2014高考数学一轮复习考前抢分必备单元训练:数列
2014高考数学一轮汇总训练《数列的综合问题-》理-新人教A版

第五节数列的综合问题[备考方向要明了]考什么怎么考能在具体的问题情境中识别数列的等差关系或等比关系,并能用相关知识解决相应的问题.1.以递推为背景,考查数列的通项公式与前n项和公式,如2012年新课标全国T16等.2.等差数列、等比数列综合考查数列的基本计算,如2012年T16,T18等.3.考查数列与函数、不等式、解析几何的综合问题,且以解答题的形式出现,如2012年T19等.[归纳·知识整合]1.数列综合应用题的解题步骤(1)审题——弄清题意,分析涉及哪些数学容,在每个数学容中,各是什么问题.(2)分解——把整个大题分解成几个小题或几个“步骤”,每个小题或每个“步骤”分别是数列问题、函数问题、解析几何问题、不等式问题等.(3)求解——分别求解这些小题或这些“步骤”,从而得到整个问题的解答.具体解题步骤如下框图:2.常见的数列模型(1)等差数列模型:通过读题分析,由题意抽象出等差数列,利用等差数列有关知识解决问题.(2)等比数列模型:通过读题分析,由题意抽象出等比数列,利用等比数列有关知识解决问题.(3)递推公式模型:通过读题分析,由题意把所给条件用数列递推式表达出来,然后通过分析递推关系式求解.[探究] 银行储蓄单利公式及复利公式分别是什么模型?提示:单利公式——设本金为a元,每期利率为r,存期为n,则本利和a n=a(1+rn),属于等差数列模型.复利公式——设本金为a元,每期利率为r,存期为n,则本利和a n=a(1+r)n,属于等比数列模型.[自测·牛刀小试]1.(教材习题改编)已知等差数列{a n}的公差为2,若a1,a3,a4成等比数列,则a2的值为( )A.-4 B.-6C.-8 D.-10解析:选B 由题意知:a23=a1a4.则(a2+2)2=(a2-2)(a2+4),解得a2=-6.2.已知log2x,log2y,2成等差数列,则M(x,y)的轨迹的图象为( )解析:选A 由于log2x,log2y,2成等差数列,则有2log2y=log2x+2,所以y2=4x.又y>0,x>0,故M的轨迹图象为A.3.在如图所示的表格中,如果每格填上一个数后,每一行成等差数列,每一列成等比数列,那么x+y+z的值为( )A.1 B.2C.3 D.4解析:选C 由题意知,第三列各数成等比数列,故x=1;第一行第五个数为6,第二行第五个数为3,故z=34;第一行第四个数为5,第二行第四个数为52,故y=54,从而x+y+z=3.4.等比数列{a n}的前n项和为S n,若a1=1,且4a1,2a2,a3成等差数列,则S4=________.解析:设数列{a n}的公比为q,∵4a2=4a1+a3,∴4a1q=4a1+a1q2,即q2-4q+4=0,解得q=2.∴S4=1-241-2=15.答案:152 41 2x yz5.已知数列{a n }的前n 项和为S n ,对任意n ∈N *都有S n =23a n -13,若1<S k <9(k ∈N *),则k 的值为________.解析:由S n =23a n -13得当n ≥2时,S n =23(S n -S n -1)-13,即S n =-2S n -1-1. 令S n +p =-2(S n -1+p )得S n =-2S n -1-3p ,可知p =13.故数列⎩⎨⎧⎭⎬⎫S n +13是以-23为首项,以-2为公比的等比数列.则S n +13=-23×(-2)n -1,即S n =-23×(-2)n -1-13.由1<-23×(-2)k -1-13<9,k ∈N *得k =4.答案:4等差数列、等比数列的综合问题[例1] 在等比数列{a n }(n ∈N *)中,a 1>1,公比q >0,设b n =log 2a n ,且b 1+b 3+b 5=6,b 1b 3b 5=0.(1)求证:数列{b n }是等差数列; (2)求{b n }的前n 项和S n 及{a n }的通项a n . [自主解答] (1)证明:∵b n =log 2a n , ∴b n +1-b n =log 2a n +1a n=log 2q 为常数, ∴数列{b n }为等差数列且公差d =log 2q . (2)∵b 1+b 3+b 5=6,∴b 3=2. ∵a 1>1,∴b 1=log 2a 1>0. ∵b 1b 3b 5=0,∴b 5=0.∴⎩⎪⎨⎪⎧b 1+2d =2,b 1+4d =0,解得⎩⎪⎨⎪⎧b 1=4,d =-1.∴S n =4n +n n -12×(-1)=9n -n 22.∵⎩⎪⎨⎪⎧log 2q =-1,log 2a 1=4,∴⎩⎪⎨⎪⎧q =12,a 1=16.∴a n =25-n(n ∈N *).在本例(2)的条件下,试比较a n 与S n 的大小. 解:显然a n =25-n>0,当n ≥9时,S n =n 9-n2≤0,∴n ≥9时,a n >S n .∵a 1=16,a 2=8,a 3=4,a 4=2,a 5=1,a 6=12,a 7=14,a 8=18,S 1=4,S 2=7,S 3=9,S 4=10,S 5=10,S 6=9,S 7=7, S 8=4,∴当n =3,4,5,6,7,8时,a n <S n ; 当n =1,2或n ≥9时,a n >S n . ——————————————————— 解答数列综合问题的注意事项(1)要重视审题,善于联系,将等差、等比数列与函数、不等式、方程、应用性问题等联系起来.(2)对于等差、等比数列的综合问题,应重点分析等差、等比数列的通项,前n 项和以及等差、等比数列项之间的关系,往往用到转化与化归的思想方法.1.(2013·模拟)已知等差数列{a n }的公差大于零,且a 2,a 4是方程x 2-18x +65=0的两个根;各项均为正数的等比数列{b n }的前n 项和为S n ,且满足b 3=a 3,S 3=13.(1)求数列{a n },{b n }的通项公式;(2)若数列{c n }满足c n =⎩⎪⎨⎪⎧a n ,n ≤5,b n ,n >5,求数列{c n }的前n 项和T n .解:(1)设{a n }的公差为d ,{b n }的公比为q .由x 2-18x +65=0,解得x =5或x =13. 因为d >0,所以a 2<a 4,则a 2=5,a 4=13,则⎩⎪⎨⎪⎧a 1+d =5,a 1+3d =13,解得a 1=1,d =4.所以a n =1+4(n -1)=4n -3.因为⎩⎪⎨⎪⎧b 3=b 1q 2=9,b 1+b 1q +b 1q 2=13,又q >0,解得b 1=1,q =3. 所以b n =3n -1.(2)当n ≤5时,T n =a 1+a 2+a 3+…+a n =n +n n -12×4=2n 2-n ;当n >5时,T n =T 5+(b 6+b 7+b 8+…b n ) =(2×52-5)+351-3n -51-3=3n-1532.所以T n =⎩⎪⎨⎪⎧2n 2-n ,n ≤5,3n-1532,n >5.数列与函数的综合应用[例2] (2012·高考)设函数f (x )=x2+sin x 的所有正的极小值点从小到大排成的数列为{}x n .(1)求数列{}x n 的通项公式;(2)设{}x n 的前n 项和为S n ,求sin S n .[自主解答] (1)令f ′(x )=12+cos x =0,即cos x =-12,解得x =2k π±23π(k ∈Z ).由x n 是f (x )的第n 个正极小值点知,x n =2n π-23π(n ∈N *).(2)由(1)可知,S n =2π(1+2+…+n )-23n π=n (n +1)π-2n π3,所以sin S n =sin ⎣⎢⎡⎦⎥⎤nn +1π-2n π3. 因为n (n +1)表示两个连续正整数的乘积,n (n +1)一定为偶数,所以sin S n=-sin2nπ3.当n =3m -2(m∈N*)时,sin S n=-sin⎝⎛⎭⎪⎫2mπ-43π=-32;当n=3m-1(m∈N*)时,sin S n=-sin⎝⎛⎭⎪⎫2mπ-23π=32;当n=3m(m∈N*)时,sin S n=-sin 2mπ=0.综上所述,sin S n=⎩⎪⎨⎪⎧-32,n=3m-2m∈N*,32,n=3m-1m∈N*,0,n=3m m∈N*.———————————————————解决函数与数列的综合问题应该注意的事项(1)数列是一类特殊的函数,它的图象是一群孤立的点;(2)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(3)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化.2.已知函数f(x)=x2+x-1,α,β是方程f(x)=0的两个根(α>β),f′(x)是f(x)的导数,设a1=1,a n+1=a n-f a nf′a n(n=1,2,…).(1)求α,β的值;(2)已知对任意的正整数n,都有a n>α,记b n=lna n-βa n-α(n=1,2,…),求数列{b n}的前n项和S n.解:(1)由方程x2+x-1=0解得方程的根为x1=-1+52,x2=-1-52,又∵α,β是方程的两个实根,且α>β,∴α=-1+52,β=-1-52.(2)∵f ′(x )=2x +1,∴a n +1=a n -f a n f ′a n =a n -a 2n +a n -12a n +1=a 2n +12a n +1.∵a n >α>β(n =1,2,3,…),且a 1=1, ∴b 1=ln 1-β1-α=ln β2α2=4ln 5+12.或b 1=ln 1-β1-α=ln1--1-521--1+52=ln3+524=2ln3+52=2ln ⎝ ⎛⎭⎪⎫1+522=4ln5+12b n +1=ln a n +1-βa n +1-α=ln a 2n -2βαn -β+1a 2n -2αa n -α+1=lna n -β2-β2-β+1a n -α2-α2-α+1=ln a n -β2a n -α2=2lna n -βa n -α=2b n . 即{b n }是以b 1为首项,2为公比的等比数列. 故数列{b n }的前n 项和S n =b 11-2n1-2=(2n-1)·4ln 5+12=(2n +2-4)ln5+12. 数列与不等式的综合应用[例3] (2012·高考)设数列{a n }的前n 项和为S n ,满足2S n =a n +1-2n +1+1,n ∈N *,且a 1,a 2+5,a 3成等差数列.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1+1a 2+…+1a n <32.[自主解答] (1)当n =1时,2a 1=a 2-4+1=a 2-3, ① 当n =2时,2(a 1+a 2)=a 3-8+1=a 3-7, ② 又a 1,a 2+5,a 3成等差数列, 所以a 1+a 3=2(a 2+5), ③ 由①②③解得a 1=1.(2)由题设条件可知n≥2时,2S n=a n+1-2n+1+1,④2S n-1=a n-2n+1.⑤④-⑤得2a n=a n+1-a n-2n+1+2n,即a n+1=3a n+2n,整理得a n+1+2n+1=3(a n+2n),则{a n+2n}是以3为首项,3为公比的等比数列.所以a n+2n=(a1+2)·3n-1=3n,即a n=3n-2n(n>1).又a1=1满足上式,故a n=3n-2n.(3)证明:∵1a n=13n-2n=13n·11-⎝⎛⎭⎪⎫23n≤13n·11-23=3·13n,∴1a1+1a2+…+1a n≤3⎝⎛⎭⎪⎫13+132+…+13n=3×13⎝⎛⎭⎪⎫1-13n1-13=32⎝⎛⎭⎪⎫1-13n<32.———————————————————数列与不等式相结合问题的处理方法解决数列与不等式的综合问题时,如果是证明题要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等;如果是解不等式问题要使用不等式的各种不同解法,如列表法、因式分解法,穿根法等.总之这类问题把数列和不等式的知识巧妙结合起来综合处理就行了.3.等比数列{a n}为递增数列,且a4=23,a3+a5=209,数列b n=log3a n2(n∈N*).(1)求数列{b n}的前n项和S n;(2)T n=b1+b2+b22+…+b2n-1,求使T n>0成立的最小值n.解:(1)∵{a n}是等比数列,设其公比为q,∴⎩⎪⎨⎪⎧a1q3=23,a1q2+a1q4=209,两式相除得,q 1+q 2=310,q =3或q =13, ∵{a n }为递增数列,∴q =3,a 1=281.∴a n =a 1qn -1=281·3n -1=2·3n -5, ∴b n =log 3a n2=n -5,数列{b n }的前n 项和S n =n -4+n -52=12(n 2-9n ). (2)T n =b 1+b 2+b 22+…b 2n -1=(1-5)+(2-5)+(22-5)+…+(2n -1-5)=1-2n1-2-5n >0,即2n>5n +1.∵24<5×4+1,25>5×5+1,∴n min =5(只要给出正确结果,不要求严格证明).数列的实际应用[例4] (2012·高考)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2 000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d 万元,并将剩余资金全部投入下一年生产.设第n 年年底企业上缴资金后的剩余资金为a n 万元.(1)用d 表示a 1,a 2,并写出a n +1与a n 的关系式;(2)若公司希望经过m (m ≥3)年使企业的剩余资金为4 000万元,试确定企业每年上缴资金d 的值(用m 表示).[自主解答] (1)由题意得a 1=2 000(1+50%)-d =3 000-d ,a 2=a 1(1+50%)-d =32a 1-d =4 500-52d . a n +1=a n (1+50%)-d =32a n -d .(2)由(1)得a n =32a n -1-d=32⎝ ⎛⎭⎪⎫32a n -2-d -d =⎝ ⎛⎭⎪⎫322a n -2-32d -d…=⎝ ⎛⎭⎪⎫32n -1a 1-d ⎣⎢⎡⎦⎥⎤1+32+⎝ ⎛⎭⎪⎫322+…+⎝ ⎛⎭⎪⎫32n -2. 整理得a n =⎝ ⎛⎭⎪⎫32n -1(3 000-d )-2d ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32n -1-1=⎝ ⎛⎭⎪⎫32n -1(3 000-3d )+2d . 由题意,a m =4 000,即⎝ ⎛⎭⎪⎫32m -1(3 000-3d )+2d =4 000.解得d =⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32m -2×1 000⎝ ⎛⎭⎪⎫32m -1=1 0003m -2m +13m -2m. 故该企业每年上缴资金d 的值为1 0003m -2m +13m -2m时,经过m (m ≥3)年企业的剩余资金为4 000万元.——————————————————— 解决数列实际应用问题的方法解等差数列、等比数列应用题时,首先要认真审题,深刻理解问题的实际背景,理清蕴含在语言中的数学关系,把应用问题抽象为数学中的等差数列、等比数列问题,使关系明朗化、标准化,然后用等差数列、等比数列知识求解.这其中体现了把实际问题数学化的能力,即数学建模能力.4.某市2010年新建住房400万平方米,其中有250万平方米是中低价房,预计在今后的若干年,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,(1)该市历年所建中低价房的累计面积(以2010年为累计的第一年)将首次不少于4 750万平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比较首次大于85%?