4.3比较线段的长短
4.3线段的长短比较-沪科版七年级数学上册教案

4.3 线段的长短比较-沪科版七年级数学上册教案本节课主要内容为线段的长短比较。
通过本节课的学习,学生将能够认识到数轴的重要性,了解并掌握使用数轴求线段长短及其比较的方法。
一、教学目标1.了解数轴的基本概念和使用方法;2.能够掌握求线段长度的方法;3.能够运用数轴求线段的长短并进行比较;4.培养学生的观察能力和逻辑思维。
二、教学准备1.教师准备教案、板书以及相关练习题等;2.学生需要准备铅笔、橡皮、尺子等数学工具。
三、教学过程1. 导入新知识学生通过回忆过往所学的知识,认识线段的基本概念。
提出线段长度比较的问题,并启发学生思考如何比较线段长度,引出数轴的概念及使用方法。
2. 理解数轴的概念1.教师通过实物等形象的方法,让学生感性认识数轴的概念;2.引导学生感性认识数轴的正负方向并标出相关标记;3.进一步巩固数轴的概念,引导学生手绘数轴,并在上面表示数的位置。
3. 掌握线段长度的求解方法通过具体实例的讲解,教师引导学生掌握线段长度的求解方法,并强化学生计算线段长度的能力。
4. 运用数轴求线段长短并进行比较1.运用数轴分析问题,并通过实际练习巩固学生的掌握能力;2.引导学生将两个线段在数轴上表示,并进行长度比较,进一步训练学生计算线段长短的能力。
5. 总结本节课所学知识小结本节课所学的知识,并提出相应的练习题,进行巩固和检测。
四、教学评价1.学生能够掌握数轴的基本概念和使用方法;2.学生能够准确计算线段的长度,并掌握长短比较方法;3.学生能够运用所学的知识进行解题,并培养了观察能力和逻辑思维能力。
五、教学延伸1.学生可根据数轴的有关知识做出更多自己的练习题;2.学生还可以继续进行数轴的探索和应用,如数轴的扩展应用、复杂问题的解决等。
《比较线段的长短》教案探究版

一、教学目标:知识与技能:1. 让学生掌握比较线段长短的方法。
2. 培养学生观察、思考、交流的能力。
过程与方法:1. 通过实际操作,让学生学会使用直尺、尺子等工具测量线段长度。
2. 培养学生自主探究、合作学习的习惯。
情感态度价值观:1. 培养学生对数学的兴趣。
2. 培养学生的团队协作精神,尊重他人,乐于分享。
二、教学内容:1. 线段的定义及其特点。
2. 比较线段长短的方法。
3. 测量线段长度的工具及使用方法。
三、教学重点与难点:重点:1. 掌握比较线段长短的方法。
2. 学会使用直尺、尺子等工具测量线段长度。
难点:1. 理解并运用“线段对比”的方法。
2. 准确测量线段长度。
四、教学过程:1. 导入:通过生活实例,引导学生发现线段的特征,激发学生兴趣。
2. 新课讲解:讲解线段的定义及其特点,介绍比较线段长短的方法。
3. 实践操作:让学生分组进行线段测量,运用所学方法比较线段长短。
5. 巩固练习:设计练习题,让学生独立完成,检验学习效果。
五、课后作业:2. 家庭作业:测量家中的线段,并比较长短,拍照记录,下节课分享。
3. 预习下一节课内容,了解线段的其它性质。
六、教学策略:1. 采用“问题驱动”教学法,引导学生主动探究线段长短比较的方法。
2. 运用“分组合作”教学法,培养学生的团队协作能力和沟通能力。
3. 采用“实例教学”法,结合生活实际,让学生更好地理解线段的概念和特点。
七、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习作业评价:检查学生的课后作业,评估学生对知识的掌握程度。
3. 小组合作评价:评价学生在小组合作中的表现,包括沟通能力、团队协作等。
八、教学资源:1. 教具:直尺、尺子、线段模型等。
2. 教学素材:线段长度比较的实例、练习题等。
3. 教学辅助工具:多媒体课件、黑板等。
九、教学进度安排:1. 课时:本节课计划用2课时完成。
2. 教学进度:第一课时讲解线段的概念、特点及比较线段长短的方法;第二课时进行实践操作、课堂讨论和巩固练习。
4.3 线段的长短比较

,此时 MN=MB-NB=30-
10=20(cm),综上所述,MN 的长是 40 cm 或 20 cm
知识点2 线段和差倍分 3.(5分)如图,请根据图形完成下列填空:
(1)AD=AC+___C__D____; (2)AC=AB-___B_C___=AD-___C_D___; (3)AC+CB=AD+___D__B___; (4)AC+BD=AB-___C_D___.
