物理电磁感应知识点总结
人教版高中物理电磁学电磁感应知识点归纳总结(精华版)

(每日一练)人教版高中物理电磁学电磁感应知识点归纳总结(精华版)单选题1、电阻R、电容C与一线圈连成闭合回路,条形磁铁静止于线圈的正上方,N极朝下,如图所示.现使磁铁开始自由下落,在N极接近线圈上端的过程中,流过R的电流方向和电容器极板的带电情况是A.从a到b,上极板带正电B.从a到b,下极板带正电C.从b到a,上极板带正电D.从b到a,下极板带正电答案:D解析:由图知,穿过线圈的磁场方向向下,在磁铁向下运动的过程中,线圈的磁通量在增大,故感应电流的磁场方向向上,再根据右手定则可判断,流过R的电流从b到a,电容器下极板带正电,所以A、B、C错误,D正确.2、下列选项中的操作能使如图所示的三种装置产生感应电流的是()A.甲图中,使导体棒AB顺着磁感线运动B.乙图中,使条形磁铁插入或拔出线圈C.丙图中,开关S保持闭合,使小螺线管A插入大螺线管B中不动D.丙图中,开关S保持闭合,使小螺线管A插入大螺线管B中不动,不移动滑动变阻器的滑片答案:B解析:A.题图甲中导体棒顺着磁感线运动,穿过闭合电路的磁通量没有发生变化,无感应电流,故A错误;B.题图乙中条形磁铁插入线圈时线圈中的磁通量增加,拔出线圈时线圈中的磁通量减少,线圈中都能产生感应电流,故B正确;C.题图丙中开关S保持闭合,回路中为恒定电流,小螺线管A产生的磁场稳定,螺线管B中的磁通量无变化,无感应电流,故C错误;D.题图丙中开关S保持闭合,小螺线管A插入大螺线管B中不动,移动滑动变阻器的滑片使闭合回路中的电流变化,从而使小螺线管A产生的磁场变化,故大螺线管B中的磁通量变化,有感应电流,不移动滑动变阻器的滑片,回路中不会产生感应电流,故D错误。
故选B。
3、如图,均匀带正电的绝缘圆环a与金属圆环b同心共面放置,当a绕O点在其所在平面内旋转时,b中产生顺时针方向的感应电流,且具有收缩趋势,由此可知,圆环aA.顺时针加速旋转B.顺时针减速旋转C.逆时针加速旋转D.逆时针减速旋转答案:B解析:试题分析:本题中是由于a的转动而形成了感应电流,而只有a中的感应电流的变化可以在b中产生磁通量的变化,才使b中产生了感应电流;因此本题应采用逆向思维法分析判断.当带正电的绝缘圆环a顺时针加速旋转时,相当于顺时针方向电流,并且在增大,根据右手螺旋定则,其内(金属圆环a内)有垂直纸面向里的磁场,其外(金属圆环b处)有垂直纸面向外的磁场,并且磁场的磁感应强度在增大,金属圆环b包围的面积内的磁场的总磁感应强度是垂直纸面向里(因为向里的比向外的磁通量多,向里的是全部,向外的是部分)而且增大,根据楞次定律,b中产生的感应电流的磁场垂直纸面向外,磁场对电流的作用力向外,所以b中产生逆时针方向的感应电流,所以当带正电的绝缘圆环a顺时针减速旋转,b中产生顺时针方向的感应电流A错误B正确;当带正电的绝缘圆环a逆时针加速旋转时,b中产生顺时针方向的感应电流,但具有扩张趋势;当逆时针减速旋转时,b中产生逆时针方向的感应电流,但具有收缩趋势,CD错误小提示:本题的每一选项都有两个判断,有的同学习惯用否定之否定法,如A错误,就理所当然的认为B和C都正确,因为二者相反:顺时针减速旋转和逆时针加速旋转,但本题是单选题,甚至陷入矛盾.他们忽略了本题有两个判断,一个是电流方向,另一个是收缩趋势还是扩张趋势.如果只有一个判断,如b中产生的感应电流的方向,可用此法.所以解题经验不能做定律或定理用4、如图所示,MN为固定在光滑水平面上的细直导线,“”形的金属框abcd放在导体棒上,两平行边ab、cd相距为L,MN与ab、cd垂直并与金属框接触良好,整个装置处于竖直向下的匀强磁场中,磁感应强度大小为B.MN接入电路的电阻为R,金属框电阻不计。