(参考数据:1.084≈1.36,1.085≈1.47,1.086≈1.59)解:(1)设中低价房面积形成数列{a n },由题意可知{a n }是等差数列,其中a 1=250,d =50,则S n =250n +n n -12×50=25n 2+225n .令25n 2+225n ≥4 750,即n 2+9n -190≥0,而n 是正整数,解得n ≥10.故到2019年底,该市历年所建中低价房的累计面积将首次不少于4 750万平方米.(2)设新建住房面积形成数列{b n},由题意可知{b n}是等比数列,其中b1=400,q=1.08,则b n=400×(1.08)n-1.由题意可知a n>0.85b n,有250+(n-1)×50>400×(1.08)n-1×0.85.当n=5时,a5<0.85b5,当n=6时,a6>0.85b6,即满足上述不等式的最小正整数n为6.故到2015年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%.1个问题——分期付款问题等比数列中处理分期付款问题的注意事项:(1)准确计算出在贷款全部付清时,各期所付款额及利息(最后一次付款没有利息).(2)明确各期所付的款以及各期所付款到最后一次付款时所生的利息之和,等于商品售价及从购买到最后一次付款时的利息之和,只有掌握了这一点,才可顺利建立等量关系.3个注意——递推、放缩与函数思想的考查(1)数列与解析几何结合时注意递推.(2)数列与不等式相结合时注意对不等式进行放缩.(3)数列与函数相结合时主要考查函数的思想及函数的性质(多为单调性).创新交汇——数列的新定义问题1.数列题目中有时定义一个新数列,然后根据定义的新数列所具备的性质解决有关问题.2.解决新情境、新定义数列问题,首先要根据新情境、新定义进行推理,从而明确考查的是哪些数列知识,然后熟练运用归纳、构造、正难则反、分类与整合等方法进行解题.[典例] (2011·高考)若数列A n:a1,a2,…,a n(n≥2)满足|a k+1-a k|=1(k=1,2,…,n-1),则称A n为E数列.记S(A n)=a1+a2+…+a n.(1)写出一个满足a1=a5=0,且S(A5)>0的E数列A5;(2)若a1=12,n=2 000.证明:E数列A n是递增数列的充要条件是a n=2 011;(3)对任意给定的整数n(n≥2), 是否存在首项为0的E数列A n,使得S(A n)=0?如果存在,写出一个满足条件的E数列A n;如果不存在,说明理由.[解] (1)0,1,2,1,0是一个满足条件的E 数列A 5. (答案不唯一,0,1,0,1,0也是一个满足条件的E 数列A 5) (2)必要性:因为E 数列A n 是递增数列, 所以a k +1-a k =1(k =1,2,…,1 999). 所以A n 是首项为12,公差为1的等差数列. 所以a 2 000=12+(2000-1)×1=2 011. 充分性:由于a 2 000-a 1 999≤1,a 1 999-a 1 998≤1,…a 2-a 1≤1,所以a 2 000-a 1≤1 999,即a 2 000≤a 1+1 999. 又因为a 1=12,a 2 000=2 011, 所以a 2 000=a 1+1 999.故a k +1-a k =1>0(k =1,2,…,1 999),即A n 是递增数列. 综上,结论得证.(3)令c k =a k +1-a k (k =1,2,…,n -1),则c k =±1. 因为a 2=a 1+c 1,a 3=a 1+c 1+c 2,…a n =a 1+c 1+c 2+…+c n -1,所以S (A n )=na 1+(n -1)c 1+(n -2)c 2+(n -3)c 3+…+c n -1=(n -1)+(n -2)+…+1-[(1-c 1)(n -1)+(1-c 2)(n -2)+…+(1-c n -1)]=n n -12-[(1-c 1)(n -1)+(1-c 2)(n -2)+…+(1-c n -1)].因为c k =±1,所以1-c k 为偶数(k =1,…,n -1). 所以(1-c 1)(n -1)+(1-c 2)(n -2)+…+(1-c n -1)为偶数, 所以要使S (A n )=0,必须使n n -12为偶数,即4整除n (n -1),亦即n =4m 或n =4m +1(m ∈N *).当n =4m (m ∈N *)时,E 数列A n 的项满足a 4k -1=a 4k -3=0,a 4k -2=-1,a 4k =1(k =1,2,…,m )时,有a 1=0,S (A n )=0;当n =4m +1(m ∈N *)时,E 数列A n 的项满足a 4k -1=a 4k -3=0,a 4k -2=-1,a 4k =1(k =1,2,…,m ),a 4m +1=0时,有a 1=0,S (A n )=0;当n =4m +2或n =4m +3(m ∈N *)时,n (n -1)不能被4整除,此时不存在E 数列A n ,使得a1=0,S(A n)=0.[名师点评]1.本题具有以下创新点:(1)本题为新定义问题,命题背景新颖.(2)命题方式创新,既有证明题,也有探究性问题,同一个题目中多种方式相结合.2.解决本题要注意以下几个问题:对于此类压轴型新定义数列题,首先要有抢分意识,得一分是一分,多尝试解答,仔细分析,认真翻译;其次,要有运用数学思想方法的意识,如构造、分类等.第(1)问中E数列A5的首尾都是0,则必须先增后减或先减后增,或者摆动;第(2)问条件在后边,因此,前推后是证明条件的必要性,不可颠倒,前推后比较容易,应该先证明;第(3)问和第(1)问相呼应,所以在推理时要善于前后联系,善于发现矛盾,从而找到解决问题的突破口.[变式训练]1.已知数列{a n}:a1,a2,a3,…,a n,如果数列{b n}:b1,b2,b3,…b n满足b1=a n,b k =a k-1+a k-b k-1,其中k=2,3,…,n,则称{b n}为{a n}的“衍生数列”.若数列{a n}:a1,a2,a3,a4的“衍生数列”是5,-2,7,2,则{a n}为______;若n为偶数,且{a n}的“衍生数列”是{b n},则{b n}的“衍生数列”是______.解析:由b1=a n,b k=a k-1+a k-b k-1,k=2,3,…,n可得,a4=5,2=a3+a4-7,解得a3=4.又7=a2+a3-(-2),解得a2=1.由-2=a1+a2-5,解得a1=2,所以数列{a n}为2,1,4,5.由已知,b1=a1-(a1-a n),b2=a1+a2-b1=a2+(a1-a n),….因为n是偶数,所以b n =a n+(-1)n(a1-a n)=a1.设{b n}的“衍生数列”为{c n},则c i=b i+(-1)i(b1-b n)=a i+(-1)i·(a1-a n)+(-1)i(b1-b n)=a i+(-1)i(a1-a n)+(-1)i·(a n-a1)=a i,其中i=1,2,3,…,n.则{b n}的“衍生数列”是{a n}.答案:2,1,4,5 {a n}2.(2012·高考改编)对于项数为m的有穷数列{a n},记b k=max{a1,a2,…,a k}(k=1,2,…,m),即b k为a1,a2,…,a k中的最大值,并称数列{b n}是{a n}的控制数列.如1,3,2,5,5的控制数列是1,3,3,5,5.(1)若各项均为正整数的数列{a n}的控制数列为2,3,4,5,5,写出所有的{a n};(2)设{b n}是{a n}的控制数列,满足a k+b m-k+1=C(C为常数,k=1,2,…,m).求证:b k=a k(k=1,2,…,m).解:(1)数列{a n}为:2,3,4,5,1;2,3,4,5,2;2,3,4,5,3;2,3,4,5,4;2,3,4,5,5.(2)证明:因为b k=max{a1,a2,…,a k},b k+1=max{a1,a2,…,a k,a k+1},所以b k+1≥b k.因为a k +b m -k +1=C ,a k +1+b m -k =C , 所以a k +1-a k =b m -k +1-b m -k ≥0,即a k +1≥a k . 因此,b k =a k .一、选择题(本大题共6小题,每小题5分,共30分)1. 等差数列{a n }中,a 3+a 11=8,数列{b n }是等比数列,且b 7=a 7,则b 6·b 8的值( ) A .2 B .4 C .8D .16解析:选D ∵{a n }为等差数列,∴a 7=a 3+a 112=4=b 7.又{b n }为等比数列,∴b 6·b 8=b 27=16.2.数列{a n }是公差不为0的等差数列,且a 1,a 3,a 7为等比数列{b n }中连续的三项,则数列{b n }的公比为( )A. 2 B .4 C .2D.12解析:选C 设数列{a n }的公差为d (d ≠0),由a 23=a 1a 7得(a 1+2d )2=a 1(a 1+6d ),解得a 1=2d ,故数列{b n }的公比q =a 3a 1=a 1+2d a 1=2a 1a 1=2.3.(2013·模拟)满足a 1=1,log 2a n +1=log 2a n +1(n ∈N *),它的前n 项和为S n ,则满足S n >1 025的最小n 值是( )A .9B .10C .11D .12解析:选C 因为a 1=1,log 2a n +1=log 2a n +1(n ∈N *),所以a n +1=2a n ,a n =2n -1,S n =2n -1,则满足S n >1 025的最小n 值是11.4.根据市场调查结果,预测某种家用商品从年初开始的n 个月累积的需求量S n (万件)近似地满足关系式S n =n90(21n -n 2-5)(n =1,2,…,12),按此预测,在本年度,需求量超过1.5万件的月份是( )A .5、6月B .6、7月C .7、8月D .8、9月解析:选C 由S n 解出a n =130(-n 2+15n -9),再解不等式130(-n 2+15n -9)>1.5,得6<n <9.5.数列{a n }的通项a n =n 2⎝⎛⎭⎪⎫cos 2n π3-sin2n π3,其前n 项和为S n ,则S 30为( )A .470B .490C .495D .510解析:选A 注意到a n =n 2cos 2n π3,且函数y =cos 2πx 3的最小正周期是3,因此当n是正整数时,a n +a n +1+a n +2=-12n 2-12(n +1)2+(n +2)2=3n +72,其中n =1,4,7…,S 30=(a 1+a 2+a 3)+(a 4+a 5+a 6)+…+(a 28+a 29+a 30)=⎝ ⎛⎭⎪⎫3×1+72+⎝ ⎛⎭⎪⎫3×4+72+…+⎝ ⎛⎭⎪⎫3×28+72=3×10×1+282+72×10=470.6.(2013·模拟)在数列{a n }中,对任意n ∈N *,都有a n +2-a n +1a n +1-a n=k (k 为常数),则称{a n }为“等差比数列”.下面对“等差比数列”的判断:①k 不可能为0;②等差数列一定是等差比数列; ③等比数列一定是等差比数列;④通项公式为a n =a ·b n+c (a ≠0,b ≠0,1)的数列一定是等差比数列. 其中正确的判断为( ) A .①② B .②③ C .③④D .①④解析:选D 若k =0时,则a n +2-a n +1=0,因为a n +2-a n +1可能为分母,故无意义,故k 不可能为0,①正确;若等差、等比数列为常数列,则②③错误;由定义知④正确.二、填空题(本大题共3小题,每小题5分,共15分)7.(2013·模拟)设关于x 的不等式x 2-x <2nx (n ∈N *)的解集中整数的个数为a n ,数列{a n }的前n 项和为S n ,则S 100的值为________.解析:由x 2-x <2nx (n ∈N *), 得0<x <2n +1, 因此知a n =2n . 故S 100=1002+2002=10 100.答案:10 1008.函数y =x 2(x >0)的图象在点(a k ,a 2k )处的切线与x 轴交点的横坐标为a k +1,k 为正整数,a 1=16,则a 1+a 3+a 5=________.解析:依题意得,函数y =x 2(x >0)的图象在点( a k ,a 2k )处的切线方程是y -a 2k =2a k (x-a k ).令y =0得x =12a k ,即a k +1=12a k ,因此数列{a k }是以16为首项,12为公比的等比数列,所以a k =16·⎝ ⎛⎭⎪⎫12k -1=25-k,a 1+a 3+a 5=16+4+1=21.答案:219.气象学院用3.2万元买了一台天文观测仪,已知这台观测仪从启用的第一天起连续使用,第n 天的维修保养费为n +4910(n ∈N *)元,使用它直至报废最合算(所谓报废最合算是指使用的这台仪器的平均耗资最少),一共使用了________天.解析:由第n 天的维修保养费为n +4910(n ∈N *)元,可以得出观测仪的整个耗资费用,由平均费用最少而求得最小值成立时的相应n 的值.由题意知使用n 天的平均耗资为3.2×104+⎝⎛⎭⎪⎫5+n +4910n 2n=3.2×104n+n20+9920,当且仅当3.2×104n =n20时取得最小值,此时n =800. 答案:800三、解答题(本大题共3小题,每小题12分,共36分) 10.设同时满足条件:①b n +b n +22≥b n +1;②b n ≤M (n ∈N *,M 是常数)的无穷数列{b n }叫“嘉文”数列.已知数列{a n }的前n 项和S n 满足S n =aa -1(a n -1)(a 为常数,且a ≠0,a ≠1).(1)求数列{a n }的通项公式;(2)设b n =2S na n+1,若数列{b n }为等比数列,求a 的值,并证明数列⎩⎨⎧⎭⎬⎫1b n 为“嘉文”数列.解:(1)因为S 1=aa -1(a 1-1)=a 1,所以a 1=a .当n ≥2时,a n =S n -S n -1=a a -1(a n -a n -1),整理得a na n -1=a ,即数列{a n }是以a 为首项,a 为公比的等比数列.所以a n =a · a n -1=a n .(2)由(1)知,b n =2×aa -1a n -1a n +1=3a -1a n -2aa -1a n,(*)由数列{b n }是等比数列,则b 22=b 1·b 3,故⎝ ⎛⎭⎪⎫3a +2a 2=3·3a 2+2a +2a 2,解得a =13,再将a =13代入(*)式得b n =3n,故数列{b n }为等比数列,所以a =13.由于1b n +1b n +22=13n +13n +22>213n ·13n +22=13n +1=1b n +1,满足条件①;由于1b n =13n ≤13,故存在M ≥13满足条件②.故数列⎩⎨⎧⎭⎬⎫1b n 为“嘉文”数列.11.已知正项数列{a n },{b n }满足:a 1=3,a 2=6,{b n }是等差数列,且对任意正整数n ,都有b n ,a n ,b n +1成等比数列.(1)求数列{b n }的通项公式;(2)设S n =1a 1+1a 2+…+1a n ,试比较2S n 与2-b 2n +1a n +1的大小.解:(1)∵对任意正整数n ,都有b n ,a n ,b n +1成等比数列,且数列{a n },{b n }均为正项数列,∴a n =b n b n +1(n ∈N *).由a 1=3,a 2=6得⎩⎪⎨⎪⎧a 1=b 1b 2=3,a 2=b 2b 3=6,又{b n }为等差数列,即有b 1+b 3=2b 2,解得b 1=2,b 2=322,∴数列{b n }是首项为2,公差为22的等差数列. ∴数列{b n }的通项公式为b n =2n +12(n ∈N *).