4.(3分)如图,AB=12 cm,点C是AB的中点,点D是BC的中点, 则AD的长为( C )
解:分两种情况考虑:①如图点 C 在线段 AB 的延长线的上时,
,此时因为 M 是 AB 的中点,所以 AM=MB=
60×21=30(cm),又因为 BC 的中点是 N,所以 BN=NC=20×12= 10(cm),所以 MN=MB+BN=30+10=40(cm);②如图当点 C 在线
段 AB 上时,
16.延长线段 AB 到点 C,使 BC=23AB,延长 BA 到点 D,使 DA =13AB,已知 DC=6 cm,线段 DC 的中点 E 和点 A 之间的距离为 __2__cm.
17.(8分)如图,已知A,B两点. (1)画线段AB; (2)延长线段AB到点C,使BC=AB; (3)反向延长线段AB到点D,使DA=AB; (4)点A,B分别是哪条线段的中点?若AB=3 cm,请求出线段CD的长.
A.3 cm B.6 cm C.9 cm D.7.5 cm 5.(3 分)如果点 B 在线段 AC 上,那么下列各表达式中:①AB=12AC; ②AB=BC;③AC=2AB;④AB+BC=AC.能表示点 B 是线段 AC 的 中点的有( C ) A.1 个 B.2 个 C.3 个 D.4 个
沪科版4.3线段的长短比较.ppt

A
C
B
A
C
B
A
C
B
B
A
C
A
C
B
B
A
C
A
C
B
B
A
C
A
CBBFra bibliotekAC
A
C
B
A (B)
C
三、线段的中点
●
●
●
A
C
B
若线段上一点C把线段AB分成相等的两条 线段AC和CB,点C叫做线段AB的中点.
数学语言:
∵点C是线段AB的中点 ∵点C是线段AB的中点
∴ AAMC =MCB= 1 AB
2
∴AB = 2AC = 2CB
线段的和差表示的是线段 长度的和差
小试牛刀
根据右图填空:
AC= _A__B__ + _B_C___ A B D
C
变式1. 增加一个D点,则
AC= __A_B__ + __B_D__ + _D__C__
变式2. AB= _A__C__ - __B_C__ , 你还有别的 表示方法吗?
AB= AD - BD
4 B
他只少走
4米
C
步 (1米=2步)
其实我们离 文明很近!
小结
1. 比较线段长短的方法有哪些? 2. 作两条线段和与差的方法?(重点) 3. 线段中点的定义(重点) 4.线段的基本性质(重点)
例题讲解
例1. 已知:线段AB=4,延长AB至 点C,使AC=11.点D是AB的中点, 点E是AC的中点.求DE的长.
.
A
中点(二等分点):
..
M
B
AM=MB=_____AB (或AB = _2_AM=_2_MB).
4.3线段的长短比较QQQ

复习
1、
直线 射线 线段
有几个端 点
向几个方向延伸
两个方向无 限延伸 向一方无限延伸 不可延伸
能否度量
不可度量 不可度量 可度量
无
1个 2个
2、直线的基本事实
经过两点有一条直线,并且只有一条直线
3、直线的性质
两条直线相交只有一个交点
讨论:
你们平时是如何比较两个同学的身高 的?你能从比身高的方法中得到启示 来比较两条线段的长短吗?
村庄A
解:连接AB与河相交于 点P,点P就是建桥的位 置
P
村庄B
河流
理由:两点之间线段最短
走进生活
B
C
4cm
A
在立方体的纸盒的A处有一只蚂蚁,在B处和C处有一 粒蜜糖,蚂蚁想吃到蜜糖,所走的最短路程是多少 cm?