高中物理:磁场 电磁感应知识点总结

高中物理:磁场电磁感应知识点总结
一、磁场:
1、磁场定义:磁场是一种能够使磁体产生旋转矩力,使磁性物体运动的空间性质。
2、磁场的表示:磁场的大小和方向可以用一个向量来表示,其中,磁场强度表示磁
场的大小;而磁场方向代表磁场的传输路线。
3、磁场的性质:磁场具有外力的作用,它能够对磁性物体施加力,使磁性物体运动;而非磁性物体则不受磁场的影响。
此外,磁场还可以产生电能,为机器提供动力。
二、电磁感应:
1、电磁感应定义:电磁感应指一种电场中存在的磁场和受磁场作用时产生的动作矩。
2、电磁感应的原理:电磁感应的原理是,当一个磁体在电场中存在时,会产生一个
磁场,当另一个电体接近时,会受到这个磁场的作用,产生一个磁力矩,从而引起电体的
变动。
3、电磁感应在实际应用中的作用:电磁感应是电气技术和电工技术中一种重要的基础,电磁感应在实际应用中主要应用于发电、电机、变压器和直流主动电动机等方面。
选修四物理知识点总结

选修四物理知识点总结一、电磁感应1. 法拉第电磁感应定律法拉第电磁感应定律是研究电磁现象的基本定律之一。
它表明,当一个导体相对于磁场产生相对运动时,导体内将产生感应电动势。
这个感应电动势的大小与导体内的流过的磁通量的变化率成正比。
公式表示为ε=-dΦ/dt,其中ε为感应电动势,Φ为磁通量,t为时间。
2. 感应电动势的方向根据法拉第电磁感应定律,可以得出感应电动势的方向。
当导体相对于磁场向左移动时,感应电动势方向为从导体的右端到左端。
当导体相对于磁场向右移动时,感应电动势方向为从导体的左端到右端。
当磁场相对于导体的磁通量增加时,感应电动势的方向与磁场方向相反。
当磁场相对于导体的磁通量减小时,感应电动势的方向与磁场方向相同。
3. 感应电流当导体中存在感应电动势时,如果导体是闭合的,就会形成感应电流。
这个感应电流的大小与感应电动势大小成正比。
通过安培环路定律可以求出感应电流的大小。
4. 感应电磁感应中的能量转化在电磁感应过程中,会出现能量转换的过程。
例如,在变压器中,原能量通过电磁感应产生感应电流,再通过感应电流产生电磁场,最终通过电磁场传递到另一个导体中,形成输出能量。
5.自感与互感自感是指导体自身产生的感应电动势和感应电流。
当导体中存在电流时,会产生磁场,这个磁场通过导体自身,产生了自感电动势。
而互感是指两个导体之间由于电磁感应关系而产生的感应电动势。
例如,在变压器中,初级线圈和次级线圈之间由于磁通量的变化而产生互感电动势。
6. 感应电磁感应应用电磁感应在生活中有很多应用,例如变压器、感应电动势、感应加热、感应制冷等。
二、交流电1. 交流电的特点交流电的特点是电流方向和大小随时间不断变化,通常是正弦波形。
在一个完整的周期内,交流电的电流方向会从正向变为负向,再变为正向,如此循环。
2. 交流电参数交流电有很多参数,例如峰值电压、有效值电压、频率等。
峰值电压是交流电中电压的最大值,有效值电压是交流电中的有效能量对应的电压值,频率是交流电波形一个完整周期内重复的次数。
高中物理:电磁感应知识点归纳

高中物理:电磁感应知识点归纳一、电磁感应的发现1.“电生磁”的发现奥斯特实验的启迪:丹麦物理学家奥斯特发现电流能使小磁针偏转,即电流的磁效应2.“磁生电”的发现(1)电磁感应现象的发现法拉第根据他的实验,将产生感应电流的原因分成五类:①变化的电流;②变化的磁场;③运动中的恒定电流;④运动中的磁铁;⑤运动中的导线。