(2)由(1)得,对任意n ∈N *,a n =b n b n +1=n +1n +22,从而有1a n=2n +1n +2=2⎝⎛⎭⎪⎫1n +1-1n +2,∴S n =2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2=1-2n +2. ∴2S n =2-4n +2.又2-b 2n +1a n +1=2-n +2n +3,∴2S n -⎝ ⎛⎭⎪⎫2-b 2n +1a n +1=n +2n +3-4n +2=n 2-8n +2n +3. ∴当n =1,n =2时,2S n <2-b 2n +1a n +1;当n ≥3时,2S n >2-b 2n +1a n +1.12.已知数列{a n }的前n 项和为S n ,对一切正整数n ,点P n (n ,S n )都在函数f (x )=x 2+2x 的图象上,且过点P n (n ,S n )的切线的斜率为k n .(1)求数列{a n }的通项公式;(2)若b n =2kn a n ,求数列{b n }的前n 项和T n ;(3)设Q ={x |x =k n ,n ∈N *},R ={x |x =2a n ,n ∈N *},等差数列{c n }的任一项c n ∈Q ∩R ,其中c 1是Q ∩R 中的最小数,110<c 10<115,求{c n }的通项公式.解:(1)∵点P n (n ,S n )都在函数f (x )=x 2+2x 的图象上, ∴S n =n 2+2n (n ∈N *).当n ≥2时,a n =S n -S n -1=2n +1,当n =1时,a 1=S 1=3满足上式,所以数列{a n }的通项公式为a n =2n +1. (2)由f (x )=x 2+2x 求导可得f ′(x )=2x +2. ∵过点P n (n ,S n )的切线的斜率为k n , ∴k n =2n +2.∴b n =2k n a n =4·(2n +1)·4n.∴ T n =4×3×41+4×5×42+4×7×43+…+4×(2n +1)×4n.① 由①×4,得4T n =4×3×42+4×5×43+4×7×44+…+4×(2n +1)×4n +1.②①-②得-3T n =4[3×4+2×(42+43+…+4n )-(2n +1)×4n +1]=4⎣⎢⎡⎦⎥⎤3×4+2×421-4n -11-4-()2n +1×4n +1, ∴T n =6n +19·4n +2-169.(3)∵Q ={x |x =2n +2,n ∈N *},R ={x |x =4n +2,n ∈N *},∴Q ∩R =R . 又∵c n ∈Q ∩R ,其中c 1是Q ∩R 中的最小数,∴c 1=6. ∵{c n }的公差是4的倍数,∴c 10=4m +6(m ∈N *). 又∵110<c 10<115,∴⎩⎪⎨⎪⎧110<4m +6<115,m ∈N *,解得m =27.∴c 10=114. 设等差数列的公差为d , 则d =c 10-c 110-1=114-69=12,∴c n=6+(n-1)×12=12n-6.∴{c n}的通项公式为c n=12n-6.1.已知公差不为0的等差数列{a n}的首项a1为a(a∈R).设数列的前n项和为S n,且1a1,1a2,1a4成等比数列.(1)求数列{a n}的通项公式及S n;(2)设A n=1S1+1S2+1S3+…+1S n,B n=1a1+1a2+1a22+…+1a2n-1.当n≥2时,试比较A n与B n 的大小.解:(1)设等差数列{a n}的公差为d,由⎝⎛⎭⎪⎫1a22=1a1·1a4,得(a1+d)2=a1(a1+3d).因为d≠0,所以d=a1=a.所以a n=na,S n=an n+12.(2)因为1S n=2a⎝⎛⎭⎪⎫1n-1n+1,所以A n=1S1+1S2+1S3+…+1S n=2a⎝⎛⎭⎪⎫1-1n+1.因为a2n-1=2n-1a,所以B n=1a1+1a2+1a22+…+1a2n-1=1a·1-⎝⎛⎭⎪⎫12n1-12=2a⎝⎛⎭⎪⎫1-12n.当n≥2时,2n=C0n+C1n+C2n+…+C n n>n+1,即1-1n+1<1-12n,所以,当a>0时,A n<B n;当a<0时,A n>B n.2.已知某地今年年初拥有居民住房的总面积为a(单位:m2),其中有部分旧住房需要拆除.当地有关部门决定每年以当年年初住房面积的10%建设新住房,同时也拆除面积为b(单位:m2)的旧住房.(1)分别写出第1年末和第2年末的实际住房面积的表达式;(2)如果第5年末该地的住房面积正好比今年年初的住房面积增加了30%,则每年拆除的旧住房面积b是多少?(计算时取1.15≈1.6)解:(1)第1年末的住房面积为a ·1110-b =1.1a -b (m 2),第2年末的住房面积为⎝ ⎛⎭⎪⎫a ·1110-b ·1110-b =a ·⎝ ⎛⎭⎪⎫11102-b ⎝ ⎛⎭⎪⎫1+1110=1.21a -2.1b (m 2). (2)第3年末的住房面积为⎣⎢⎡⎦⎥⎤a ·⎝ ⎛⎭⎪⎫11102-b ⎝ ⎛⎭⎪⎫1+1110·1110-b =a ·⎝ ⎛⎭⎪⎫11103-b ⎣⎢⎡⎦⎥⎤1+1110+⎝ ⎛⎭⎪⎫11102(m 2),第4年末的住房面积为a ·⎝ ⎛⎭⎪⎫11104-b ⎣⎢⎡⎦⎥⎤1+1110+⎝ ⎛⎭⎪⎫11102+⎝ ⎛⎭⎪⎫11103(m 2),第5年末的住房面积为a ·⎝ ⎛⎭⎪⎫11105-b ⎣⎢⎡⎦⎥⎤1+1110+⎝ ⎛⎭⎪⎫11102+⎝ ⎛⎭⎪⎫11103+⎝ ⎛⎭⎪⎫11104=1.15a -1-1.151-1.1b ≈1.6a -6b (m 2).依题意可知,1.6a -6b =1.3a ,解得b =a 20,所以每年拆除的旧住房面积为a20 m 2.3.已知数列{a n }的前n 项和S n 满足S n +1=kS n +2(n ∈N *),且a 1=2,a 2=1. (1)求k 的值和S n 的表达式; (2)是否存在正整数m ,n ,使得S n -m S n +1-m <12成立?若存在,求出这样的正整数;若不存在,请说明理由.解:(1)由条件S n +1=kS n +2(n ∈N *),得S 2=kS 1+2, 即a 1+a 2=ka 1+2,∵a 1=2,a 2=1,∴2+1=2k +2,得k =12.于是,S n +1=12S n +2,设S n +1+x =12(S n +x ),即S n +1=12S n -12x ,令-12x =2,得x =-4,∴S n +1-4=12(S n -4),即数列{S n -4}是首项为-2,公比为12的等比数列.∴S n -4=(-2)·⎝ ⎛⎭⎪⎫12n -1,即S n =4⎝ ⎛⎭⎪⎫1-12n (n ∈N *).(2)由不等式S n -m S n +1-m <12,得4⎝ ⎛⎭⎪⎫1-12n -m 4⎝ ⎛⎭⎪⎫1-12n +1-m <12,即2n4-m -42n4-m -2<12.令t =2n(4-m ),则不等式变为t -4t -2<12, 解得2<t <6,即2<2n(4-m )<6.假设存在正整数m ,n ,使得上面的不等式成立,由于2n为偶数,4-m 为整数,则只能是2n(4-m )=4,∴⎩⎪⎨⎪⎧2n=2,4-m =2,或⎩⎪⎨⎪⎧2n=4,4-m =1.解得⎩⎪⎨⎪⎧m =2,n =1,或⎩⎪⎨⎪⎧m =3,n =2.于是,存在正整数m =2,n =1或m =3,n =2, 使得S n -m S n +1-m <12成立.由递推公式求通项的7种方法及破解数列中的4类探索性问题一、由递推公式求通项的7种方法 1.a n +1=a n +f (n )型把原递推公式转化为a n +1-a n =f (n ),再利用累加法(逐差相加法)求解,即a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a 1+f (1)+f (2)+f (3)+…+f (n -1).[例1] 已知数列{a n }满足a 1=12,a n +1=a n +1n 2+n ,求a n .[解] 由条件,知a n +1-a n =1n 2+n =1nn +1=1n -1n +1,则(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1)=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1-1n ,所以a n -a 1=1-1n.因为a 1=12,所以a n =12+1-1n =32-1n .2.a n +1=f (n )a n 型 把原递推公式转化为a n +1a n =f (n ),再利用累乘法(逐商相乘法)求解,即由a 2a 1=f (1),a 3a 2=f (2),…,a n a n -1=f (n -1),累乘可得a na 1=f (1)f (2)…f (n -1). [例2] 已知数列{a n }满足a 1=23,a n +1=n n +1·a n ,求a n .[解] 由a n +1=n n +1·a n ,得a n +1a n =nn +1,故a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=n -1n ×n -2n -1×…×12×23=23n .即a n =23n. 3.a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0)型对于此类问题,通常采用换元法进行转化,假设将递推公式改写为a n +1+t =p (a n +t ),比较系数可知t =qp -1,可令a n +1+t =b n +1换元即可转化为等比数列来解决.[例3] 已知数列{a n }中,a 1=1,a n +1=2a n +3,求a n .[解] 设递推公式a n +1=2a n +3可以转化为a n +1-t =2(a n -t ),即a n +1=2a n -t ,则t =-3.故递推公式为a n +1+3=2(a n +3). 令b n =a n +3,则b 1=a 1+3=4,且b n +1b n =a n +1+3a n +3=2. 所以{b n }是以b 1=4为首项,2为公比的等比数列. 所以b n =4×2n -1=2n +1,即a n =2n +1-3.4.a n +1=pa n +q n(其中p ,q 均为常数,pq (p -1)≠0)型 (1)一般地,要先在递推公式两边同除以qn +1,得a n +1q n +1=p q ·a n q n +1q,引入辅助数列{b n }⎝ ⎛⎭⎪⎫其中b n =a n qn ,得b n +1=p q ·b n +1q,再用待定系数法解决; (2)也可以在原递推公式两边同除以pn +1,得a n +1p n +1=a n p n +1p ·⎝ ⎛⎭⎪⎫q p n,引入辅助数列{b n }⎝ ⎛⎭⎪⎫其中b n =a n p n ,得b n +1-b n =1p ⎝ ⎛⎭⎪⎫q pn ,再利用叠加法(逐差相加法)求解. [例4] 已知数列{a n }中,a 1=56,a n +1=13a n +⎝ ⎛⎭⎪⎫12n +1,求a n .[解] 法一:在a n +1=13a n +⎝ ⎛⎭⎪⎫12n +1两边乘以2n +1,得2n +1·a n +1=23(2n ·a n )+1.令b n =2n·a n ,则b n +1=23b n +1,根据待定系数法,得b n +1-3=23(b n -3).所以数列{b n -3}是以b 1-3=2×56-3=-43为首项,以23为公比的等比数列. 所以b n -3=-43·⎝ ⎛⎭⎪⎫23n -1,即b n =3-2⎝ ⎛⎭⎪⎫23n.于是,a n =b n 2n =3⎝ ⎛⎭⎪⎫12n -2⎝ ⎛⎭⎪⎫13n.法二:在a n +1=13a n +⎝ ⎛⎭⎪⎫12n +1两边乘以3n +1,得3n +1a n +1=3n a n +⎝ ⎛⎭⎪⎫32n +1. 令b n =3n·a n ,则b n +1=b n +⎝ ⎛⎭⎪⎫32n +1.所以b n -b n -1=⎝ ⎛⎭⎪⎫32n ,b n -1-b n -2=⎝ ⎛⎭⎪⎫32n -1,…,b 2-b 1=⎝ ⎛⎭⎪⎫322. 将以上各式叠加,得b n -b 1=⎝ ⎛⎭⎪⎫322+…+⎝ ⎛⎭⎪⎫32n -1+⎝ ⎛⎭⎪⎫32n.又b 1=3a 1=3×56=52=1+32,所以b n =1+32+⎝ ⎛⎭⎪⎫322+…+⎝ ⎛⎭⎪⎫32n -1+⎝ ⎛⎭⎪⎫32n=1·⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫32n +11-32=2⎝ ⎛⎭⎪⎫32n +1-2,即b n =2⎝ ⎛⎭⎪⎫32n +1-2.故a n =b n 3n =3⎝ ⎛⎭⎪⎫12n -2⎝ ⎛⎭⎪⎫13n.5.a n +1=pa n +an +b (p ≠1,p ≠0,a ≠0)型这种类型一般利用待定系数法构造等比数列,即令a n +1+x (n +1)+y =p (a n +xn +y ),与已知递推式比较,解出x ,y ,从而转化为{a n +xn +y }是公比为p 的等比数列.[例5] 设数列{a n }满足a 1=4,a n =3a n -1+2n -1(n ≥2),求a n . [解] 设递推公式可以转化为a n +An +B =3[a n -1+A (n -1)+B ],化简后与原递推式比较,得⎩⎪⎨⎪⎧2A =2,2B -3A =-1,解得⎩⎪⎨⎪⎧A =1,B =1.令b n =a n +n +1.(*)则b n =3b n -1,又b 1=6,故b n =6·3n -1=2·3n,代入(*)式,得a n =2·3n-n -1. 6.a n +1=pa rn (p >0,a n >0)型这种类型一般是等式两边取对数后转化为a n +1=pa n +q 型数列,再利用待定系数法求解.[例6] 已知数列{a n }中,a 1=1,a n +1=1a·a 2n (a >0),求数列{a n }的通项公式.[解] 对a n +1=1a·a 2n 的两边取对数,得lg a n +1=2lg a n +lg 1a.令b n =lg a n ,则b n +1=2b n +lg 1a.由此得b n +1+lg 1a=2⎝ ⎛⎭⎪⎫b n +lg 1a ,记c n =b n +lg 1a,则c n +1=2c n ,所以数列{c n }是以c 1=b 1+lg 1a =lg 1a为首项,2为公比的等比数列.所以c n =2n -1·lg 1a.所以b n =c n -lg 1a =2n -1·lg 1a -lg 1a=lg ⎣⎢⎡⎦⎥⎤a ·⎝ ⎛⎭⎪⎫1a2n -1=lg a 1-2n,即lg a n =lg a 1-2n,所以a n =a1-2n.7.a n +1=Aa nBa n +C(A ,B ,C 为常数)型 对于此类递推数列,可通过两边同时取倒数的方法得出关系式[例7] 已知数列{a n }的首项a 1=35,a n +1=3a n2a n +1,n =1,2,3,…,求{a n }的通项公式.[解] ∵a n +1=3a n 2a n +1,∴1a n +1=23+13a n,∴1a n +1-1=13⎝ ⎛⎭⎪⎫1a n -1.又1a 1-1=23, ∴⎩⎨⎧⎭⎬⎫1a n -1是以23为首项,13为公比的等比数列,∴1a n -1=23·13n -1=23n , ∴a n =3n3n +2.二、破解数列中的4类探索性问题 1.条件探索性问题此类问题的基本特征是:针对一个结论,条件未知需探求,或条件增删需确定,或条件正误需判定,解决此类问题的基本策略是:执果索因,先寻找结论成立的必要条件,再通过检验或认证找到结论成立的充分条件,在“执果索因”的过程中,常常会犯的一个错误是不考虑推理过程的可逆与否,误将必要条件当作充分条件,应引起注意.