C”(C)
走进生活
B
C C’(C)
4cm
A
希望同学们在今后的人生道路上努 力进取,为实现自己的梦想奋斗!
B
A
C
B
A
C
B
B A C
A
C B
B
A
C
A
C
B
B
A
C
A B
C
B
A
C
A
C
B
A (B)
C
定义: 点C在线段AB 上且使线段AC,CB相
等,这样的点C叫做线段AB的中点。 此时 AC CB 1 AB , AB=2AC=2CB 2
例1:
如图,线段AB=6cm,点C是线段AB的中 点,点D是线段CB的中点,求AD的长度
大家看图,如果量一量A地与B地相距多远, 是怎样量的?应该测量哪条线的长度? 两点间距离的概念:
沪科版七年级上册数学4.3线段的长短比较同步练习含答案解析

《4.3 线段的长短比较》基础练习1. 为比较两条线段AB与CD的大小,小明将点A与点C重合使两条线段在一条直线上,点B在CD的延长线上,则().A. AB>CDB. AB<CDC. AB=CDD. 以上都有可能2. 如图①,把弯曲的河道改直,能够缩短航程,这样做的根据是().图①A.两点之间,直线最短B.两点确定一条线段C.两点确定一条直线D.两点之间,线段最短3. 若线段AB=5 cm,CD=50 mm,则下列判断正确的是().A.AB=CD B.AB>CD C.AB<CD D.不能确定4. 如图②,已知线段AD>BC,则线段AC与BD的关系是().A.AC>BD B.AC=BD C.AC<BD D.不能确定图②5. 两点间的距离是指( ).A.一条直线的长度B.一条射线的长度C.连接两点的线段D.连接两点线段的长度6. 如图③,下列关系式中与图形不符的式子是().图③A.AD-CD=AB+BC B.AC-BC=AD-BDC.AC-AB=AD-BD D.AD-AC=BD-BC7.下列说法中正确的是( ).A.延长射线OA B.作直线AB的延长线C.延长线段AB到C,使AC= AB. D.延长线段AB到C,使AC=2AB.8.如图④,由A到B有①②③④四条路线,那么最短的路线是( ).图④A. ①B. ②C. ③D. ④9.如图⑤,C是AB的中点,D是BC的中点.下面等式不正确的是( ).图⑤A. CD=AC-DBB. CD=AD-BCC. CD=AB-BDD. CD=AB10. 把一段弯曲的公路改为直路,可以缩短路程,其理由是( ).A. 两点之间线段最短B. 两点确定一条直线C. 线段有两个端点D. 线段可以比较大小11. 如图⑥,线段AC=BD,那么AB=________.图⑥12. 线段的中点只有________个,线段的五等分点有________个.13. 如图⑦,从城市A到城市B有三种不同的交通工作:汽车、火车、飞机,除去速度因素,坐飞机的时间最短是因为___________.图⑦14. 如图⑧,请根据图形完成下列填空:图⑧(1)AD=AC+_________;(2)AC=AB-_______=AD-_______;(3)AC+CB=AD+________.15. 两根木条,一根长80 cm,一根长120 cm,将它们的一端重合,顺次放在同一条直线上,此时两根木条的中点间的距离是多少?答案和解析【答案】1. A2. D3. A4. A5. D6. B7. D8. B9. D 10. A11. CD12. 1 513. 两点之间,线段最短14. (1)CD(2) BC CD(3)BD15. 100cm.【解析】1. 解:由点A与点C重合使两条线段在一条直线上,点B在CD的延长线上,得AB>CD.故选A. 比较线段长短时,叠合法是一种较为常用的方法.2. 解:把弯曲的河道改直缩短航程的根据是:两点之间,线段最短.故选D.本题考查了线段的性质,熟记两点之间线段最短是解题的关键.3. 解:CD=50 mm=5 cm,AB=5 cm,故AB=CD.故选A.本题考查了比较线段的长短的知识,解题关键是将线段的单位统一后再进行比较.4. 解:因为AD>BC,所以AC+CD>BD+CD,所以AC>BD,故选A.