两天,内训(2-3天):4,500元/天费用: 2000元人民币(包括:学费、教材费、午餐费)付款方式:转账或现金方式支付,03月21日前完成。

垂询电话:电话 (0431) 85672698 (0431)85676079讲师介绍:姚老师:吉林省意得顾问咨询公司(首席咨询师),高级工程师;高级QMS审核员;EHS工程师;高级咨询顾问,从事质量管理工作22年,先后为上百家企业提供ISO9001;VDA6.1;QS9000;TS16949;OHSAS18001;CCC;ISO14001;供应商质量管理等标准的咨询和指导,得到企业及国际权威认证机构的高度认可。

QFD 质量功能展开

QFD 质量功能展开主讲:闵老师(现任北京大学质量与竞争力研究中心研究员、北京大学光华管理学院教授,兼任飞利浦合资大型半导体制造有限公司六西格玛资深经理,黑带大师(MBB),教授级高级工程师,六西格玛首席培训师与顾问)课程对象:研发项目负责人,设计开发、工艺准备、生产制造的技术人员;质量管理人员;产品经理,负责市场调研、产品策划和售后服务的人员;采购与供应人员;六西格玛设计(DFSS)黑带、黑带大师等。

授课方式:知识讲解、案例演示讲解、实战演练、小组讨论、互动交流、游戏感悟、头脑风暴、强调学员参与。

【课程背景】QFD(质量功能展开,也称质量机能展开)是一种把顾客(用户、使用方)对产品的需求进行多层次的演绎分析,转化为产品的设计要求、零部件特性、工艺要求、生产要求的质量工程工具,QFD立足于市场上顾客的实际需要,开展质量策划,确定设计指标体系,并提前揭示后续加工过程中存在的问题,采取相应对策,定量地实现顾客需求,创新产品设计,提高顾客满意度。

【课前准备】(为保证培训效果,请参训人员提前搜集和准备以下数据及案例演练资料)1.日常工作中的烦恼和问题(每人提3个问题)2.用户或委托方对自己担当产品的要求,必须达到的技术规格标准。

3.本公司产品对上述要求的达成程度以及与其他公司同类产品相比的情况。

4.担当产品的技术特性或技术参数,具有的功能,构成零部件。

【应用场合】企业如何解读顾客需求,并将顾客需求转化成产品的设计要求、零部件特性、工艺要求、生产要求,QFD是很好的方法和工具;当企业的产品问题与顾客需求偏离时,需运用QFD方法寻找原因,寻求对策;企业需提升产品、研发队伍的专业化能力,QFD可作为产品、研发队伍的必修课程,并作为基本方法工具。

【课程价值】1.顾客有抱怨或投诉2.过多的救火作业,例如重新设计,大幅度修改方案3.部门间沟通欠佳,问题常发生在灰色界面地带4.无适当合理的资源分配5.业务过程中缺乏明确且合理的作业指导文件6.潜在的客户与市场有待开发7.需要持续改善8.市场占有率下降【培训内容】1.质量功能展开QFD简介质量功能展开QFD的起源质量功能展开QFD的原理QFD的定义QFD作用QFD-质量屋(矩阵图)顾客需求及其重要程度技术措施关系矩阵技术措施指标及其重要度相关矩阵市场竞争能力评估矩阵2.产品质量控制四阶段概念设计产品设计过程开发过程控制QFD的四个阶段与APQP3.三次设计简介:结构设计、参数设计、容差设计4.QFD在产品概念设计中的应用产品计划矩阵顾客满意的模型产品顾客要求信息收集KJ亲和图产品顾客功能分类及术语化产品结构设计与产品功能设计Concept FMEA产品顾客功能的确认方法市场竞争能力评估矩阵产品技术功能关系矩阵及原理产品可靠性指标展开产品成本展开产品设计任务书的主要内容QFD导入的瓶颈与盲点5.QFD导入的瓶颈与盲点实例演练6.个案介绍与经验交流【讲师介绍】闵老师教授级高级工程师、研究员、教授黑带大师(MBB)北京大学质量与竞争力研究中心研究员、北大光华管理学院教授全国六西格玛管理推进委员会专家委员、DFSS小组核心成员上海市质量协会质量技术奖评审专家摩托罗拉大学认证精益六西格玛/六西格玛设计(DFSS)讲师、顾问闵老师现任北京大学质量与竞争力研究中心研究员、北京大学光华管理学院教授,兼任飞利浦合资大型半导体制造有限公司六西格玛资深经理,黑带大师(MBB),教授级高级工程师,六西格玛首席培训师与顾问;由于在六西格玛管理推进工作中的杰出贡献,被中国质量协会聘任为全国六西格玛管理推进委员会专家委员、DFSS小组核心成员;早期服务于上海仪表集团,先后任资深开发工程师、高级统计技术工程师、实验设计DOE专家、业务改善高级经理,负责建立过6套SPC控制系统。

