新人教版九年级数学一元二次方程单元测试卷

合集下载

新人教版初中数学九年级数学上册第一单元《一元二次方程》检测卷(答案解析)

新人教版初中数学九年级数学上册第一单元《一元二次方程》检测卷(答案解析)

一、选择题1.方程22(1)10m x -+-=是关于x 的一元二次方程,则m 的取值范围是( ) A .m≠±lB .m≥-l 且m≠1C .m≥-lD .m >-1且m≠1 2.用配方法解方程x 2﹣6x ﹣3=0,此方程可变形为( ) A .(x ﹣3)2=3B .(x ﹣3)2=6C .(x+3)2=12D .(x ﹣3)2=12 3.已知4是关于x 的方程()2120x m x m -++=的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为( )A .7B .7或10C .10或11D .114.若关于x 的一元二次方程2(2)210m x x --+=有实数根,则m 的取值范围是( ) A .3m <B .3mC .3m <且2m ≠D .3m 且2m ≠ 5.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是( )A .1k >-B .1k ≥-C .0k ≠D .1k >-且0k ≠ 6.由于疫情得到缓和,餐饮行业逐渐回暖,某地一家餐厅重新开张,开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元,若设每天的增长率为x ,则x 满足的方程是( )A .5000(1+x )=6050B .5000(1+2x )=6050C .5000(1﹣x )2=6050D .5000(1+x )2=6050 7.小刚在解关于x 的方程20(a 0)++=≠ax bx c 时,只抄对了1a =,4b =,解出其中一个根是1x =-.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是( )A .不存在实数根B .有两个不相等的实数根C .有一个根是xD .有两个相等的实数根 8.方程()55x x x +=+的根为( )A .15=x ,25x =-B .11x =,25x =-C .0x =D .125x x ==-9.设m 、n 是一元二次方程2430x x -+=的两个根,则23m m n -+=( ) A .1- B .1 C .17-D .17 10.某商品经过连续两次降价,售价由原来的每件100元降到每件64元,则平均每次降价的百分率为( )A .15%B .40%C .25%D .20% 11.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) A .290x += B .24410x x -+= C .210x x ++=D .210x x +-=12.不解方程,判断方程2x 2+3x ﹣4=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根二、填空题13.生物学家研究发现,很多植物的生长都有这样的规律:即主干长出若干数目的支干后,每个支干又会长出同样数目的小分支.现有符合上述生长规律的某种植物,它的主干、支干和小分支的总数是91,则这种植物每个支干长出多少个小分支?设这种植物每个支干长出x 个小分支,可列方程___________.14.若关于x 的一元二次方程210(0)ax bx a +-=≠有一根为2020x =,则一元二次方程2(1)(1)1a x b x +++=必有一根为________.15.解方程:268x x +=-解:两边同时加_________,得26x x ++________8=-+________则方程可化为(_______)2=________两边直接开平方得_____________即_________或_____________所以1x =__________,2x =___________.16.已知关于x 的一元二次方程230x mx +=+的一个根为1,则方程的另一个根为________.17.已知方程2x 2+4x ﹣3=0的两根分别为出x 1和x 2,则x 1+x 2+x 1x 2=_____.18.已知实数α,β满足α2+3α﹣1=0,β2﹣3β﹣1=0,且αβ≠1,则21a+3β的值为________.19.已知()0n n ≠是一元二次方程240x mx n ++=的一个根,则m n +的值为______. 20.已知a 为方程210x x -+=的一个根,则代数式2233a a -+的值为_____ 三、解答题21.解方程:(1)26160x x +-=.(2)22430x x --=.22.解方程:(1)()2316x -=(2)22410x x --=(用公式法解)23.解方程:2420x x ++=.24.用适当的方法解一元二次方程:(1)()229x -=;(2)2230x x +-=.25.回答下列问题.(1(2|1-. (3)计算:102(1)-++. (4)解方程:2(1)90x +-=.26.已知关于x 的一元二次方程x 2-2x+k=0.(1)若方程有实数根,求k 的取值范围;(2)在(1)的条件下,如果k 是满足条件的最大的整数,且方程x 2-2x+k=0一根的相反数是一元二次方程(m-1)x 2-3mx-7=0的一个根,求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据一元二次方程的定义及二次根式有意义的条件求解可得.【详解】∵方程22(1)10m x -+-=是关于x 的一元二次方程,∴210m -≠,解得1m ≠±,10m +≥,解得:1m ≥-,∴1m >-且1m ≠,故选:D .【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.D解析:D【分析】先移项,再把方程两边同时加上一次项系数一半的平方,最后配方即可得新答案.【详解】由原方程移项得:x2﹣6x=3,方程两边同时加上一次项系数一半的平方得:x2﹣6x+9=12,配方得;(x﹣3)2=12.故选:D.【点睛】此题主要考查配方法的运用,配方法的一般步骤为:移项、二次项系数化为1、两边同时加上一次项系数一半的平方、配方完成;熟练掌握配方法的步骤并熟记完全平方公式是解题关键.3.C解析:C【分析】把x=4代入已知方程求得m的值;然后通过解方程求得该方程的两根,即等腰△ABC的两条边长,由三角形三边关系和三角形的周长公式进行解答即可.【详解】解:把x=4代入方程得16-4(m+1)+2m=0,解得m=6,则原方程为x2-7x+12=0,解得x1=3,x2=4,因为这个方程的两个根恰好是等腰△ABC的两条边长,①当△ABC的腰为4,底边为3时,则△ABC的周长为4+4+3=11;②当△ABC的腰为3,底边为4时,则△ABC的周长为3+3+4=10.综上所述,该△ABC的周长为10或11.故选C.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了三角形三边的关系.4.D解析:D【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac的意义得到m-2≠0且△≥0,即(-2)2-4×(m-2)×1≥0,然后解不等式组即可得到m的取值范围.【详解】解:∵关于x的一元二次方程(m-2)x2-2x+1=0有实数根,∴m-2≠0且△≥0,即(-2)2-4×(m-2)×1≥0,解得m≤3,∴m的取值范围是m≤3且m≠2.故选:D.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根. 5.D解析:D【分析】根据一元二次方程根的判别式得到关于k 的不等式,然后求解不等式即可.【详解】是一元二次方程,0k ∴≠.有两个不相等的实数根,则Δ0>,2Δ24(1)0k =-⨯-⨯>,解得1k >-.1k ∴>-且0k ≠.故选D【点睛】本题考查一元二次方程ax 2+bx +c =0(a ≠0)根的判别式:(1)当△=b 2﹣4ac >0时,方程有两个不相等的实数根;(2)当△=b 2﹣4ac =0时,方程有有两个相等的实数根;(3)当△=b 2﹣4ac <0时,方程没有实数根.6.D解析:D【分析】根据开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元列方程即可得到结论.【详解】解:设每天的增长率为x ,依题意,得:5000(1+x )2=6050.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7.A解析:A【分析】直接把已知数据代入进而得出c 的值,再利用根的判别式求出答案.【详解】∵小刚在解关于x 的方程20ax bx c ++=(0a ≠)时,只抄对了1a =,4b =,解出其中一个根是1x =-,∴()()21410c -+⨯-+=,解得:3c =,∵核对时发现所抄的c 比原方程的c 值小2,故原方程中5c =,则224441540b ac =-=-⨯⨯=-<,则原方程的根的情况是不存在实数根.故选:A .【点睛】本题主要考查了根的判别式,正确利用方程的解得出c 的值是解题关键.8.B解析:B【分析】根据因式分解法解方程即可;【详解】()55x x x +=+,()()550+-+=x x x ,()()510x x +-=,11x =,25x =-;故答案选B .【点睛】本题主要考查了因式分解法解一元二次方程,准确计算是解题的关键.9.B解析:B【分析】根据一元二次方程的根的定义、根与系数的关系即可得.【详解】由一元二次方程的根的定义得:2430m m -+=,即243m m -=-, 由一元二次方程的根与系数的关系得:441m n -+=-=, 则2234m m n m m m n -+=-++, ()()24m m m n =-++,34=-+,1=,故选:B .【点睛】本题考查了一元二次方程的根的定义、根与系数的关系,熟练掌握一元二次方程的根与系数的关系是解题关键.10.D解析:D【分析】设平均每次降价的百分率为x ,根据该商品的原价及经过两次降价后的价格,即可得出关于x 的一元二次方程,解之即可得出结论.【详解】解:设平均每次降价的百分率为x ,依题意,得:100(1-x )2=64,解得:x 1=0.2=20%,x 2=1.8(不合题意,舍去).故选:D .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 11.D解析:D【分析】分别求出每个方程的根的判别式即可得到方程的根的情况.【详解】A 选项:2049360∆=-⨯=-<,∴该方程没有实数根,故A 错误;B 选项:()244410∆=--⨯⨯=,∴该方程有两个相等的实数根,故B 错误; C 选项:2141130∆=-⨯⨯=-<,∴该方程没有实数根,故C 错误;D 选项:()2141150∆=-⨯⨯-=>,∴方程有两个不相等的实数根,故D 正确; 故选:D.【点睛】此题考查一元二次方程的根的情况,正确求根的判别式的值,掌握一元二次方程的根的三种情况是解题的关键.12.B解析:B【分析】求出根的判别式,只要看根的判别式△=b 2-4ac 的值的符号就可以了.【详解】解:∵△=b 2﹣4ac =9﹣4×2×(﹣4)=41>0,∴方程有两个不相等的实数根,故选:B .【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.二、填空题13.1+x+x2=91【分析】如果设每个支干分出x 个小分支根据每个支干又长出同样数目的小分支可知:支干的数量为x 个小分支的数量为x•x=x2个然后根据主干支干和小分支的总数是91就可以列出方程【详解】解解析:1+x+x 2=91【分析】如果设每个支干分出x 个小分支,根据“每个支干又长出同样数目的小分支”可知:支干的数量为x 个,小分支的数量为x•x=x 2个,然后根据主干、支干和小分支的总数是91就可以列出方程.【详解】解:依题意得支干的数量为x 个,小分支的数量为x•x=x 2个,那么根据题意可列出方程为:1+x+x 2=91,故答案为:1+x+x 2=91.【点睛】本题考查了由实际问题抽象出一元二次方程的知识,找到关键描述语,找到等量关系是解决问题的关键.14.x=2019【分析】对于一元二次方程设t=x+1得到at2+bt=1利用at2+bt-1=0有一个根为t=2020得到x+1=2020从而可判断一元二次方程a (x-1)2+b (x-1)-1=0必有一解析:x=2019【分析】对于一元二次方程2(1)(1)1a x b x +++=,设t=x+1得到at 2+bt=1,利用at 2+bt-1=0有一个根为t=2020得到x+1=2020,从而可判断一元二次方程a (x-1)2+b (x-1)-1=0必有一根为x=2019.【详解】解:对于一元二次方程2(1)(1)1a x b x +++=,设t=x+1,所以at 2+bt=1,即at 2+bt-1=0,而关于x 的一元二次方程ax 2+bx-1=0(a≠0)有一根为x=2020,所以at 2+bt-1=0有一个根为t=2020,则x+1=2020,解得x=2019,所以2(1)(1)1a x b x +++=必有一根为x=2019.故答案为:x=2019.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15.999x+31x+3=±1x+3=1x+3=-1-2-4【分析】根据配方法求解即可【详解】解:两边同时加9得99则方程可化为1两边直接开平方得x+3=±1即x+3=1或x+3=-1所以-2-4故答案解析:9 9 9 x+3 1 x+3=±1 x+3=1 x+3=-1 -2 -4【分析】根据配方法求解即可.【详解】解:两边同时加9,得26x x ++98=-+9,则方程可化为()23x +=1,两边直接开平方得x+3=±1,即x+3=1或x+3=-1,所以1x =-2,2x =-4.故答案为:9;9;9;x+3;1;x+3=±1;x+3=1;x+3=-1;-2;-4.【点睛】本题考查了配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 16.3【分析】先将x=1代入求得m 的值然后解一元二次方程即可求出另一根【详解】解:∵一元二次方程的一个根为1∴1+m+3=0即m=-4∴(x-1)(x-3)=0x-1=0x-3=0∴x=1或x=3即该方解析:3【分析】先将x=1代入求得m 的值,然后解一元二次方程即可求出另一根.【详解】解:∵一元二次方程230x mx +=+的一个根为1∴1+m+3=0,即m=-4∴2430x x -+=(x-1)(x-3)=0x-1=0,x-3=0∴x=1或x=3,即该方程的另一根为3.故答案为3.【点睛】本题主要考查了一元二次方程的解和解一元二次方程,关于x 的一元二次方程230x mx +=+的一个根为1求得m 的值成为解答本题的关键.17.﹣【分析】根据根与系数的关系得到x1+x2=﹣=﹣2x1x2=﹣然后利用整体代入的方法计算【详解】根据题意得x1+x2=﹣=﹣2x1x2=﹣所以x1+x2+x1x2=﹣2﹣=﹣故答案为:﹣【点睛】本解析:﹣72【分析】 根据根与系数的关系得到x 1+x 2=﹣42=﹣2,x 1x 2=﹣32,然后利用整体代入的方法计算.【详解】根据题意得x 1+x 2=﹣42=﹣2,x 1x 2=﹣32, 所以x 1+x 2+x 1x 2=﹣2﹣32=﹣72. 故答案为:﹣72. 【点睛】 本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a≠0)的两根时,x 1+x 2=−b a ,x 1x 2=c a. 18.10【分析】原方程变为()-3()-1=0得到β是方程x2-3x-1=0的两根根据根与系数的关系得到关系式代入求出即可【详解】解:∵α2+3α﹣1=0∴()-3()-1=0∵实数αβ满足α2+3α﹣解析:10【分析】 原方程变为(21a)-3(1a )-1=0,得到1a 、β是方程x 2-3x-1=0的两根,根据根与系数的关系得到关系式,代入求出即可.【详解】解:∵α2+3α﹣1=0, ∴(21a)-3(1a )-1=0, ∵实数α,β满足α2+3α﹣1=0,β2﹣3β﹣1=0,且αβ≠1, ∴1a 、β是方程x 2﹣3x ﹣1=0的两根, ∴1a +β=3, a β =﹣1,2131a a=+, ∴原式=1+3a +3β=1+3(1a+β)=1+3×3=10, 故答案为10.【点睛】本题考查了根与系数的关系,熟练的根据根与系数的关系进行计算是解题的关键. 19.【分析】根据一元二次方程的解的定义把代入得到继而可得的值【详解】∵是关于x 的一元二次方程的一个根∴即∵∴即故答案为:【点睛】本题考查了一元二次方程的解的定义因式分解的应用注意:能使一元二次方程左右两 解析:4-【分析】根据一元二次方程的解的定义把x n =代入240x mx n ++=得到240n mn n ++=,继而可得m n +的值.【详解】∵n 是关于x 的一元二次方程240x mx n ++=的一个根,∴240n mn n ++=,即()40n n m ++=,∵0n ≠,∴4n m ++,即4m n +=-,故答案为:4-.【点睛】本题考查了一元二次方程的解的定义、因式分解的应用.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.20.【分析】把代入已知方程求得然后将其整体代入所求的代数式求值【详解】由题意得:则所以故答案为:【点睛】本题考查了一元二次方程的解的定义解题时注意整体代入数学思想的应用解析:5【分析】把x a =代入已知方程,求得21a a =-,然后将其整体代入所求的代数式求值.【详解】由题意,得:210a a -+=,则21a a =-,所以,()2233231323335a a a a a a -+=--+=-++=. 故答案为:5.【点睛】本题考查了一元二次方程的解的定义.解题时,注意“整体代入”数学思想的应用.三、解答题21.(1)18x =-,22x =;(2)1x =,2x =. 【分析】(1)运用因式分解法求解即可;【详解】解:(1)26160x x +-=()()820x x +-=解得18x =-,22x =.(2)22430x x --=,∵2a =,4b =-,3c =-,∴224(4)42(3)162440b ac -=--⨯⨯-=+=,x ===∴1x =,2x =. 【点睛】本题考查了解一元二次方程,在解答中注意计算的正确性.22.(1)11x =21x =-2)11x =+,21x =. 【分析】(1)两边除以3后再开方,即可得出两个一元一次方程,求解即可;(2)求出24b ac -的值,代入公式求出即可.【详解】解:(1)()2316x -=方程两边除以3,得:()212x -=,两边开平方,得:1x -=则:11x =+21x =(2)22410x x --=∵2a =,4b =-,1c =-,∴()()224442124b ac -=--⨯⨯-=∴x ==,∴11x =21x =; 【点睛】 本题考查了解一元二次方程的应用,熟悉相关的解法是解题的关键.23.12x =-22x =-【分析】【详解】∵2420x x ++=,∴242x x +=-,∴24424x x ++=-+,∴()222x +=, ∴2x =-±∴12x =-22x =-【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键. 24.(1)15=x ,21x =-;(2)13x =-,21x =【分析】(1)利用直接开平方法解方程即可;(2)利用公式法解方程即可.【详解】解:(1)∵()229x -=,∴23x -=±,∴23x -=或23x -=-,∴15=x ,21x =-.(2)∴ 1a =,2b =,3c =-,则()22413160=-⨯⨯-=>△,∴x = 即13x =-,21x =.【点睛】本题主要考查解一元二次方程.通过开平方运算解一元二次方程的方法叫做直接开平方法.公式法解一元二次方程的一般步骤,把方程化为一般形式确定各系数的值利用求解.25.(13;(21+;(3)4;(4)12x =,24x =-. 【分析】(1)利用用二次根式的性质化成最简二次根式,再合并同类二次根式即可;(2)根据二次根式的乘除法则以及绝对值的性质计算,再合并同类二次根式即可; (3)根据零指数幂,负整数指数幂以及完全平方公式计算,再合并同类二次根式即可; (4)移项,利用直接开平方法即可求解.【详解】(13 3=+3 =;(2|11)=-1=12=+;(3)102(1)-++121=+-4=-(4)2(1)90x+-=,移项得:2(1)9x+=,∴13x+=或13x+=-,12x=,24x=-.【点睛】本题考查了解一元二次方程-直接开平方法,二次根式的混合运算,掌握运算法则是解答本题的关键.26.(1)k≤1;(2)2【分析】(1)结合题意,根据判别式的性质计算,即可得到答案;(2)结合(1)的结论,可得k的值,从而计算得方程x2-2x+k=0的根,并代入到()21370m x mx---=,通过求解一元一次方程方程,即可得到答案.【详解】(1)由题意知:44k∆=-且0∆≥即:4-4k≥0∴k≤1(2)k≤1时,k取最大整数1当k=1时,221x x-+的解为:121x x==根据题意,1x =是方程()21370m x mx ---=的一个根 ∴()()()2113170m m -⨯--⨯--= ∴m=2.【点睛】本题考查了一元二次方程、一元一次方程的知识;解题的关键是熟练掌握一元二次方程判别式、一元一次方程的性质,从而完成求解.。

人教版九年级数学上册一元二次方程单元测试卷

人教版九年级数学上册一元二次方程单元测试卷

人教版九年级数学上册一元二次方程单元测试卷初中数学试卷-一元二次方程单元测试卷考试时间:100分钟满分:120分)姓名成绩一、选择题:(每小题3分,共30分)1.下列方程中,关于x的一元二次方程是()A。