本题考查了比较线段的长短的知识,解题关键是由已知得到AC+CD>BD+CD.5. 解:两点间的距离是指连接两点线段的长度.故选D.此题考查的是两点间的距离的定义,连结两点的线段的长度叫做两点之间的距离.6. 解:AD-CD=AC=AB+BC,故A正确;AC-BC=AB=AD-BD,故B正确;AC-AB=BC,AD-BD=AB,故C错误;AD-AC=CD=BD-BC,故D正确.故选C.本题考查了线段的和差,解题关键是找出线段之间的等量关系.7. 解:射线、直线是不可度量的,无法“延长”,故A、B错误;延长线段AB到C,则AC>AB,故C错误,D正确.故选D.本题考查了对线段、射线、直线的语言描述,属于基础题.8. 解:根据两点之间,线段最短,则最短路线为路线②,故选B.本题考查了线段的性质,熟记两点之间线段最短是解题的关键.9. 解:因为C是AB的中点,所以AC=BC=AB,又因为D是BC的中点,所以CD=BD=BC,所以CD=BC-DB=AC-DB,故A正确;CD=AD-AC=AD-BC,故B正确;CD=BC-DB=AB-BD,故C正确;CD=BC=AB,故D错误.故选D.本题考查了线段的和差,注意理解线段的中点的概念,利用中点的性质转化线段之间的倍分关系是解题的关键.10. 解:由把弯曲的公路改为直路,路程变短了可知,应用了“两点之间线段最短”.故选A.本题考查了线段的性质,熟记两点之间线段最短是解题的关键.11. 解:由图可知,AB=AC-BC,CD=BD-BC,因为AC=BD,所以AB=CD.故答案为CD.本题考查了线段的和差,解题关键是找到线段之间的等量关系.12. 解:线段的中点只有1个,线段的五等分点有4个.故答案为1,5.此题考查的是对线段的中点和等分点的认识,若将线段n等分,则线段的等分点有(n-1)个. 13. 解:从城市A到城市B有三种不同的交通工作:汽车、火车、飞机,除去速度因素,坐飞机的时间最短是因为两点之间,线段最短.故答案为两点之间,线段最短.本题考查了线段的性质,熟记两点之间线段最短是解题的关键.14. 解:(1)AD=AC+CD;(2)AC=AB-BC=AD-CD;(3)AC+CB=AD+BD.故答案为(1)CD;(2) BC,CD;(3)BD.本题考查了线段的和差,解题关键是找到线段之间的等量关系.15. 解:由题意,得80 cm的一半是40 cm,120 cm的一半是60 cm,故两根木条的中点间的距离是40+60=100(cm).本题考查了线段的中点的概念,利用中点的性质转化线段之间的倍分关系是解题的关键.《4.3 线段的长短比较》提高练习1. 如图①,若点C为线段AB上一点,且AB=16,AC=10,则AB的中点D与BC的中点E的距离为().图①A.8B.5C.3D.22. 下列说法正确的是().A. 两点之间的所有连线中,直线最短B. 若P是线段AB的中点,则AP=BPC. 若AP=BP,则P是线段AB的中点D. 两点之间的线段叫作这两点之间的距离3. 如图②,AB=12 cm,点C是AB的中点,点D是BC的中点,则AD的长为().图②A.3 cm B.6 cm C.9 cm D.7.5 cm4.如果点B在线段AC上,那么下列各表达式中:①AB=AC;②AB=BC;③AC=2AB;④AB +BC=AC.能表示点B是线段AC的中点的有( ).A.1个B.2个C.3个D.4个5. 如图③,笔直公路的同一旁有三棵树A,B,C,量得A,B两棵树之间的距离为5米,B,C两棵树之间的距离为3米,一个公路路标恰好在A,C两棵树的正中间点O处,则点O与点B之间的距离是( ).图③A.1米B.2米C.3米D.4米6. 点A,B,C在同一条直线上,线段AB=5 cm,线段BC=2 cm,则A,C两点间的距离是( ). A.3.5cm B.3cm C.7cm D.7cm或3cm7.已知:线段AB=4cm,延长AB至点C,使AC=11cm.