TRIZ-创造性问题解决理论与实务.doc

TRIZ-创造性问题解决理论与实务TRIZ-创造性问题解决理论与实务上海长期开课适合对象:技术副总裁、总监、经理、产品流程工程总监、经理、工程师、研发总监、经理、工程师、六西格玛领航员/黑带大师/黑带课程背景:RIZ 能教我们如何进行发明创造!TRIZ 能教我们如何构建未来!TRIZ 能改变你的思维方式,甚至是人类的文明!“你可以等待100年获得顿悟,也可以利用这些原理用15分钟解决问题。

”------前苏联发明家阿奇舒勒"创新是一个民族进步的灵魂,是国家兴旺发达的不竭动力。

" 环顾当今世界,财富日益向拥有知识和科技优势的国家和地区聚集,谁在知识和技术创新上占优势,谁就在发展上占居主导地位。

经济强国必然是科技强国。

今天在一些发达国家,技术创新对经济发展的贡献率已达60%──80%。

而TRIZ(发明创新方法)正是培养创新人才的最好方法。

俄罗斯,从小学生、中学就开设了创新发明理论课(TRIZ).我们国家从小就只关注应试教育,忽略思维发散和创造性培养。

因此,大多数人思维是收敛性,不是发散的。

所以,中国人更需要TRIZ(创新思维和创造性解决问题学习)。

目前众多世界知名企业都已经在研发设计流程中实施TRIZ,使用TRIZ解决每天遭遇的实际问题,帮助他们提高产品研发效率,降低研发成本,提高企业整体创新能力甚至用来建构未来科技的发展策略。

TRIZ目前正由福特、摩托罗拉、三星、3M、飞利浦、LG、Bosch、西门子、中兴通讯、华为、美的、南车集团等企业广泛推行。

应用TRIZ的行业:成套设备制造、采掘技术、动力技术、家用电器、仪器仪表、航空航天工业、自动、机械制造、化学工业、医疗技术、电气技术、食品工业、电子技术、制药工业、汽车工业、包装技术、精密机械等,军工企业应用最为显著。

课程收益:1、了解TRIZ的基本概念,创造力相关基本概念;2、定义技术矛盾,利用矛盾矩阵解决问题;3、利用物场分析和标准解系统解决问题;4、了解ARIZ的结构,掌握定义宏观和微观级别物理矛盾的方法;5、综合利用TRIZ工具求解技术问题。

力士乐 BODAS-工程行走机械液压的智能电子


可选的附加模块 ADC AFC AGS ASR ECO EDP CBC DDI 汽车驱动控制 车辆速度和发动机转速的直接连接 自动风扇控制 根据温度控制风扇转速 自动变速箱换档 功率换档变速箱的控制 防滑控制 光滑地面的牵引控制 电控驱动 在部分负载工作时,降低发动机转速,降低油耗、噪声和磨损 电子驱动踏板 发动机控制通过CAN-总线 协调大臂控制 两个工作功能的协调控制 显示-数据接口 通过CAN-总线给D12显示器提供显示数据
使用灵活性 ● 输入随意定义为模拟量、数字量 或频率输入 ● 所有输出能够同时使用或单独使 用 ● 时钟频率高达 40MHz ,可用于 控制才循环时间很短的应用软件 开发