(x+1)=2(x+1)B。

2x+11=222ax+bx+cC。

D=-22.使得代数式3x-6的值等于21的x的值是( )A。

3B。

-3C。

±3D。

±33.关于x的一元二次方程x-k=有实数根,则()A。

k<0B。

k>0C。

k≥0D。

k≤04.用配方法解关于x的方程x+ px + q = 0时,此方程可变形为( )A。

(x+2)=2pB。

(x-2)=2pC。

(x+2)=2pD。

(x-2)=2p5.使分式的值等于零的x是( )A。

2B。

-2C。

±2D。

±46.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为( )A。

x(x+1)=1035B。

x(x-1)=1035C。

x(x+1)=1035D。

x(x-1)=10357.若方程(a-b)x+(b-c)x+(c-a)=0是关于x的一元二次方程,则必有().A。

a=b=cB。

一根为1C。

一根为-1D。

以上都不对奋斗没有终点,任何时候都是一个起点。

2.剔除格式错误。

3.改写每段话。

奋斗没有终点,任何时候都是一个起点。

8.若分式 $\frac{x^2-x-6}{x-3x+2}$ 的值为1,则 $x$ 的值为().A。

3或-2B。

3C。

-2D。

-3或2改写为:已知分式 $\frac{x^2-x-6}{x-3x+2}$ 的值为1,求 $x$ 的值。

A。

3或-2B。

3C。

-2D。

-3或29.已知方程 $x+p x+q=0$ 的两个根分别是2和-3,则 $x-p x+q$ 可分解为().A。

(x+2)(x+3)B。

(x-2)(x-3)C。

(x-2)(x+3)D。

新人教版初中数学九年级数学上册第一单元《一元二次方程》测试(含答案解析)(1)

新人教版初中数学九年级数学上册第一单元《一元二次方程》测试(含答案解析)(1)

一、选择题1.一元二次方程2610x x +-=配方后可变形为( ) A .()2310x +=B .()238x +=C .()2310x -=D .()238x -=2.若x=0是关于x 的一元二次方程(a+2)x 2- a-2x+a 2+a-6=0的一个根,则a 的值是( ) A .a ≠2 B .a=2 C .a=-3 D .a=-3或a=2 3.方程(2)2x x x -=-的解是( )A .2B .2-,1C .1-D .2,1-4.用配方法解方程23620x x -+=时,方程可变形为( ) A .21(3)3x -= B .21(1)33x -=C .21(1)3-=x D .2(31)1x -=5.为促进消费,重庆市政府开展发放政府补贴消费的“消费券活动”,某超市的月销售额逐步增加;据统计4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元,若设5月、6月每月的增长率为x ,则可列方程为( ) A .()2001500x += B .()2002001500x ++= C .()22001500+=x D .()20012500+=x6.在元旦庆祝活动中,参加活动的同学互赠贺卡,共送贺卡42张,则参加活动的同学有( ) A .6人 B .7人 C .8人 D .9人 7.若关于x 的一元二次方程260x x c -+=有两个相等的实数根,则常数c 的值为( ) A .3B .6C .8D .98.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm ,那么x 满足的方程是( )A .x 2+65x-350=0B .x 2+130x-1400=0C .x 2-130x-1400=0D .x 2-65x-350=09.已知2x 2+x ﹣1=0的两根为x 1、x 2,则x 1•x 2的值为( ) A .1B .﹣1C .12D .12-10.有1人患了流感,经过两轮传染后共有81人患流感,则每轮传染中平均一个人传染了( )人. A .40B .10C .9D .811.已知a 、b 、m 、n 为互不相等的实数,且(a +m )( a +n )=2,(b +m )( b +n )=2,则ab ﹣mn的值为( ) A .4B .1C .﹣2D .﹣112.如图,是一个简单的数值运算程序,则输入x 的值为( )A 31B .31C 31或31D .无法确定二、填空题13.若二次式236x -的值与2x -的值相等,则x 的值为_______. 14.已知方程2x 2+4x ﹣3=0的两根分别为出x 1和x 2,则x 1+x 2+x 1x 2=_____.15.关于x 的方程222(1)0x m x m m +-+-=有两个实数根α,β,且2212αβ+=,那么m 的值为________.16.一元二次方程22(1)210a x x a +++-=,有一个根为零,则a 的值为________. 17.已知方程22610x x -+=的两根为12,x x ,则2212x x +=_______.18.将一元二次方程x 2﹣8x ﹣5=0化成(x +a )2=b (a ,b 为常数)的形式,则b =_____.19.已知a 为方程210x x -+=的一个根,则代数式2233a a -+的值为_____20.参加足球联赛的每两队之间都进行两场比赛,共要比赛90场,共有________个队参加比赛.三、解答题21.已知关于x 的方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0. (1)求证:无论k 为何实数,方程总有实数根; (2)若此方程有两个根x 1,x 2,且x 12+x 22=8,求k 的值.22.某水果超市以每千克20元的价格购进一批大枣,规定每千克大枣的售价不低于进价又不高于40元.经市场调查发现:大枣的日销售量y (千克)与每千克售价x (元)之间满足一次函数关系,其部分对应数据如下表所示: 每千克售价x (元) … 25 30 35 … 日销售量y (千克)…11010090…(2)该水果超市想要获利1000元的日销售利润,每千克大枣的售价应定为多少元? 23.解方程:2x²-4x-3=0.24.回答下列问题. (1(2|1-. (3)计算:102(1)-++.(4)解方程:2(1)90x +-=.25.解方程:22350x x --= (请用两种方法解方程)26.某文具商从荷花池小商品批发市场购进一批书包,每个进价50元.调查发现,当销售价为80元时,每季度可售出500个;如果售价每降低1元,那么平均每季度可多售出40个.(1)当降价2元时,平均每季度销售书包_____个.(2)某文具商要想平均每季度赢利18000元,且尽可能让利与顾客,应该如何定价?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】方程常数项移到右边,两边加上一次项系数一半的平方即可得到结果. 【详解】 解:∵x 2+6x-1=0, ∴x 2+6x=1, ∴x 2+6x+9=10, ∴(x+3)²=10, 故选:A . 【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.2.B解析:B 【分析】将x=0代入方程中,可得关于a 的一元二次方程方程,然后解方程即可,注意a≥2这一隐含条件. 【详解】解:将x=0代入(a+2)x 2- 2+a-6=0中, 得: a 2+a-6=0, 解得:a 1=﹣3,a 2=2, ∵a+2≠0且a ﹣2≥0,即a≥2, ∴a=2, 故选:B . 【点睛】本题考查一元二次方程方程的解、解一元二次方程、二次根式有意义的条件,理解方程的解的意义,熟练掌握一元二次方程的解法是解答的关键,注意隐含条件a≥0.3.D解析:D 【分析】先移项得到x (2﹣x )+(2﹣x )=0,然后利用因式分解法解方程. 【详解】解:x (2﹣x )+(2﹣x )=0, (2﹣x )(x +1)=0, 2﹣x =0或x +1=0, 所以x 1=2,x 2=﹣1. 故选:D . 【点睛】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).4.C解析:C 【分析】先移项得到2362x x -=-,再把方程两边都除以3,然后把方程两边加上1即可得到()2113x -=. 【详解】移项得:2362x x -=-, 二次系数化为1得:2223x x -=-, 方程两边加上1得:222113x x -+=-+, 所以()2113x -=. 故选:C .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.5.C解析:C 【分析】根据“4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元”,可以列出相应的一元二次方程,本题得以解决. 【详解】 解:由题意可得, 200(1+x )2=500, 故选:C . 【点睛】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的方程,这是一道典型的增长率问题,是中考常考题.6.B解析:B 【分析】设参加活动的同学有x 人,从而可得每位同学赠送的贺卡张数为(1)x -张,再根据“共送贺卡42张”建立方程,然后解方程即可得. 【详解】设参加活动的同学有x 人, 由题意得:(1)42x x -=,解得7x =或6x =-(不符题意,舍去), 即参加活动的同学有7人, 故选:B . 【点睛】本题考查了一元二次方程的实际应用,依据题意,正确建立方程是解题关键.7.D解析:D 【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于c 的一元一次方程,解方程即可得出结论. 【详解】 解:260x x c -+=有两个相等的实根,2(6)40c ∴∆=--=,解得:9c = 故选:D . 【点睛】本题考查了根的判别式以及解一元一次方程,由方程有两个相等的实数根结合根的判别式得出关于c 的一元一次方程是解题的关键.8.A解析:A 【分析】本题可设长为(80+2x ),宽为(50+2x ),再根据面积公式列出方程,化简即可. 【详解】解:依题意得:(80+2x )(50+2x )=5400, 即4000+260x+4x 2=5400, 化简为:4x 2+260x-1400=0, 即x 2+65x-350=0. 故选:A . 【点睛】本题考查的是一元二次方程的应用,解此类题目要注意运用面积的公式列出等式再进行化简.9.D解析:D 【分析】直接利用根与系数的关系解答. 【详解】解:∵2x 2+x ﹣1=0的两根为x 1、x 2,∴x 1•x 2=12=﹣12.故选:D . 【点睛】此题主要考查了根与系数的关系,一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系为:x 1+x 2=-b a ,x 1•x 2=c a. 10.D解析:D 【分析】设每轮传染中平均一个人传染了x 人,则一轮传染后共有(1+x )人被传染,两轮传染后共有[(1+x )+x(1+x)]人被传染,由题意列方程计算即可. 【详解】解:设每轮传染中平均一个人传染了x 人, 由题意,得:(1+x )+x(1+x)=81, 即x 2+2x ﹣80=0,解得:x 1=8,x 2=﹣10(不符合题意,舍去), 故每轮传染中平均一个人传染了8人,故选:D . 【点睛】本题考查了一元二次方程的应用,解一元二次方程,理解题意,正确列出方程是解答的关键.11.C解析:C 【分析】先把已知条件变形得到a 2+ (m +n ) a +mn ﹣2=0,b 2+( m +n ) b +mn ﹣2=0,则可把a 、b 看作方程x 2+( m +n ) x +mn ﹣2=0的两实数根,利用根与系数的关系得到ab =mn ﹣2,从而得到ab ﹣mn 的值. 【详解】解:∵(a +m )( a +n )=2,(b +m )( b +n )=2, ∴a 2+( m +n )a +mn ﹣2=0,b 2+( m +n )b +mn ﹣2=0, 而a 、b 、m 、n 为互不相等的实数,∴可以把a 、b 看作方程x 2+(m +n )x +mn ﹣2=0的两个实数根, ∴ab =mn ﹣2, ∴ab ﹣mn =﹣2. 故选:C . 【点睛】本题考查一元二次方程根与系数的关系及整式的乘法,理解代数思想,把“a 、b 看作方程x 2+(m +n )x +mn ﹣2=0的两实数根”是解题关键.12.C解析:C 【分析】先根据数值运算程序可得一个关于x 的一元二次方程,再利用直接开平方法解方程即可得. 【详解】由题意得:()2319x --=-,()213x -=,1-=x ,1x =±即1x =或1x =,故选:C . 【点睛】本题考查了解一元二次方程,根据数值运算程序正确建立方程是解题关键.二、填空题13.-1或【分析】先根据题意列出关于x 的方程整理为一般式再利用因式分解法求解即可【详解】解:根据题意得:3x2-6=x-2整理得:3x2-x-4=0∴(x+1)(3x-4)=0∴x+1=0或3x-4=0解析:-1或43【分析】先根据题意列出关于x 的方程,整理为一般式,再利用因式分解法求解即可. 【详解】解:根据题意,得:3x 2-6=x-2, 整理,得:3x 2-x-4=0, ∴(x+1)(3x-4)=0, ∴x+1=0或3x-4=0, 解得1241,,3=-=x x ∴当x=-1或43时,二次式3x 2-6的值与x-2的值相等, 故答案为:-1或43【点睛】本题主要考查解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.14.﹣【分析】根据根与系数的关系得到x1+x2=﹣=﹣2x1x2=﹣然后利用整体代入的方法计算【详解】根据题意得x1+x2=﹣=﹣2x1x2=﹣所以x1+x2+x1x2=﹣2﹣=﹣故答案为:﹣【点睛】本解析:﹣72【分析】根据根与系数的关系得到x 1+x 2=﹣42=﹣2,x 1x 2=﹣32,然后利用整体代入的方法计算. 【详解】根据题意得x 1+x 2=﹣42=﹣2,x 1x 2=﹣32,所以x 1+x 2+x 1x 2=﹣2﹣32=﹣72.故答案为:﹣72.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba,x1x2=ca.15.-1【分析】根据方程的根的判别式得出m的取值范围然后根据根与系数的关系可得α+β=-2(m-1)α•β=m2-m结合α2+β2=12即可得出关于m的一元二次方程解之即可得出结论【详解】解:∵关于x的解析:-1【分析】根据方程的根的判别式,得出m的取值范围,然后根据根与系数的关系可得α+β=-2(m-1),α•β=m2-m,结合α2+β2=12即可得出关于m的一元二次方程,解之即可得出结论.【详解】解:∵关于x的方程x2+2(m-1)x+m2-m=0有两个实数根,∴△=[2(m-1)]2-4×1×(m2-m)=-4m+4≥0,解得:m≤1.∵关于x的方程x2+2(m-1)x+m2-m=0有两个实数根α,β,∴α+β=-2(m-1),α•β=m2-m,∴α2+β2=(α+β)2-2α•β=[-2(m-1)]2-2(m2-m)=12,即m2-3m-4=0,解得:m=-1或m=4(舍去).故答案为:-1.【点睛】本题考查了根与系数的关系、根的判别式以及解一元二次方程,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系得出关于m的一元二次方程.16.1【分析】根据一元二次方程的解的定义把x=0代入(a+1)x2+2x+a2-1=0再解关于a的方程然后利用一元二次方程的定义确定a的值【详解】解:把x=0代入(a+1)x2+2x+a2-1=0得a2解析:1【分析】根据一元二次方程的解的定义,把x=0代入(a+1)x2+2x+a2-1=0,再解关于a的方程,然后利用一元二次方程的定义确定a的值.【详解】解:把x=0代入(a+1)x2+2x+a2-1=0得a2-1=0,解得a=1或a=-1,而a+1≠0,所以a的值为1.故答案为:1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.17.8【分析】利用一元二次方程根与系数的关系可列出两根之和及两根之积的值再对其进行变形即可求解【详解】由题可得:∴故答案为:8【点睛】本题考查一元二次方程根与系数的关系进行变形求值熟记结论且灵活变形是解解析:8 【分析】利用一元二次方程根与系数的关系,可列出两根之和及两根之积的值,再对其进行变形即可求解. 【详解】由题可得:1212132x x x x +==,, ∴()222212121212329182x x x x x x +=+-=-⨯=-=, 故答案为:8. 【点睛】本题考查一元二次方程根与系数的关系进行变形求值,熟记结论且灵活变形是解题关键.18.21【分析】先把常数项移到等号的右边再等号两边同时加上16即可【详解】解:∵x2﹣8x =5∴x2﹣8x+16=5+16即(x ﹣4)2=21故答案为:21【点睛】本题主要考查一元二次方程的配方掌握完全解析:21 【分析】先把常数项移到等号的右边,再等号两边同时加上16,即可. 【详解】 解:∵x 2﹣8x =5,∴x 2﹣8x +16=5+16,即(x ﹣4)2=21, 故答案为:21. 【点睛】本题主要考查一元二次方程的配方,掌握完全平方公式,是解题的关键.19.【分析】把代入已知方程求得然后将其整体代入所求的代数式求值【详解】由题意得:则所以故答案为:【点睛】本题考查了一元二次方程的解的定义解题时注意整体代入数学思想的应用 解析:5【分析】把x a =代入已知方程,求得21a a =-,然后将其整体代入所求的代数式求值. 【详解】由题意,得:210a a -+=, 则21a a =-,所以,()2233231323335a a a a a a -+=--+=-++=. 故答案为:5.【点睛】本题考查了一元二次方程的解的定义.解题时,注意“整体代入”数学思想的应用. 20.10【分析】设共有x 个队参加比赛根据每两队之间都进行两场比赛结合共比了90场即可得出关于x 的一元二次方程解之即可得出结论【详解】解:设共有x 个队参加比赛根据题意得:2×x (x-1)=90整理得:x2解析:10.【分析】设共有x 个队参加比赛,根据每两队之间都进行两场比赛结合共比了90场即可得出关于x 的一元二次方程,解之即可得出结论.【详解】解:设共有x 个队参加比赛,根据题意得:2×12x (x-1)=90, 整理得:x 2-x-90=0,解得:x=10或x=-9(舍去).故答案为:10.【点睛】本题考查了一元二次方程的应用,根据每两队之间都进行两场比赛结合共比了90场列出关于x 的一元二次方程是解题的关键.三、解答题21.(1)见解析;(2)-1或13 【分析】(1)根据方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0计算判别式的值得到△=(k +1)2≥0,即可证明结论;(2)利用根与系数的关系得到x 1+x 2=31k k -,x 1x 2=()21k k -,再根据x 12+x 22=8得出(31k k -)2﹣2•()21k k-=8,解此方程即可求解. 【详解】(1)证明:关于x 的方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0中,∵a =k ,b =﹣(3k ﹣1),c =2(k ﹣1),△()()231421k k k ⋅⋅=-﹣- 2296188k k k k ++=--221k k =++2(1)k =+,∴无论k 为任何实数,△0≥.∴无论k 为任何实数,方程总有实数根;(2)解:根据题意得x 1+x 2=31k k -,x 1x 2=()21k k -, ∵x 12+x 22=8,∴(x 1+x 2)2﹣2x 1x 2=8,∴(31k k -)2﹣2•()21k k-=8, 整理得3k 2+2k ﹣1=0,解得k 1=13,k 2=﹣1, 经检验k 1=13,k 2=﹣1为原方程的解, ∵k ≠0,∴k 的值为﹣1或13. 【点睛】 本题考查了根的判别式及根与系数关系,掌握一元二次方程根的判别式及根与系数的关系是解题的关键.22.(1)2160y x =-+;(2)商贸公司该水果超市想要获利1000元的日销售利润,每千克大枣的售价应定为30元.【分析】(1)用待定系数法求解即可;(2)根据总利润=每千克利润×数量列方程求解即可.【详解】解:(1)设一次函数解析式为:y kx b =+,将:()25,110;()30,100代入,得 ∴2511030100k b k b +=⎧⎨+=⎩解得:2160k b =-⎧⎨=⎩, ∴一次函数解析式为:2160y x =-+;,(2)由题意得:()()2021601000x x --+=整理得:210021000x x -+=,解得130x =,270x =(不合题意,舍去),即商贸公司该水果超市想要获利1000元的日销售利润,每千克大枣的售价应定为30元.【点睛】本题考查了待定系数法求函数解析式,一元二次方程的应用,熟练掌握待定系数法是解(1)的关键,列出方程式解(2)的关键.23.1222,22x x +-== 【分析】 利用公式法解一元二次方程即可求解.【详解】解:2x²-4x-3=0∵ a=2,b=-4,c=-3,∴()()22=b 4442340ac ∆-=--⨯⨯-=>0, ∴一元二次方程有两个不相等的实数根,∴x ===∴12x x ==. 【点睛】本题考查了公式法解一元二次方程,熟练掌握一元二次方程的求根公式是解题关键.24.(13;(2)12+;(3)4;(4)12x =,24x =-. 【分析】(1)利用用二次根式的性质化成最简二次根式,再合并同类二次根式即可;(2)根据二次根式的乘除法则以及绝对值的性质计算,再合并同类二次根式即可; (3)根据零指数幂,负整数指数幂以及完全平方公式计算,再合并同类二次根式即可; (4)移项,利用直接开平方法即可求解.【详解】(13=+3=;(2|11)=-1=12=+;(3)102(1)-++121=+-4=-(4)2(1)90x +-=, 移项得:2(1)9x +=,∴13x +=或13x +=-, 12x =,24x =-.【点睛】本题考查了解一元二次方程-直接开平方法,二次根式的混合运算,掌握运算法则是解答本题的关键.25.152x =,21x =- 【分析】采用公式法和因式分解法求解即可.【详解】解:方法1:∵a =2,b =-3,c =-5,∴2449b ac ∆=-=,∴x =∴152x =,21x =-; 方法2:()()2510x x -+=∴ 152x =,21x =-. 【点睛】 本题考查解一元二次方程,根据方程的特点选择合适的求解方法是解题的关键. 26.(1)580;(2)70元.【分析】(1)根据降价后销量=降价前销量+增加的销量可求得结果;(2)设定价x 元,根据每季度的总利润=每个玩具利润×降价后每天的销售数量列出方程,解方程可求得定价.【详解】(1)500240580+⨯=(个).故答案为:580.(2)设定价x 元,根据题意得:(50)[50040(80)]18000x x -+-=,解得:1272.5,70x x ==,∵尽可能让利与顾客,70x ∴=.答:应该定价70元.【点睛】本题主要考查一元二次方程的实际应用,理解题意找到题目隐含的等量关系是解决问题的关键.。