点D是AB中点,点E是AC中点,则DE的长为( ).A.3.5cm B.3cm C.4cm D.4.5cm8. 如图④,一只蚂蚁从A处沿着圆柱的表面爬到B处,请画出示意图且标出最短路线,并说明理由.图④9. 如图⑤,李明想从A村到B村,你能帮他找到一条最近的路线吗?请说明理由.图⑤10. 如图⑥,AB=16cm,C是AB上的一点,且AC=10cm,D是AC的中点,E是BC的中点,求线段DE的长.图⑥答案和解析【答案】1. B2. B3. C4. C5. A6. D7. A8. 线段AB即为最短路线.9.能,最近的路线为A→C→F→B.10. 8cm.【解析】1. 解:因为AB=16,AC=10,所以CB=AB-AC=16-10=6.又因为D是AB中点,E是BC中点,所以BD=AB=×16=8,BE=CB=×6=3,所以DE=BD-BE=8-3=5.故选B.本题考查了线段的和差,注意理解线段的中点的概念,利用中点的性质转化线段之间的倍分关系是解题的关键.2. 解:两点之间的所有连线中,线段最短,故A选项错误;当P是线段AB的中点时,AP=BP,但是只知道AP=BP,不能判断P是线段AB的中点,故B选项正确,C选项错误;两点之间线段的长度叫作这两点之间的距离,故D选项错误.故选B.本题主要考查了线段的基本性质,线段的中点的定义以及两点之间的距离的定义,数量掌握这些概念和性质是解题关键.3. 解:因为AB=12 cm,点C是AB的中点,所以AC=BC=AB=6cm,又因为点D是BC的中点,所以CD=BD=BC=3cm,所以AD=AB-BD=12-3=9( cm),故选C.本题考查了线段的和差,注意理解线段的中点的概念,利用中点的性质转化线段之间的倍分关系是解题的关键.4. 解:如果点B在线段AC上,能表示点B是线段AC的中点的有:①AB=AC;②AB=BC;③AC=2AB. 共3个.故选C.此题考查的是线段的中点的定义,解题关键是熟练掌握线段的中点的判定.5. 解:根据题意可知,AB=5m,BC=3m,点O是线段AC的中点,则OC=AC=(AB+BC)=×(5+3)=4(m),所以OB=OC-BC=4-3=1(m),故点O与点B之间的距离是1m.故选A.本题考查了线段的和差,注意理解线段的中点的概念,利用中点的性质转化线段之间的倍分关系是解题的关键.6. 解:已知AB=5 cm,BC=2 cm,(1)当点B在点A、C之间时,AC=AB+BC=5+2=7(cm);(2)当点C在点A、B之间时,AC=AB-BC=5-2=3(cm),故A,C两点间的距离是7cm或3cm.故选D.此题考查的是线段的和差,需要分两种情况进行讨论:(1)点B在点A、C之间;(2)点C在点A、B之间.7. 解:因为AB=4cm,点D是AB中点,所以AD=2cm.因为AC=11cm,点E是AC中点,所以AE=5.5cm.所以DE=AE-AD=5.5-2=3.5cm故选A.本题考查了线段的和差,注意理解线段的中点的概念,利用中点的性质转化线段之间的倍分关系是解题的关键.8.解:将圆柱沿过点A的高剪开,侧面展开成平面图形,如图4. 因为两点之间线段最短,所以线段AB即为最短路线.将圆柱沿着过点A的高剪开,侧面展开成平面图形,再根据线段的性质即可得到最短路线.本题考查了线段的性质,熟记两点之间线段最短是解题的关键.9. 解:能,最近的路线为A→C→F→B. 理由如下:因为从A村到C村的距离是一定的,所以从A村到B村的远近取决于C村到B村的距离.把C,B看成两个点.因为两点之间线段最短,且F在线段CB上,所以从C到F再到B最近.所以最近的路线为A→C→F→B.本题考查了线段的性质,熟记两点之间线段最短是解题的关键.分析出“从A村到B村的远近取决于C村到B村的距离”.10. 解:解法一:因为D是AC中点,AC=10 cm,所以DC=AC=5 cm.又因为AB=16 cm,AC=10 cm,所以BC=AB-AC=16-10=6(cm).又因为E是BC的中点,所以CE=BC=3(cm).所以DE=DC+CE=5+3=8(cm).