足够的RAM,适用复杂的应用软件 编程 ● 接线容易,因为不需要电磁铁的
返回线 ● 不改变 EPROM ,通过闪存能够 下载外部程序 ● 标准的CAN-总线接口
通过标准接口和开放式系统结构, BODAS 能够集成附加 的机器元件 ( 例如自己的传感器,执行器 ) ,能够通过 SAE J1939与柴油发动机通信,降低油耗和优化性能。
有关控制器和附件的详细数据资料能够从我们的网站下载,网址为: www. boschrexroth . com/mobile-electronics
8
!"#$%&=ö=BODAS
!W==
挖掘机 带负载限制控制LLC
提升装满的铲斗,伸出大臂和回 转上层结构,这些都是工作在 。 。 40 C/100 F的荫凉下吗?有许多问 题是针对柴油发动机和液压系统 的,正是负载限制控制保证了柴 油发动机和液压系统之间的智能 功率分配。电子设备保护柴油发 动机避免过载和降低油耗、排放 和磨损。这些也使得挖掘机更容 易操作。
定制和添加模块 也 许 , 您 的 要 求 比 较 特 殊 ?定 制,换句话说,由基本模块进行 匹配是快速和经济的方法。使用 BODAS 工 具 或 者 通 过 C- 应 用 接 口,甚至您自己就能进行这些扩 展,或者您能够按照您的思想进 行整个BODAS 添加模块的集成。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4th Edition, 07.20053rd Edition dated 06.19942nd Edition dated 05.19901st Edition dated 09.19872005 Robert Bosch GmbHTable of ContentsIntroduction (5)1. Terms for Statistical Process Control (6)2. Planning .........................................................................................................................................................8 2.1 Selection of Product Characteristics .................................................................................................8 2.1.1 Test Variable ........................................................................................................................8 2.1.2 Controllability ......................................................................................................................9 2.2 Measuring Equipment .......................................................................................................................9 2.3 Machinery .........................................................................................................................................9 2.4 Types of Characteristics and Quality Control Charts ......................................................................10 2.5 Random Sample Size ......................................................................................................................11 2.6 Defining the Interval for Taking Random Samples (11)3. Determining Statistical Process Parameters ................................................................................................12 3.1 Trial Run .........................................................................................................................................12 3.2 Disturbances ....................................................................................................................................12 3.3 General Comments on Statistical Calculation Methods ..................................................................12 3.4 Process Average ..............................................................................................................................13 3.5 Process Variation . (14)4. Calculation of Control Limits ......................................................................................................................15 4.1 Process-Related Control Limits ......................................................................................................15 4.1.1 Natural Control Limits for Stable Processes ......................................................................16 4.1.1.1 Control Limits for Location Control Charts .........................................................16 4.1.1.2 Control Limits for Variation Control Charts ........................................................18 4.1.2 Calculating Control Limits for Processes with Systematic Changes in the Average .........19 4.2 Acceptance Control Chart (Tolerance-Related Control Limits) .....................................................20 4.3 Selection of the Control Chart .........................................................................................................21 4.4 Characteristics of the Different Types of Control Charts . (22)5. Preparation and Use of Control Charts ........................................................................................................23 5.1 Reaction Plan (Action Catalog) .......................................................................................................23 5.2 Preparation of the Control Chart .....................................................................................................23 5.3 Use of the Control Chart .................................................................................................................23 5.4 Evaluation and Control Criteria ......................................................................................................24 5.5 Which Comparisons Can be Made? (25)6. Quality Control, Documentation .................................................................................................................26 6.1 Evaluation .......................................................................................................................................26 6.2 Documentation .. (26)7. SPC with Discrete Characteristics ...............................................................................................................27 7.1 General ............................................................................................................................................27 7.2 Defect Tally Chart for 100% Testing . (27)8. Tables (28)9. Example of an Event Code for Mechanically Processed Parts ....................................................................29 9.1 Causes .............................................................................................................................................29 