人教版九年级上册数学第21章《一元二次方程》 单元测试(含答案)

人教版九年级上册数学第21章《一元二次方程》 单元测试(含答案)

试卷第1页,总3页 第二十一章《一元二次方程》 测试题一、单选题(共12小题,每小题3分,共36分)1.下列方程为一元二次方程的是 ( )A .ax 2+bx+c=0B .x 2-2x -3C .2x 2=0D .xy +1=02.把方程x (3-2x )+5=1化成一般式后二次项系数与常数项的积是( )A .3B .-8C .-10D .153.若关于x 的一元二次方程(a +1)x 2+x +a 2-1=0的一个解是x =0,则a 的值为( )A .1B .-1C .±1D .04.若a-b+c=0,则方程ax 2+bx+c=0(a 0≠)必有一个根是( )A .0 B .1C .-1 D .b a -5.用配方法解一元二次方程2x 2﹣4x+1=0,变形正确的是( )A .(x ﹣12)2=0 B .(x ﹣12)2=12 C .(x ﹣1)2=12 D .(x ﹣1)2=06.已知直角三角形的两边长是方程x 2﹣7x+12=0的两根,则第三边长为( ) A .7 B .5C 7D .577.若关于 x 的一元二次方程x 2﹣x ﹣3m =0有两个不相等的实数根,则 m 的取值范围是()A .m 12>B .m 112<C .m >﹣112D .m 112< 8.若方程x 2-3x -1=0的两根为x 1、x 2,则11x +21x 的值为( ) A .3 B .-3 C .13 D .-139.已知关于x 的一元二次方程(2a -1)x 2+(a +1)x +1=0的两个根相等,则a 的值等于( )A .-1或-5B .-1或5C .1或-5D .1或510.如图,在长为33米宽为20米的矩形空地上修建同样宽的道路(阴影部分),余下的部分为草坪,要使草坪的面积为510平方米,则道路的宽为( )A .1米B .2米C .3米D .4米11.是下列哪个一元二次方程的根( ) A .3x 2+5x+1=0、 B .3x 2﹣5x+1=0、 C .3x 2﹣5x ﹣1=0、 D .3x 2+5x ﹣1=012.已知m ,n 是方程x 2﹣2018x +2019=0的两个根,则(m 2﹣2019m +2018)(n 2﹣2019n +2018)的值是( )A .1B .2C .4037D .4038二、填空题(共4小题,每小题5分,共20分)13.一元二次方程4x 2= 3x 的解是_____________.14.圣诞节时,某班一个小组有x 人,他们每两人之间互送贺卡一张,已知全组共送贺卡110张,则可列方程为_____.15.关于a 的方程2420a a ++=的两个解为1a 、2a ,则2212a a +=_____. 16.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.三、解答题(共6小题,第17题8分,第18题12分,第19题6分,第20题6分,第21题8分,第22题12分,共52分)17、解下列方程 (1) x 2-2x-5=0 (用配方法) (2)2x 2+3x=4(公式法)18、已知关于x 的方程||(2)210m m x x ++-=.(1)当m 为何值时是一元一次方程?(2)当m 为何值时是一元二次方程?19、 已知两个方程20x px q ++=和20x qx p ++=仅有一个相同的根,求p q +的值.20、小刚在做作业时,不小心将方程2350x bx --=的一次项系数用墨水覆盖住了,但从题目的答案中,他知道方程的一个解为5x =,请你帮助小刚求出被覆盖住的数试卷第3页,总3页 21、已知关于x 的一元二次方程22(51)40x m x m m -+++=. 求证:无论m 取任何实数时,原方程总有两个实数根;22、现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?参考答案1.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C2..考点:一元二次方程的一般形式试题解析:解析:x (3-2x )+5=1 -2x 2+3x+4=0 -2×4=-8 故选B .答案:B3.考点:一元二次方程的解试题解析:解析:将x =0代入原方程得a 2-1=0且a +1≠0所以a=1故选A .答案:A4.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C5.考点:配方法答案第4页,总3页试题解析:解析x 2﹣2x+12=0 x 2﹣2x+1=12(x ﹣1)2=12故选C .答案:C6.考点:解一元二次方程和勾股定理试题解析:解析:解方程得x 1 =3, x 2=4.当3和4为直角边时,第三边为5,当4为斜边故选D .答案:D7.考点:一元二次方程根的判别式和一元一次不等式的解法试题解析:解析:∆= b ²-4ac >0即1+12m >0 m >﹣112故选C . 答案:C8.考点:一元二次方程根与系数的关系 试题解析:解析:11x +21x =(x ₁+x ₂)/(x ₁x ₂)=﹣3 故选B . 答案:B9.考点:一元二次方程根的判别式和解一元二次方程试题解析:解析:(a +1)²- 4(2a -1)=0解得a ₁=1a ₂=5故选D .答案:D10.考点:一元二次方程的应用试题解析:解析:设路宽为x,依题可得:(20-x )(33-x)=510解得x 1 =3, x 2=50(舍去)故选C .答案:C11.考点:一元二次方程求根公式试题解析:解析:由一元二次方程求根公式与方程给出的根可找出a=3 b=5 c = - 1 故选D .答案:D12.考点:一元二次方程的解和根与系数的关系试题解析:解析:将m 和n 分别代入方程变形得m 2﹣2018m =-2019n 2﹣2018n =-2019将原式变形后整体代入(-2019-m+2018(-2019-n+2018)=(-1-m)(-1-n)=1+m+n+mn∵m+n=2018 mn=2019∴原式=1+2018+2019=4038故选D .答案:D13.考点:解一元二次方程(因式分解法)试题解析:解析:4x 2 -3x= 0 x(4x-3)=0 x 1 =0, x 2=34答案:x 1 =0, x 2=3414.考点:一元二次方程的应用试题解析:答案:x (x ﹣1)=11015.考点:一元二次方程根与系数的关系和完全平方公式试题解析:解析:2212a a +=(a ₁+a ₂)²-2a ₁a ₂答案:1216.考点:一元二次方程解法和根与系数的关系试题解析:解析:∵ x₁x₂=12 x₁²+x₂²=25∴x ₁+x ₂=7或-7答案:x 2-7x+12=0或x 2+7x+12=017.考点:一元二次方程解法答案:(1)11x =21x =;(2)134x -=,234x -= 18.考点:一元一次方程和一元二次方程的概念试题解析:解析:(1)注意分三种情况讨论(2)注意指数和系数答案:(1)-2或±1或0 (2)2 19.考点:一元二次方程根和方程组试题解析:解析:x ²+px+q= x ²+qx+p (p-q)x=p-q x=1代入原方程1+p+q=0 ∴p+q=-1答案:-1;.20.考点:一元二次方程解试题解析:解析:答案:1421.考点:一元二次方程根的判别式和完全平方公式试题解析:解析:答案:∵∆= b ²-4ac =(5m+1)²-4(4m ²+m )=9m ²+6m+1=(3m+1)²≥0∴不论m 取任何实数,原方程总有两个实数根22.考点:一元二次方程的应用和一元一次不等式试题解析:解析:(1)设增长率为x ,依题可得10(1+x )²=12.1解得x 1 =0.1, x 2=-2.1(舍去)故增长率为10%;(2)6月总数12.1×(1+10%)=13.31>21×0.6所以不能完成任务。

新人教版初中数学九年级数学上册第一单元《一元二次方程》测试题(含答案解析)(1)

新人教版初中数学九年级数学上册第一单元《一元二次方程》测试题(含答案解析)(1)

一、选择题1.据网络统计,某品牌手机2020年一月份销售量为400万部,二月份、三月份销售量连续增长,三月份销售量达到900万部,求二月份、三月份销售量的月平均增长率?若设月平均增长率为x ,根据题意列方程为( ).A .()40012900x +=B .()40021900x ⨯+=C .()24001900x +=D .()()240040014001900x x ++++= 2.下列方程中,没有实数根的是( )A .2670x x ++=B .25260x x --=C .22270x x -=D .2220x x -+-= 3.已知三角形的两边长分别为4和6,第三边是方程217700x x -+=的根,则此三角形的周长是( )A .10B .17C .20D .17或204.已知一元二次方程2210x x --=的两个根分别是1x ,2x ,则2112x x x -+的值为( ).A .-1B .0C .2D .3 5.若m 是方程220x x c --=的一个根,设2(1)p m =-,2q c =+,则p 与q 的大小关系为( )A .p <qB .p =qC .p >qD .与c 的取值有关 6.等腰三角形的底边长为6,腰长是方程28150x x -+=的一个根,则该等腰三角形的周长为( )A .12B .16C .l2或16D .15 7.方程(2)2x x x -=-的解是( ) A .2 B .2-,1 C .1- D .2,1- 8.某中学举办篮球友谊赛,参赛的每两个队之间只比赛1场,共比赛10场,则参加此次比赛的球队数是( )A .4B .5C .6D .7 9.若关于x 的一元二次方程260x x c -+=有两个相等的实数根,则常数c 的值为( ) A .3 B .6C .8D .9 10.关于x 的方程()---=2a 3x 4x 10有两个不相等的实数根,则a 的取值范围是( )A .1a ≥-且3a ≠B .1a >-且3a ≠C .1a ≥-D .1a >- 11.一元二次方程x 2=4x 的解是( )A .x=4B .x=0C .x=0或-4D .x=0或4第II 卷(非选择题) 请点击修改第II 卷的文字说明参考答案12.如图,是一个简单的数值运算程序,则输入x 的值为( )A 31B .31C 31或31D .无法确定二、填空题13.方程2(3)30x x -+=的二次项系数为________,一次项系数为________,常数项为________.该方程判别式的值为_________,由此可以判断它的根的情况为___________. 14.对于实数m ,n ,定义一种运算“*”为:*m n mn n =+.如果关于x 的方程()**1x a x 4=-有两个相等的实数根,则a =_______. 15.一元二次方程2210x x -+=的一次项系数为_________.16.若二次式236x -的值与2x -的值相等,则x 的值为_______.17.一元二次方程(x +1)(x ﹣3)=3x +4化为一般形式可得_________.18.一元二次方程()422x x x +=+的解为__.19.已知实数a ,b 是方程210x x --=的两根,则11a b+的值为______. 20.方程2350x x -=的一次项系数是______. 三、解答题21.新冠疫情蔓延全球,口罩成了人们的生活必须品.某商店销售一款口罩,每袋进价为12元,计划每袋售价大于12元但不超过20元,通过市场调查发现,这种口罩每袋售价为18元时,日均销售量为50袋,而当每袋售价提高1元时,日均销售量就减少5袋. (1)在每袋售价为18元的基础上,将这种口罩的售价每袋提高x 元,则日均销售量是_________袋;(用含x 的代数式表示)(2)经综合考察,要想使这种口罩每天赢利315元,该商场每袋口罩的销售价应定为多少元?22.按要求的方法解方程,否则不得分.(1)2450x x -=+(配方法)(2)22730x x -+=(公式法)(3)(1)(2)24x x x ++=+(因式分解法)23.某商场销售一批衬衫,每件进价是120元,当每件衬衫售价为160元时,平均每天可售出20件,为了扩大销售,尽快清库,增加盈利,商场经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件,据此规律,请回答:(1)当每件衬衫降价5元时,每天可销售多少件衬衫?商场获得的日盈利是多少? (2)若商场平均每天想盈利1200元,则每件衬衫应降价多少元?24.我们知道20x ≥,2()0a b ±≥,这一性质在数学中有着广泛的应用,比如,探究多项式2245x x +-的最小值时,我们可以这样处理:解:原式()2225x x =+- ()22222115x x =++-- 222(1)15x ⎡⎤=+--⎣⎦22(1)25x =+--22(1)7x =+-因为()210x +≥,所以()221707x +-≥-,即()22177x +-≥-所以()2217x +-的最小值是7-,即224 5x x +-的最小值是7-.请根据上面的探究思路,解答下列问题:(1)多项式()2531x -+的最小值是_________;(2)求多项式24163x x -+的最小值(写过程).25.某玩具店购进一批甲、乙两款乐高积木,它们的进货单价之和是720元.甲款积木零售单价比进货单价多80元.乙款积木零售价比进货单价的1.5倍少120元,按零售单价购买甲款积木4盒和乙款积木2盒,共需要2640元.(1)分别求出甲乙两款积木的进价.(2)该玩具店平均一个星期卖出甲款积木40盒和乙款积木24盒,经调查发现,甲款积木零售单价每降低2元,平均一个星期可多售出甲款积木4盒,商店决定把甲款积木的零售价下降()0m m >元,乙款积木的零售价和销量都不变.在不考虑其他因素的条件下,为了顾客能获取更多的优惠,当m 为多少时,玩具店一个星期销售甲、乙两款积木获取的总利润恰为5760元.26.若关于x 的一元二次方程x 2-6x +m +1=0的两根是x 1,x 2,且x 12+x 22=24,求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】设月平均增长率为x ,根据三月及五月的销售量,即可得出关于x 的一元二次方程,此题得解.【详解】解:设月平均增长率为x ,根据题意得:400(1+x )2=900.故选:C .【点睛】本题考查了一元二次方程中增长率的知识.增长前的量×(1+年平均增长率)年数=增长后的量.2.D解析:D【分析】根据判别式的意义对各选项进行判断.【详解】A 、224641780b ac =-=-⨯⨯=>,则方程有两个不相等的实数根,所以A 选项不符合题意;B 、()()224541261290b ac =-=--⨯⨯-=>,则方程有两个不相等的实数根,所以B 选项不符合题意;C 、()224274207290b ac =-=--⨯⨯=>,则方程有两个不相等的实数根,所以C 选项不符合题意;D 、()()224241240b ac =-=-⨯-⨯-=-<,则方程没有实数根,所以D 选项符合题意.故选:D .【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.3.B解析:B【分析】根据第三边是方程x 2﹣17x +70=0的根,首先求出方程的根,再利用三角形三边关系求出即可.【详解】解:∵217700x x -+=,∴(10)(7)0x x --=,∴110x =,27x =,∵4610+=,无法构成三角形,∴此三角形的周长是:46717++=.故选B .【点睛】此题主要考查了因式分解法解一元二次方程以及三角形的三边关系,正确利用因式分解法解一元二次方程可以大大降低计算量.4.D解析:D【分析】分别根据一元二次方程的根的意义和一元二次方程根与系数的关系分别得到21112210,2x x x x --=+=,变形代入求值即可得到答案.【详解】解:由题意得21112210,2x x x x --=+=,即21121x x -=, ∴原式211122123x x x x =-++=+=.故选:D .【点睛】此题主要考查了一元二次方程的解的根与系数的关系,灵活运用根与系数的关系是解答此题的关键.5.A解析:A【分析】结合m 是方程220x x c --=的一个根,计算p-q 的值即可解决问题.【详解】解:∵m 是方程220x x c --=的一个根,∴220m m c --=∵2(1)p m =-,2q c =+,∴222(1)(2)212211p q m c m m c m m c -=--+=-+--=---=-,∴p <q故选:A .【点睛】此题主要考查了一元二次方程的解以及整式的运算,熟练掌握一元二次方程的解的应用是解答此题的关键.6.B解析:B【分析】利用因式分解法解方程求出x的值,再根据等腰三角形的概念和三角形三边关系确定出三角形三边长度,继而得出答案.【详解】解:∵x2-8x+15=0,∴(x-3)(x-5)=0,则x-3=0或x-5=0,解得x1=3,x2=5,①若腰长为3,此时三角形三边长度为3、3、6,显然不能构成三角形,舍去;②若腰长为5,此时三角形三边长度为5、5、6,可以构成三角形,所以该等腰三角形的周长为5+5+6=16,故选:B.【点睛】本题主要考查等腰三角形的概念、三角形三边的关系、解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.7.D解析:D【分析】先移项得到x(2﹣x)+(2﹣x)=0,然后利用因式分解法解方程.【详解】解:x(2﹣x)+(2﹣x)=0,(2﹣x)(x+1)=0,2﹣x=0或x+1=0,所以x1=2,x2=﹣1.故选:D.【点睛】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).8.B解析:B【分析】根据球赛问题模型列出方程即可求解.【详解】解:设参加此次比赛的球队数为x队,根据题意得:12x (x-1)=10, 化简,得x 2-x-20=0,解得x 1=5,x 2=-4(舍去),∴参加此次比赛的球队数是5队.故选:B .【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握一元二次方程应用问题中的球赛问题.9.D解析:D【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于c 的一元一次方程,解方程即可得出结论.【详解】解:260x x c -+=有两个相等的实根,2(6)40c ∴∆=--=,解得:9c =故选:D .【点睛】本题考查了根的判别式以及解一元一次方程,由方程有两个相等的实数根结合根的判别式得出关于c 的一元一次方程是解题的关键.10.B解析:B【分析】方程有两个不相等的实数根,显然原方程应该是关于x 的一元二次方程,因此得到二次项系数不为0即当a-3≠0时,且判别式0∆>即可得到答案.【详解】∵关于x 的方程()32a x 4x 10---=有两个不相等的实数根 ∴a-3≠0,且2=(4)4(3)(1)440a a ∆--⨯-⨯-=+>解得:1a ≥-且a≠3故选B .【点睛】本题主要考查方程的解,一元二次方程的根的判别式,根据判别式,列出关于参数a 的不等式,是解题的关键.11.D解析:D【分析】先移项,利用因式分解法解一元二次方程.【详解】解:x 2=4xx 2-4x=0x (x-4)=0x=0或x=4,故选:D.【点睛】此题考查解一元二次方程,直接开平方法,配方法,公式法,因式分解法,根据一元二次方程的特点选择恰当的解法是解题的关键.12.C解析:C【分析】先根据数值运算程序可得一个关于x 的一元二次方程,再利用直接开平方法解方程即可得.【详解】由题意得:()2319x --=-, ()213x -=,1-=x ,1x =±即1x =或1x =,故选:C .【点睛】本题考查了解一元二次方程,根据数值运算程序正确建立方程是解题关键.二、填空题13.2-6312有两个不相等的实数根【分析】先将方程化为一般形式再计算出判别式的值根据结果判断根的情况【详解】解:化简可得:二次项系数为2一次项系数为-6常数项为3该方程判别式的值为由此可以判断它的根的解析:2 -6 3 12 有两个不相等的实数根【分析】先将方程化为一般形式,再计算出判别式的值,根据结果判断根的情况.【详解】解:化简可得:22630x x -+=,二次项系数为2,一次项系数为-6,常数项为3, 该方程判别式的值为()2642312--⨯⨯=,由此可以判断它的根的情况为:有两个不相等的实数根,故答案为:2;-6;3;12;有两个不相等的实数根.【点睛】本题考查了一元二次方程,解题的关键是掌握定义和根的判别式.14.0【分析】由于定义一种运算*为:m*n=mn+n所以关于x的方程x*(a*x)=变为(a+1)x2+(a+1)x+=0而此方程有两个相等的实数根所以根据判别式和一元二次方程的一般形式的定义可以得到关解析:0【分析】由于定义一种运算“*”为:m*n=mn+n,所以关于x的方程x*(a*x)=14-变为(a+1)x2+(a+1)x+14=0,而此方程有两个相等的实数根,所以根据判别式和一元二次方程的一般形式的定义可以得到关于a的关系式,即可解决问题.【详解】解:由x*(a*x)=14-得(a+1)x2+(a+1)x+14=0,依题意有a+1≠0,△=(a+1)2-(a+1)=0,解得,a=0,或a=-1(舍去).故答案为:0.【点睛】此题考查了新定义,一元二次方程的判别式,解题时首先正确理解新定义的运算法则得到关于x的方程,然后根据判别式和一元二次方程的定义得到关系式解决问题.15.-2【分析】根据一元二次方程的一次项系数的定义即可求解【详解】解:一元二次方程x2-2x+1=0一次项系数是:-2故答案为:-2【点睛】此题考查了一元二次方程的一般形式准确掌握一般式中的相关概念是解解析:-2【分析】根据一元二次方程的一次项系数的定义即可求解.【详解】解:一元二次方程x2-2x+1=0一次项系数是:-2.故答案为:-2.【点睛】此题考查了一元二次方程的一般形式,准确掌握一般式中的相关概念是解题的关键.16.-1或【分析】先根据题意列出关于x的方程整理为一般式再利用因式分解法求解即可【详解】解:根据题意得:3x2-6=x-2整理得:3x2-x-4=0∴(x+1)(3x-4)=0∴x+1=0或3x-4=0解析:-1或43【分析】 先根据题意列出关于x 的方程,整理为一般式,再利用因式分解法求解即可.【详解】解:根据题意,得:3x 2-6=x-2,整理,得:3x 2-x-4=0,∴(x+1)(3x-4)=0,∴x+1=0或3x-4=0, 解得1241,,3=-=x x ∴当x=-1或43时,二次式3x 2-6的值与x-2的值相等, 故答案为:-1或43 【点睛】本题主要考查解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.17.x2﹣5x ﹣7=0【分析】利用多项式乘多项式的法则展开再利用等式的性质进行移项合并进行计算【详解】(x +1)(x ﹣3)=3x +4x2﹣2x ﹣3=3x +4x2﹣5x ﹣7=0故答案是:x2﹣5x ﹣7=0解析:x 2﹣5x ﹣7=0 .【分析】利用多项式乘多项式的法则展开,再利用等式的性质进行移项、合并,进行计算.【详解】(x +1)(x ﹣3)=3x +4,x 2﹣2x ﹣3=3x +4,x 2﹣5x ﹣7=0.故答案是:x 2﹣5x ﹣7=0.【点睛】本题考查一元二次方程的变形,属于基础题型.18.【分析】利用因式分解法解一元二次方程提取公因式【详解】解:故答案是:【点睛】本题考查解一元二次方程解题的关键是掌握一元二次方程的解法 解析:114x =,22x =- 【分析】利用因式分解法解一元二次方程,提取公因式()2x +.【详解】解:()422x x x +=+()()4220x x x +-+=()()4120x x -+=114x =,22x =-. 故答案是:114x =,22x =-. 【点睛】 本题考查解一元二次方程,解题的关键是掌握一元二次方程的解法.19.-1【分析】利用根与系数的关系得到a+b=1ab=-1再根据异分母分式加减法法则进行计算代入求值【详解】∵是方程的两根∴a+b=1ab=-1∴===-1故答案为:-1【点睛】此题考查一元二次方程根与解析:-1【分析】利用根与系数的关系得到a+b=1,ab=-1,再根据异分母分式加减法法则进行计算代入求值.【详解】∵a ,b 是方程210x x --=的两根,∴a+b=1,ab=-1, ∴11a b+ =a b ab+ =11- =-1, 故答案为:-1.【点睛】此题考查一元二次方程根与系数的关系式,异分母分式的加减法计算法则.20.-5【分析】根据一元二次方程的一般形式解答【详解】解:方程的一次项是其系数是故答案是:【点睛】本题考查一元二次方程的一般式解题的关键是掌握一次项系数的定义解析:-5【分析】根据一元二次方程的一般形式解答.【详解】解:方程2350x x -=的一次项是5x -,其系数是5-.故答案是:5-.【点睛】本题考查一元二次方程的一般式,解题的关键是掌握一次项系数的定义.三、解答题21.(1)505x -;(2)19元.【分析】(1)销售量=原来销售量-下降销售量,据此列式即可;(2)设这种口罩的售价每袋提高x 元,根据销售量×每袋利润=总利润列出方程求解即可.【详解】(1)∵每袋售价提高1元时,日均销售量就减少5袋,∴每天销量减少5x 袋,∵售价为18元时,日均销售量为50袋,∴将这种口罩的售价每袋提高x 元,则日均销售量是:505x -.故答案为:505x -(2)设这种口罩的售价每袋提高x 元,根据题意得:(1812)(505)315x x +--=,化简得:2430x x -+=,解得:121,3x x ==,当11x =时,每袋售价是:18119+=(元);当23x =时,每袋售价是:18321+=(元);∵计划每袋售价大于12元但不超过20元,∴23x =舍去.∴当1x =时,每袋售价是19元.答:该商场每袋口罩的售价应定为19元.【点睛】本题考查一元二次方程的应用,关键是根据售价和销售量的关系,以利润做为等量关系列方程求解.22.(1)1215x x ==-,;(2)12132x x ==,;(3)1221x x ,=-=. 【分析】(1)利用配方法解方程即可;(2)利用公式法解方程即可;(3)方程整理后利用因式分解法解方程即可.【详解】(1)2450x x -=+,移项得:245x x +=,配方得:24454x x ++=+,即()229x +=,直接开平方得:23x +=±,∴1215x x ==-,;(2)22730x x -+=,∵2a =,7b =-,3c =, ()2247423250b ac =-=--⨯⨯=>,∴754x ±==, ∴12132x x ==,; (3)(1)(2)24x x x ++=+, 整理得:23224x x x ++=+,即220x x +-=,因式分解得:()()210x x +-=,∴20x +=或10x -=,∴1221x x ,=-=.【点睛】本题考查了解一元二次方程,解题的关键是会用配方法、公式法、因式分解法解方程. 23.(1)当每件衬衫降价5元时,每天可销售30件衬衫,商场获得的日盈利是1050元;(2)每件衬衫应降价20元【分析】(1)利用日销售量202=+⨯每件衬衫降低的价格,即可求出每天可销售衬衫的数量,利用日盈利额=销售每件衬衫的利润×日销售量,即可求出日盈利额;(2)设每件衬衫应降价x 元,则每天可销售()202x +件衬衫,根据日盈利额=销售每件衬衫的利润×日销售量,即可得出关于x 的一元二次方程,解之取其较大值即可得出结论.【详解】(1)根据题意得,降价后,可售出:205230+⨯=(件)∴()1605120301050--⨯=(元)∴当每件衬衫降价5元时,每天可销售30件衬衫,商场获得的日盈利是1050元; (2)设每件衬衫应降价x 元,则每天可销售()202x +件衬衫依题意,得:()()1601202021200x x --+=,∴2302000x x -+=解得:110x =,220x =∵要尽快清库∴20x∴每件衬衫应降价20元.【点睛】本题考查了一元二次方程、有理数混合运算的知识;解题的关键是熟练掌握一元二次方程的性质,从而完成求解.24.(1)1;(2)13-.【分析】(1)根据偶次方的非负性得到2(3)0x -,得到答案;(2)根据完全平方公式把原式变形,根据偶次方的非负性解答.【详解】解:(1)∵2(3)0x -≥,∴25(3)11x -+≥,∴多项式25(3)1x -+的最小值是1.故答案为:1;(2)24163x x -+()2443x x =-+ ()22244223x x =-+-+ 24(2)43x ⎡⎤=--+⎣⎦24(2)163x =--+24(2)13x =--∵2(2)0x -≥,∴24(2)1313x --≥-,∴多项式24163x x -+的最小值为13-.【点睛】本题考查的是配方法的应用,掌握完全平方公式、偶次方的非负性是解题的关键. 25.(1)(1)甲款每盒400元,乙款每盒320元;(2)40.【分析】(1)设甲款积木的进价为每盒x 元,乙款积木的进价为每盒y 元,列出二元一次方程组计算即可;(2)根据题意得出()()8040224405760m m -++⨯=,计算即可;【详解】(1)设甲款积木的进价为每盒x 元,乙款积木的进价为每盒y 元,则()()72048021.51202640x y x y +=⎧⎨++-=⎩, 解得:400320x y =⎧⎨=⎩.答:甲款积木的进价为每盒400元,乙款积木的进价为每盒320元.(2)由题可得:()()8040224405760m m -++⨯=,解得120m =,240m =,因为顾客能获取更多的优惠,所以40m =.【点睛】本题主要考查了一元二次方程的应用,结合二元一次方程组求解计算是解题的关键. 26.m =5.【分析】先根据根与系数的关系求得x 1+x 2=6、x 1x 2=m +1,再对x 12+x 22=24变形,然后将x 1+x 2=6、x 1x 2=m +1代入得到关于m 的方程,最后求解即可.【详解】解:∵x 1,x 2是关于x 的一元二次方程x 2-6x +m +1=0的两根,∴x 1+x 2=6,x 1x 2=m +1,∴x 12+x 22=(x 1+x 2)2-2x 1x 2=24,∴62-2(m +1)=24,解得:m=5.【点睛】本题主要考查了一元二次方程根与系数的关系和完全平方公式的应用,正确应用完全平方公式成为解答本题的关键.。