解法二:因为D是AC的中点,E是BC的中点,所以DC=AC,CE=BC,所以DE=DC+CE=AC+BC=(AC+BC)=AB=×16=8(cm).由上可得DE的长为8 cm.可以运用中点的定义先求出线段DC和CE的长,再求其和;也可以运用中点的定义直接得DE=DC+CE=AC+BC=(AC+BC)=AB,再代入数即可.对于求线段的长度问题,解法不唯一,应根据具体的题目,灵活选择简单的计算方法.《4.3 线段的长短比较》培优练习1. 点M,N都在线段AB上,且M分AB为2 : 3两部分,N分AB为3 : 4两部分,若MN=2 cm,则AB的长为( )A.60 cm B.70 cm C.75 cm D.80 cm2. C、D是线段AB上顺次两点,M、N分别是AC、BD中点,若CD=a,MN=b,则AB的长为( ).A.2b-a B.b-a C.b+a D.2a+2b3. 延长线段AB到点C,使BC=AB,延长BA到点D,使DA=AB,已知DC=6 cm,线段DC 的中点E和点A之间的距离为().A.3 cm B.2 cm C.2.5 cm D.3.5 cm4. 已知线段AB=2cm,延长AB到C,使BC=2AB,若D为AB的中点,则线段DC的长为______.5. 如图,B,C两点把线段AD分成2 : 3 : 4的三部分,点E是线段AD的中点,EC=2 cm,求:(1)AD的长;(2)AB : BE.答案和解析【答案】1. B2. A3. B4. 5cm5. (1) 36cm;(2)4 : 5.【解析】1. 解:因为M分AB为2 : 3两部分,N分AB为3 : 4两部分,所以AM=AB,AN=AB,所以MN=AN-AM=AB-AB=AB,又因为MN=2 cm,所以AB=70cm.故选B.根据线段的比可得,AM=AB,AN=AB,则可以求出MN与AB之间的关系,利用已知条件MN=2 cm,即可得到AB的长度.此题考查的是线段的比和线段的和差,熟练掌握比的意义是解题的关键.2. 解:因为C、D是线段AB上顺次两点,M、N分别是AC、BD中点,所以AM=CM=AC,BN=DN=BD,所以MN=CM+CD+DN,因为CD=a,MN=b,所以CM+DN=b-a,即AC+BD=b-a,所以AC+BD=2(b-a),所以AB=AC+CD+BD=2(b-a)+a=2b-a.故选A.本题考查了线段的和差,注意理解线段的中点的概念,利用中点的性质转化线段之间的倍分关系是解题的关键.3. 解:因为BC=AB,DA=AB,所以DC=DA+AB+BC=AB+AB+AB=2AB,因为DC=6 cm,所以AB=3cm,所以DA=1cm,又因为点E是线段DC的中点,所以DE=DC=3cm,所以AE=DE-DA=3-1=2(cm),故线段DC的中点E和点A之间的距离为2 cm,故选B.本题考查了线段的和差,注意理解线段的中点的概念,利用中点的性质转化线段之间的倍分关系是解题的关键.4. 解:因为AB=2cm,BC=2AB,所以BC=4cm,又因为D为AB的中点,所以AD=BD=AB=1cm,所以DC=BD+BC=1+4=5(cm).故答案为5cm.本题考查了线段的和差,注意理解线段的中点的概念,利用中点的性质转化线段之间的倍分关系是解题的关键.5. 解:(1)设AB=2x,则BC=3x,CD=4x.由线段的和差,得AD=AB+BC+CD=9x.由E为AD的中点,得ED=AD=x.由线段的和差,得CE=DE-CD=x-4x=x=2(cm).解得x=4.所以AD=9x=36(cm).(2)AB=2x=8(cm),BC=3x=12(cm).由线段的和差,得BE=BC-CE=12-2=10(cm).所以AB : BE=8 : 10=4 : 5.(1)根据线段的比,可设出未知数x,根据线段的和差,可得方程,根据解方程,可得x的值,根据x的值,可得AD的长度;(2)根据线段的和差,可得线段BE的长,根据比的意义,可得答案.在遇到线段之间比的问题时,往往设出未知数,列方程解答.。