9.2 Action ..............................................................................................................................................29 9.3 Handling of the Parts/Goods ...........................................................................................................30 9.4 Action Catalog .. (30)10. Example of an x -s Control Chart (32)11. Literature (33)12. Symbols (34)Index (35)IntroductionStatistical Process Control (SPC) is a procedure for open or closed loop control of manufacturing processes, based on statistical methods.Random samples of parts are taken from the manufacturing process according to process-specific sampling rules. Their characteristics are measured and entered in control charts. This can be done with computer support. Statistical indicators are calculated from the measurements and used to assess the current status of the process. If necessary, the process is corrected with suitable actions.Statistical principles must be observed when taking random samples.The control chart method was developed by Walter Andrew Shewhart (1891-1967) in the 1920´s and described in detail in his book “Economic Control of Quality of Manufactured Product”, published in 1931.There are many publications and self-study programs on SPC. The procedures described in various publications sometimes differ significant-ly from RB procedures.SPC is used at RB in a common manner in all divisions. The procedure is defined in QSP0402 [1] in agreement with all business divisions and can be presented to customers as the Bosch approach.Current questions on use of SPC and related topics are discussed in the SPC work group. Results that are helpful for daily work and of general interest can be summarized and published as QA Information sheets. SPC is an application of inductive statistics. Not all parts have been measured, as would be the case for 100% testing. A small set of data, the random sample measurements, is used to estimate parameters of the entire population.In order to correctly interpret results, we have to know which mathematical model to use, where its limits are and to what extent it can be used for practical reasons, even if it differs from the real situation.We differentiate between discrete (countable) and continuous (measurable) characteristics. Control charts can be used for both types of characteristics.Statistical process control is based on the concept that many inputs can influence a process.The “5 M´s” – man, machine, material, milieu, method – are the primary groups of inputs. Each “M” can be subdivided, e.g. milieu in temperature, humidity, vibration, contamination, lighting, ....Despite careful process control, uncontrolled, random effects of several inputs cause deviation of actual characteristic values from their targets (usually the middle of the tolerance range).The random effects of several inputs ideally result in a normal distribution for the characteristic.Many situations can be well described with a normal distribution for SPC.A normal distribution is characterized with two parameters, the mean µ and the standard deviation σ.The graph of the density function of a normal distribution is the typical bell curve, with inflection points at σµ− and σµ+.In SPC, the parameters µ and σ of the population are estimated based on random sample measurements and these estimates are used to assess the current status of the process.1. Terms for Statistical Process ControlProcessA process is a series of activities and/or procedures that transform raw materials or pre-processed parts/components into an output product.The definition from the standard [3] is: “Set of interrelated or interacting activities which trans-forms inputs into outputs.”This booklet only refers to manufacturing or assembly processes.Stable processA stable process (process in a state of statistical control) is only subject to random influences (causes). Especially the location and variation of the process characteristic are stable over time (refer to [4])Capable processA process is capable when it is able to completely fulfill the specified requirements. Refer to [11] for determining capability indices. Shewhart quality control chartQuality control chart for monitoring a parameter of the probability distribution of a characteristic, in order to determine whether the parameter varies from a specified value.SPCSPC is a standard method for visualizing and controlling (open or closed loop) processes, based on measurements of random samples.The goal of SPC is to ensure that the planned process output is achieved and that corresponding customer requirements are fulfilled.SPC is always linked to (manual or software supported) use of a quality control chart (QCC). QCC´s are filled out with the goal of achieving, maintaining and improving stable and capable processes. This is done by recording process or product data, drawing conclusions from this data and reacting to undesirable data with appropriate actions.The following definitions are the same as or at least equivalent to those in [6].Limiting valueLower or upper limiting valueLower limiting valueLowest permissible value of a characteristic (lower specification limit LSL)Upper limiting valueHighest permissible value of a characteristic (upper specification limit USL)ToleranceUpper limiting value minus lower limiting value:LSLUSLT−=Tolerance rangeRange of permissible characteristic values between the lower