(2)电磁感应的发现使人们找到了“磁生电”的条件,开辟了人类的电气化时代。
二、感应电流产生的条件1. 探究实验实验一:导体在磁场中做切割磁感线的运动实验二:通过闭合回路的磁场发生变化2. 感应电流产生的条件:穿过闭合电路的磁通量发生变化时,这个闭合电路中就有感应电流产生三、感应电动势1. 定义:由电磁感应产生的电动势,叫感应电动势。
产生电动势的那部分导体相当于电源。
2. 产生条件:只要穿过电路的磁通量发生变化,无论电路是否闭合,电路中都会有感应电动势。
3. 方向判断:在内电路中,感应电动势的方向是由电源的负极指向电源的正极,跟内电路中的电流的方向一致。
产生感应电动势的那部分导体相当于电源。
【关键一点】感应电流的产生需要电路闭合,而感应电动势的产生电路不一定需要闭合四、法拉第电磁感应定律1. 定律内容:感应电动势的大小,跟穿过这个电路的磁通量的变化率成正比。
2. 表达式:说明:①式中N为线圈匝数,是磁通量的变化率,注意它与磁通量以及磁通量的变化量的区别。
②E与无关,成正比③在图像中为斜率,所以斜率的意义为感应电动势五、导体切割磁感线时产生的电动势公式中的l为有效切割长度,即导体与v垂直的方向上的投影长度.图中有效长度分别为:甲图:l=cdsin β(容易错算成l=absin β).乙图:沿v1方向运动时,l=MN;沿v2方向运动时,l=0.丙图:沿v1方向运动时,沿v2方向运动时,l=0;沿v3方向运动时,l=R.六、右手定则1. 内容:将右手手掌伸平,使大拇指与其余并拢的四指垂直,并与手掌在同一平面内,让磁感线从手心穿入,大拇指指向导体运动方向,这时四指的指向就是感应电流的方向,也就是感应电动势的方向2. 适用情况:导体切割磁感线产生感应电流七、楞次定律1.内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
高中物理电磁感应知识点总结

高中物理电磁感应知识点总结1。
电磁感应的实质是:感应电流在磁场中受到力的作用。
当一个导体切割磁感线时,就会在其周围产生一个感应电流(洛伦兹力),这个电流的方向与原来的电流的方向和大小相反,但二者间的作用总是互相的,因此,我们把这种电流称为“感生电流”。
2。
电磁感应现象发生的条件:感应电流的产生、闭合电路的一部分处于磁场中、穿过闭合电路的磁通量发生变化。
3。
在安培力作用下的导体中会产生电流。
这个电流的方向与安培力的方向垂直。
4。
法拉第电磁感应定律:闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就有电流产生,这个电流的方向跟产生这个电流的磁场的方向和磁感线的方向有关,而与切割运动的速度无关,即:。
5。
发电机:由线圈、磁极、铁芯和机座等组成。
通电线圈在磁场中受到力的作用,从而使机座带动转子旋转,机座上装有发电机的铁芯,铁芯中有两个闭合线圈,分别叫主线圈和副线圈。
主副线圈的位置相对,它们都是在同一铁芯上绕制的,磁通穿过主线圈和副线圈时会在两线圈中产生感应电势。
副线圈有自己的磁极,可以用来产生电流。
2。
电磁感应现象发生的条件:感应电流的产生、闭合电路的一部分处于磁场中、穿过闭合电路的磁通量发生变化。
3。
在安培力作用下的导体中会产生电流。
这个电流的方向与安培力的方向垂直。
4。
法拉第电磁感应定律:闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就有电流产生,这个电流的方向跟产生这个电流的磁场的方向和磁感线的方向有关,而与切割运动的速度无关,即:。
5。