数学九年级上册《一元二次方程》单元测试题含答案

数学九年级上册《一元二次方程》单元测试题含答案

人教版数学九年级上学期《一元二次方程》单元测试(满分120分,考试用时120分钟)一.选择题(共10小题,满分30分,每小题3分)1.若(m+2)x|m|+mx﹣1=0是关于x的一元二次方程,则()A.m=±2B.m=2C.m=﹣2D.m≠±22.将一元二次方程2x2+7=9x化成一般式后,二次项系数和一次项系数分别为() A.2,9B.2,7C.2,﹣9D.2x2,﹣9x3.已知一元二次方程2x2+3x﹣b=0的一个根是1,则b=()A.3B.0C.1D.54.以x=为根的一元二次方程可能是()A.x2+bx+c=0B.x2+bx﹣c=0C.x2﹣bx+c=0D.x2﹣bx﹣c=0 5.用配方法解方程2x2﹣8x﹣3=0时,原方程可变形为()A.(x﹣2)2=﹣B.(x﹣2)2=C.(x+2)2=7D.(x﹣2)2=7 6.关于x的一元二次方程x2+(k﹣3)x+1﹣k=0根的情况,下列说法正确的是() A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定7.已知(x2+y2)(x2+y2﹣4)=5,则x2+y2的值为()A.1B.﹣1或5C.5D.1或﹣58.有一只鸡患了禽流感,经过两轮传染后共有625只鸡患了禽流感,每轮传染中平均一只鸡传染()只鸡.A.22B.24C.25D.269.已知P=m﹣1,Q=m2﹣m(m为任意实数),则P与Q的大小关系为() A.P>Q B.P=Q C.P<Q D.不能确定10.若整数a使得关于x的一元二次方程(a+2)x2+2ax+a﹣1=0有实数根,且关于x的不等式组有解且最多有6个整数解,则符合条件的整数a的个数为()A.3B.4C.5D.6二.填空题(共8小题,满分32分,每小题4分)11.下列方程中,①7x2+6=3x;②=7;③x2﹣x=0;④2x2﹣5y=0;⑤﹣x2=0中是一元二次方程的有.12.把一元二次方程x(x+1)=4(x﹣1)+2化为一般形式为.13.方程(2x﹣5)2=9的解是.14.若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2020的值为.15.关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,则a的取值范围是.16.五个完全相同的小长方形拼成如图所示的大长方形,大长方形的面积是135cm2,则以小长方形的宽为边长的正方形面积是cm2.17.已知一元二次方程2x2+bx+c=0的两个实数根为﹣1,3,则b+c=.18.如果关于x的一元二次方程ax2+bx+c=0有两个实数根,其中一个根为另一个根的,则称这样的方程为“半根方程”.例如方程x2﹣6x+8=0的根为的x1=2,x2=4,则x1=x2,则称方程x2﹣6x+8=0为“半根方程”.若方程ax2+bx+c=0是“半根方程”,且点P(a,b)是函数y=x图象上的一动点,则的值为.三.解答题(共8小题,满分58分)19.(8分)解下列一元二次方程:(1)x2﹣2x﹣1=0; (2)3x(2x+3)=4x+6.20.(6分)已知△ABC的三边长为a、b、c且关于x的方程a(1﹣x2)+2bx+c(1+x2)=0有两个相等的实数根,请判断△ABC的形状并加以说明.21.(6分)某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次,若进馆人次的月平均增长率相同.求进馆人次的月平均增长率.22.(6分)一个两位数的个位数字与十位数字的和为9,并且个位数字与十位数字的平方和为45,求这个两位数.23.(7分)关于x的一元二次方程x2+2mx+m2+m=0有两个不相等的实数根.(1)求m的取值范围.(2)设出x1、x2是方程的两根,且x12+x22=12,求m的值.24.(8分)2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有169人患新冠肺炎(假设每轮传染的人数相同).求:(1)每轮传染中平均每个人传染了几个人?(2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多少人患病?25.(8分)适逢中高考期间,某文具店平均每天可卖出30支2B铅笔,卖出1支铅笔的利润是1元,经调查发现,零售单价每降0.1元,每天可多卖出10支铅笔,为了使每天获取的利润更多,该文具店决定把零售单价下降x元(0<x<1).(1)当x为多少时,才能使该文具店每天卖2B铅笔获取的利润为40元?(2)该文具店每天卖2B铅笔获取的利润可以达到50元吗?如果能,请求出,如果不能,请说明理由.26.(9分)先阅读下面的内容,再解决问题:问题:对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax﹣3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使它与x2+2ax成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2ax﹣3a2=(x2+2ax+a2)﹣a2﹣3a2=(x+a)2﹣4a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a)像这样,先添一适当项,使式中出现完全平方式,再减去这项,使整个式子的值不变的方法称为“配方法”.利用“配方法”,解决下列问题:(1)分解因式:a2﹣8a+15=;(2)若△ABC的三边长是a,b,c,且满足a2+b2﹣14a﹣8b+65=0,c边的长为奇数,求△ABC的周长的最小值;(3)当x为何值时,多项式﹣2x2﹣4x+3有最大值?并求出这个最大值.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:∵(m+2)x|m|+mx﹣1=0是关于x的一元二次方程,∴|m|=2,且m+2≠0,解得:m=2,故选:B.2.解:2x2+7=9x化成一元二次方程一般形式是2x2﹣9x+7=0,则它的二次项系数是2,一次项系数是﹣9.故选:C.3.解:把x=1代入2x2+3x﹣b=0,得2+3﹣b=0.解得b=5.故选:D.4.解:由题意可知:二次项系数为1,一次项系数为﹣b,常数项为c,故选:C.5.解:∵2x2﹣8x﹣3=0,∴2x2﹣8x=3,则x2﹣4x=,∴x2﹣4x+4=+4,即(x﹣2)2=,故选:B.6.解:△=(k﹣3)2﹣4(1﹣k)=k2﹣6k+9﹣4+4k=k2﹣2k+5=(k﹣1)2+4,∴(k﹣1)2+4>0,即△>0,∴方程总有两个不相等的实数根.故选:A.7.解:设x2+y2=m,则由题意得:m(m﹣4)=5∴(m﹣5)(m+1)=0∴m=5或m=﹣1(舍)∴x2+y2=5故选:C.8.解:设每轮传染中平均一只鸡传染x只,则第一轮后有x+1知鸡感染,第二轮后有x(x+1)+x+1只鸡感染,由题意得:x(x+1)+x+1=625,即:x1=24,x2=﹣26(不符合题意舍去).故选:B.9.解:∵Q﹣P=m2﹣m﹣m+1=m2﹣m+1=(m﹣)2+≥>0∴Q>P,故选:C.10.解:∵整数a使得关于x的一元二次方程(a+2)x2+2ax+a﹣1=0有实数根,∴△=(2a)2﹣4(a+2)(a﹣1)≥0且a+2≠0,解得:a≤2且a≠﹣2,∵关于x的不等式组有解且最多有6个整数解,∴解不等式组得:a<x≤3,∴a可以为2,1,0,﹣1,﹣3,共5个,故选:C.二.填空题(共8小题,满分32分,每小题4分)11.解:①③⑤是一元二次方程,②是分式方程,④是二元二次方程,故答案为:①③⑤.12.解:x2+x=4x﹣4+2,x2﹣3x+2=0,故答案为:x2﹣3x+2=0.13.解:∵(2x﹣5)2=9,∴x=4或1,故答案为:x=4或114.解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=2023.故答案为:2023.15.解:∵方程ax2+3x﹣2=0是一元二次方程,∴a≠0,∵原方程有两个不相等的实数根,∴△=9+8a>0,解得:a,综上可知:a且a≠0,故答案为:a且a≠0.16.解:设小长方形的长为xcm,宽为xcm,根据题意得:(x+2×x)•x=135,解得:x=9或x=﹣9(舍去),则x=3.所以3×3=9(cm2).故答案为:9.17.解:根据题意得﹣1+3=﹣,﹣1×3=,解得b=﹣4,c=﹣6,所以b+c=﹣4﹣6=﹣10.故答案为﹣10.18.解:不妨设方程ax2+bx+c=0的两根分别为x1,x2,且x1=x2,∵点P(a,b)是函数y=x图象上的一动点,∴b=a,∴方程化为ax2+ax+c=0,∴由韦达定理得:x1+x2=x2=﹣=﹣.∴x2=﹣,x1x2===××6=.故答案为:.三.解答题(共8小题,满分58分)19.解:(1)∵x2﹣2x﹣1=0,∴x2﹣2x=1,则x2﹣2x+1=1+1,即(x﹣1)2=2,∴x﹣1=,∴x=1;(2)∵3x(2x+3)=2(2x+3),∴3x(2x+3)﹣2(2x+3)=0,∴(2x+3)(3x﹣2)=0,则2x+3=0或3x﹣2=0,解得x=﹣或x=.20.解:△ABC是直角三角形.方程整理得(c﹣a)x2+2bx+(c+a)=0;由方程有两个相等的实数根知△=4b2﹣4(c+a)(c﹣a)=4(b2﹣c2+a2)=0,∴b2+a2=c2,∴△ABC是直角三角形.21.解:设进馆人次的月平均增长率为x,则由题意得:128+128(1+x)+128(1+x)2=608化简得:4x2+12x﹣7=0∴(2x﹣1)(2x+7)=0,∴x=0.5=50%或x=﹣3.5(舍)答:进馆人次的月平均增长率为50%.22.解:设这个两位数的个位数字为x,则十位数字为(9﹣x),依题意,得:x2+(9﹣x)2=45,整理,得:x2﹣9x+18=0,解得:x1=3,x2=6.当x=3时,这个两位数为63;当x=6时,这个两位数为36.答:这个两位数为36或63.23.解:(1)根据题意得:△=(2m)2﹣4(m2+m)>0,解得:m<0.∴m的取值范围是m<0.(2)根据题意得:x1+x2=﹣2m,x1x2=m2+m,∵x12+x22=12,∴﹣2x1x2=12,∴(﹣2m)2﹣2(m2+m)=12,∴解得:m1=﹣2,m2=3(不合题意,舍去),∴m的值是﹣2.24.解:(1)设每轮传染中平均每个人传染了x个人,依题意,得:1+x+x(1+x)=169,解得:x1=12,x2=﹣14(不合题意,舍去).答:每轮传染中平均每个人传染了12个人.(2)169×(1+12)=2197(人).答:按照这样的传染速度,第三轮传染后,共有2197人患病.25.解:(2)根据题意得:(1﹣x)(100x+30)=40,整理得:10x2﹣7x+1=0,解得:x1=0.2,x2=0.5.答:当x为0.2或0.5时,才能使该文具店每天卖2B铅笔获取的利润为40元.(2)根据题意得:(1﹣x)(100x+30)=50,整理得:10x2﹣7x+2=0,△=b2﹣4ac=(﹣7)2﹣4×10×2=﹣31<0.答:该文具店每天卖2B铅笔获取的利润不可以达到50元.26.解:(1)a2﹣8a+15=(a2﹣8a+16)﹣1=(a﹣4)2﹣12=(a﹣3)(a﹣5);故答案为:(a﹣3)(a﹣5);(2)∵a2+b2﹣14a﹣8b+65=0,∴(a2﹣14a+49)+(b2﹣8b+16)=0,∴(a﹣7)2+(b﹣4)2=0,∴a﹣7=0,b﹣4=0,解得,a=7,b=4,∵△ABC的三边长是a,b,c,∴3<c<11,又∵c边的长为奇数,∴c=5,7,9,当a=7,b=4,c=5时,△ABC的周长最小,最小值是:7+4+5=16;(3)﹣2x2﹣4x+3,=﹣2(x2+2x+1﹣1)+3,=﹣2(x+1)2+5,∴当x=﹣1时,多项式﹣2x2﹣4x+3有最大值,最大值是5.。