and upper limiting valuesCenter point C of the tolerance rangeThe average of the lower and upper limiting values:2LSLUSL C +=Note: For characteristics with one-sided limits (only USL is specified), such as roughness (Rz), form and position (e.g. roundness, perpen-dicularity), it is not appropriate to assume 0=LSL and thus to set 2/USLC= (also refer to the first comment in Section 4.1.1.1).PopulationThe total of all units taken into considerationRandom sampleOne or more units taken from the population or from a sub-population (part of a population)Random sample size nThe number of units taken for the random sample Mean (arithmetic)The sum of theix measurements divided by the number of measurements n:∑=⋅=niixnx11Median of a sampleFor an odd number of samples put in order from the lowest to highest value, the value of the sample number (n+1)/2. For an even number of samples put in order from the lowest to highest value, normally the average of the two samples numbered n/2 and (n/2)+1. (also refer to [13])Example: For a sample of 5 parts put in order from the lowest to the highest value, the median is the middle value of the 5 values.Variance of a sampleThe sum of the squared deviations of the measurements from their arithmetic mean, divided by the number of samples minus 1:()∑=−⋅−=niixxns12211Standard deviation of a sampleThe square root of the variance:2ss=RangeThe largest individual value minus the smallest individual value:minmaxxxR−=2. PlanningPlanning according to the current edition of QSP 0402 “SPC”, which defines responsibilities. SPC control of a characteristic is one possibility for quality assurance during manufacturing and test engineering.2.1 Selection of Product CharacteristicsSpecification of SPC characteristics and their processes should be done as early as possible (e.g. by the simultaneous engineering team). They can also, for example, be an output of the FMEA.This should take• Function,• Reliability,• Safety,•Consequential costs of defects,•The degree of difficulty of the process,• Customer requests, and•Customer connection interfaces, etc.into account.The 7 W-questions can be helpful in specifying SPC characteristics (refer to “data collection” in “Elementary Quality Assurance Tools” [8]): Example of a simple procedure for inspection planning:Why do I need to know what, when, where and how exactly?How large is the risk if I don’t know this? Note: It may be necessary to add new SPC characteristics to a process already in operation. On the other hand, there can be reasons (e.g. change of a manufacturing method or intro-duction of 100% testing) for replacing existing SPC control with other actions.SPC characteristics can be product or process characteristics.Why?Which or what? Which number or how many?Where? Who?When?With what or how exactly?2.1.1 Test VariableDefinition of the “SPC characteristic”, direct or indirect test variable. Note: If a characteristic cannot be measured directly, then a substitute characteristic must be found that has a known relationship to it.2.1.2 ControllabilityThe process must be able to be influenced (controlled) with respect to the test variable. Normally manufacturing equipment can be directly controlled in a manner that changes the test variable in the desired way (small control loop). According to Section 1, “control” in the broadest sense can also be a change of tooling, machine repair or a quality meeting with a supplier to discuss quality assurance activities (large control loop).2.2 Measuring EquipmentDefinition and procurement or check of the measuring equipment for the test variable.Pay attention to:• Capability of measuring and test processes, • Objectiveness,• Display system (digital),• Handling. The suitability of a measurement process for the tested characteristic must be proven with a capability study per [12].In special cases, a measurement process with known uncertainty can be used (pay attention to [10] and [12]).Note: The units and reference value must correspond to the variables selected for the measurement process.2.3 MachineryBefore new or modified machinery is used, a machine capability study must be performed (refer to QSP0402 [1] and [11]). This also applies after major repairs.Short-term studies (e.g. machine capability studies) register and evaluate characteristics of products that were manufactured in one continuous production run. Long-term studies use product measurements from a longer period of time, representative of mass production. Note: The general definition of SPC (Section 1) does not presume capable machines. However, if the machines are not capable, then additional actions are necessary to ensure that the quality requirements for manufactured products are fulfilled.2.4 Types of Characteristics and Control Charts This booklet only deals with continuous anddiscrete characteristics. Refer to [6] for these andother types of characteristics.In measurement technology, physical variables are defined as continuous characteristics. Counted characteristics are special discrete characteristics. The value of the characteristic is called a “counted value”. For example, the number of “bad” parts (defective parts) resulting from testing with a limit gage is a counted value. The value of the characteristic (e.g. the number 17, if 17 defective parts were found) is called a “counted value”.SPC is performed with manually filled out form sheets (quality control charts) or on a computer.A control chart consists of a chart-like grid for entering numerical