发电机:由线圈、磁极、铁芯和机座等组成。
通电线圈在磁场中受到力的作用,从而使机座带动转子旋转,机座上装有发电机的铁芯,铁芯中有两个闭合线圈,分别叫主线圈和副线圈。
主副线圈的位置相对,它们都是在同一铁芯上绕制的,磁通穿过主线圈和副线圈时会在两线圈中产生感应电势。
副线圈有自己的磁极,可以用来产生电流。
6。
闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中也会产生电流。
高中物理-电磁感应知识点总结

高中物理-电磁感应知识点总结我跟你说啊,电磁感应这东西,就像一个调皮的小鬼,你要是不把它琢磨透喽,它就老是在你物理试卷上捣乱。
我记得我上学那会啊,一看到电磁感应相关的题目,那脑袋就跟那被麻绳缠了一圈又一圈似的,乱得很。
电磁感应啊,首先你得知道啥是磁通量。
这磁通量就像一群小蚂蚁搬家,磁场就好比是它们的路线,这个面积呢,就是它们要经过的地盘。
磁通量的变化啊,就像突然有个调皮孩子在蚂蚁搬家的路上放了块大石头,改变了它们的路线或者地盘大小。
这时候,感应电动势就冒出来了,就好像是小蚂蚁们生气了,要反抗一下这个变化。
法拉第电磁感应定律,这可是个大人物啊。
这定律就像是一把万能钥匙,能打开电磁感应好多好多问题的锁。
E = nΔΦ/Δt 这个公式啊,我当时瞅着就头疼。
n就像一群小伙伴的数量,ΔΦ就是磁通量的变化量,这Δt呢,就是这个变化发生的时间。
就好比一群小伙伴在规定时间内完成了某项任务,这任务就是磁通量的变化。
你可别小瞧这个公式,在那些个复杂的线圈、磁场变化的题目里,它就像一盏明灯,虽然有时候我感觉这盏明灯有点晃眼。
楞次定律就更有趣了。
它就像一个老顽固,总是和那些变化对着干。
感应电流产生的磁场啊,总是要阻碍原来磁通量的变化。
就像你想把一扇门推开,突然有个看不见的手在后面拉着,不让你那么容易推开。
我那时候就和同桌争论这个楞次定律,我说这定律咋这么别扭呢。
同桌就笑着说:“你看啊,这就像两个人拔河,原磁场想让磁通量变,感应电流产生的磁场就非要拉回来一点。
”我一听,好像还真是这么个理儿。
还有自感现象,这就像一个人突然变得很敏感。
线圈自己突然对自己产生感应电动势了,就好像一个人突然发现自己变了,然后就开始自己跟自己较劲。
我做那些自感现象的实验题的时候,就想象自己是那个线圈,电流就像水流,当开关断开或者闭合的时候,就像突然有人把水闸给动了一下,我这个“线圈”就会有不同的反应。
电磁感应这一块啊,那些个导体棒在磁场里运动的题目也特别多。
高中物理电磁感应知识点归纳

电磁感应知识点总结一、电磁感应现象1、电磁感应现象与感应电流.〔1〕利用磁场产生电流的现象,叫做电磁感应现象。
〔2〕由电磁感应现象产生的电流,叫做感应电流。
物理模型上下移动导线AB,不产生感应电流左右移动导线AB,产生感应电流原因:闭合回路磁感线通过面积发生变化不管是N级还是S级向下插入,都会产生感应电流,抽出也会产生,唯独磁铁停顿在线圈力不会产生原因闭合电路磁场B发生变化开关闭合、开关断开、开关闭合,迅速滑动变阻器,只要线圈A 中电流发生变化,线圈B 就有感应电流二、产生感应电流的条件1、产生感应电流的条件:闭合电路....中磁通量发生变化.......。
2、产生感应电流的常见情况. 〔1〕线圈在磁场中转动。
〔法拉第电动机〕 〔2〕闭合电路一局部导线运动(切割磁感线)。
〔3〕磁场强度B 变化或有效面积S 变化。
(比方有电流产生的磁场,电流大小变化或者开关断开) 3、对“磁通量变化〞需注意的两点 .〔1〕磁通量有正负之分,求磁通量时要按代数和〔标量计算法那么〕的方法求总的磁通量〔穿过平面的磁感线的净条数〕。