新人教版初中数学九年级数学上册第一单元《一元二次方程》测试卷(含答案解析)(2)

一、选择题1.欧几里得在《几何原本》中,记载了用图解法解方程22x ax b +=的方法,类似地可以用折纸的方法求方程210x x +-=的一个正根,如图,裁一张边长为1的正方形的纸片ABCD ,先折出BC 的中点E ,再折出线段AE ,然后通过折叠使EB 落在线段EA 上,折出点B 的新位置F ,因而EF EB =,类似地,在AB 上折出点M 使AM AF =,表示方程210x x +-=的一个正根的线段是( )A .线段BMB .线段AMC .线段AED .线段EM2.方程22(1)110m x m x -++-=是关于x 的一元二次方程,则m 的取值范围是( ) A .m≠±l B .m≥-l 且m≠1 C .m≥-l D .m >-1且m≠1 3.用配方法解方程x 2﹣4x ﹣7=0,可变形为( )A .(x+2)2=3B .(x+2)2=11C .(x ﹣2)2=3D .(x ﹣2)2=114.已知一元二次方程2210x x --=的两个根分别是1x ,2x ,则2112x x x -+的值为( ). A .-1B .0C .2D .35.关于x 的一元二次方程()25410a x x ---=有实数根,则a 满足( ). A .5a ≠B .1a ≥且5a ≠C .1a ≥D .1a <且5a ≠6.由于疫情得到缓和,餐饮行业逐渐回暖,某地一家餐厅重新开张,开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元,若设每天的增长率为x ,则x 满足的方程是( ) A .5000(1+x )=6050 B .5000(1+2x )=6050 C .5000(1﹣x )2=6050D .5000(1+x )2=60507.若整数a 使得关于x 的一元二次方程()222310a x a x -++=有两个实数根,并且使得关于y 的分式 方程32133ay yy y -+=--有整数解,则符合条件的整数a 的个数为( ) A .2B .3C .4D .58.为促进消费,重庆市政府开展发放政府补贴消费的“消费券活动”,某超市的月销售额逐步增加;据统计4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元,若设5月、6月每月的增长率为x ,则可列方程为( ) A .()2001500x +=B .()2002001500x ++=C .()22001500+=xD .()20012500+=x9.《代数学》中记载,形如2833x x +=的方程,求正数解的几何方法是:“如图1,先构造一个面积为2x 的正方形,再以正方形的边长为一边向外构造四个面积为2x 的矩形,得到大正方形的面积为331649+=,则该方程的正数解为743-=.”小聪按此方法解关于x 的方程2100x x m ++=时,构造出如图2所示的图形,已知阴影部分的面积为50,则该方程的正数解为( ).A .6B .3532C .532D .53510.一元二次方程20x x -=的根是( ) A .10x =,21x = B .11x =,21x =- C .10x =,21x =- D .121x x == 11.关于x 的方程x 2﹣kx ﹣2=0的根的情况是( )A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .无法确定12.关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,那么m 的取值范围是( ) A .m≤14B .m≥14-且m≠2 C .m≤14-且m≠﹣2 D .m≥14-二、填空题13.对于实数m ,n ,定义一种运算“*”为:*m n mn n =+.如果关于x 的方程()**1x a x 4=-有两个相等的实数根,则a =_______.14.若关于x 的一元二次方程240x x k ++=有两个相等的实数根,则k =______.15.已知方程2230x x +-=的解是11x =,23x =-,则方程2(3)2(3)30x x +++-=的解是_____.16.若二次式236x -的值与2x -的值相等,则x 的值为_______. 17.方程230x -=的解为___________.18.一元二次方程(x +1)(x ﹣3)=3x +4化为一般形式可得_________.19.设a ,b 是方程220190x x +-=的两个实数根,则11a b+=_____. 20.某农场的粮食产量在两年内从增加3000t 到3630,t 则平均每年增产的百分率是______________.三、解答题21.已知,关于x 的一元二次方程2210x x m -+-=有两个不相等的实数根.求m 的取值范围.22.如图,ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 从A 沿AC 边向C 点以1cm/s 的速度移动,在C 点停止,点Q 从C 点开始沿CB 边向点B 以2cm/s 的速度移动,在B 点停止.(1)如果点P ,Q 分别从A 、C 同时出发,经过几秒钟,使28QPCScm =?(2)如果点P 从点A 先出发2s ,点Q 再从点C 出发,经过几秒钟后24QPCS cm =?(3)如果点P 、Q 分别从A 、C 同时出发,经过几秒钟后PQ =BQ ?23.已知关于x 的一元二次方程22210x k x k +++=()有两个不相等的实数根. (1)求k 的取值范围;(2)设方程的两个实数根分别为12,x x ,当1k =时,求2212x x +的值.24.回答下列问题. (12127(3)3- (2182|128-. (3)计算:102(3)(21)2--++.(4)解方程:2(1)90x +-=.25.手工课上,小明打算用一张周长为40cm 的长方形白纸做一张贺卡,白纸内的四周涂上宽为2cm 的彩色花边,小明想让中间白色部分的面积大于彩色花边的面积,但又不能确定能否办到.请同学们帮助小明判断他是否能办到,并说明理由. 26.解下列方程(1)2280x x +-=; (2)(2y +1)2-25=0; (3)24430t t --=;(4)2(m +3)=m 2-9 .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】设正方形的边长为1,AF =AM =x ,根据勾股定理即可求出答案. 【详解】解:设正方形的边长为1,AF =AM =x , 则BE =EF =12,AE =x+12, 在Rt △ABE 中, ∴AE 2=AB 2+BE 2, ∴(x +12)2=1+(12)2, ∴x 2+x -1=0,∴AM 的长为x 2+x -1=0的一个正根, 故选:B . 【点睛】本题考查一元二次方程,解题的关键是根据勾股定理列出方程,本题属于中等题型.2.D解析:D 【分析】根据一元二次方程的定义及二次根式有意义的条件求解可得. 【详解】∵方程22(1)10m x -+-=是关于x 的一元二次方程, ∴210m -≠, 解得1m ≠±,10m +≥, 解得:1m ≥-, ∴1m >-且1m ≠, 故选:D . 【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.3.D解析:D 【分析】方程常数项移到右边,两边加上4变形得到结果即可. 【详解】解:x 2﹣4x ﹣7=0, 移项得:247x x -=配方得:24474x x -+=+ ,即2()211x -= 故答案为:D . 【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.4.D解析:D 【分析】分别根据一元二次方程的根的意义和一元二次方程根与系数的关系分别得到21112210,2x x x x --=+=,变形代入求值即可得到答案.【详解】解:由题意得21112210,2x x x x --=+=,即21121x x -=,∴原式211122123x x x x =-++=+=. 故选:D . 【点睛】此题主要考查了一元二次方程的解的根与系数的关系,灵活运用根与系数的关系是解答此题的关键.5.B解析:B 【分析】由方程有实数根可知根的判别式b 2-4ac≥0,结合二次项的系数非零,可得出关于a 一元一次不等式组,解不等式组即可得出结论. 【详解】 解:由已知得:()()()25044510a a -≠⎧⎪⎨--⨯-⨯-≥⎪⎩, 解得:a≥1且a≠5. 故选:B . 【点睛】本题考查了根的判别式,解题的关键是得出关于a 的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,由根的判别式结合二次项系数非零得出不等式组是关键.6.D解析:D 【分析】根据开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元列方程即可得到结论. 【详解】解:设每天的增长率为x , 依题意,得:5000(1+x )2=6050. 故选:D . 【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7.B解析:B 【分析】对于关于x 的一元二次方程()2210a x -+=有两个实数根,利用判别式的意义得到a-2≠0且2a+3≥0且△=2-4(a-2)≥0,解不等式组得到整数a 为:-1,0,1,3,4,5;接着解分式方程得到y=61a -,而y≠3,则61a -≠3,解得a≠3,从而得到当a=-1,0,4时,分式方程有整数解,然后求符合条件的所有a 的个数. 【详解】解:∵整数a 使得关于x 的一元二次方程()2210a x -+=有两个实数根,∴a-2≠0且2a+3≥0且△=2-4(a-2)≥0, ∴31122a -≤≤且a≠2, ∴整数a 为:-1,0,1,3,4,5; 去分母得3-ay+3-y=-2y , 解得y=61a -, 而y≠3,则61a -≠3,解得a≠3, 当a=-1,0,4时,分式方程有整数解, ∴符合条件的所有a 的个数是3. 故选:B . 【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.8.C解析:C 【分析】根据“4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元”,可以列出相应的一元二次方程,本题得以解决. 【详解】 解:由题意可得, 200(1+x )2=500, 故选:C . 【点睛】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的方程,这是一道典型的增长率问题,是中考常考题.9.D解析:D 【分析】仿照题目中的做法可得空白部分小正方形的边长为52,先计算出大正方形的面积=阴影部分的面积+4个小正方形的面积,从而可得大正方形的边长,再用其减去两个空白正方形的边长即可. 【详解】解:如图2,先构造一个面积为2x 的正方形,再以正方形的边长为一边向外构造四个面积为52x 的矩形,得到大正方形的面积为255045025752⎛⎫+⨯=+= ⎪⎝⎭, ∴5252⨯=.故选:D . 【点睛】本题考查了一元二次方程的几何解法,读懂题意并数形结合是解题的关键.10.A解析:A 【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解. 【详解】 解:∵x 2-x=0, ∴x (x-1)=0, 则x=0或x-1=0, 解得:x 1=0,x 2=1,故选:A . 【点睛】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.11.C解析:C 【分析】根据一元二次方程根的判别式可得△=(﹣k )2﹣4×1×(﹣2)=k 2+8>0,即可得到答案. 【详解】解:△=(﹣k )2﹣4×1×(﹣2)=k 2+8. ∵k 2≥0,∴k 2+8>0,即△>0,∴该方程有两个不相等的实数根. 故选:C . 【点睛】本题考查一元二次方程根的判别式, 24b ac ∆=-,当0∆>时方程有两个不相等的实数根,当0∆=时方程有两个相等的实数根,当∆<0时方程没有实数根.12.B解析:B 【分析】关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,由于二次项系数有字母,要考虑二次项系数不为0,再由一元二次方程(m-2)x 2+3x-1=0有实数根,满足△≥0,取它们的公共部分即可. 【详解】关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根, m-2≠0, m≠2,△=9-4×(-1)×(m-2)≥0, m 1-4≥, 关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,m 的取值范围是m 1-4≥且m≠2. 故选:B . 【点睛】本题考查关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根的问题,关键掌握方程的定义,二次项系数不为0,含x 的最高次项的次数为2,而且是整式的方程,注意判别式使用条件,前提是一元二次方程,还要求一般形式.二、填空题13.0【分析】由于定义一种运算*为:m*n=mn+n 所以关于x 的方程x*(a*x )=变为(a+1)x2+(a+1)x+=0而此方程有两个相等的实数根所以根据判别式和一元二次方程的一般形式的定义可以得到关解析:0 【分析】由于定义一种运算“*”为:m*n=mn+n ,所以关于x 的方程x*(a*x )=14-变为(a+1)x 2+(a+1)x+14=0,而此方程有两个相等的实数根,所以根据判别式和一元二次方程的一般形式的定义可以得到关于a 的关系式,即可解决问题. 【详解】解:由x*(a*x )=14-得(a+1)x 2+(a+1)x+14=0,依题意有a+1≠0, △=(a+1)2-(a+1)=0, 解得,a=0,或a=-1(舍去). 故答案为:0. 【点睛】此题考查了新定义,一元二次方程的判别式,解题时首先正确理解新定义的运算法则得到关于x 的方程,然后根据判别式和一元二次方程的定义得到关系式解决问题.14.4【分析】根据一元二次方程根的判别式可直接进行求解【详解】解:∵关于的一元二次方程有两个相等的实数根∴解得:;故答案为:4【点睛】本题主要考查一元二次方程根的判别式熟练掌握一元二次方程根的判别式是解解析:4 【分析】根据一元二次方程根的判别式可直接进行求解. 【详解】解:∵关于x 的一元二次方程240x x k ++=有两个相等的实数根, ∴224440b ac k ∆=-=-=, 解得:4k =; 故答案为:4. 【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.15.【分析】把(x+3)看成一个整体另一个方程和已知方程的结构形式完全相同所以x+3与已知方程的解也相同根据此题意解题即可【详解】解:∵是已知方程的解由于另一个方程与已知方程的形式完全相同∴x+3=1或解析:122,6x x =-=-【分析】把(x+3)看成一个整体,另一个方程和已知方程的结构形式完全相同,所以x+3与已知方程的解也相同,根据此题意解题即可. 【详解】解:∵ 1213x x ==-,是已知方程2230x x +-=的解,由于另一个方程()()232330x x +++-=与已知方程的形式完全相同, ∴x+3=1或x+3=﹣3, 解得:1226x x =-=-,. 故答案为:1226x x =-=-,. 【点睛】本题考查了解一元二次方程,能根据方程的解得出x+3=1和x+3=-3是解此题的关键,此题属于换元法解方程.16.-1或【分析】先根据题意列出关于x 的方程整理为一般式再利用因式分解法求解即可【详解】解:根据题意得:3x2-6=x-2整理得:3x2-x-4=0∴(x+1)(3x-4)=0∴x+1=0或3x-4=0解析:-1或43【分析】先根据题意列出关于x 的方程,整理为一般式,再利用因式分解法求解即可. 【详解】解:根据题意,得:3x 2-6=x-2, 整理,得:3x 2-x-4=0, ∴(x+1)(3x-4)=0, ∴x+1=0或3x-4=0, 解得1241,,3=-=x x ∴当x=-1或43时,二次式3x 2-6的值与x-2的值相等, 故答案为:-1或43【点睛】本题主要考查解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.17.【分析】先移项然后利用数的开方直接求出即可【详解】移项得解得:故答案为:【点睛】此题主要考查了直接开平方法解一元二次方程用直接开方法求一元二次方程的解要仔细观察方程的特点解析:x =【分析】先移项,然后利用数的开方直接求出即可.【详解】移项得,23x =,解得:x =故答案为:x =【点睛】此题主要考查了直接开平方法解一元二次方程,用直接开方法求一元二次方程的解,要仔细观察方程的特点.18.x2﹣5x ﹣7=0【分析】利用多项式乘多项式的法则展开再利用等式的性质进行移项合并进行计算【详解】(x +1)(x ﹣3)=3x +4x2﹣2x ﹣3=3x +4x2﹣5x ﹣7=0故答案是:x2﹣5x ﹣7=0解析:x 2﹣5x ﹣7=0 .【分析】利用多项式乘多项式的法则展开,再利用等式的性质进行移项、合并,进行计算.【详解】(x +1)(x ﹣3)=3x +4,x 2﹣2x ﹣3=3x +4,x 2﹣5x ﹣7=0.故答案是:x 2﹣5x ﹣7=0.【点睛】本题考查一元二次方程的变形,属于基础题型.19.【分析】根据根与系数关系即可得出a+b 和ab 的值再对代数式变形整体代入即可【详解】解:∵ab 是方程的两个实数根∴∴故答案为:【点睛】本题考查根与系数关系熟记根与系数关系的公式是解题关键 解析:22019【分析】根据根与系数关系即可得出a+b 和ab 的值,再对代数式11a b +变形整体代入即可. 【详解】解:∵a ,b 是方程2220190+-=x x 的两个实数根,∴2a b +=-,2019ab =-, ∴112220192019a b a b ab +-+===-.故答案为:2 2019.【点睛】本题考查根与系数关系.熟记根与系数关系的公式是解题关键.20.【分析】此题是平均增长率问题一般用增长后的量=增长前的量×(1+增长率)参照本题如果设平均每年增产的百分率为x根据粮食产量在两年内从3000吨增加到3630吨即可得出方程求解【详解】解:设平均每年增解析:10%【分析】此题是平均增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设平均每年增产的百分率为x,根据“粮食产量在两年内从3000吨增加到3630吨”,即可得出方程求解.【详解】解:设平均每年增产的百分率为x;第一年粮食的产量为:3000(1+x);第二年粮食的产量为:3000(1+x)(1+x)=3000(1+x)2;依题意,可列方程:3000(1+x)2=3630;解得:x=-2.1(舍去)或x=0.1=10%故答案为:10%.【点睛】本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.三、解答题21.m<2.【分析】根据方程有两个不相等的实数根列得4-4(m-1)>0,求解即可.【详解】∵方程有两个不相等的实数根,∴4-4(m-1)>0,解得m<2.【点睛】此题考查一元二次方程根的判别式:当∆>0时,方程有两个不相等的实数根;当∆=0时,方程有两个相等的实数根;当∆<0时,方程没有实数根,熟记根的判别式是解题的关键.22.(1)2或4;(2)2;(3)10-+【分析】本题可设P出发x秒后,QPCS符合已知条件:在(1)中,=AP xcm ,()=6PC x cm -,2QC xcm =,根据题意列方程求解即可; 在(2)中,=AP xcm ,()=6PC x cm -,()22QC x cm =-,进而可列出方程,求出答案;在(3)中,()=6PC x cm -,2QC xcm =,()=82BQ x cm -,利用勾股定理和PQ BQ =列出方程,即可求出答案.【详解】(1)P 、Q 同时出发,经过x 秒钟,28QPC Scm =, 由题意得:()16282x x -⋅= ∴2680x x -+=,解得:12x =,24x =.经2秒点P 到离A 点1×2=2cm 处,点Q 离C 点2×2=4cm 处,经4秒点P 到离A 点1×4=4cm 处,点Q 到离C 点2×4=8cm 处,经验证,它们都符合要求.答:P 、Q 同时出发,经过2秒或4秒,28QPC Scm =. (2)设P 出发t 秒时24QPC S cm =,则Q 运动的时间为()2t -秒,由题意得: ()()162242t t -⋅-=, ∴28160t t -+=,解得:124t t ==.因此经4秒点P 离A 点1×4=4cm ,点Q 离C 点2×(4﹣2)=4cm ,符合题意. 答:P 先出发2秒,Q 再从C 出发,经过2秒后24QPC S cm =.(3)设经过x 秒钟后PQ =BQ ,则()=6PC x cm -,2QC xcm =,()=82BQ x cm -, ()()()2226282x x x -+=-,解得:110x =-+210x =--答:经过10-+PQ =BQ .【点睛】此题考查了一元二次方程的实际运用,解题的关键是弄清图形与实际问题的关系,另外,还要注意解的合理性,从而确定取舍.23.(1)14k >-;(2)7 【分析】(1)根据一元二次方程根的判别式可直接进行求解;(2)根据一元二次方程根与系数的关系可求解.【详解】(1)∵一元二次方程有两个不相等的实数根,∴()2221410k k +-⨯⨯>, 解得14k >-; (2)当1k =时,原方程为2310x x ++=,∵1x ,2x 是方程的根,∴123x x +=-,121=x x ,∴()22212121227x x x x x x +=+-=. 【点睛】本题主要考查一元二次方程根的判别式及韦达定理,熟练掌握一元二次方程根的判别式及韦达定理是解题的关键.24.(13;(2)12+;(3)4;(4)12x =,24x =-. 【分析】(1)利用用二次根式的性质化成最简二次根式,再合并同类二次根式即可;(2)根据二次根式的乘除法则以及绝对值的性质计算,再合并同类二次根式即可; (3)根据零指数幂,负整数指数幂以及完全平方公式计算,再合并同类二次根式即可; (4)移项,利用直接开平方法即可求解.【详解】(133=+3=; (2|11)=-1=1=; (3)102(1)-++121=+-4=-(4)2(1)90x +-=,移项得:2(1)9x +=,∴13x +=或13x +=-,12x =,24x =-.【点睛】本题考查了解一元二次方程-直接开平方法,二次根式的混合运算,掌握运算法则是解答本题的关键.25.不能办到,见解析【分析】设中间部分的面积为:S 求出S 与x 的关系式,即关于中间部分的面积公式,并求出该二次函数的最大值,即中间部分的最大值,与花边部分的面积相比较,若大于则能做到,小于则做不到.【详解】答:不能办到.理由:设纸的一边长为cm x则另一边为(20)cm x -.依题意得:彩色花边面积为:2222(204)64x x ⨯⨯+⨯⨯--=中间白色部分面积为:22(4)(16)2064(10)36S x x x x x =--=-+-=--+ 416x <<,当10x =时,白色部分面积最大为36.3664<,∴小明不能办到.【点睛】本题主要考查一元二次方程的应用,关键在于理解清楚题意找出等量关系,即:花边部分的面积=总面积-中间部分的面积;已知花边部分的面积,而中间部分的面积又不定,只需求出中间部分面积的最值与其比较即可.26.(1)x 1=-4,x 2=2;(2)y 1=2,y 2=-3;(3)t 1=32,t 2=12-;(4)m 1=-3,m 2=5【分析】(1)根据因式分解法即可求解;(2)可以变形为:(2y +1)2=25,直接开方求解(3)常数项移到右边,两边加上一次项系数一半的平方,开方即可求出解;(4)先移项,使方程右边为零,然后将方程左边进行因式分解,使分解后的两个一次因式分别为零,即可解答.【详解】(1)x2+2x-8=0,(x+4)(x-2)=0,则x+4=0或x-2=0,解得x=-4或x=2 (2) (2y+1)2-25=0;(2y+1)2=25,∴2y+1=±5,∴y1=2,y2=-3;(3)24430t t--=;4t2−4t=3,4t2−4t+1=3+1,(2t−1)2=4,∴2t−1=±2,∴t1=32 ,t2=12-(4)2(m+3)=m2-92(m+3)-(m+3)(m-3)=0(m+3)(2-m+3)=0∴m+3=0或5−m=0,∴m1=-3,m2=5.【点睛】此题考查解一元二次方程-直接开平方法,解一元二次方程-配方法,解一元二次方程-因式分解法,解题关键在于掌握运算法则.。