[例1] 已知数列{a n }中,a 1=2,a 2=3,其前n 项和S n 满足S n +2+S n =2S n +1+1(n ∈N *);数列{b n }中,b 1=a 1,b n +1=4b n +6(n ∈N *).(1)求数列{a n },{b n }的通项公式; (2)设c n =b n +2+(-1)n -1λ·2a n (λ为非零整数,n ∈N *),试确定λ的值,使得对任意n ∈N *,都有c n +1>c n 成立.[解] (1)由已知得S n +2-S n +1-(S n +1-S n )=1, 所以a n +2-a n +1=1(n ≥1). 又a 2-a 1=1,所以数列{a n }是以a 1=2为首项,1为公差的等差数列. 所以a n =n +1.因为b n +1=4b n +6,即b n +1+2=4(b n +2),又b 1+2=a 1+2=4, 所以数列{b 2+2}是以4为公比,4为首项的等比数列. 所以b n =4n-2.(2)因为a n =n +1,b n =4n-2, 所以c n =4n+(-1)n -1λ·2n +1.要使c n +1>c n 成立,需c n +1-c n =4n +1-4n+(-1)nλ·2n +2-(-1)n -1λ·2n +1>0恒成立,化简得3·4n -3λ(-1)n -12n +1>0恒成立,即(-1)n -1λ<2n -1恒成立,①当n 为奇数时,即λ<2n -1恒成立,当且仅当n =1时,2n -1有最小值1,所以λ<1;②当n 为偶数时,即λ>-2n -1恒成立,当且仅当n =2时,-2n -1有最大值-2,所以λ>-2,即-2<λ<1.又λ为非零整数,则λ=-1.综上所述,存在λ=-1,使得对任意n ∈N *,都有c n +1>c n 成立.[点评] 对于数列问题,一般要先求出数列的通项,不是等差数列和等比数列的要转化为等差数列或等比数列.遇到S n 要注意利用S n 与a n 的关系将其转化为a n ,再研究其具体性质.遇到(-1)n型的问题要注意分n 为奇数与偶数两种情况进行讨论,本题易忘掉对n 的奇偶性的讨论而致误.2.结论探索性问题此类问题的基本特征是:有条件而无结论或结论的正确与否需要确定.解决此类问题的策略是:先探索结论而后去论证结论,在探索过程中常可先从特殊情形入手,通过观察、分析、归纳、判断来作一番猜测,得出结论,再就一般情形去认证结论.[例2] 已知各项均为正数的数列{a n }满足:a 2n +1=2a 2n +a n a n +1,且a 2+a 4=2a 3+4,其中n ∈N *.(1)求数列{a n }的通项公式; (2)设数列{b n }满足:b n =na n2n +12n ,是否存在正整数m ,n (1<m <n ),使得b 1,b m ,b n成等比数列?若存在,求出所有的m ,n 的值,若不存在,请说明理由;(3)令c n =1+n a n,记数列{c n }的前n 项积为T n ,其中n ∈N *,试比较T n 与9的大小,并加以证明.[解] (1)因为a 2n +1=2a 2n +a n a n +1, 即(a n +a n +1)(2a n -a n +1)=0.又a n >0,所以2a n -a n +1=0,即2a n =a n +1. 所以数列{a n }是公比为2的等比数列.由a 2+a 4=2a 3+4,得2a 1+8a 1=8a 1+4,解得a 1=2. 故数列{a n }的通项公式为a n =2n(n ∈N *). (2)因为b n =na n2n +12n=n2n +1, 所以b 1=13,b m =m 2m +1,b n =n2n +1.若b 1,b m ,b n 成等比数列,则⎝ ⎛⎭⎪⎫m 2m +12=13⎝ ⎛⎭⎪⎫n 2n +1,即m 24m 2+4m +1=n6n +3.。
2014高考数学大一轮复习7.5数列的综合应用配套练习苏教版

2014高考数学大一轮复习 7.5数列的综合应用配套练习 苏教版1.已知a,b,c,d 成等比数列,且曲线223y x x =-+的顶点是(b,c),则ad 等于 . 【答案】 2【解析】 因为a,b,c,d 成等比数列,所以ad=bc. 而223y x x =-+的顶点为(1,2), 所以bc=2,即ad=2.2.在数列{n a }中,若点()n n a ,在经过点(5,3)的定直线l 上,则数列{n a }的前9项和9S = .【答案】 27【解析】 因为点()n n a ,在直线l 上, 所以{n a }成等差数列. 所以1(1)n a a n d =+-.将(5,3)代入,得1534a d a =+=, 所以991952()99327S a a a =+==⨯=.3.等比数列{n a }的前n 项和为n S ,且12342a a a ,,成等差数列.若11a =则4S = .【答案】 15【解析】 ∵12342a a a ,,成等差数列, ∴13244a a a +=,即211144a a q a q +=. ∴2440q q -+=. ∴4215q S =,=.4.有10台型号相同的联合收割机,收割一片土地上的庄稼.若同时投入至收割完毕需用24小时.但现在它们是每隔相同的时间顺次投入工作的,每一台投入工作后都一直工作到庄稼收割完毕.如果第一台收割机工作的时间是最后一台的5倍,求用这种收割方法收割完这片土地上的庄稼需用多长时间? 【解】 设从第一台投入工作起,这10台收割机工作的时间依次为123a a a ,,,…10a ,小时,依题意,数列{n a }组成一个等差数列,每台收割机每小时工作效率是1240且有1101012 (1240240)2405a aa a a ⎧⎪+++=,⎨⎪=.⎩①②由(1)得12a a ++…10240a +=. ∵数列{n a }是等差数列,∴()101102402a a +⨯=,即11048a a +=.③将②,③联立,解得140(a =小时),即用这种方法收割完这片土地上的庄稼共需40小时.1.如图所示是毕达哥拉斯(的生长程序:正方形上连结着等腰直角三角形,等腰直角三角形边上再连结正方形如此继续,若共得到个正方形,设初始正方形则最小正方形的边长为.【答案】 132【解析】 设1+2+4+ (1)21n -+= 023,即12121n--= 02321n,= 024,n=10. 正方形边长构成数列23,,…,其中第10项为10132=,即所求最小正方形的边长为132.2.一个弹性小球从100 m 高处自由落下,每次着地后又弹回到原高度的一半再落下,当它第10次着地时,经过的路程为 m.(精确到0.1)【答案】 299.6【解析】 第10次着地时,经过的路程为1111002(10010010022322+⨯⨯+⨯+⨯+…11100)100200(1)9922+⨯=+⨯-1917529964=≈.6(m).3.首项为1,且从第2项起,每一项都等于它的后项减前项的等比数列共有 个. 【答案】 2【解析】 令11n n n a a a +-=-,得122n n n q q q q --=-,--此方程有两个不为0的实根,故满足条件的等比数列有两个4.在△ABC 中,tanA 是以-4为第三项,4为第七项的等差数列的公差,tanB 是以13为第三项,9为第六项的等比数列的公比,则这个三角形的形状是 三角形. 【答案】 锐角【解析】 由734a a =+tanA,得tanA=2.由63b b =tan 3B ,得所以tanC=-tan(A tanA tanB )11tanAtanBB ++=-=-.故角A,B,C 均为锐角.5.设{n a }是公比为q 的等比数列,|q|>1,令1(1n n b a n =+=,2,…),若数列{n b }有连续四项在集合--23,19,37,82}中,则【答案】 -9【解析】 由题意可知{n a }有连续四项在集合{--中,四项-24,36,-54,81成等比数列,公比为-3692q ,=-.6.在圆2250x y x +-=内,过点53()22,的n 条长度成等差数列的弦中,最小弦长为1a ,最大弦长为n a ,若公差11[]82d ∈,,那么n 的取值集合为 .【答案】 {3,4,5,6,7,8,9}【解析】 由22525()24x y -+=,得圆的直径为5,于是由题意与圆的几何性质得154n a a =,=,所以1111a and n n -==--.因为1182d ≤≤, 所以111218812n n ≤≤,≤-≤-.所以3≤n ≤又因为n ∈N *,故n=3,4,5,6,7,8,9.7.某化工厂生产一种溶液,按市场要求,杂质含量不能超过0.1%.若初时含杂质2%,且每过滤一次可使杂质含量减少13,则要使产品达到市场要求,至少应过滤 次.(取lg2=0.301 0,lg3=0.477 1) 【答案】 8【解析】 设原有溶液a,含杂质2%a,经过n 次过滤,含杂质13(1)n⨯-.要使n 次过滤后杂质含量不超过0.1%,则n22%a ()3100a⨯⨯%0≤.1%, 即11lg21030102()73lg3lg2047710301020nn ++.≤,≥=≈-.-..387 8,∴至少应过滤次8.在数列{n a }中,如果存在非零常数T,使得m T m a a +=对于任意正整数n 均成立,那么就称数列{n a }为周期数列,其中T 叫做数列{n a }的周期.已知数列{n x }满足1n x +=|1n n x x --|(2n n ≥,∈N )*,若1x =21(10)x a a a ,=≤,≠,数列{n x }的周期为3,则该数列的前2 008项的和为 .【答案】 1 339【解析】 根据题意3x ,=|21x x -|=|a-1|=1-a,4x =3x -2x -a-a|=|1-2a|.因为数列{n x }的周期为3,所以|1-2a|=1, 即a=1或a=0(舍去).所以123110x x x =,=,=. 故200866931123669()S S x x x ⨯+==+++4x =6692⨯+9.设等差数列{n a }的前n 项和为n S ,则4841281612S S S S S S S ,-,-,-成等差数列.类比以上结论有:设等比数列{n b }的前n 项积为n T ,则4T , , 1612TT ,成等比数列.【答案】 84T T 128T T 【解析】 对于等比数列,通过类比,有等比数列{n b }的前n 项积为n T ,则4816124812T TT T T T T ,,,成等比数列10.有一种零存整取的储蓄项目,它是每月某日存入一笔相同金额,这是零存;到一定的时期到期,可以提出全部本金和利息,这是整取.它的本利和公式如下: 本利和=每期存入的金额[⨯存期12+⨯存期(⨯存期1)+⨯利率].(1)试解释这个本利和公式;(2)若每月初存入100元,月利率为5.1%,到第12个月底的本利和是多少?(3)若每月初存入一笔金额,月利率是5.1%,希望到第12个月底取得本利和2 000元,那么每月初应存入多少?【解】 (1)设每期存入的金额为A,每期利率为P,存期为n,则各期的利息之和为nAP+(n-1)AP+…(1)22n n APAP AP +++=, 所以本利和为(1)2n n APnA ++(1)[]2n n A n P +=+元. (2)到第12个月的本利和为1100[12122+⨯⨯5⨯.1%]=1 597.8元. (3)设每月初应存入x 元,则有1[12122x +⨯⨯5⨯.1%]=2 000125x ,≈.2.所以每月初应存入元.11.某种细胞开始时有2个,1小时后分裂为4个并死去1个,2小时后分裂为6个并死去1个,3小时后分裂为10个并死去1个,…,按照这种规律进行下去.设n 小时后细胞的个数为n a 个(n ∈N ).(1)求数列{n a }的通项公式;(2)求ni=1012i a a a a =+++…n a +的表达式. 【解】 (1)由题意可知01221n n a a a -,=,=-,即1n a -=11)2(n a --,∴数列{1n a -}构成以011a -=为首项,2为公比的等比数列. ∴01(1)22n n n a a -=-⋅=,∴21(n n a n =+∈N ).(2)ni=1012i a a a a =+++…(1)(1n a n +=+++22+11112122)11212n n n n n n n +++--+=++=++-=+. 12.(2011届江苏南京二模)(1)已知公差不为0的等差数列 {n a }的首项11a =,前n 项和为n S .若数列{n nSa }是等差数列.①求n a ;②令(0)n Sn b q q =>,若对一切n ∈N *,都有2122n n n b b b ++>,求q 的取值范围. (2)是否存在各项都是正整数的无穷数列{n c },使2122n n n c c c ++>对一切n ∈N *都成立,若存在,请写出数列{n c }的一个通项公式;若不存在,说明理由. 【解】 (1)①设等差数列{n a }的公差为d,则211211111112S a Sd a a a d d +==,==+,++ 3332112123Sd d a d d ++==+,++ 因为{n nSa }是等差数列.所以3212213S SSa a a ⨯=+, 即1122(1)1(1)12d d d+++=++,+ 解得d=0或d=1.因为0d ≠,所以d=1,所以n a n =,又12Sn n an+=,所以(1)2n n S n +=.②由①得(1)2n n n b q+,=,所以(1)(2)222[]11(1)(1)(3)222n n b q n b b n n n n q n n q q+++==,++++⨯ 因为2122n n n b b b ++>,所以12q>,所以120q <<. (2)假设存在各项都是正整数的无穷数列{n c },使2122n n n c c c ++>对一切n ∈N *都成立,则1221c c n n c c n n ++>⨯,+ 所以232422123c c cc c c >⨯>⨯>…112n c n c n -+>⨯,所以121121c c n c c n n +<⨯,- 若211c c <,取211121cc n ⨯<,-所以当n ∈N *时11cn c n+,<,即1n n c c +<,因为n c ∈N *,所以11n n c c +-≤-, 令1c M =, 所以22111()()()M M M M M M M c c c c c c c ++++-=-+-+-+…211()(1)c c c M M +-+≤-++=-1<0,与2M c +∈N *矛盾.若211c c ≥,取N 为log 2221c c +的整数部分, 则当n N ≥时211121cc n ,⨯<,-所以11cn c n+<,即1n n c c +<,因为n c ∈N *,所以11n n c c +-≤-. 令N c M =, 所以11112()()()N M N M N M N M N M N M N M c c c c c c c +++++++-+-+-=-+-+-+…1()(1)N N N c c c M ++-+≤-++-1<0,与1N M c ++∈N *矛盾,综上,假设不成立.即不存在各项都是正整数的无穷数列{n c },使2122n n n c c c ++>对一切n ∈N *都成立.。
2014届高考一轮复习数学6.4数列求和

目录
退出
1.等比数列{an}中,S2=7,S6=91,则 S4 为( A.28 B.32
) C.35 D.49
【答案】A 【解析】在等比数列{an}中,S2,S4-S2,S6-S4 仍成等比数列, 设 S4=x,则有(x-7)2=7·(91-x),故 x=-21 或 28. 又 S4=S2+a3+a4=S2(1+q2)>0,故 S4=28. 2.若数列{an}的通项公式为 an=2n+2n-1,则数列{an}的前 n 项和为( A.2n+n2-1 B.2n+1+n2-1 C.2n+1+n2-2 【答案】C 【解析】
+…+ ������
10 11
+f
1 11
=10.