〔2〕“运动不一定切割,切割不一定生电〞。
导体切割磁感线,不是在导体中产生感应电流的充要条件,归根结底还要看穿过闭合电路的磁通量是否发生变化。
三、感应电流的方向1、楞次定律.〔1〕容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。
〔2〕“阻碍〞的含义 .从阻碍磁通量的变化理解为:当磁通量增大时,会阻碍磁通量增大,当磁通量减小时,会阻碍磁通量减小。
从阻碍相对运动理解为:阻碍相对运动是“阻碍〞的又一种表达,表现在“近斥远吸,来拒去留〞。
〔3〕“阻碍〞的作用 .楞次定律中的“阻碍〞作用,正是能的转化和守恒定律的反映,在克制这种阻碍的过程中,其他形式的能转化成电能。
〔4〕“阻碍〞的形式 .1. 阻碍原磁通量的变化,即“增反减同〞。
2.阻碍相对运动,即“来拒去留〞。
物理电磁感应知识点

物理电磁感应知识点
电磁感应是物理学中的一个重要概念,它描述了磁场与电流、电压之间的关系。
以下是关于电磁感应的主要知识点:
1. 法拉第电磁感应定律:当一个线圈中的磁通量发生变化时,在线圈中会产生感应电动势。
感应电动势的大小与磁通量变化率成正比,即E=-dΦ/dt,其中E是感应电动势,Φ是磁通量,t是时间。
2. 楞次定律:感应电流的磁场总是阻碍引起感应电流的磁通量的变化。
换句话说,感应电流的磁场总是试图阻止产生它的磁通量变化。
3. 右手定则:当导线在磁场中运动,并且导线中的电流方向已知时,可以用右手定则来判断导线受到的安培力方向。
具体来说,伸开右手,使拇指与其余四指垂直,并让磁感线穿过手心,拇指指向电流的方向,四指指向安培力的方向。
4. 交流电和电磁场:交流电会产生变化的磁场,这个变化的磁场又会产生感应电动势。
在电力系统中,变压器就是利用这个原理来升高或降低电压的。
5. 麦克斯韦方程组:麦克斯韦方程组是描述电场、磁场和电荷密度、电流密度之间关系的方程组。
它包括高斯定律、高斯磁定律、法拉第电磁感应定律和安培环路定律。
以上是关于电磁感应的主要知识点,掌握这些知识点有助于理解电场和磁场之间的相互作用,以及它们在电力系统和电子设备中的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理电磁感应知识点总结
电磁感应(Electromagnetic induction)现象是指放在变化磁通量中的导体,会产生电动势。
下面是店铺为你整理的物理电磁感应知识点,一起来看看吧。
物理电磁感应知识点
1.电流的磁效应:
把一根导线平行地放在磁场上方,给导线通电时,磁针发生了偏转,就好像磁针受到磁铁的作用一样。
这说明不仅磁铁能产生磁场,电流也能产生磁场,这个现象称为电流的磁效应。
2.电流磁效应现象:
磁铁对通电导线的作用,磁铁会对通电导线产生力的作用,使导体棒偏转。
电流和电流间的相互作用,有相互平行而且距离较近的两条导线,当导线中分别通以方向相同和方向相反的电流时,观察到发生的现象是:同向电流相吸,异向电流相斥。
3.电磁感应发现的意义:
①电磁感应的发现使人们对电与磁内在联系的认识更加完善,宣告了电磁学作为一门统一学科的诞生。
②电磁感应的发现使人们找到了磁生电的条件,开辟了人类的电器化时代。
③电磁感应现象的发现,推动了经济和社会的发展,也体现了自然规律的和谐的对称美。
4.对电磁感应的理解:
电和磁之间有着必然的联系,电能生磁,磁也一定能够生电,但磁生电是有条件的,只有变化的磁场或相对位置的变化才能产生感应电流,磁生电表现为磁场的“变化”和“运动”。