新人教版初中数学九年级数学上册第一单元《一元二次方程》检测(包含答案解析)

一、选择题1.据网络统计,某品牌手机2020年一月份销售量为400万部,二月份、三月份销售量连续增长,三月份销售量达到900万部,求二月份、三月份销售量的月平均增长率?若设月平均增长率为x ,根据题意列方程为( ).A .()40012900x +=B .()40021900x ⨯+=C .()24001900x +=D .()()240040014001900x x ++++= 2.用配方法解方程x 2﹣6x ﹣3=0,此方程可变形为( ) A .(x ﹣3)2=3B .(x ﹣3)2=6C .(x+3)2=12D .(x ﹣3)2=12 3.一元二次方程2610x x +-=配方后可变形为( ) A .()2310x += B .()238x += C .()2310x -= D .()238x -= 4.若x=0是关于x 的一元二次方程(a+2)x 2- a-2x+a 2+a-6=0的一个根,则a 的值是( )A .a ≠2B .a=2C .a=-3D .a=-3或a=2 5.下列一元二次方程中,没有实数根的是( ) A .(2)(2)0x x -+= B .220x -=C .2(1)0x -=D .2(1)20x ++= 6.设m 、n 是一元二次方程2430x x -+=的两个根,则23m m n -+=( ) A .1- B .1 C .17- D .177.新冠肺炎是一种传染性极强的疾病,如果有一人患病,经过两轮传染后有81人患病,设每轮传染中平均一个人传染了x 个人,下列列式正确是( )A .(1)81x x x ++=B .2181x x ++=C .1(1)81x x x +++=D .(1)81x x +=8.如图,在矩形ABCD 中,AB =a (a <2),BC =2.以点D 为圆心,CD 的长为半径画弧,交AD 于点E ,交BD 于点F .下列哪条线段的长度是方程2240x ax +-=的一个根( )A .线段AE 的长B .线段BF 的长C .线段BD 的长D .线段DF 的长 9.下列关于一元二次方程23210x x ++=的根的情况判断正确的是( )A .有一个实数根B .有两个相等的实数根C .没有实数根D .有两个不相等的实数根 10.若方程()200++=≠ax bx c a 中,,,a b c 满足420a b c ++=和420a b c -+=,则方程的根是( )A .1,0B .1,0-C .1,1-D .2,2- 11.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) A .290x +=B .24410x x -+=C .210x x ++=D .210x x +-= 12.已知a 、b 、m 、n 为互不相等的实数,且(a +m )( a +n )=2,(b +m )( b +n )=2,则ab ﹣mn的值为( )A .4B .1C .﹣2D .﹣1 二、填空题13.已知方程2230x x +-=的解是11x =,23x =-,则方程2(3)2(3)30x x +++-=的解是_____.14.若二次式236x -的值与2x -的值相等,则x 的值为_______.15.方程230x -=的解为___________.16.用配方法解方程x 2+4x+1=0,则方程可变形为(x+2)2=_____.17.如图,要设计一幅宽20cm ,长30cm 的图案,其中有两横彩条、一竖彩条,横、竖彩条的宽度比为1:3,如果要使彩条所占面积是图案面积的19%,竖彩条的宽度为________.18.一元二次方程22(1)210a x x a +++-=,有一个根为零,则a 的值为________. 19.当x=______时,−4x 2−4x+1有最大值.20.关于x 的一元二次方程有两个根0和3,写出这个一元二次方程的一个一般式为______.参考答案三、解答题21.在国家的调控下.某市商品房成交价由今年8月份的50000元2/m 下降到10月份的40500元2/m .(1)同8~9两月平均每月降价的百分率是多少?(2)如果房价继续回落,按此降价的百分率,你预测到12月份该市的商品房成交均价是否会跌破30000元/2m ?请说明理由.22.解方程:(1)26160x x +-=.(2)22430x x --=.23.(1)()2120x --=;(2)21212t t += (3)()22x x x -=-(4)23520.x x --=24.某公司一月份营业额为10万元,若二、三月份增长率相同,到三月份时,营业额达到12.1万元.求二、三月份的平均增长率.25.先化简,再求值:(1﹣1a )21a a -,其中a 满足方程a 2﹣a ﹣2=0. 26.用一块边长为70cm 的正方形薄钢片制作一个长方体盒子.(1)如果要做成一个没有盖的长方体盒子,可先在薄钢片的四个角上截去四个相同的小正方形(如图①),然后把四边折合起来(如图②).当做成的盒子的底面积为2900cm 时,求该盒子的容积;(2)如果要做成一个有盖的长方体盒子,制作方案要求同时符合下列两个条件: ①必须在薄钢片的四个角上截去一个四边形(如图③阴影部分),②沿虚线折合后薄钢片即无空隙又不重叠地围成各盒面,求当底面积为2800cm 时,该盒子的高.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】设月平均增长率为x ,根据三月及五月的销售量,即可得出关于x 的一元二次方程,此题得解.【详解】解:设月平均增长率为x ,根据题意得:400(1+x )2=900.故选:C .【点睛】本题考查了一元二次方程中增长率的知识.增长前的量×(1+年平均增长率)年数=增长后的量.2.D解析:D【分析】先移项,再把方程两边同时加上一次项系数一半的平方,最后配方即可得新答案.【详解】由原方程移项得:x2﹣6x=3,方程两边同时加上一次项系数一半的平方得:x2﹣6x+9=12,配方得;(x﹣3)2=12.故选:D.【点睛】此题主要考查配方法的运用,配方法的一般步骤为:移项、二次项系数化为1、两边同时加上一次项系数一半的平方、配方完成;熟练掌握配方法的步骤并熟记完全平方公式是解题关键.3.A解析:A【分析】方程常数项移到右边,两边加上一次项系数一半的平方即可得到结果.【详解】解:∵x2+6x-1=0,∴x2+6x=1,∴x2+6x+9=10,∴(x+3)²=10,故选:A.【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.4.B解析:B【分析】将x=0代入方程中,可得关于a的一元二次方程方程,然后解方程即可,注意a≥2这一隐含条件.【详解】解:将x=0代入(a+2)x2- 2+a-6=0中,得: a2+a-6=0,解得:a1=﹣3,a2=2,∵a+2≠0且a﹣2≥0,即a≥2,∴a=2,故选:B .【点睛】本题考查一元二次方程方程的解、解一元二次方程、二次根式有意义的条件,理解方程的解的意义,熟练掌握一元二次方程的解法是解答的关键,注意隐含条件a≥0.5.D解析:D【分析】分别利用因式分解法和直接开平方法解一元二次方程、一元二次方程的根的判别式即可得.【详解】A 、由因式分解法得:122,2x x ==-,此项不符题意;B 、由直接开平方法得:120x x ==,此项不符题意;C 、由直接开平方法得:121x x ==,此项不符题意;D 、方程2(1)20x ++=可变形为2230x x ++=,此方程的根的判别式2241380∆=-⨯⨯=-<,则此方程没有实数根,此项符合题意; 故选:D .【点睛】本题考查了解一元二次方程,熟练掌握各解法是解题关键.6.B解析:B【分析】根据一元二次方程的根的定义、根与系数的关系即可得.【详解】由一元二次方程的根的定义得:2430m m -+=,即243m m -=-, 由一元二次方程的根与系数的关系得:441m n -+=-=, 则2234m m n m m m n -+=-++, ()()24m m m n =-++,34=-+,1=,故选:B .【点睛】本题考查了一元二次方程的根的定义、根与系数的关系,熟练掌握一元二次方程的根与系数的关系是解题关键.7.C解析:C平均一人传染了x 人,根据有一人患病,第一轮有(x+1)人患病,第二轮共有x+1+(x+1)x 人,即81人患病,由此列方程求解.【详解】解:设每轮传染中平均一个人传染了x 个人,根据题意得,x+1+(x+1)x=81故选:C .【点睛】本题考查了一元二次方程的应用,关键是得到两轮传染数量关系,从而可列方程求解. 8.B解析:B【分析】根据勾股定理求出BF ,利用求根公式解方程,比较即可.【详解】解:∵四边形ABCD 是矩形∴CD=AB=a在Rt △BCD 中,由勾股定理得,BD =∴a ,解方程2240x ax +-=得22x a a -=±=- ∴线段BF 的长是方程2240x ax +-=的一个根.故选:B .【点睛】本题考查的是勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.9.C解析:C【分析】根据方程的系数结合根的判别式,可得出△=-8<0,进而可得出方程23210x x ++=没有实数根.【详解】解:∵△=22-4×1×3=-8<0,∴方程23210x x ++=没有实数根.故选:C .【点睛】本题考查了根的判别式,牢记“当△<0时,方程无实数根”是解题的关键.10.D【分析】联立420a b c ++=和420a b c -+=,前式减后式,可得0b =,前式加后式,可得4c a =-,将a 、c 代入原方程计算求出方程的根.【详解】∵根据题意可得:420420a b c a b c ++=⎧⎨-+=⎩①②, ①-②=40b =,得0b =,①+②=820a c +=,∴解得:0b =,4c a =-.将a 、b 、c 代入原方程()200++=≠ax bx c a 可得, ∵240ax bx a +-=,240ax a -=24ax a =∴2x =±故选:D .【点睛】本题考查解一元二次方程,联立关于a 、b 、c 的方程组,由方程组推出a 、b 、c 的数量关系是解题关键.11.D解析:D【分析】分别求出每个方程的根的判别式即可得到方程的根的情况.【详解】A 选项:2049360∆=-⨯=-<,∴该方程没有实数根,故A 错误;B 选项:()244410∆=--⨯⨯=,∴该方程有两个相等的实数根,故B 错误; C 选项:2141130∆=-⨯⨯=-<,∴该方程没有实数根,故C 错误;D 选项:()2141150∆=-⨯⨯-=>,∴方程有两个不相等的实数根,故D 正确; 故选:D.【点睛】此题考查一元二次方程的根的情况,正确求根的判别式的值,掌握一元二次方程的根的三种情况是解题的关键.12.C解析:C【分析】先把已知条件变形得到a 2+ (m +n ) a +mn ﹣2=0,b 2+( m +n ) b +mn ﹣2=0,则可把a 、b 看作方程x 2+( m +n ) x +mn ﹣2=0的两实数根,利用根与系数的关系得到ab =mn ﹣2,从而得到ab ﹣mn 的值.【详解】解:∵(a +m )( a +n )=2,(b +m )( b +n )=2,∴a 2+( m +n )a +mn ﹣2=0,b 2+( m +n )b +mn ﹣2=0,而a 、b 、m 、n 为互不相等的实数,∴可以把a 、b 看作方程x 2+(m +n )x +mn ﹣2=0的两个实数根,∴ab =mn ﹣2,∴ab ﹣mn =﹣2.故选:C .【点睛】本题考查一元二次方程根与系数的关系及整式的乘法,理解代数思想,把“a 、b 看作方程x 2+(m +n )x +mn ﹣2=0的两实数根”是解题关键.二、填空题13.【分析】把(x+3)看成一个整体另一个方程和已知方程的结构形式完全相同所以x+3与已知方程的解也相同根据此题意解题即可【详解】解:∵是已知方程的解由于另一个方程与已知方程的形式完全相同∴x+3=1或解析:122,6x x =-=-【分析】把(x+3)看成一个整体,另一个方程和已知方程的结构形式完全相同,所以x+3与已知方程的解也相同,根据此题意解题即可.【详解】解:∵ 1213x x ==-,是已知方程2230x x +-=的解,由于另一个方程()()232330x x +++-=与已知方程的形式完全相同,∴x+3=1或x+3=﹣3,解得:1226x x =-=-,.故答案为:1226x x =-=-,.【点睛】本题考查了解一元二次方程,能根据方程的解得出x+3=1和x+3=-3是解此题的关键,此题属于换元法解方程. 14.-1或【分析】先根据题意列出关于x 的方程整理为一般式再利用因式分解法求解即可【详解】解:根据题意得:3x2-6=x-2整理得:3x2-x-4=0∴(x+1)(3x-4)=0∴x+1=0或3x-4=0解析:-1或43【分析】先根据题意列出关于x 的方程,整理为一般式,再利用因式分解法求解即可.【详解】解:根据题意,得:3x 2-6=x-2,整理,得:3x 2-x-4=0,∴(x+1)(3x-4)=0,∴x+1=0或3x-4=0, 解得1241,,3=-=x x ∴当x=-1或43时,二次式3x 2-6的值与x-2的值相等, 故答案为:-1或43【点睛】 本题主要考查解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.15.【分析】先移项然后利用数的开方直接求出即可【详解】移项得解得:故答案为:【点睛】此题主要考查了直接开平方法解一元二次方程用直接开方法求一元二次方程的解要仔细观察方程的特点解析:x =【分析】先移项,然后利用数的开方直接求出即可.【详解】移项得,23x =,解得:x =故答案为:x =【点睛】此题主要考查了直接开平方法解一元二次方程,用直接开方法求一元二次方程的解,要仔细观察方程的特点.16.3【分析】先移项再两边配上4写成完全平方公式即可【详解】解:∵∴即故答案为:3【点睛】本题考查了用配方法解一元二次方程掌握用配方法解一元二次方程的步骤即可解析:3【分析】先移项,再两边配上4,写成完全平方公式即可.【详解】解:∵241x x +=-,∴24414x+=,x x++=-+,即()223故答案为:3.【点睛】本题考查了用配方法解一元二次方程,掌握用配方法解一元二次方程的步骤即可.17.3cm【分析】设横彩条的宽度是xcm竖彩条的宽度是3xcm根据如果要使彩条所占面积是图案面积的19可列方程求解【详解】解:设横彩条的宽度是xcm 竖彩条的宽度是3xcm则(30-3x)(20-2x)=解析:3cm【分析】设横彩条的宽度是xcm,竖彩条的宽度是3xcm,根据“如果要使彩条所占面积是图案面积的19%”,可列方程求解.【详解】解:设横彩条的宽度是xcm,竖彩条的宽度是3xcm,则(30-3x)(20-2x)=20×30×(1-19%),解得x1=1,x2=19(舍去).所以3x=3.答:竖彩条的宽度是3cm.故答案为:3cm【点睛】本题考查一元二次方程的应用,解题的关键是理解题意,学会正确寻找等量关系,构建方程解决问题.18.1【分析】根据一元二次方程的解的定义把x=0代入(a+1)x2+2x+a2-1=0再解关于a的方程然后利用一元二次方程的定义确定a的值【详解】解:把x=0代入(a+1)x2+2x+a2-1=0得a2解析:1【分析】根据一元二次方程的解的定义,把x=0代入(a+1)x2+2x+a2-1=0,再解关于a的方程,然后利用一元二次方程的定义确定a的值.【详解】解:把x=0代入(a+1)x2+2x+a2-1=0得a2-1=0,解得a=1或a=-1,而a+1≠0,所以a的值为1.故答案为:1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.19.【分析】先根据完全平方公式将原式配方进而利用非负数的性质求出即可【详解】解:∵-4x2-4x+1=-(4x2+4x-1)=-(2x+1)2+2-(2x+1)2≤0∴当x=-时4x2-4x+1有最大值 解析:12- 【分析】先根据完全平方公式将原式配方,进而利用非负数的性质求出即可.【详解】解:∵-4x 2-4x+1=-(4x 2+4x-1)=-(2x+1)2+2,-(2x+1)2≤0,∴当x=-12时,4x 2-4x+1有最大值是2. 故答案为:-12. 【点睛】此题主要考查了配方法的应用以及非负数的性质,正确配方得出是解题关键. 20.【分析】根据方程的解的定义可以得到方程【详解】解:根据题意知方程符合题意即:故答案是:【点睛】本题主要考查了一元二次方程的解的定义熟悉相关性质是解题的关键解析:230x x -=【分析】根据方程的解的定义可以得到方程-=(3)0x x .【详解】解:根据题意,知方程-=(3)0x x 符合题意,即:230x x -=.故答案是:230x x -=.【点睛】本题主要考查了一元二次方程的解的定义,熟悉相关性质是解题的关键.三、解答题21.(1)8、9两月平均每月降价的百分率是10%;(2)12月份该市的商品房成交均价不会跌破30000元2/m ,见解析【分析】(1)设8、9两月平均每月降价的百分率是x ,那么9月份的房价为50000(1-x ),10月份的房价为50000(1-x )2,然后根据10月份的40500元/m 2即可列出方程解决问题; (2)根据(1)的结果可以计算出今年12月份商品房成交均价,然后和30000元/m 2进行比较即可作出判断.【详解】解:(1)设这两月平均每月降价的百分率是x ,根据题意得:()250000140500x -=解得:1210% 1.9x x ==,(不合题意,舍去)答:8、9两月平均每月降价的百分率是10%(2)不会跌破30000元2/m . ()22405001405000.93280530000x -=⨯=>∴12月份该市的商品房成交均价不会跌破30000元2/m【点睛】此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.22.(1)18x =-,22x =;(2)1x =,2x =. 【分析】(1)运用因式分解法求解即可;(2)运用公式法求解即可.【详解】解:(1)26160x x +-= ()()820x x +-=解得18x =-,22x =.(2)22430x x --=,∵2a =,4b =-,3c =-,∴224(4)42(3)162440b ac -=--⨯⨯-=+=,x ===∴1x =,2x =. 【点睛】本题考查了解一元二次方程,在解答中注意计算的正确性.23.(1)1211==x x 2)1222t t =-=-3)1221x x ==,(4)12123x x ==-,.【分析】(1)利用直接开平方法求解即可;(2)利用配方法求解即可;(3)方程整理后,利用因式分解法求出解即可;(4)利用因式分解法解方程.解:(1)()212x -=,x-1=,11x x -=-=,1211x x ∴==(2)242t t +=,()226t ∴+=2t ∴+=1222t t ∴=-=-(3)()2(2)0x x x ---=,() 1)20(x x ∴--=122,1x x ∴==(4)23520.x x --=()2310()x x -+=1212,3x x ∴==-. 【点睛】本题考查了解一元二次方程-因式分解法,配方法,以及直接开平方法,熟练掌握各种解法是解题的关键.24.这两个月营业额的平均增长率是10%【分析】用增长后的量=增长前的量×(1+增长率),即可表示出三月份的营业额,根据三月份营业额达到12.1万元,即可列方程求解.【详解】解:设这两个月营业额的平均增长率是x ,由题意可得:10(1+x )2=12.1,解得x 1=0.1;x 2=﹣2.1(不合题意舍去).答:这两个月营业额的平均增长率是10%.【点睛】此题主要考查了求平均变化率的问题.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .25.11a +,13. 【分析】 先根据分式的基本性质化简,再求解关于a 的一元二次方程,代入求解即可;解:原式=()()11111a a a a a a -=++-, 解方程a 2﹣a ﹣2=0得,a 1=2,a 2=﹣1,当a =2时,原式=11=2+13, 当a =﹣1时,分式无意义, 则分式的值为13. 【点睛】本题主要考查了分式化简求值,与一元二次方程的求解,准确分析计算是解题的关键. 26.(1)18000cm 3;(2)15cm【分析】(1)根据图中给出的信息,设四个相同的小正方形边长为x ,先表示出盒子的正方形底面的边长,然后根据底面积=900即可得到方程,求解即可;(2)该盒子的高为y ,根据底面积为800列出方程,解之即可.【详解】解:(1)设四个相同的小正方形边长为x ,由题意可得:(70-2x )2=900,解得:x 1=20,x 2=50(舍),∴该盒子的容积为900×20=18000cm 3;(2)设该盒子的高为y , 根据题意得:()7027028002y y -⨯-=, 解得:y 1=15,y 2=55(舍), 因此当底面积是800平方厘米时,盒子的高是15厘米.【点睛】本题主要考查了一元二次方程的实际运用,只要搞清楚盒子底面各边的长和盒子的高的关系即可作出正确解答.。