故 t=5.
目录
退出
T 题型三裂 (拆)项法求和
例 3 在数列{an}中,an=������+1 + ������+1+…+������+1,又 bn=������
列{bn}的前 n 项的和. 先求 an,再将通项 bn 化简,将其分裂成两项的差,再求其和. 【解】∵ n= a bn=������
目录
退出
目录
退出
1.等差数列、等比数列的前 n 项和公式 等差数列前 n 项和 Sn=
������(������1 +������������ ) ������(������-1) =na1+ ������,推导方法:倒序相加法; 2 2
n������1 ,������ = 1, 等比数列前 n 项和 Sn=
目录
退出
T 题型二倒 序相加法求和
2014届高三理科数学一轮复习试题选编14:数列的综合问题(学生版)

实用文档2014届高三理科数学一轮复习试题选编14:数列的综合问题一、选择题1 .(2013北京海淀二模数学理科试题及答案)若数列{}n a 满足:存在正整数T ,对于任意正整数n 都有n T n a a +=成立,则称数列{}n a 为周期数列,周期为T . 已知数列{}n a 满足1(0)a m m =>,11, 1=1, 0 1.n n n n na a a a a +->⎧⎪⎨<≤⎪⎩,则下列结论中错误..的是 ( )A .若34a =,则m 可以取3个不同的值 B.若m =则数列{}n a 是周期为3的数列C .T ∀∈*N 且2T ≥,存在1m >,{}n a 是周期为T 的数列D .Q m ∃∈且2m ≥,数列{}n a 是周期数列2 .(2013北京昌平二模数学理科试题及答案)设等比数列}{n a 的公比为q ,其前n 项的积为n T ,并且满足条件11a >,9910010a a ->,99100101a a -<-.给出下列结论:① 01q <<; ② 9910110a a ⋅->;③ 100T 的值是n T 中最大的;④ 使1n T >成立的最大自然数n 等于198.其中正确的结论是 ( ) A .①③ B .①④C .②③D .②④二、填空题实用文档3 .(2013届北京市延庆县一模数学理)以下是面点师一个工作环节的数学模型:如图,在数轴上截取与闭区间]4,0[对应的线段,对折后(坐标4所对应的点与原点重合)再均匀地拉成4个单位长度的线段,这一过程称为一次操作(例如在第一次操作完成后,原来的坐标1、3变成2,原来的坐标2变成4,等等).那么原闭区间]4,0[上(除两个端点外)的点,在第n 次操作完成后)1(≥n ,恰好被拉到与4重合的点所对应的坐标为)(n f ,则=)3(f ;=)(n f .4 .(北京市丰台区2013届高三上学期期末考试 数学理试题 )右表给出一个“三角形数阵”.已知每一列数成等差数列,从第三行起,每一行数成等比数列,而且每一行的公比都相等,记第i 行第j 列的数为ij a (*,,N j i j i ∈≥),则53a 等于 ,______(3)mn a m =≥.5 .(北京市石景山区2013届高三一模数学理试题)对于各数互不相等的整数数组(i 1,i 2,i 3,,i n )(n 是不小于3的正整数),若对任意的p,q∈{1,2,3,,n},当p<q 时有i p >i q ,则称i p ,i q 是该数组的一个“逆序”.一个数组中所有“逆序”的个数称为该数组的“逆序数”,如数组(2,3,1)的逆序数等于2.则数组(5,2,4,3,1)的逆序数等于___________;若数组(i 1,i 2,i 3,,i n )的逆序数为n,则数组(i n ,i n-l ,i 1)的逆序数为___________.6 .(2013北京朝阳二模数学理科试题)数列{21}n -的前n 项1,3,7,,21n -组成集合{1,3,7,,21}()n n A n *=-∈N ,从集合n A 中任取k (1,2,3,,)k n =个数,其所有可能的k 个数的24(14题实用文档乘积的和为k T (若只取一个数,规定乘积为此数本身),记12n n S T T T =+++.例如当1n =时,1{1}A =,11T =,11S =;当2n =时,2{1,3}A =,113T =+,213T =⨯,213137S =++⨯=.则当3n =时,3S =______;试写出n S =______.7 .(2013届北京西城区一模理科)记实数12,,,n x x x 中的最大数为12max{,,,}n x x x ,最小数为12min{,,,}n x x x .设△ABC 的三边边长分别为,,a b c ,且a b c ≤≤,定义△ABC 的倾斜度为max{,,}min{,a b c a t b c a b =⋅,}b cc a.(ⅰ)若△ABC 为等腰三角形,则t =______;(ⅱ)设1a =,则t 的取值范围是______. 8 .(北京市海淀区北师特学校2013届高三第四次月考理科数学)对任意x ∈R ,函数()f x满足1(1)2f x +=,设)()]([2n f n f a n -=,数列}{n a 的前15项的和为3116-,则(15)f = .9 .(北京市东城区2013届高三上学期期末考试数学理科试题)定义映射:f A B →,其中{(,),}A m n m n =∈R ,B =R ,已知对所有的有序正整数对(,)m n 满足下述条件:①(,1)1f m =;②若n m >,(,)0f m n =;③(1,)[(,)(,1)]f m n n f m n f m n +=+-, 则(2,2)f = ,(,2)f n = .10.(2013北京东城高三二模数学理科)在数列{}n a 中,若对任意的*n ∈N ,都有211n n n na a t a a +++-=(t 为常数),则称数列{}n a 为比等差数列,t 称为比公差.现给出以下命题:①等比数列一定是比等差数列,等差数列不一定是比等差数列;②若数列{}n a 满足122n n a n -=,则数列{}n a 是比等差数列,且比公差12t =;实用文档③若数列{}n c 满足11c =,21c =,12n n n c c c --=+(3n ≥),则该数列不是比等差数列;④若{}n a 是等差数列,{}n b 是等比数列,则数列{}n n a b 是比等差数列. 其中所有真命题的序号是___.11.(北京市朝阳区2013届高三上学期期末考试数学理试题 )将整数1,2,3,,25填入如图所示的5行5列的表格中,使每一行的数字从左到右都成递增数列,则第三列各数之和的最小值为 ,最大值为 .12.(2013北京房山二模数学理科试题及答案)在数列{}n a 中,如果对任意的*n ∈N ,都有211n n n na a a a λ+++-=(λ为常数),则称数列{}n a 为 比等差数列,λ称为比公差.现给出以下命题:①若数列{}n F 满足1212(3)n n n F F F F F n --=+≥=1,=1,,则该数列不是比等差数列;②若数列{}n a 满足123-⋅=n n a ,则数列{}n a 是比等差数列,且比公差0=λ;③等比数列一定是比等差数列,等差数列一定不是比等差数列; ④若{}n a 是等差数列,{}n b 是等比数列,则数列{}n n a b 是比等差数列. 其中所有真命题的序号是____ . 三、解答题13.(北京市海淀区2013届高三上学期期中练习数学(理)试题)已知数集实用文档12{,,A a a =,}n a 12(1a a =<<,2)n a n <≥具有性质P:对任意的(2)k k n ≤≤,,(1)i j i j n ∃≤≤≤,使得k i j a a a =+成立.(Ⅰ)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P ,并说明理由; (Ⅱ)求证:122n a a a ≤++1(2)n a n -+≥;(Ⅲ)若72n a =,求数集A 中所有元素的和的最小值.14.(2013届北京海滨一模理科)设(,),(,)A A B B A x y B x y 为平面直角坐标系上的两点,其中,,,A A B B x y x y ∈Z .令B A x x x ∆=-,B A y y y ∆=-,若x ∆+=3y ∆,且||||0x y ∆⋅∆≠,则称点B 为点A的“相关点”,记作:()B A τ=. 已知0P 0000(,)(,)x y x y ∈ Z 为平面上一个定点,平面上点列{}i P 满足:1()i i P P τ-=,且点i P 的坐标为(,)i i x y ,其中1,2,3,...,i n =.(Ⅰ)请问:点0P 的“相关点”有几个?判断这些“相关点”是否在同一个圆上,若在同一个圆上,写出圆的方程;若不在同一个圆上,说明理由; (Ⅱ)求证:若0P 与n P 重合,n 一定为偶数;(Ⅲ)若0(1,0)P ,且100n y =,记0ni i T x ==∑,求T 的最大值.实用文档15.(北京市西城区2013届高三上学期期末考试数学理科试题)如图,设A 是由n n ⨯个实数组成的n行n 列的数表,其中ij a (,1,2,3,,)i j n =表示位于第i 行第j 列的实数,且{1,1}ij a ∈-.记(,)S n n 为所有这样的数表构成的集合.对于(,)A S n n ∈,记()i r A 为A 的第i 行各数之积,()j c A 为A的第j 列各数之积.令11()()()n ni ji j l A r A cA ===+∑∑.(Ⅰ)请写出一个(4,4)A S ∈,使得()0l A =;(Ⅱ)是否存在(9,9)A S ∈,使得()0l A =?说明理由;(Ⅲ)给定正整数n ,对于所有的(,)A S n n ∈,求()l A 的取值集合.16.(2011年高考(北京理))若数列12:,,(2)n n A a a a n ≥满足1||1(1,2,,1)k k a a k n +-==-,则称n A 为E 数列.记12()n n S A a a a =+++(Ⅰ)写出一个满足150a a ==,且5()0S A >的E 数列5A ;(Ⅱ)若112,2000a n ==,证明:E 数列n A 是递增数列的充要条件是2011n a =;(Ⅲ)对任意给定的整数(2)n n ≥,是否存在首项为0的E 数列n A ,使得()0n S A =?如果存在,写出一个满足条件的E 数列n A ;如果不存在,说明理由.17.(2013北京丰台二模数学理科试题及答案)已知等差数列{}n a 的通项公式为a n =3n-2,等比数列实用文档{}n b 中,1143,1b a b a ==+.记集合{},*,n A x x a n N ==∈{},*n B x x b n N ==∈,U A B =⋃,把集合U 中的元素按从小到大依次排列,构成数列{}n c . (Ⅰ)求数列{b n }的通项公式,并写出数列{}n c 的前4项;(Ⅱ)把集合U C A 中的元素从小到大依次排列构成数列{}n d ,求数列{}n d 的通项公式,并说明理由; (Ⅲ)求数列{}n c 的前n 项和.n S18.(北京市朝阳区2013届高三第一次综合练习理科数学)设1210(,,,)x x x τ=是数1,2,3,4,5,6,7,8,9,10的任意一个全排列,定义1011()|23|k k k S x x τ+==-∑,其中111x x =.(Ⅰ)若(10,9,8,7,6,5,4,3,2,1)τ=,求()S τ的值; (Ⅱ)求()S τ的最大值;(Ⅲ)求使()S τ达到最大值的所有排列τ的个数.实用文档北京市朝阳区高三年级第一次综合练19.(北京市顺义区2013届高三第一次统练数学理科试卷(解析))已知数列{}n a 的前n 项和为n S ,且点()n S n ,在函数221-=+x y 的图像上. (I)求数列{}n a 的通项公式;(II)设数列{}n b 满足:()*,011N ∈=+=+n a b b b n n n ,求数列{}n b 的前n 项和公式;(III)在第(II)问的条件下,若对于任意的*N ∈n 不等式1+<n n b b λ恒成立,求实数λ的取值范围 20.(北京市丰台区2013届高三上学期期末考试 数学理试题 )已知曲线2:2(0)C y x y =≥,111222(,),(,),,(,),n n n A x y A x y A x y ⋅⋅⋅⋅⋅⋅是曲线C 上的点,且满足120n x x x <<<⋅⋅⋅<<⋅⋅⋅,一列点(,0)(1,2,)i i B a i =⋅⋅⋅在x 轴上,且10(i i i B A B B -∆是坐标原点)是以i A 为直角顶点的等腰直角三角形.(Ⅰ)求1A 、1B 的坐标; (Ⅱ)求数列{}n y 的通项公式;(Ⅲ)令1,2iy i i ib c a -==,是否存在正整数N ,当n≥N 时,都有11n niii i b c ==<∑∑,若存在,求出N 的最小值并证明;若不存在,说明理由.21.(北京市海淀区2013届高三上学期期末考试数学理试题 )已知函数()f x 的定义域为(0,)+∞,若()f x y x =在(0,)+∞上为增函数,则称()f x 为“一阶比增函数”;若2()f x y x=在(0,)+∞上为增函数,则称()f x 为“二阶比增函数”.实用文档我们把所有“一阶比增函数”组成的集合记为1Ω,所有“二阶比增函数”组成的集合记为2Ω. (Ⅰ)已知函数32()2f x x hx hx =--,若1(),f x ∈Ω且2()f x ∉Ω,求实数h 的取值范围; (Ⅱ)已知0a b c <<<,1()f x ∈Ω且()f x 的部分函数值由下表给出,c 求证:(24)0d d t +->;(Ⅲ)定义集合{}2()|(),,(0,)(),f x f x k x f x k ψ=∈Ω∈+∞<且存在常数使得任取,请问:是否存在常数M ,使得()f x ∀∈ψ,(0,)x ∀∈+∞,有()f x M <成立?若存在,求出M 的最小值;若不存在,说明理由.22.(北京市石景山区2013届高三上学期期末考试数学理试题 )定义:如果数列{}n a 的任意连续三项均能构成一个三角形的三边长,则称{}n a 为“三角形”数列.对于“三角形”数列{}n a ,如果函数()y f x =使得()n n b f a =仍为一个“三角形”数列,则称()y f x =是数列{}n a 的“保三角形函数”(*)n N ∈.(Ⅰ)已知{}n a 是首项为2,公差为1的等差数列,若()(1)x f x k k =>是数列{}n a 的 “保三角形函数”,求k 的取值范围;(Ⅱ)已知数列{}n c 的首项为2013,n S 是数列{}n c 的前n 项和,且满足+1438052n n S S -=,证明{}n c 是“三角形”数列;(Ⅲ)若()lg g x x =是(Ⅱ)中数列{}n c 的“保三角形函数”,问数列{}n c 最多有多少项?实用文档(解题中可用以下数据 :lg20.301,lg30.477,lg2013 3.304≈≈≈)23.(北京市朝阳区2013届高三上学期期中考试数学(理)试题)给定一个n 项的实数列12,,,(N )n a a a n *∈,任意选取一个实数c ,变换()T c 将数列12,,,n a a a 变换为数列12||,||,,||n a c a c a c ---,再将得到的数列继续实施这样的变换,这样的变换可以连续进行多次,并且每次所选择的实数c 可以不相同,第(N )k k *∈次变换记为()k k T c ,其中k c 为第k 次变换时选择的实数.如果通过k 次变换后,数列中的各项均为0,则称11()T c , 22()T c ,,()k k T c 为 “k 次归零变换”.(Ⅰ)对数列:1,3,5,7,给出一个 “k 次归零变换”,其中4k ≤; (Ⅱ)证明:对任意n 项数列,都存在“n 次归零变换”; (Ⅲ)对于数列231,2,3,,n n ,是否存在“1n -次归零变换”?请说明理由.24.(2013届北京丰台区一模理科)设满足以下两个条件的有穷数列12,,,n a a a ⋅⋅⋅为n (n=2,3,4,…,)阶“期待数列”: ① 1230n a a a a ++++=;② 1231n a a a a ++++=.(Ⅰ)分别写出一个单调递增的3阶和4阶“期待数列”;(Ⅱ)若某2k+1(*k N ∈)阶“期待数列”是等差数列,求该数列的通项公式; (Ⅲ)记n 阶“期待数列”的前k 项和为(1,2,3,,)k S k n =,实用文档试证:(1)21≤k S ; (2)111.22ni i a in =≤-∑25.(2013北京昌平二模数学理科试题及答案)本小题满分14分)设数列{}n a 对任意*N n ∈都有112()()2()n n kn b a a p a a a +++=++(其中k 、b 、p 是常数) .