引起电流的原因概括为五类:
① 变化的电流。
② 变化的磁场。
③ 运动的恒定电流。
④ 运动的磁场。
⑤ 在磁场中运动的导体。
5.磁通量:
闭合电路的面积与垂直穿过它的磁感应强度的乘积叫磁通量,即Φ,θ为磁感线与线圈平面的夹角。
6.对磁通量Φ的说明:
虽然闭合电路的面积与垂直穿过它的磁感应强度的乘积叫磁通量,但是当磁场与闭合电路的面积不垂直时,磁感应强度也有垂直闭合电路的分量磁感应强度垂直闭合电路面积的分量。
7.产生感应电流的条件:
一是电路闭合。
二是磁通量变化。
8.楞次定律:
感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
9.楞次定律的理解:
① 感应电流的磁场不一定与原磁场方向相反,只是在原磁场的磁通量增大时两者才相反;在磁通量减小时,两者是同样。
② “阻碍”并不是“阻止”如原磁通量要增加,感应电流的磁场只能“阻碍”其增加,而不能阻止其增加,即原磁通量还是要增加。
③定律本身并没有直接给定感应电流的方向,只是给定感应电流的磁场与原磁场间存在“阻碍”关系,要注意区分这两个磁场及其间的相互关系。
10.感应电动势:
在电磁感应现象中产生的电动势叫做感应电动势,产生感应电动势的那部分导体就相当于电源。
11.反电动势:
定义:电动机转动时,线圈中也会产生感应电动势,这个电动势总要削弱电源电动势的作用,我们把这个电动势称为反电动势。
12.电磁感应规律的应用:
感生电动势的产生由感应电场使导体产生的电动势叫感生电动势,感生电动势在电路中的作用就是充当电源,其电路就是内电路,当它与外电路连接后就会对外电路供电变化的磁场在闭合导体所在空间产生电场,导体内自由电荷在电场力作用下产生感应电流,或者说导体中产生了感应电动势,由此可见,感生电场就相当于电源内部的所谓的非静电力,对电荷产生力的作用。
13.感生电场的应用:
电子感应加速器是应用感生电场对电子的作用来加速电子的一种装置,主要用于核反应研究。
14.互感和自感:
互感现象:两个线圈之间并没有导线相连,但当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势,这种现象叫做互感现象。
15.对互感的三点理解:
①、互感现象是一种常见的电磁感应现象,它不仅发生于绕在同一铁芯上的两个线圈之间,而且可以发生于任何相互靠近的电路之间。
②、互感现象可以把能量由一个电路传到另一个电路,变压器就是利用互感现象制成的。
③、在电力工程和电子电路中,互感现象有时会影响电路的正常工作,这时要求设法减小电路间的互感。
16.自感现象:
由于导体本身的电流发生变化而产生的电磁感应现象,叫做自感现象。
互感现象是一种常见的电磁感应现象,不仅仅发生于绕在同一铁芯上的两个线圈之间,而且可以发生于任何两个相互靠近的电路之间,由于是一种电磁感应现象,所以可以用安培定则、楞次定律去分析。
自感电流的方向可用楞次定律判断,当导体中电流增加时,自感电流的方向与原来的方向相反;当电流减小时,自感电流的方向与原来电流的方向相同,在分析自感现象时,除了要定性分析通电和断电自感现象外,还应半定量地分析电路中的电流变化,分析时主要抓住通
过自感线圈的电流不能突变这一特点,其次是要注意电路结构在稳定和不稳定时的变化。
17.涡流:
把块状的金属放在变化的磁场中,或者让它在磁场中运动时金属块内将产生感应电流,这种电流在金属块内组成闭合回路,很像水的漩涡,因此叫做涡流。
整块金属电阻很小,所以涡流常常很大。
18.涡流的热效应:
线圈接入反复变化的电流,某段时间内,若电流变大,则其磁场变强,根据麦克斯韦理论,变化的磁场激发出感生电场,导体可以看成是由许多闭合线圈组成的,在感生电场作用下,这些线圈中产生了感生电动势,从而产生涡旋状的感应电流,由于导体存在电阻,当电流在导体中流动时,就会产生电热,这就是涡流的热效应。
19.电磁阻尼和电磁驱动:
电磁阻尼:导体与磁场相对运动时,感应电流受到的安培力总是阻碍它们的相对运动,利用安培力阻碍导体与磁场间的相对运动就是电磁阻尼,磁电式仪表的指针能够很快停下,就是利用了电磁阻尼。
20.电磁驱动:
导体与磁场相对运动时,感应电流受到的安培力总是阻碍它们的相对运动,应该知道安培力阻碍磁场与导体的相对运动的方式是多种多样的,当磁场以某种方式运动时导体中的安培力为阻碍导体与磁场间的相对运动使导体跟着磁场动起来(跟着转动),这就是电磁驱动。
21.电磁驱动与磁悬浮列车:
磁悬浮列车是利用超导体产生抗磁作用使列车向上浮起而离开轨道,利用周期性地变换磁极方向产生运动的磁场,从而使车获得推动力,磁悬浮列车是目前世界上技术最先进、已经投入使用阶段的新型列车,具有的优点有:
①速度高。
②安全、平衡、舒适。
③列车与轨道间冲击小,寿命长,节能。
④基本上无噪音和空气污染。
物理电磁感应解题方法
应用楞次定律判断感应电流方向的步骤:
①明确所研究的闭合回路。
②判断原磁场方向。
③判断闭合回路内原磁场的磁通量变化。
④依据楞次定律判断感应电流的磁场方向。
利用安培定则(右手螺旋定则)根据感应电流的磁场方向,判断出感应电流方向。
右手定则:
伸开右手,使拇指与其余四个手指垂直,并且都与手掌在一个平面内让磁感线从手心进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应电流的方向。
楞次定律与右手定则的关系:
导体运动切割磁感线产生感应电流是磁通量发生变化引起感应电流的特例,所以判断感应电流方向的右手定则也是楞次定律的特例能用右手定则判断的,一定也能用楞次定律判断,只是不少情况下不如右手定则来得方便简单。
反过来,用楞次定律能判断的,并不是用右手定则都能判断出来。
注意适用范围:
①楞次定律可应用于由磁通量变化引起感应电流的各种情况,右手定则只适用于一段导体在磁场中切割磁感线运动的情况,导体不动时不能用。
②注意研究对象:楞次定律研究的是整个闭合电路,右手定则研究的是闭合电路的一部分即一段导体做切割磁感线运动。
电磁感应知识
一是电磁感应现象的规律。
电磁感应研究的是其他形式能转化为电能的特点和规律,其核心是法拉第电磁感应定律和楞次定律。
楞次定律表述为:感应电流的磁场总是阻碍引起感应电流的磁通量的变化。
即要想获得感应电流(电能)必须克服感应电流产生的安培力做功,需外界做功,将其他形式的能转化为电能。
法拉第电磁感应定
律是反映外界做功能力的,磁通量的变化率越大,感应电动势越大,外界做功的能力也越大。
二是电路及力学知识。
主要讨论电能在电路中传输、分配,并通过用电器转化成其他形式能的特点规律。
在实际应用中常常用到电路的三个规律(欧姆定律、电阻定律和焦耳定律)和力学中的牛顿定律、动量定理、动量守恒定律、动能定理和能量守恒定律等概念。
三是右手定则。
右手平展,使大拇指与其余四指垂直,并且都跟手掌在一个平面内。
把右手放入磁场中,若磁力线垂直进入手心(当磁感线为直线时,相当于手心面向N极),大拇指指向导线运动方向,则四指所指方向为导线中感应电流的方向。
电磁学中,右手定则判断的主要是与力无关的方向。
为了方便记忆,并与左手定则区分,可以记忆成:左力右电(即左手定则判断力的方向,右手定则判断电流的方向)。
或者左力右感、左生力右通电。