新人教版初中数学九年级数学上册第一单元《一元二次方程》测试卷(包含答案解析)(1)

一、选择题1.用配方法解方程x 2﹣4x ﹣7=0,可变形为( )A .(x+2)2=3B .(x+2)2=11C .(x ﹣2)2=3D .(x ﹣2)2=11 2.某超市今年1月份的营业额为50万元,已知2月至3月营业额的月增长率是1月至2月营业额的月增长率的2倍,3月份的营业额是66万元,设该超市1月至2月营业额的月增长率为x ,根据题意,可列出方程( )A .()50166x +=B .()250166x +=C .()2501266x +=D .()()5011266x x ++=3.关于x 的一元二次方程()25410a x x ---=有实数根,则a 满足( ). A .5a ≠ B .1a ≥且5a ≠ C .1a ≥ D .1a <且5a ≠ 4.若关于x 的一元二次方程2(2)210m x x --+=有实数根,则m 的取值范围是( ) A .3m <B .3mC .3m <且2m ≠D .3m 且2m ≠ 5.若m 是方程220x x c --=的一个根,设2(1)p m =-,2q c =+,则p 与q 的大小关系为( )A .p <qB .p =qC .p >qD .与c 的取值有关 6.某小区2018年屋顶绿化面积为22000m ,计划2020年屋顶绿化面积要达到22880m .设该小区2018年至2020年屋顶绿化面积的年平均增长率为x ,则可列方程为( )A .2000(12)2880x +=B .2000(1)2880x ⨯+=C .220002000(1)2000(1)2880x x ++++=D .22000(1)2880x +=7.方程29180x x -+=的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为( )A .12B .15C .12或15D .188.某中学举办篮球友谊赛,参赛的每两个队之间只比赛1场,共比赛10场,则参加此次比赛的球队数是( )A .4B .5C .6D .79.已知2x 2+x ﹣1=0的两根为x 1、x 2,则x 1•x 2的值为( )A .1B .﹣1C .12D .12- 10.有1人患了流感,经过两轮传染后共有81人患流感,则每轮传染中平均一个人传染了( )人.A .40B .10C .9D .811.不解方程,判断方程2x 2+3x ﹣4=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根12.如图,BD 为矩形ABCD 的对角线,将△BCD 沿BD 翻折得到BC D '△,BC '与边AD 交于点E .若AB =x 1,BC =2x 2,DE =3,其中x 1、x 2是关于x 的方程x 2﹣4x+m =0的两个实根,则m 的值是( )A .165B .125C .3D .2二、填空题13.若关于x 的一元二次方程210(0)ax bx a +-=≠有一根为2020x =,则一元二次方程2(1)(1)1a x b x +++=必有一根为________.14.对于实数m ,n ,定义一种运算“*”为:*m n mn n =+.如果关于x 的方程()**1x a x 4=-有两个相等的实数根,则a =_______. 15.若二次式236x -的值与2x -的值相等,则x 的值为_______.16.某小区2019年的绿化面积为3000m 2,计划2021年的绿化面积为4320m 2,如果每年绿化面积的增长率相同,那么这个增长率是_________.17.某农场的粮食产量在两年内从增加3000t 到3630,t 则平均每年增产的百分率是______________.18.一元二次方程x 2=2x 的解为__________19.若a ,b 是方程22430x x +-=的两根,则22a ab b +-=________.20.关于x 的一元二次方程有两个根0和3,写出这个一元二次方程的一个一般式为______.参考答案三、解答题21.解方程:2250x x +-=.22.在国家的调控下.某市商品房成交价由今年8月份的50000元2/m 下降到10月份的40500元2/m .(1)同8~9两月平均每月降价的百分率是多少?(2)如果房价继续回落,按此降价的百分率,你预测到12月份该市的商品房成交均价是否会跌破30000元/2m ?请说明理由.23.关于x 的一元二次方程()2220x k x k -++=. (1)判断方程根的情况,并说明理由.(2)若1x =是方程的一个根,求k 的值和方程的另一根.24.若a 为方程2(16x =的一个正根,b 为方程22113y y -+=的一个负根,求+a b 的值.25.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件.(1)若每件衬衫降价5元,则每件商品盈利________元,每天可售出________件,商场每天盈利________元;(2)若每件衬衫降价x 元,则每件商品盈利________元,每天可售出________件(用含x 的代数式表示);(3)若商场平均每天盈利2100元,每件衬衫应降价多少元?26.我们知道20x ≥,2()0a b ±≥,这一性质在数学中有着广泛的应用,比如,探究多项式2245x x +-的最小值时,我们可以这样处理:解:原式()2225x x =+- ()22222115x x =++-- 222(1)15x ⎡⎤=+--⎣⎦22(1)25x =+--22(1)7x =+-因为()210x +≥,所以()221707x +-≥-,即()22177x +-≥-所以()2217x +-的最小值是7-,即224 5x x +-的最小值是7-.请根据上面的探究思路,解答下列问题:(1)多项式()2531x -+的最小值是_________;(2)求多项式24163x x -+的最小值(写过程).【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】方程常数项移到右边,两边加上4变形得到结果即可.【详解】解:x 2﹣4x ﹣7=0,移项得:247x x -=配方得:24474x x -+=+ ,即2()211x -=故答案为:D .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.2.D解析:D【分析】根据2月份的营业额=1月份的营业额×(1+x ),3月份的营业额=2月份的营业额×(1+2x ),把相关数值代入即可得到相应方程.【详解】解:∵1月份的营业额为50万元,2月份的营业额比1月份增加x ,∴2月份的营业额=50×(1+x ),∴3月份的营业额=50×(1+x )×(1+2x ),∴可列方程为:50(1+x )(1+2x )=66.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .注意先求得2月份的营业额.3.B解析:B【分析】由方程有实数根可知根的判别式b 2-4ac≥0,结合二次项的系数非零,可得出关于a 一元一次不等式组,解不等式组即可得出结论.【详解】解:由已知得:()()()25044510a a -≠⎧⎪⎨--⨯-⨯-≥⎪⎩, 解得:a≥1且a≠5.故选:B .【点睛】本题考查了根的判别式,解题的关键是得出关于a 的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,由根的判别式结合二次项系数非零得出不等式组是关键.4.D解析:D【分析】根据一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac 的意义得到m-2≠0且△≥0,即(-2)2-4×(m-2)×1≥0,然后解不等式组即可得到m 的取值范围.【详解】解:∵关于x 的一元二次方程(m-2)x 2-2x+1=0有实数根,∴m-2≠0且△≥0,即(-2)2-4×(m-2)×1≥0,解得m≤3,∴m 的取值范围是 m≤3且m≠2.故选:D .【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根. 5.A解析:A【分析】结合m 是方程220x x c --=的一个根,计算p-q 的值即可解决问题.【详解】解:∵m 是方程220x x c --=的一个根,∴220m m c --=∵2(1)p m =-,2q c =+,∴222(1)(2)212211p q m c m m c m m c -=--+=-+--=---=-,∴p <q故选:A .【点睛】此题主要考查了一元二次方程的解以及整式的运算,熟练掌握一元二次方程的解的应用是解答此题的关键.6.D解析:D【分析】一般用增长后的量=增长前的量×(1+增长率),如果设绿化面积的年平均增长率为x ,根据题意即可列出方程.【详解】解:设平均增长率为x ,根据题意可列出方程为:2000(1+x )2=2880.故选:D.【点睛】此题考查了由实际问题抽象出一元二次方程,即一元二次方程解答有关平均增长率问题.对于平均增长率问题,在理解的基础上,可归结为a(1+x)2=b(a<b);平均降低率问题,在理解的基础上,可归结为a(1-x)2=b(a>b).7.B解析:B【分析】首先求出方程的根,再根据三角形三边关系定理列出不等式,确定是否符合题意.【详解】解:解方程x2-9x+18=0,得x1=3,x2=6,当3为腰,6为底时,不能构成等腰三角形;当6为腰,3为底时,能构成等腰三角形,周长为6+6+3=15.故选:B.【点睛】本题考查了解一元二次方程,从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.8.B解析:B【分析】根据球赛问题模型列出方程即可求解.【详解】解:设参加此次比赛的球队数为x队,根据题意得:1x(x-1)=10,2化简,得x2-x-20=0,解得x1=5,x2=-4(舍去),∴参加此次比赛的球队数是5队.故选:B.【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握一元二次方程应用问题中的球赛问题.9.D解析:D【分析】直接利用根与系数的关系解答.【详解】解:∵2x2+x﹣1=0的两根为x1、x2,∴x 1•x 2=12=﹣12. 故选:D .【点睛】 此题主要考查了根与系数的关系,一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系为:x 1+x 2=-b a ,x 1•x 2=c a. 10.D解析:D【分析】设每轮传染中平均一个人传染了x 人,则一轮传染后共有(1+x )人被传染,两轮传染后共有[(1+x )+x(1+x)]人被传染,由题意列方程计算即可.【详解】解:设每轮传染中平均一个人传染了x 人,由题意,得:(1+x )+x(1+x)=81,即x 2+2x ﹣80=0,解得:x 1=8,x 2=﹣10(不符合题意,舍去),故每轮传染中平均一个人传染了8人,故选:D .【点睛】本题考查了一元二次方程的应用,解一元二次方程,理解题意,正确列出方程是解答的关键.11.B解析:B【分析】求出根的判别式,只要看根的判别式△=b 2-4ac 的值的符号就可以了.【详解】解:∵△=b 2﹣4ac =9﹣4×2×(﹣4)=41>0,∴方程有两个不相等的实数根,故选:B .【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12.A解析:A【分析】利用根与系数的关系得到x 1+x 2=4,x 1x 2=m ,AB +12BC =4,m =AB×12BC ,再利用折叠的性质和平行线的性质得到∠EBD =∠EDB ,则EB =ED =3,所以AE =AD−DE =5−2AB ,利用勾股定理得到AB 2+(5−2AB )2=32,解得AB 或AB (舍去),则BC ,然后计算m 的值. 【详解】 ∵x 1、x 2是关于x 的方程x 2−4x +m =0的两个实根,∴x 1+x 2=4,x 1x 2=m ,即AB +12BC =4,m =AB×12BC , ∵△BCD 沿BD 翻折得到△BC′D ,BC′与边AD 交于点E ,∴∠CBD =∠EBD ,∵AD ∥BC ,∴∠CBD =∠EDB ,∴∠EBD =∠EDB ,∴EB =ED =3,在Rt △ABE 中,AE =AD−DE =BC−3=8−2AB−3=5−2AB ,∴AB 2+(5−2AB )2=32,解得AB =105-或AB =105+(舍去),∴BC =8−2AB =205+,∴m =12×205+=165. 故选:A .【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a≠0)的两根时,x 1+x 2=−b a ,x 1x 2=c a.也考查了矩形的性质和折叠的性质. 二、填空题13.x=2019【分析】对于一元二次方程设t=x+1得到at2+bt=1利用at2+bt-1=0有一个根为t=2020得到x+1=2020从而可判断一元二次方程a (x-1)2+b (x-1)-1=0必有一解析:x=2019【分析】对于一元二次方程2(1)(1)1a x b x +++=,设t=x+1得到at 2+bt=1,利用at 2+bt-1=0有一个根为t=2020得到x+1=2020,从而可判断一元二次方程a (x-1)2+b (x-1)-1=0必有一根为x=2019.【详解】解:对于一元二次方程2(1)(1)1a x b x +++=,设t=x+1,所以at 2+bt=1,即at 2+bt-1=0,而关于x 的一元二次方程ax 2+bx-1=0(a≠0)有一根为x=2020,所以at 2+bt-1=0有一个根为t=2020,则x+1=2020,解得x=2019,所以2(1)(1)1a x b x +++=必有一根为x=2019.故答案为:x=2019.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解. 14.0【分析】由于定义一种运算*为:m*n=mn+n 所以关于x 的方程x*(a*x )=变为(a+1)x2+(a+1)x+=0而此方程有两个相等的实数根所以根据判别式和一元二次方程的一般形式的定义可以得到关解析:0【分析】由于定义一种运算“*”为:m*n=mn+n ,所以关于x 的方程x*(a*x )=14-变为(a+1)x 2+(a+1)x+14=0,而此方程有两个相等的实数根,所以根据判别式和一元二次方程的一般形式的定义可以得到关于a 的关系式,即可解决问题.【详解】解:由x*(a*x )=14-得(a+1)x 2+(a+1)x+14=0, 依题意有a+1≠0,△=(a+1)2-(a+1)=0,解得,a=0,或a=-1(舍去).故答案为:0.【点睛】此题考查了新定义,一元二次方程的判别式,解题时首先正确理解新定义的运算法则得到关于x 的方程,然后根据判别式和一元二次方程的定义得到关系式解决问题. 15.-1或【分析】先根据题意列出关于x 的方程整理为一般式再利用因式分解法求解即可【详解】解:根据题意得:3x2-6=x-2整理得:3x2-x-4=0∴(x+1)(3x-4)=0∴x+1=0或3x-4=0解析:-1或43【分析】 先根据题意列出关于x 的方程,整理为一般式,再利用因式分解法求解即可.【详解】解:根据题意,得:3x 2-6=x-2,整理,得:3x 2-x-4=0,∴(x+1)(3x-4)=0,∴x+1=0或3x-4=0, 解得1241,,3=-=x x ∴当x=-1或43时,二次式3x 2-6的值与x-2的值相等, 故答案为:-1或43 【点睛】本题主要考查解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.16.20【分析】设每年绿化面积的增长率为x 根据该小区2019年及2021年的绿化面积即可得出关于x 的一元二次方程解之取其正值即可得出结论【详解】解:设每年绿化面积的增长率为x 依题意得:3000(1+x )解析:20%【分析】设每年绿化面积的增长率为x ,根据该小区2019年及2021年的绿化面积,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设每年绿化面积的增长率为x ,依题意,得:3000(1+x )2=4320,解得:x 1=0.2=20%,x 2=-2.2(不合题意,舍去).故答案为:20%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 17.【分析】此题是平均增长率问题一般用增长后的量=增长前的量×(1+增长率)参照本题如果设平均每年增产的百分率为x 根据粮食产量在两年内从3000吨增加到3630吨即可得出方程求解【详解】解:设平均每年增解析:10%【分析】此题是平均增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设平均每年增产的百分率为x ,根据“粮食产量在两年内从3000吨增加到3630吨”,即可得出方程求解.【详解】解:设平均每年增产的百分率为x ;第一年粮食的产量为:3000(1+x );第二年粮食的产量为:3000(1+x )(1+x )=3000(1+x )2;依题意,可列方程:3000(1+x )2=3630;解得:x=-2.1(舍去)或x=0.1=10%故答案为:10%.【点睛】本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b . 18.0或2【分析】移项后分解因式即可得出两个一元一次方程求出方程的解即可【详解】解:x2=2xx2-2x=0x (x-2)=0x=0x-2=0x=0或2故答案为:0或2【点睛】本题考查了解一元二次方程的应解析:0或2.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】解:x 2=2x ,x 2-2x=0,x (x-2)=0,x=0,x-2=0,x=0或2.故答案为:0或2.【点睛】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程,难度适中.19.4【分析】根据根与系数的关系得出a+b=-2ab=-再变形后代入即可求出答案【详解】解:∵是方程的两根∴故答案为:4【点睛】本题考查了根与系数的关系能够整体代入是解此题的关键解析:4【分析】根据根与系数的关系得出a+b=-2,ab=-32,再变形后代入,即可求出答案. 【详解】解:∵a ,b 是方程22430x x +-=的两根,∴42232a b ab ⎧+=-=-⎪⎪⎨⎪=-⎪⎩, ()()()222222224a ab b a a b b a b a b +-=+-=--=-+=-⨯-=.故答案为:4.【点睛】本题考查了根与系数的关系,能够整体代入是解此题的关键.20.【分析】根据方程的解的定义可以得到方程【详解】解:根据题意知方程符合题意即:故答案是:【点睛】本题主要考查了一元二次方程的解的定义熟悉相关性质是解题的关键解析:230x x -=【分析】根据方程的解的定义可以得到方程-=(3)0x x .【详解】解:根据题意,知方程-=(3)0x x 符合题意,即:230x x -=.故答案是:230x x -=.【点睛】本题主要考查了一元二次方程的解的定义,熟悉相关性质是解题的关键.三、解答题21.1211x x =-=-【分析】利用配方法解方程.【详解】2250x x +-=225x x +=2(1)6x +=1x =-±∴1211x x =-=-【点睛】此题考查解一元二次方程的方法—配方法,将等式变形为平方形式是解题的关键. 22.(1)8、9两月平均每月降价的百分率是10%;(2)12月份该市的商品房成交均价不会跌破30000元2/m ,见解析【分析】(1)设8、9两月平均每月降价的百分率是x ,那么9月份的房价为50000(1-x ),10月份的房价为50000(1-x )2,然后根据10月份的40500元/m 2即可列出方程解决问题; (2)根据(1)的结果可以计算出今年12月份商品房成交均价,然后和30000元/m 2进行比较即可作出判断.【详解】解:(1)设这两月平均每月降价的百分率是x ,根据题意得:()250000140500x -=解得:1210% 1.9x x ==,(不合题意,舍去)答:8、9两月平均每月降价的百分率是10%(2)不会跌破30000元2/m . ()22405001405000.93280530000x -=⨯=>∴12月份该市的商品房成交均价不会跌破30000元2/m【点睛】此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.23.(1)有两个实数根,证明见解析;(2)1k =,2x =【分析】(1)利用根的判别式进行判断根的情况,即可得到答案;(2)把1x =代入方程,即可求出k 的值,然后解一元二次方程,即可得到另一个根.【详解】解:(1)根据题意,在一元二次方程()2220x k x k -++=中, ∵2(2)42k k ∆=+-⨯,244k k =-+,2(2)0k =-,∴对于任意的实数k ,原方程总有两个实数根.(2)∵1x =是方程2(2)20x k x k -++=的一个根.∴1(2)120k k -+⨯+=,解得:1k =,∴原方程为2320x x -+=,解得:11x =,22x =,∴原方程的另一根为22x =. 【点睛】本题考查了解一元二次方程以及根的判别式,牢记当0∆≥时方程有两个实数根是解题的关键.24.a+b= 5【分析】先求出2(16x =的根4x ,由a 为方程2(16x =的一个正根,得4a =+,再求22113y y -+=的根=1y ±b 为方程22113y y -+=的一个负根,得1b =+a b 即可.【详解】2(16x -=,4x -=±,4x ,a为方程2(16x =的一个正根,4a =+,22113y y -+=,()2113y -=,1y -==1y ±b 为方程22113y y -+=的一个负根,1b =415a b +=+=.【点睛】本题考查一元二次方程的解法,会比较方程根的正负与大小,掌握一元二次方程的解法是解题关键.25.(1)40,40,1600;(2)45x -,204x +;(3)每件衬衫应降价30元【分析】(1)每件衬衫降价5元,每件盈利=原来的盈利-5元;所售件数=20+多售出的件数;商场每天盈利=(原来的盈利-5元)×(20+多售出的件数);(2)每件衬衫降价x 元,每件盈利=原来的盈利-x 元;所售件数=20+多售出的件数; (3)商场平均每天盈利数=每件的盈利×售出件数;每件的盈利=原来每件的盈利-降价数.设每件衬衫应降价x 元,然后根据前面的关系式即可列出方程,解方程即可求出结果.【详解】解:(1)若每件衬衫降价5元,则每件商品盈利:45-5=40(元),每天可售出:20+4×5=40(件),商场每天盈利:40×40=1600(元),故答案为:40,40,1600;(2)若每件衬衫降价x 元,则每件商品盈利:45-x (元),每天可售出:20+4x (件)故答案为:45x -,204x +;(3)每件衬衫应降价x 元,根据题意得:(45)(20)2100x x --=2403000x x -+=解得:110x =,230x =当10x =时,20460x +=;当30x =时,204140x +=;∵要减少库存,∴应增加销售量,∴30x =∴每件衬衫应降价30元.【点睛】此题主要考查了一元二次方程的应用的销售问题,关键是正确理解题意,找出题目中等量关系,列出方方程.26.(1)1;(2)13-.【分析】(1)根据偶次方的非负性得到2(3)0x -,得到答案;(2)根据完全平方公式把原式变形,根据偶次方的非负性解答.【详解】解:(1)∵2(3)0x -≥,∴25(3)11x -+≥,∴多项式25(3)1x -+的最小值是1.故答案为:1;(2)24163x x -+()2443x x =-+ ()22244223x x =-+-+ 24(2)43x ⎡⎤=--+⎣⎦24(2)163x =--+24(2)13x =--∵2(2)0x -≥,∴24(2)1313x --≥-,∴多项式24163x x -+的最小值为13-.【点睛】本题考查的是配方法的应用,掌握完全平方公式、偶次方的非负性是解题的关键.。