(I)当0k =,3b =,4p =-时,求123n a a a a ++++;(II)当1k =,0b =,0p =时,若33a =,915a =,求数列{}n a 的通项公式;(III)若数列{}n a 中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.当1k =,0b =,0p =时,设n S 是数列{}n a 的前n 项和,212a a -=,试问:是否存在这样的“封闭数列” {}n a ,使得对任意*N n ∈,都有0n S ≠,且12311111111218n S S S S <++++<.若存在,求数列{}n a 的首项1a 的所有取值;若不存在,说明理由.26.(北京市昌平区2013届高三上学期期末考试数学理试题 )已知每项均是正整数的数列123100,,,,a a a a ,其中等于i 的项有i k 个(1,2,3)i =,设j j k k k b +++= 21(1,2,3)j =,12()100m g m b b b m =+++-(1,2,3).m =(Ⅰ)设数列1240,30,k k ==34510020,10,...0k k k k =====,求(1),(2),(3),(4)g g g g ; (Ⅱ)若123100,,,,a a a a 中最大的项为50, 比较(),(1)g m g m +的大小; (Ⅲ)若12100200a a a +++=,求函数)(m g 的最小值.实用文档27.(2013北京朝阳二模数学理科试题)已知实数12,,,n x x x (2n ≥)满足||1(1,2,3,,)i x i n ≤=,记121(,,,)n i j i j nS x x x x x ≤<≤=∑.(Ⅰ)求2(1,1,)3S --及(1,1,1,1)S --的值; (Ⅱ)当3n =时,求123(,,)S x x x 的最小值; (Ⅲ)求12(,,,)n S x x x 的最小值.注:1i j i j nx x ≤<≤∑表示12,,,n x x x 中任意两个数i x ,j x (1i j n ≤<≤)的乘积之和.28.(北京四中2013届高三上学期期中测验数学(理)试题)已知A(,),B(,)是函数的图象上的任意两点(可以重合),点M 在直线上,且. (1)求+的值及+的值(2)已知,当时,+++,求; (3)在(2)的条件下,设=,为数列{}的前项和,若存在正整数、,使得不等式成立,求和的值.实用文档29.(2013北京海淀二模数学理科试题及答案)(本小题满分13分)设A 是由m n ⨯个实数组成的m 行n 列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(Ⅰ) 数表A 如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可);表1(Ⅱ) 数表A 如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数..a 的所有可能值;(Ⅲ)对由m n ⨯个实数组成的m 行n 列的任意一个数表A ,能否经过有限次“操作”以后,使得到的数表每行的各数之 表2和与每列的各数之和均为非负整数?请说明理由.30.(2013北京房山二模数学理科试题及答案)设3>m ,对于项数为m 的有穷数列{}n a ,令k b 为)(,,,21m k a a a k ≤ 中的最大值,称数列{}n b 为{}n a 的“创新数列”.例如数列3,5,4,7的创新数列为3,5,5,7.考查自然数)3(,,2,1>m m 的所有排列,将每种排列都视为一个有穷数列{}n c . (Ⅰ)若5m =,写出创新数列为3,5,5,5,5的所有数列{}n c ;22221212a a a a a a a a ------实用文档(Ⅱ)是否存在数列{}n c 的创新数列为等比数列?若存在,求出符合条件的创新数列;若不存在,请说明理由;(Ⅲ)是否存在数列{}n c ,使它的创新数列为等差数列?若存在,求出所有符合条件的数列{}n c 的个数;若不存在,请说明理由.31.(北京市东城区2013届高三上学期期末考试数学理科试题)已知实数组成的数组123(,,,,)n x x x x 满足条件: ①10nii x==∑; ②11ni i x ==∑.(Ⅰ) 当2n =时,求1x ,2x 的值;(Ⅱ)当3n =时,求证:123321x x x ++≤; (Ⅲ)设123n a a a a ≥≥≥≥,且1n a a >(2)n ≥,求证:111()2ni in i a x a a =≤-∑.32.(北京市东城区普通校2013届高三3月联考数学(理)试题 )设1a ,2a ,…20a 是首项为1,公比为2的等比数列,对于满足190≤≤k 的整数k ,数列1b ,2b ,…20b 由⎩⎨⎧-++20k n k n a a 时,当时,当20-20201≤<-≤≤n k k n 确定。
【山东专用】2014届高考数学(理)一轮复习专题集训《数列的综合应用》Word版含解析

数列的综合应用一、选择题(每小题6分,共36分)1.(2012·聊城模拟)已知各项不为0的等差数列{a n }满足2a 3-a 27+2a 11=0,数列{b n }是等比数列,且b 7=a 7,则b 6·b 8=( )(A)2 (B)4 (C)8 (D)162.2011年11月1日5时58分10秒“神八”顺利升空,若运载“神八”的改进型“长征二号”系列火箭在点火后某秒钟通过的路程为2 km ,此后每秒钟通过的路程增加2 km ,若从这一秒钟起通过240 km 的高度,火箭与飞船分离,则这一过程需要的时间是( )(A)10秒钟 (B)13秒钟 (C)15秒钟 (D)20秒钟3.已知等差数列{a n }的前n 项和为S n ,且S 2=10,S 5=55,则过点P(n ,a n )和Q(n +2,a n +2)(n∈N +)的直线的一个方向向量的坐标可以是( )(A)(2,4)(B)(-13,-43) (C)(-12,-1) (D)(-1,-1)4.(2012·德州模拟)已知命题p :数列log 3n ,log 3(n +1),log 3(n +3)(n∈N +)成等差数列;命题q :数列(13)n ,33n ,3n (n∈N +)成等比数列.命题p 是命题q 的( ) (A)充分不必要条件 (B)必要不充分条件(C)充要条件 (D)既不充分也不必要条件5.已知数列{a n }、{b n }都是公差为1的等差数列,其首项分别为a 1、b 1,且a 1+b 1=5,a 1>b 1,a 1、b 1∈N +(n∈N +),则数列{ }的前10项的和等于( )(A)65 (B)75 (C)85 (D)956. (2012·合肥模拟)已知数列{a n }为等差数列,若a 11a 10<-1,且它们的前n 项和S n 有最大值,则使得S n <0的n 的最小值为( )(A)11 (B)19 (C)20 (D)21二、填空题(每小题6分,共18分)7.(2012·临沂模拟)已知等差数列{a n }满足a 2=3,a 5=9,若数列{b n }满足b 1=3,b n +1=,则{b n }的通项公式为 .8.设S n 是数列{a n }的前n 项和,若S 2n S n(n∈N +)是非零常数,则称数列{a n }为“和等比数列”.若数列{}是首项为2,公比为4的等比数列,则数列{b n } (填“是”或“不是”)“和等比数列”.9.(易错题)某科研单位欲拿出一定的经费奖励科研人员,第1名得全部资金的一半多一万元,第2名得剩下的一半多一万元,以名次类推都得到剩下的一半多一万元,到第10名恰好资金分完,则此科研单位共拿出 万元资金进行奖励.三、解答题(每小题15分,共30分)10.(2012·潍坊模拟)已知{a n }是公比为q 的等比数列,且a 1,a 3,a 2成等差数列.(1)求q 的值;(2)设{b n }是以2为首项,q 为公差的等差数列,其前n 项和为S n ,当n≥2时,比较S n 与b n 的大小,并说明理由.11.已知等差数列{a n }满足:a n +1>a n (n∈N +),a 1=1,该数列的前三项分别加上1, 1,3后顺次成为等比数列{b n }的前三项.(1)分别求数列{a n },{b n }的通项公式a n ,b n .(2)设T n =a 1b 1+a 2b 2+…+a n b n (n∈N +),若T n +2n +32n -1n<c(c∈Z)恒成立,求c 的最小值. 【探究创新】(16分)设数列{a n }(n =1,2,…)是等差数列,且公差为d ,若数列{a n }中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.(1)若a 1=4,d =2,求证:该数列是“封闭数列”.(2)若a n =2n -7(n∈N +),试判断数列{a n }是否是“封闭数列”,为什么?(3)设S n 是数列{a n }的前n 项和,若公差d =1,a 1>0,试问:是否存在这样的“封闭数列”,使137150<1S 1+1S 2+…+1S 2 011<119.若存在,求{a n }的通项公式;若不存在,说明理由.答案解析1.【解析】选D.∵数列{a n }是等差数列,∴a 3+a 11=2a 7,由2a 3-a 27+2a 11=0,得4a 7-a 27=0,又a n ≠0,∴a 7=4,∴b 6·b 8=b 27=42=16.2.【解析】选C.设从这一秒钟起,经过x 秒钟,通过240 km 的高度.由已知得每秒钟行驶的路程组成首项为2,公差为2的等差数列,故有2x +x(x -1)2×2=240, 即x 2+x -240=0.解得x =15或x =-16(舍去).3.【解题指南】解决本题首先明确方向向量的概念,然后通过已知求得数列的首项和公差,再求得直线的一个方向向量与选项对比即可.【解析】选B.由S 2=10,S 5=55,得2a 1+d =10,5a 1+10d =55,解得a 1=3,d =4,可知直线PQ 的一个方向向量是(1,4),只有(-13,-43)与(1,4)平行,故选B.4.【解析】选C.一方面由数列log 3n ,log 3(n +1),log 3(n +3)(n ∈N +)成等差数列,可得n =1,则数列(13)n ,33n ,3n 显然成等比数列;另一方面,由数列(13)n ,33n ,3n (n ∈N +)成等比数列,可得n =1,则数列log 3n ,log 3(n +1),log 3(n +3)显然成等差数列.故选C.5.【解析】选C.应用等差数列的通项公式得a n =a 1+n -1,b n =b 1+n -1,∴=a 1+b n -1=a 1+(b 1+n -1)-1=a 1+b 1+n -2=5+n -2=n +3,∴数列{}也是等差数列,且前10项和为10×(4+13)2=85. 【方法技巧】构造等差数列求解在等差数列相关问题中,有些数列不能直接利用等差数列的性质和求和公式,但是通过对数列变形可以构造成等差数列.(1)由递推公式构造等差数列一般是从研究递推公式的特点入手,如递推公式a n +1=2a n +3·2n +1的特点是除以2n +1就可以得到下标和指数相同了,从而构造成等差数列{a n 2n }. (2)由前n 项和S n 构造等差数列.(3)由并项、拆项构造等差数列.6.【解题指南】解答本题首先要搞清条件“a 11a 10<-1”及“S n 有最大值”如何使用,从而列出关于a 1,d 的不等式组,求出a 1d的取值范围,进而求出使得S n <0的n 的最小值. 【解析】选C.由题意知d <0,a 10>0,a 11<0,a 10+a 11<0,由⎩⎪⎨⎪⎧ a 1+9d >0a 1+10d <02a 1+19d <0d <0得-192<a 1d<-9. ∵S n =na 1+n(n -1)2d =d 2n 2+(a 1-d 2)n , 由S n =0得n =0或n =1-2a 1d. ∵19<1-2a 1d<20, ∴S n <0的解集为{n ∈N +|n >1-2a 1d}, 故使得S n <0的n 的最小值为20.7.【解析】由题意知⎩⎪⎨⎪⎧ a 1+d =3a 1+4d =9,∴⎩⎪⎨⎪⎧ a 1=1d =2,∴a n =2n -1,b n +1==2b n -1,∴b n +1-1=2(b n -1),∴b n +1-1b n -1=2,又∵b 1=3,∴b 1-1=2, ∴b n -1=2·2n -1=2n, ∴b n =2n +1. 答案:b n =2n +18.【解题指南】解决本题的关键是正确理解“和等比数列”的定义,然后求解.【解析】数列{}是首项为2,公比为4的等比数列,所以=2·4n -1=22n -1,b n =2n -1.设数列{b n }的前n 项和为T n ,则T n =n 2,T 2n =4n 2,所以T 2n T n=4,因此数列{b n }是“和等比数列”. 答案:是9.【解析】设第10名到第1名得到的奖金数分别是a 1,a 2,…,a 10,则a n =12S n +1, 则a 1=2,a n -a n -1=(12S n +1)-(12S n -1+1)=12(S n -S n -1)=12a n , 即a n =2a n -1,因此每人得的奖金额组成以2为首项,以2为公比的等比数列,所以S 10=2(1-210)1-2=2 046. 答案:2 04610.【解析】 (1)由题设2a 3=a 1+a 2,即2a 1q 2=a 1+a 1q ,∵a 1≠0,∴2q 2-q -1=0.∴q =1或-12. (2)若q =1,则S n =2n +n(n -1)2·1=n 2+3n 2. 当n ≥2时,S n -b n =S n -1=(n -1)(n +2)2>0. 故S n >b n .若q =-12,则S n =2n +n(n -1)2 (-12)=-n 2+9n 4当n ≥2时,S n -b n =S n -1=-(n -1)(n -10)4, 故对于n ∈N +,当2≤n ≤9时,S n >b n ;当n =10时,S n =b n ;当n ≥11时,S n <b n .11.【解析】(1)设d 、q 分别为数列{a n }、数列{b n }的公差与公比.由题意知,a 1=1,a 2=1+d ,a 3=1+2d ,分别加上1,1,3后得2,2+d,4+2d 是等比数列{b n }的前三项,∴(2+d)2=2(4+2d)⇒d =±2.∵a n +1>a n ,∴d >0.∴d =2,∴a n =2n -1(n ∈N +).由此可得b 1=2,b 2=4,q =2,∴b n =2n (n ∈N +).(2)T n =a 1b 1+a 2b 2+…+a n b n=12+322+523+…+2n -12n ① 当n =1时,T 1=12;当n ≥2时,12T n =122+323+524+…+2n -12n +1② ①-②,得12T n =12+2×(122+123+…+12n )-2n -12n +1.∴T n =1+1-12n -11-12-2n -12n =3-12n -2-2n -12n =3-2n +32n . ∴T n +2n +32n -1n =3-1n<3. ∵(3-1n)∈[2,3), ∴满足条件T n +2n +32n -1n<c(c ∈Z)恒成立的c 的最小整数值为3. 【探究创新】【解析】(1)a n =4+(n -1)·2=2n +2,对任意的m ,n ∈N +,有a m +a n =(2m +2)+(2n +2)=2(m +n +1)+2,∵m +n +1∈N +于是,令p =m +n +1,则有a p =2p +2∈{a n }.(2)∵a 1=-5,a 2=-3,∴a 1+a 2=-8,令a n =a 1+a 2=-8,即2n -7=-8解得n =-12N +,所以数列{a n }不是封闭数列.(3)由{a n }是“封闭数列”,得:对任意m ,n ∈N +,必存在p ∈N +使a 1+(n -1)+a 1+(m -1)=a 1+(p -1)成立,于是有a 1=p -m -n +1为整数,又∵a 1>0,∴a 1是正整数.若a 1=1,则S n =n(n +1)2,所以1S 1+1S 2+…+1S 2 011=2(1-12 012)>119,不符合题意, 若a 1=2,则S n =n(n +3)2,所以1S 1+1S 2+…+1S 2 011=23(1+12+13-12 012-12 013-12 014) =119-23×(12 012+12 013+12 014)<119,而119-23×(12 012+12 013+12 014)>119-23×32 012=119-11 006>137150,所以符合题意, 若a 1=3,则S n =n(n +5)2,所以1S 1+1S 2+…+1S 2 011=25(1+12+13+14+15-12 012-12 013-12 014-12 015-12 016) =137150-25(12 012+12 013+12 014+12 015+12 016)<137150, 综上所述,a 1=2时存在数列{a n }是“封闭数列”,此时a n =n +1(n ∈N +).。