data from measured samples and a diagram to visualize the statistical indices for the process location and variation calculated from the data.If a characteristic can be measured, then a control chart for continuous characteristics must be used. Normally the sx− chart with sample size 5=n is used.2.5 Random Sample SizeThe appropriate random sample size is a compromise between process performance, desired accuracy of the selected control chart (type I and type II errors, operation characteristic) and the need for an acceptable amount of testing. Normally 5=n is selected. Smaller random samples should only be selected if absolutely necessary.2.6 Defining the Interval for Taking Random SamplesWhen a control chart triggers action, i.e. when the control limits are exceeded, the root cause must be determined as described in Section 5.4, reaction to the disturbance initiated with suitable actions (refer to the action catalog) and a decision made on what to do with the parts produced since the last random sample was taken. In order to limit the financial “damage” caused by potentially necessary sorting or rework, the random sample interval – the time between taking two random samples – should not be too long.The sampling interval must be individually determined for each process and must be modified if the process performance has permanently changed.It is not possible to derive or justify the sampling interval from the percentage of defects. A defect level well below 1% cannot be detected on a practical basis with random samples. A 100% test would be necessary, but this is not the goal of SPC. SPC is used to detect process changes.The following text lists a few examples of SPC criteria to be followed.1. After setup, elimination of disturbances orafter tooling changes or readjustment, measure continuously (100% or with randomsamples) until the process is correctly centered (the average of several measure-ments/medians!). The last measurements canbe used as the first random sample for furtherprocess monitoring (and entered in the control chart). 2. Random sample intervals for ongoingprocess control can be defined in the following manner, selecting the shortest interval appropriate for the process.Definition corresponding to the expected average frequency of disturbances (as determined in the trial run or as is knownfrom previous process experience).Approximately 10 random samples within this time period.Definition depending on specified preventivetooling changes or readjustment intervals.Approximately 3 random samples within thistime period.Specification of tooling changes or readjust-ment depending on SPC random samples.Approximately 5 random samples within theaverage tooling life or readjustment interval.But at least once for the production quantitythat can still be contained (e.g. delivery lot,transfer to the next process, defined lots forconnected production lines)!3. Take a final random sample at the end of aseries, before switching to a different producttype, in order to confirm process capabilityuntil the end of the series.Note: The test interval is defined based on quantities (or time periods) in a manner that detects process changes before defects are produced. More frequent testing is necessary for unstable processes.3. Determining Statistical Process Parameters3.1 Trial RunDefinition of control limits requires knowledge or estimation of process parameters. This is determined with a trial run with sampling size and interval as specified in Sections 2.5 and 2.6. For an adequate number of parts for initial calculations, take a representative number of unsorted parts, at least 25=m samples (with n = 5, for example), yielding no fewer than 125 measured values. It is important to assess the graphs of the measured values themselves, the means and the standard deviations. Their curves can often deliver information on process performance characteristics (e.g. trends, cyclical variations).3.2 DisturbancesIf non-random influences (disturbances) occur frequently during the trial run, then the process is not stable (not in control). The causes of the disturbances must be determined and elimi-nated before process control is implemented (repeat the trial run).3.3 General Comments on Statistical Calculation MethodsComplicated mathematical procedures are no longer a problem due to currently available statistics software, and use of these programs is of course allowed and widespread (also refer to QSP0402 [1]).The following procedures were originally developed for use with pocket calculators. They are typically included in statistics programs.Note: Currently available software programs allow use of methods for preparing, using and evaluation control charts that are better adapted to process-specific circumstances (e.g. process models) than is possible with manual calculation methods. However, this unavoidably requires better knowledge of statistical methods and use of statistics software. Personnel and training requirements must take this into account.Each business division and each plant should have a comprehensively trained SPC specialist as a contact person.Parameter µ is estimated by:Example (Section 10): samplesof number valuesx the of total mxx mj j===∑=1ˆµ3622562862662.......x ˆ=+++==µor:samplesof number mediansthe of total mxx m j j===∑=1~~ˆµ46225626363....x ~ˆ=+++==µIf µˆ significantly deviates from the center point C for a characteristic with two-sided limits, then this deviation should be corrected by adjusting the machine.Parameter σ is estimated by:Example (Section 10):a) ∑=⋅=m j j s m 121ˆσ41125552450550222.......