人教版九年级数学一元二次方程单元测试( 有答案)

人教版九年级数学一元二次方程单元测试(有答案) (时间:120分钟 满分:120分) 一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列方程是一元二次方程的是( )A .x 2+2x -y =3 B.-= C .(3x 2-1)2-3=0 D.x 2-8=3x 1x2235x32.方程3x 2-x +1=0的二次项系数和一次项系数分别为( )A .3和0B .3和-1C .2和-1D .3和13.已知关于x 的一元二次方程3x 2+4x -5=0,下列说法正确的是( )A .方程有两个不相等的实数根B .方程有两个相等的实数根C .方程没有实数根D .无法确定4.一元二次方程(x +3)(x -7)=0的两个根是( )A .x 1=3,x 2=-7B .x 1=3,x 2=7C .x 1=-3,x 2=7D .x 1=-3,x 2=-75.已知关于x 的方程x 2-2x +m =0,根的判别式的值为0,则m 的值为( )A .-3B .3C .-1D .16.解方程2(5x -1)2=3(5x -1),最适当的方法是( )A .直接开平方法B .配方法C .公式法D .因式分解法7.在解方程2x 2+4x +1=0时,对方程进行配方,文本框①中是嘉嘉做的,文本框②中是淇淇做的,对于两人的做法,说法正确的是( )A .两人都正确B .嘉嘉正确,淇淇不正确C .嘉嘉不正确,淇淇正确D .两人都不正确8.下列说法不正确的是( )A .方程x 2=x 有一根为0B .方程x 2-1=0的两根互为相反数C .方程(x -1)2-1=0的两根互为相反数D .方程x 2-x +2=0无实数根9.若b(b≠0)是关于x 的方程x 2+cx +b =0的根,则b +c 的值为( )A .2B .-2C .1D .-110.某QQ 群有若干人,春节期间互发短信问候,已知全群共发短信1 056条,若设该群共有成员x 名,则可列方程为( )A .x(x -1)=1 056 B.=1 056 x (x -1)2C .x(x +1)=1 056 D.=1 056x (x +1)211.我市某楼盘准备以每平方米6 000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方米4 860元的均价开盘销售,则平均每次下调的百分率是( )A .11%B .10%C .9%D .8%12.若x 1,x 2是方程x 2+x -1=0的两根,则(x 1-2)·(x 2-2)的值为( )A .2B .4C .5D .-213.一个正方形蔬菜园需要修整并用篱笆围住,修整蔬菜园的费用是15元/m 2,而购买篱笆材料的费用是30元/m ,这两项支出共为3 600元,设正方形蔬菜园的边长是x m ,则下列各方程符合题意的是( )A .15x 2+120x =3 600B .x 2+4x =3 600C .4x 2+x =3 600D .120x 2+15x =3 60014.已知(x 2+y 2+1)(x 2+y 2-3)=5,则x 2+y 2的值等于( )A .0B .4C .4或-2D .-215.已知3是关于x 的方程x 2-(m +1)x +2m =0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为( )A .7B .10C .11D .10或1116.如果关于x 的一元二次方程ax 2+bx +c =0有两个实数根,且其中一个根为另一个根的3倍,则称这样的方程为“3倍根方程”,以下说法不正确的是( )A .方程x 2-4x +3=0是3倍根方程B .若关于x 的方程(x -3)(mx +n)=0是3倍根方程,则m +n =0C .若m +n =0且m≠0,则关于x 的方程(x -3)(mx +n)=0是3倍根方程D .若3m +n =0且m≠0,则关于x 的方程x 2+(m -n)x -mn =0是3倍根方程二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.若关于x 的方程(m +1)x |m|+1-2x +3m =0是一元二次方程,则m 的值为 .18.一元二次方程x 2-2x +m =0总有实数根,则m 应满足的条件是 .19.如图,在宽为20 m 、长为30 m 的矩形地面上修建两条宽均为x m 的小路(阴影),余下部分作为草地,草地面积为551 m 2.根据图中数据,可列出方程为 ,整理成一般形式为 .三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分8分)用适当的方法解下列方程:(1)x 2+3x -2=0;解:(2)(x -1)(x +3)=12;解:(3)9(x -2)2=4(x +1)2.解:21.(本小题满分8分)阅读下面的解题过程,请判断其是否正确,若有错误,请写出正确的答案.解方程:x 2+2x =3x +6.解:x(x +2)=3(x +2).两边同时除以(x +2),得x =3.解:22.(本小题满分9分)已知关于x 的一元二次方程(k -1)x 2+(k -1)x +=0有两个相等14的实数根,求k 的值.解:23.(本小题满分9分)某公司今年销售一种产品,1月份获得利润20万元,由于产品畅销,利润逐月增加,3月份的利润比2月份的利润增加4.8万元,假设该产品利润每月的增长率相同,求这个增长率.解:24.(本小题满分10分)对于公式h =20t -5t 2.(1)当h =10时,求t ;(2)若存在实数t 1,t 2(t 1≠t 2)满足该公式,当t =t 1或t 2时,求h 的取值范围.25.(本小题满分11分)小红为班级数学课题学习小组的同学每人购买一盒学习用品,商场给出如下优惠条件:如果一次性购买不超过10盒,单价为3.8元;如果一次性购买多于10盒,那么每多一盒,所有的单价都降低0.2元,但不得低于3元.小红一次性购买这种学习用品付了40.8元.请问小红购买了多少盒这种学习用品?解:26.(本小题满分11分)如图,在矩形ABCD中,AB=5 cm,BC=6 cm,点P从点A开始沿边AB向终点B以1 cm/s的速度移动,与此同时,点Q从点B开始沿边BC向终点C以2 cm/s的速度移动.如果P,Q分别从A,B同时出发,当点Q运动到点C时,两点停止运动.设运动时间为t s(t>0).(1)PB= cm,BQ=;(用含t的代数式表示)(2)当t为何值时,PQ的长度等于5 cm?(3)是否存在t的值,使得五边形APQCD的面积等于26 cm2?若存在,请求出此时t 的值;若不存在,请说明理由.解:答案一、选择题题号12345678910111213141516答案DBACDDACDABCABDB2、填空题3、17.1.18.m≤1.19.(30-x)(20-x)=551,x 2-50x +49=0.三、解答题20.(1)x 2+3x -2=0;解:b 2-4ac =32-4×1×(-2)=17>0,∴x=.-3±172∴x 1=,x 2=.-3+172-3-172(2)(x -1)(x +3)=12;解:x 2+2x -15=0,(x +1)2=16,∴x 1=-5,x 2=3.(3)9(x -2)2=4(x +1)2.解:9(x -2)2-4(x +1)2=0,(5x -4)(x -8)=0,∴x 1=8,x 2=.4521.解:不正确.因为不能判断x +2是否为0,所以方程两边不能同时除以x +2.正确的解题过程为:x(x +2)=3(x +2),x(x +2)-3(x +2)=0,(x -3)(x +2)=0,∴x 1=3,x 2=-2.22.解:由题意,得b 2-4ac =(k -1)2-4×(k -1)×=0.14整理,得k 2-3k +2=0.解得k 1=1,k 2=2.∵该方程是一元二次方程,∴k=1不合题意,舍去.∴k=2.23.解:设这个增长率为x.依题意,得20(1+x)2-20(1+x)=4.8.解得 x 1=0.2=20%,x 2=-1.2(不合题意,舍去).答:这个增长率是20%.24.解:(1)当h =10时,20t -5t 2=10,即t 2-4t +2=0.∵b 2-4ac =16-8=8>0,∴t==2±.∴t 1=2+,t 2=2-.4±82222(2)由题意,得t 1,t 2是方程20t -5t 2=h 的两个不相等的实数根,∴t 1,t 2是方程5t 2-20t +h =0的两个不相等的实数根.∴b 2-4ac =202-20h >0.∴h<20.∴h 的取值范围是h <20.25.解:设小红购买了x 盒这种学习用品.∵10×3.8=38<40.8,∴x>10.根据题意,得x[3.8-0.2(x -10)]=40.8.解得x 1=12,x 2=17.当x =12时,单价为3.8-2×0.2=3.4(元);当x =17时,单价为3.8-7×0.2=2.4(元)<3元(不合题意,舍去).答:小红购买了12盒这种学习用品.26.(1)(5-t)cm ,2tcm(2)由题意,得(5-t)2+(2t)2=25.解得t 1=0(不合题意,舍去),t 2=2.∴当t =2时,PQ 的长度等于5 cm.(3)存在,当t =1,能够使得五边形APQCD 的面积等于26 cm 2.理由如下:(5-t)×2t×=30-26.12解得t 1=4(不合题意,舍去),t 2=1.∴当t =1时,五边形APQCD 的面积等于26 cm 2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版第二十一章 一元二次方程

一、选择题(本大题共8小题,每小题3分,共24分)每小题只有一个正确选项,把正确选项的代号填
在题后的括号内.)
1.下列方程中,是一元二次方程的是( )

A. 2)3(2xxx B. 02cbxax C. 02132xx D. 122x

2.把方程)2(5)2(xxx化成一般式,则a、b、c的值分别是( )
A. 10,3,1 B. 10,7,1 C. 12,5,1 D. 2,3,1
3.方程07)1(82kxkx的一个根为零,则k( )
A. 1 B. 163 C. 4 D. -7
4.若方程0522mxx有两个相等实数根,则m=( )
A. 2 B. 0 C. 2 D. 813
5.用配方法解下列方程时,配方错误的是( )
A .09922xx化为100)1(2x B. 04722xx化为1681)47(2x

C. 0982xx化为25)4(2x D. 02432xx化为910)32(2x
6.
方程1)2)(5(xx的解为( )
A. 5 B. -2 C. 5或-2 D. 以上都不对
7.用换元法解方程6)1)(1(2xxxx,如果设yxx2,则原方程可变形为( )

A. 062yy B. 062yy C. 062yy D. 062yy
8.某国在2007年一月份发生禽流感的养鸡场有100个,后来二、三月份新发生禽流感共有250个,设二、
三月份平均每月禽流感的感染率为x,依题意,列出的方程是:( )

A.250)1(1002x B.250)1(100)1(1002xx
C.250)1(1002x D.350)1(1002x
二、填空题(本大题共6小题,每小题3分,共18分)

9.关于x的方程22(2)30mmxx是一元二次方程,那么m =_______________.
10.已知一元二次方程062mxx的一个根为3,则另一个根为______,m=____.
11.用配方法解一元二次方程0782xx 时,这个方程可化为 ( x +___ _)2= ____ __.
12.当m__________时,方程01)12(22xmxm有两个实数根.
13.如果m是012xx的解,那么代数式7223mm的值为_________.
14.某印刷厂一月份印刷了科技书籍50万册,第一季度共印182万册,问二、三月份平均每月的增长率是
______________.
三、解方程(每小题5分,共15分)

15.132xx(用配方法) 16. 04722xx用公式法)

17.0)1(2)1(2xxx (用因式分解法)
四、(本大题共2小题,每小题6分,共12分)
18.求证:方程074)1(3222mmxmx对于任何实数m,永远有两个不相等的实数根;.

19.若实数x满足030)54(222xxxx,求22)1()2(xx的值。
五、(本大题共1小题,每小题7分,共7分)
20.某商场销售一批名牌衬衫,平均每天可售出20件,每件可盈利40元,为了扩大销售增加盈利,尽量
减少库存,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降1元,商场平均每天可多售
出2件,问商场平均每天盈利1200元,每件衬衫应降价多少元?
六、(本大题共2小题,第22题8分,第23题9分,共17分)
22.(1)如下表:方程1,方程2,方程3,……是按照一定规律排列的方程,解方程3,并将它的解填在
表中的空白处。
序号 方程 方程的解

1
0322xx

1x=1 2

x
=3

2
01242xx

1x=2 2

x
=6

3
02762xx

1x= 2

x
=

… … … …
(2)1x=10,2x=30是不是(1)中所给的一列方程中的一个方程的两个根?试写出这个方程.
(3)请写出这列方程中第k个方程.

23.为了保护环境,充分利用水资源,某市经过研究讨论决定:水费由过去的每立方米0.8元调整为1.1元,
并提出“超额高费”措施:每户每月定额用水不超过12立方米,超过12立方米的部分,另加收每立方米
4.5元的高额排污费。
(1).某户居民响应节水号召,计划平均每月用水量比过去少3立方米,使得260立方米的水比过去多用
半年,问这户居民计划月平均用水多少立方米?
(2).如果该户居民响应节水号召后,在一年中实际有四个月的月平均用水量超过计划月平均用水量的
40%,其余八个月按计划用水,那么按照新交费法,该居民一年需交水费多少钱?

相关文档
最新文档