湖北地区适用2014版《创新设计》高考数学一轮复习单元突破数列

武汉科技大学附中2014版《创新设计》高考数学一轮复习单元突破:数列本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题 (本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.等比数列{}n a 中,已知29-=a ,则此数列前17项之积为( )A .162B .-162C .172D .-172【答案】D2.凸n 边形有()f n 条对角线,则凸1n +边形的对角线的条数(1)f n +为( )A .()1f n n ++B .()f n n +C .()1f n n +-D .()2f n n +-【答案】C3.已知数列{}n a 为等差数列,且17134a a a π++=,则7tan a =( )AB.C.D.【答案】A4.在等比数列{}n a 中,若7891089159,,88a a a a a a +++==-则789101111a a a a +++=( ) A .53-B .35-C .34D .43【答案】B 5.已知21111()12f n n n n n =++++++,则()f n 中共有( )项. A .n B .1+nC .n n -2D .21n n -+【答案】D 6.在等比数列中,已知,则的值为( )A .16B .24C .48D .128【答案】A7.两等差数列{a n }、{b n }的前n 项和的比'5327n n S n S n +=+,则55b a 的值是( )A .2817B .2315C .5327D .4825【答案】D 8.1111122334910++++=⨯⨯⨯⨯( ) A .0.1B .0.3C .0.6D .0.9【答案】D9.数列{}n x 满足12531332211-+=⋯=+=+=+n x x x x x x x x n n ,且126n x x x ++⋯+=,则首项1x 等于( ) A .12-n B .2nC .621n - D .26n 【答案】D10.在等比数列{}n a 中,117a a ⋅=6,144a a +=5,则1020a a 等于( ) A .32 B .23 C .23或32 D .﹣32或﹣23 【答案】C11.已知S k 表示{a n }的前K 项和,S n —S n+1=a n (n ∈N +),则{a n }一定是( )A .等差数列B .等比数列C .常数列D .以上都不正确【答案】D12.已知等差数列{}n a 满足011321=+++a a a a ,则有( )A .0111>+a aB .0102<+a aC .093=+a aD .66=a【答案】C第Ⅱ卷(非选择题 共90分)二、填空题 (本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.设数列为公比的等比数列,若是方程的两根,则____________【答案】1814.已知数列{}n a 的首项321=a , ,3,2,1,121=+=+n a a a n n n 则数列{}n a 的通项公式=n a ____________【答案】122+n n15.数列等于 .【答案】16.从11=,)21(41+-=-,321941++=+-,)4321(16941+++-=-+-,…,推广到第n 个等式为____________【答案】+-+-2224321…)321()1()1(121n n n n +⋅⋅⋅+++⋅-=⋅-+++三、解答题 (本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.已知数列{}n a 满足1n a ++n a =4n -3(n ∈*N ). (I )若1a =2,求数列{}n a 的前n 项和n S ;(II )若对任意n ∈*N ,都有2211n n n n a a a a ++++≥5成立,求n 为偶数时,1a 的取值范围.【答案】(I )由1n a ++n a =4n -3(n ∈*N )得2n a ++1n a +=4n +1(n ∈*N ). 两式相减,得2n a +-n a =4.所以数列{}21n a -是首项为1a ,公差为4的等差数列;数列{}2n a 是首项为2a ,公差为4的等差数列.由2a +1a =1,1a =2,得2a =-1.所以n a =2=2125=2n n k n n k-⎧⎨-⎩(k ∈Z).①当n 为奇数时,n a =2n ,1n a +=2n -3,n S =1a +2a +3a +…+n a =(1a +2a )+(3a +4a )+…+(2n a -+1n a -)+n a=1+9+…+(4n -11)+2n =1(1411)22n n -⨯+-+2n =22352n n -+.②当n 为偶数时,n S =1a +2a +3a +…+n a =(1a +2a )+(3a +4a )+…+(1n a -+n a )=1+9+…+(4n -7) =2232n n-.所以n S =22235=21223 =22n n n k n n n k ⎧-+-⎪⎪⎨-⎪⎪⎩(k ∈Z).(II )由(I )知,n a =1122=2123=2n a n k n a n k -+-⎧⎨--⎩,,(k ∈Z).当n 为偶数时,n a =2n -3-1a ,1n a +=2n +1a .由2211n n n n a a a a ++++≥5,得21a +13a ≥24n -+16n -12. 令()g n =24n -+16n -12=24(2)n --+4. 当n =2时,max ()g n =4,所以21a +13a ≥4. 解得1a ≥1或1a ≤-4.综上所述,1a 的取值范围是(-∞,4][2-,)+∞. 18.已知函数21()(2,)2x f x x x R x +=≠∈+,数列{}n a 满足11(2,),(),().n n a t t t R a f a n N +=≠-∈=∈(1)若数列{}n a 是常数列,求t 的值; (2)当12a =时,记1(*)1n n n a b n N a +=∈-,证明:数列{}n b 是等比数列,并求出数列{}n a 的通项公式.【答案】 (Ⅰ)∵数列{}n a 是常数列,∴1n n a a t +==,即212t t t +=+,解得1t =-,或1t =.∴所求实数t 的值是1或-1.(Ⅱ)112,1n n n a a b a +==-,111+12111+213,321111+2n n n n n n n n n a a a a b b a a a a ++++++∴====+---,即*13()n n b b n N +=∈.∴数列{}n b 是以13b =为首项,公比为3q =的等比数列,于是1*333()n n n b n N -=⨯=∈.由*1()1n n n a b n N a +=∈-,即131nn n a a +=-,解得3131n n n a +=-.∴所求的通项公式*31()31n n na n N +=∈-. 19.已知数列{}n a 是公差不为零的等差数列,1015a =,且3a 、4a 、7a 成等比数列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设2n n na b =,数列{}n b 的前n 项和为n T ,求证:*71()4n T n -≤<-∈N . 【答案】(Ⅰ)设数列{}n a 的公差为d (0d ≠),由已知得: 10243715a a a a =⎧⎨=⎩即:()()()12111915326a d a d a d a d +=⎧⎪⎨+=++⎪⎩ 解之得:132a d =-⎧⎨=⎩n a 52-=n ,(1n ≥)(Ⅱ)∵25,122n n n na nb n -==≥. 23311252222n nn T ---=++++, ①234113112725222222n n n n n T +----=+++++. ② ①-②得:23113111252()222222n n n n T +--=++++- 111222n n+-=-+得211(1)2n nn T n -=--≥, ∵*210()2nn n ->∈Ν, ∴1n T <-.111212123(1)(1)222n n n nn n n n T T ++++---=-----=, ∴1n n T T +<.()2n ≥而12T T >,所以2T 最小又274T =-,所以74n T ≥- 综上所述,*71()4n T n -≤<-∈N .20.已知等差数列{}n a 满足:3577,26a aa =+=,{}n a 的前n 项和为n S .(Ⅰ)求n a 及n S ;*n ∈N ),求数列{}n b 的前n 项和n T .【答案】(Ⅰ)设等差数列{}n a 的公差为d ,因为37a =,5726a a +=,所以有112721026a d a d +=⎧⎨+=⎩,解得13,2a d ==, 所以321)=21n a n n =+-+(;(Ⅱ)由(Ⅰ)知22(2)n S n n n n =+=+,11111()(2)22n n b S n n n n ∴===-++, 1)++(n n -11[(1++)(++++)]2233412n n n =++-++ 1111(1+)2212n n =--++1323[]22(1)(2)n n n +=-++ 32342(1)(2)n n n +=-++2354(1)(2)n n n n +=++∴数列{}n b 的前n 项和2354(1)(2)n nn n +=++。
2014高考数列考前强化训练 学生
2014高考数列考前强化训练1. 数列{}n a 满足a 1=2,*110()n n a a n N +-+=∈,则此数列的通项a n 为=2. 在等差数列{}n a 中,前15项之和15S =90,则8a =3.已知{a n }是等比数列,且a n >0,a 2a 4+2a 3a 5+a 4a 6=25,那么a 3+a 5的值等于4.在等比数列{b n }中,S 4=4,S 8=20,那么S 12= .5.数列{}n a 的前n项的和S n =3n 2+ n +1,则此数列的通项公式a n =__ .6.已知数列{}n a 中,a n ≠0,a 1=21,a 1+n =nn a a 21+(n ∈N +)求a n =__ 7已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式__ 题型一 利用方程思想,求数列通项公式1已知数列{a n }是一个公差大于0的等差数列,且满足a 2a 6=55,a 2+a 7=16(1)求数列{a n }的通项公式;(2)数列{a n }和数列{b n }满足等式a n =(n ∈N *),求数列{b n }的前n 项和S n .2.已知{a n }是等差数列,a 1=3, Sn 是其前n 项和;在各项均为正数的等比数列{b n }中, b 1=1且b 2+S 2=1O, S 5 =5b 3+3a 2.(I )求数列{a n }, {b n }的通项公式; (II )设n c =n }的前n 项和为T n ,求证23<n T题型二 利用Sn 与n a 关系,求通项公式1.已知数列{}n a 中,11a =,前n 项和23n n n S a +=。
(1)求2a ,3a ;(2)求a n =__ . 2.已知数列{a n }的前n 项和为S n (0n S ≠),且*11120(2,),.2n n n a S S n n a -+=∈=N ≥ (1)求证:1n S ⎧⎫⎨⎬⎩⎭是等差数列;(2)求a n ;(3)若2(1)(2)n n b n a n =-≥,求证:22223 1.n b b b +++<3 设数列{a n }的前n 项和为S n ,且满足S n =2-a n ,n=1,2,3,…. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若数列{b n }满足b 1=1,且b n+1=b n +a n ,求数列{b n }的通项公式;(Ⅲ)设c n =n(3-b n ),求数列{c n }的前n 项和T n .4设数列{}n a 的前n 项和为n S .已知1a a =,13n n n a S +=+,*n ∈N .(Ⅰ)设3n n n b S =-,求数列{}n b 的通项公式;(Ⅱ)若1n n a a +≥,*n ∈N ,求a 的取值范围.题型三 已知递推关系,求通项公式1已知数列{}n a 中,a 1=3,a n =21a 1-n +1(n ∈N +)求数列{}n a 的通项公式 2数列.23,5,2}{1221n n n n a a a a a a -===++满足(1)求证:数列}{1n n a a -+是等比数 列;(2)求数列{n a }的通项公式;3.已知数列{}n a 为等差数列,且11=a ,55=a ;设数列{}n b 的前n 项和为n S ,且2n n b S =-(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)若(1,2,3,),n n n c a b n =⋅=…求数列{}n c 的前n 项和.n T。
2014高考数学数列大题考前训练题
高考数学数列大题训练例1.已知数列{}n a 的前n 项和为n S ,常数0λ>,且11nn a a S S λ=+对一切正整数n 都成立.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设10a >,100λ=,当n 为何值时,数列1{lg }na 的前n 项和最大?例2. 已知函数)(x f =157++x x ,数列{}n a 中,2a n +1-2a n +a n +1a n =0,a 1=1,且a n ≠0, 数列{b n }中, b n =f (a n -1)。
(1)求证:数列{na 1}是等差数列;(2)求数列{b n }的通项公式;(3)求数列{n b }的前n 项和S n . 例3.已知数列{}n a 的前n 项和为n S ,且有12a =,11353n n n n S a a S --=-+(2)n ≥(1)求数列n a 的通项公式;(2)若(21)n n b n a =-,求数列n a 的前n 项的和n T 。
例4.已知数列{n a }满足11=a ,且),2(22*1N n n a a n n n ∈≥+=-且.(Ⅰ)求2a ,3a ;(Ⅱ)证明数列{n na 2}是等差数列;(Ⅲ)求数列{n a }的前n 项之和n S例5. 设数列{}n a 的前n 项和为n S ,且1n n S c ca =+-,其中c 是不等于1-和0的实常数.(1)求证: {}n a 为等比数列;(2)设数列{}n a 的公比()q f c =,数列{}n b 满足()()111,,23n n b b f b n N n -==∈≥,试写出1n b ⎧⎫⎨⎬⎩⎭的通项公式,并求12231n n b b b b b b -+++的结果.例6.数列{}n a 的前n 项和为n S ,11a =,*12()n n a S n +=∈N (Ⅰ)求数列{}n a 的通项n a ;(Ⅱ)求数列{}n na 的前n 项和n T例7. 在平面直角坐标系中,已知A n (n,a n )、B n (n,b n )、C n (n -1,0)(n ∈N*),满足向量1+n n A A 与向量n n C B 共线,且点B n (n,b n ) (n ∈N*)都在斜率为6的同一条直线上.(1)试用a 1,b 1与n 来表示a n ;(2)设a 1=a ,b 1=-a ,且12<a ≤15,求数列{a n }中的最小项.8. 已知n S 是数列{}n a 的前n 项和,123,22a a ==,且113210n n n S S S +--++=,其中*2,n n N ≥∈. 求证数列{}1n a -是等比数列;求数列{}n a 的前n 项和n S .9. 已知n S 是数列{n a }的前n 项和,并且1a =1,对任意正整数n ,241+=+n n a S ;设 ,3,2,1(21=-=+n a a b n n n ). (I )证明数列}{n b 是等比数列,并求}{n b 的通项公式; (II )设}log log 1{,32212++⋅=n n n n n C C T b C 为数列的前n 项和,求n T .10. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322a a a +++…12n n a -+8n =对任意的∈n N*都成立,数列1{}n n b b +-是等差数列.(1)求数列{}n a 与{}n b 的通项公式;(2)问是否存在k ∈N *,使得(0,1)k k b a -∈?请说明理由.11、已知数列{}n a 的前n 项和为n S ,若()1,211++=⋅=+n n S a n a n n ,(1)求数列{}n a 的通项公式;(2)令n nn S T 2=,①当n 为何正整数值时,1+>n n T T :②若对一切正整数n ,总有m T n ≤,求m 的取值范围。