ˆ=+++=σsamplesof number variancesthe of total =σˆNote: s =σˆ is calculated directly from 25 individual measurements taken from sequential random samples (pocket calculator).or b) na s=σˆ, where27125552450550.......s =+++=samplesof number deviationsdard tan s the of total ms s mj j==∑=1351940271...a s ˆn ===σnn a3 0.89 5 0.94 See Section 8, Table 1 7 0.96 for additional valuesor c) ndR =σˆ, with96225611....R =+++= samplesof number rangesthe of total mR R mj j==∑=1271332962...d R ˆn ===σn n d3 1.69 5 2.33 See Section 8, Table 1 7 2.70 for additional values Note: The use of table values n a and n d pre-supposes a normal distribution!Some of these calculation methods were originally developed to enable manual calculation using a pocket calculator. Formula a) is normally used in currently available statistics software.4. Calculation of Control Limits4.1 Process-Related Control LimitsThe control limits (lower control limit LCL andupper control limit UCL) are set such that 99% of all the values lie within the control limits in the case of a process which is only affected by random influences (random causes).If the control limits are exceeded, it must there-fore be assumed that systematic, non-random influences (non-random causes) are affecting the process.These effects must be corrected or eliminated by taking suitable action (e.g. adjustment).Relation between the variance (standard deviation x σ) of the single values (original values, individuals) and the variance (standard deviation x σ) of the mean values: nxx σσ=.4.1.1 Natural Control Limits for Stable Processes4.1.1.1 Control Limits for Location Control Charts (Shewhart Charts)For two-sided tolerances, the limits for controlling the mean must always be based on the center point C. Note: C is replaced by the process mean x =µˆ for processes where the center point C cannot be achieved or for characteristics with one-sided limits.* Do not use for moving calculation of indices!Note: Use of the median-R chart is onlyappropriate when charts are manually filled out, without computer support.n*A E C n c'E EE E3 1.68 1.02 1.16 2.93 1.73 5 1.230.59 1.20 3.09 1.337 1.020.44 1.21 3.19 1.18Estimated values µˆ and σˆ are calculated per Sections 3.4 and 3.5.Refer to Section 8 Table 2 for additional values.Comments on the average chart: For characteristics with one-sided limits (or in general for skewed distributions) and small n , the random sample averages are not necessarily normally distributed. It could be appropriate to use a Pearson chart in this case. This chart has the advantage compared to the Shewhart chart that the control limits are somewhat wider apart. However, it has the disadvantage that calculation of the control limits is more complicated, in actual practice only possible on the computer.Control charts with moving averagesThe x chart with a moving average is a special case of the x chart. For this chart, only single random samples are taken.n sample measurements are formally grouped as a random sample and the average of these n measurements is calculated as the mean.For each new measurement from a single random sample that is added to the group, the first measurement of the last group is deleted, yielding a new group of size n , for which the new average is calculated.Of course, moving averages calculated in this manner are not mutually independent. That is why this chart has a delayed reaction to sudden process changes. The control limits correspond to those for “normal” average charts:σˆn .C LCL ⋅−=582 σˆn.C UCL ⋅+=582Calculate σˆ according to Section 3.5 a)Control limits for )3(1=n :σˆ.C LCL ⋅−=51 σˆ.C UCL ⋅+=51Example for )3(1=n :3 74 741.x = 3 7 4 9 762.x = 3 7 4 9 2 053.x = 3 7 4 9 2 8 364.x =This approach for moving sample measurements can also be applied to the variation, so that an s x − chart with a moving average and moving standard deviation can be used.After intervention in the process or process changes, previously obtained measurements may no longer be used to calculate moving indices.4.1.1.2 Control Limits for Variation Control ChartsThe control limits to monitor the variation (depending on n ) relate to σˆ and s and like-wise R (= “Central line”).s charta) generally applicable formula(also for the moving s x − chart)Example (Section 10):σˆB UCL 'Eob⋅= 62351931...UCL =⋅=σˆB LCL 'Eun ⋅= 30351230...LCL =⋅=b) for standard s x − chartNote: Formula a) must be used in the case ofmoving s calculation. Calculation of σˆ per Section 3.5 a).s B UCL *Eob ⋅= 62271052...UCL =⋅=s B LCL *Eun ⋅=30271240...LCL =⋅=R chartR D UCL Eob ⋅=2696212...UCL =⋅=R D LCL Eun ⋅=70962240...LCL =⋅=Tablen 'Eun B 'Eob B *Eun B *Eob B Eun D Eob D3 5 70.07 0.23 0.34 2.30 1.93 1.76 0.08 0.24 0.35 2.60 2.05 1.88 0.08 0.24 0.34 2.61 2.10 1.91See Section 8, Table 2 for further values4.1.2 Calculating Control Limits for Processes with Systematic Changes in the AverageIf changes of the mean need to be considered as a process-specific feature (trend, lot steps, etc.) and it is not economical to prevent such changes of the mean, then it is necessary to extend the “natural control limits”. The procedure for calculating an average chart with extended control limits is shown below.The overall variation consists of both the “inner” variation (refer to Section 3.5) of the random samples and of the “outer” variation between the random samples.Calculation procedure Control limits for the mean。

相关文档
最新文档