南昌大学附中2014版高考数学一轮复习考前抢分必备单元训练导数及其应用
南昌大学附中2014版《创新设计》高考数学一轮复习考前抢分必备单元训练:导数及其应用 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题 (本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.曲线3y x =在点(1,1)处的切线方程为 ( )A . 320x y --= B . 230x y --=C . 320x y --=D . 230x y --= 【答案】A2.曲线22,y x y x ==所围成图形的面积是( )A . 1B . 13C . 12D . 23 【答案】B3.设函数)0(ln 31)(>-=x x x x f 则)(x f y =( ) A .在区间),1(),1,1(e e内均有零点。
B .在区间),1(),1,1(e e内均无零点。
C .在区间)1,1(e内有零点,在区间),1(e 内无零点。
D .在区间)1,1(e 内无零点,在区间),1(e 内有零点。
【答案】D4.设4443342241404)(x C x C x C x C C x f +-+-=,则导函数)('x f 等于( )A .3)1(4x -B .3)1(4x +-C .3)1(4x +D .3)1(4x --【答案】B 5.设2()3x f x x e =,则(2)f '=( )A .12eB .12e 2C .24eD .24e 2 【答案】D6.函数3()1f x x x x =+=在点处的切线方程为( )A .420x y -+=B .420x y +-=C .420x y ++=D .420x y --=【答案】D7.如图,设D 是图中边长为4的正方形区域,E 是D 内函数2y x =图象下方的点构成的区域.向D 中随机投一点,则该点落入E 中的概率为( )A .15B .14C .13D .12 【答案】C 8.函数y=x 3-3x 的极大值为m,极小值为n,则m+n 为( )A .0B .1C .2D .4 【答案】A9.⎰-1021dx x 的值是( )A .8πB .4πC .2πD .π【答案】B10.定积分ln 20x e dx ⎰的值为( )A .1-B . 2eC .2e 1-D .1 【答案】D11.曲线233x x y +-=在点)2,1(处的切线方程为( )A .53+=x yB .53+-=x yC .13-=x yD .x y 2= 【答案】C12.下列求导运算正确的是( )A . 12)2(-⋅='x x xB . 11)(+-+--='x x e eC . 2212)1(x x x x -='-D . 2)(cos sin cos )cos (x x x x x x -=' 【答案】B 第Ⅱ卷(非选择题 共90分)二、填空题 (本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.直线2,ye y =轴以及曲线x y e =围成的图形的面积为 。
2014届高三数学一轮必备“高频题型全掌握”7.数列的综合应用
【精选三年经典试题(数学)】2014届高三全程必备《高频题型全掌握系列》7.数列的综合应用1.(某某中学模拟)设不等式组003x y y nx n >⎧⎪>⎨⎪<-+⎩所表示的平面区域为n D ,记n D 内的格点(格点即横坐标和纵坐标均为整数的点)的个数为()f n (n N *∈).(1)求(1)f 、(2)f 的值及()f n 的表达式;(2)设2()n n b f n =,n S 为{}n b 的前n 项和,求n S .解:(1)由已知易于得到(1)3f =, (2)6f =;当1x =时,2y n =,可取格点2n 个;当2x =时,y n =,可取格点n 个 ∴()3f n n =.(2)由题意知:32n n b n =⋅12332629232n n S n =⋅+⋅+⋅++⋅………①∴2341232629232n n S n +=⋅+⋅+⋅++⋅………②∴①—②得12313232323232n n n S n +-=⋅+⋅+⋅++⋅-⋅ 12313(2222)32n n n +=++++-⋅112233212n n n ++-=⋅-⋅-113(22)32n n n ++=--⋅ ∴16(33)2n n S n +=+-2.(某某师X 大学附中月考)已知正数组成的两个数列}{},{n n b a ,若1,+n n a a 是关于x 的方程02122=+-+n n n n b b a x b x 的两根(1)求证:}{n b 为等差数列;(2)已知,6,221==a a 分别求数列}{},{n n b a 的通项公式;(3)求数n nn s n b 项和的前}2{。
(1)证明:由02,1221=++++n n n n n n b b a x b x x a a 的方程是关于的两根得:1121,2+++==+n n n n n n n n b b a a a b a a ,2112+-+=∴n n n n n b b b b b0>n b )1(2112>+=∴+-n b b b n n n }{n b ∴是等差数列(2)由(1)知,822121=+=a a b ,21=∴b n b n b b b b a n =∴+=∴=∴=12212,1,3,∴)1)(1(1>+==-n n n b b a n n n 又21=a 也符合该式,)1(+=∴n n a n(3)n n n s 2124232232+++++= ① 13221242321+++++=n n n s ② ①—②得14322121212121121++-+++++=n n n n s 1121211)211(411++----+=n n n 1121)211(211+----+=n n n n n n s 233+-=∴. 点评:本题考查了等差、等比数列的性质,数列的构造,数列的转化思想,乘公比错项相减法求和等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海交通大学附中2014版《创新设计》高考数学一轮复习考前抢分必备单元训练:数列 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟. 第Ⅰ卷(选择题 共60分) 一、选择题 (本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知的前n项和( ) A. 67 B. 65 C. 6l D. 56 【答案】A
2.在等差数列中,公差d=1,,则的值为( ) A.40 B.45 C.50 D.55 【答案】B
3.在等比数列}{na中,11a,公比|q|≠1,若54321aaaaaam,则m=( ) A.9 B.10 C.11 D.12 【答案】C
4.等差数列的前n项和为,若,则下列结论: ① ② ③ ④ 其中正确结论是( ) A.②③ B.①③ C.①④ D.②④ 【答案】A
5.设Sn为数列na的前n项之和,若不等式22212nnsaan对任何等差数列na及任何正整数n恒成立,则λ的最大值为( ) A.0 B.15 C. 12 D.1 【答案】B 6.已知{an}是等比数列,2512,4aa,则公比q=( )
A.21 B.-2 C.2 D.21 【答案】D 7.数列1,-3,5,-7,9,…的一个通项公式为( )
A.12nan B.121nann
C.1211nann D.121nann 【答案】C 8.在等比数列na中,5,6144117aaaa,则1020aa( ) A.32 B.23 C. 32或23 D. -32或-23 【答案】C 9.已知等差数列{}na的前n项和为nS,若1m,且211210,38mmmmaaaS,则m等于( ) A.38 B.20 C.10 D.9 【答案】C
10.数列na中,11a,12,()2nnnaanNa,则5a( )
A. 25 B. 13 C. 23 D. 12 【答案】B 11.如果na为递增数列,则na的通项公式可以为( )
A.23nan B.231nann C. 12nna D.21lognan 【答案】D
12.等比数列{an}的首项a1=-1,前n项和为Sn,若8736SS,则nnSlim等于( )
A. 21 B.1 C.-32 D.不存在 【答案】C 第Ⅱ卷(非选择题 共90分) 二、填空题 (本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)
13.已知{}na是公比为实数q的等比数列,若71a,且456,1,aaa成等差数列,则q____________.
【答案】21 14.观察下列等式: 333333333333333
11111231291236123361234101234100123451512345225 可以推测:3333123n____________ (nN,用含有n的代数式表示) 【答案】221(1)4nn 15.已知数列}{na中,1)1(nna(*Nn),则4a 【答案】2
16.已知数列na的前n项和为332412nnSn,则这个数列的通项公式为____________
【答案】1,12561,1259nnnan 三、解答题 (本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.已知数列na的前n和为nS,其中(21)nnSann且113a
(1) 求23,aa; (2)猜想数列na的通项公式,并用数学归纳法加以证明。
【答案】 (1)an=)12(nnSn 且a1=31 Sn=n(2n-1)an 当n=2时,1a+22232aSa ,1512a
当n=3时,3332153aSaaa,3513a
(2) 猜想:)12)(12(1nnan 证明:i) 当n=1时,313111a成立 ii)假设当n=k(1,kNk)时,)12)(12(1kkak成立, 那么当n=k+1时 ,S1k=(k+1)1)1(2k1ka Sk=k(2k-1)ka 两式相减得:kkkkkakkakkSSa)12()12)(1(111 12)12)(12(1)12()32(12kkkkkkakkk 1)1(2)12(1)32)(12(11kkkkak 成立 由i)、 ii)可知)12)(12(1nnan对于nN都成立。 18.数列{}na的前n项和为nS,已知232nnnS,数列{}nb满足2*12()()nnnbbbnN 且254,32bb, (1)分别求出数列{}na和数列{}nb的通项公式;
(2)若数列{}nc满足,,,nnnancbn为奇数为偶数求数列{}nc的前n项和nT; (3)设2*724,()412nPnnN,当n为奇数时,试判断方程2013nTP是否有解,若有请求出方程的解,若没有,请说明理由. 【答案】(1)当1n时,211Sa,
当2n时,2213(1)3(1)122nnnnnnnaSSn,所以1(2)nann 又1n时,112na,所以)(1Nnnan 因为2*12()()nnnbbbnN,所以{}nb为等比数列 又254,32bb,所以公比为2,首项为2,所以*2()nnbnN (2)当n为偶数时,13124(...)(...)nnnTaaabbb 22424(24...)(22...2)(21)43nnnnn 当n为奇数时,1n为偶数, 22111(1)2(1)4434(21)(21)4343nnnnnnnT
所以2211111434434(21)2(21)4343nnnnnnnnnnTTC
即22124(21),43434(21)43nnnnnnTnnn为偶数,为奇数 (3)设212132472()242344334123nnnnnfnTPnnn 31122(2)()23(2)(23)24633nnnfnfnnn
所以当5x时, 1(2)()2460nfnfn,此时()fn单调递增. 又6264(5)235115033f,1224096(11)2311253201333f, 14216384
(13)2313299201333f
所以原方程无解. 19.某企业2003年的纯利润为500万元,因设备老化等原因,企业的生产能力将逐年下降。若不能进行技术改造,预测从今年起每年比上一年纯利润减少20万元,今年初该企业一次性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,第n年(今
年为第一年)的利润为500(1+)万元(n为正整数)。 (Ⅰ)设从今年起的前n年,若该企业不进行技术改造的累计纯利润为An万元,进行技术改造后的累计纯利润为Bn万元(须扣除技术改造资金),求An、Bn的表达式; (Ⅱ)依上述预测,从今年起该企业至少经过多少年,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润? 【答案】(Ⅰ)依题设,An=(500-20)+(500-40)+…+(500-20n)=490n-10n2;
Bn=500[(1+)+(1+)+…+(1+)]-600=500n--100. (Ⅱ)Bn-An=(500n--100)-(490n-10n2) =10n2+10n--100=10[n(n+1)- -10]. 因为函数y=x(x+1)- -10在(0,+∞)上为增函数, 当1≤n≤3时,n(n+1)- -10≤12--10<0; 当n≥4时,n(n+1)- -10≥20--10>0. ∴仅当n≥4时,Bn>An. 答:至少经过4年,该企业进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润. 20.已知各项均不为零的数列{an}的前n项和为Sn,且满足a1=c, 2Sn=an an+1+r. (1)若r=-6,数列{an}能否成为等差数列?若能,求c满足的条件;若不能,请说明理由;
(2)设32111234212nnnnaaaPaaaaaa
,2242345221nnnnaaaQaaaaaa,
若r>c>4,求证:对于一切n∈N*,不等式2nnnPQnn恒成立. 【答案】(1)n=1时,2a1=a1 a2+r,∵a1=c≠0,∴2c=ca2+r,22rac. n≥2时,2Sn=an an+1+r,① 2Sn-1=an-1 an+r,② ①-②,得2an=an(an+1-an-1).∵an≠0,∴an+1-an-1=2. 则a1,a3,a5,…,a2n-1,… 成公差为2的等差数列,a2n-1=a1+2(n-1). a2,a4,a6,…,a2n,… 成公差为2的等差数列, a2n=a2+2(n-1).
要使{an}为等差数列,当且仅当a2-a1=1.即21rcc.r=c-c2. ∵r=-6,∴c2-c-6=0,c=-2或3. ∵当c=-2,30a,不合题意,舍去.
∴当且仅当3c时,数列{}na为等差数列 (2)212nnaa=[a1+2(n-1)]-[a2+2(n-1)]=a1-a2=rcc-2. 221nnaa=[a2+2(n-1)]-(a1+2n)=a2-a1-2=-(rcc). ∴nP11(1)1[2](1)222nnnanncrrcccc
21(1)1[2](1)2nnnrQnannrrccccc
.
11(1)(1)2nnrPQnncnnrrccccc
=2111122rccnnrrrrcccccccc. ∵r>c>4,∴2rcrc≥>4,∴2rcc>2.∴0<111132442rrcccc<1. 又∵r>c>4,∴1rc,则0<12rccc;01rccc.