线性代数_同济大学(第五版)课件
线性代数(同济大学第五版)二次型讲义、例题

第六章 二次型本章主要包括二次型的矩阵及其矩阵,化二次型为标准型和规范形,二次型及实对称矩阵的正定性问题,学习本章内容需要结合矩阵的特征值与特征向量的相关知识.§1 二次型及其矩阵一、二次型及其矩阵定义1 关于n 个变量n x x x ,,,21 的二次齐次函数+++= 2222211121),,,(x a x a x x x f n n n n n n nn x x a x x a x x a x a 1,1313121122222--++++ (1)若取ji ij a a =,则i j ji j i ij j i ij x x a x x a x x a +=2于是(1)式可写成j i nj i ij n x x a x x x f ∑==1,21),,,( (2)称为n 元二次型,所有系数均为实数的二次型称为实二次型.记,212222111211⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a A ⎪⎪⎪⎪⎪⎭⎫⎝⎛=n x x x x21 则二次型),,,(21n x x x f 又表示为Ax x x x x f T n =),,,(21 ,其中A 为对称矩阵,叫做二次型 ),,,(21n x x x f 的矩阵,也把),,,(21n x x x f 叫做对称矩阵A 的二次型.对称矩阵A 的秩,叫做二次型Ax x x x x f T n =),,,(21 的秩. 例1 写出二次型32312123222132184422),,(x x x x x x x x x x x x f ++---=的矩阵,并求出二次型的秩.解 写出二次型所对应的对称矩阵为A ,⎪⎪⎪⎭⎫ ⎝⎛----=242422221A因为二次型的秩就是对称矩阵A 的秩.⎪⎪⎪⎭⎫ ⎝⎛---+⎪⎪⎪⎭⎫ ⎝⎛----+⎪⎪⎪⎭⎫ ⎝⎛----=14002202214~6808602212~224242222123321312r r r r r r r r A ∴二次型的秩为3.§2 化二次型为标准型一、二次型合同矩阵二次型),,,(21n x x x f 经过可逆的线性变换⎪⎩⎪⎨⎧+++=+++=+++=nnn n n n nn n n y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 (3) 即用(3)代入(1),还是变成二次型. 那么新二次型的矩阵与原二次型的矩阵A 的关系是什么?可逆线性变换 (3),记作Cy x =,其中矩阵)(ij c C =,把可逆的线性变换Cy x =代入二次型Ax x x x x f T n =),,,(21 ,得二次型ACy C y Cy A Cy Ax x x x x f T T T T n ===)()(),,,(21定义 1 两个同阶方阵A B 、,若存在可逆矩阵C ,使B AC C T=,则称矩阵A B 、合同.若A 为对称矩阵,C 为可逆矩阵,且B AC C T=.则B 亦为对称矩阵,且).()(A r B r =证 因为A 是对称矩阵, 即A A T=,所以B AC C C A C AC C B T T T T T T T T ====)()(即B 为对称矩阵. 因为AC C B T =,所以)()()(A r AC r B r ≤≤.因为11)(--=BC C A T ,所以)()()(1B r BC r A r ≤≤-, 故得).()(B r A r = 主要问题:求可逆的线性变换⎪⎩⎪⎨⎧+++=+++=+++=nnn n n n nn n n y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 (3) 将二次型(1)化为只含平方项,即用(3)代入(1),能使222221121),,,(nn n y k y k y k x x x f +++= (4) 称(4)为二次型的标准形.也就是说,已知对称矩阵A ,求一个可逆矩阵C 使Λ=AC C T为对角矩阵.定理2 任意二次型j inj i ij x x af ∑==1,)(ji ij a a =,总有正交变换Py x =,使f 化为标准形2222211nn y y y f λλλ+++= ,其中n λλλ,,,21 是f 的矩阵)(ij a A =的特征值.推论 任给n 元二次型Ax x x f T=)(,总有可逆变换Cz x =使)(Cz f 为规范形.二、二次型的合同标准形1、拉格朗日配方法化二次型成标准型(1) 对有完全平方的二次型,每一次配方都应将某个变量的平方项以及涉及这一变量的所有混合项配成完全平方,而使得这个完全平方式的外面不再出现这个变量.然后对剩下的不是完全平方的部分再按照此处理,直到全部配成完全平方为止,这样做,是为了保证所得的线性变换是非异的.如果不这样做,最后就需要检验所得的线性变换是否非异.例2 用配方法化二此型32312123222132182292),,(x x x x x x x x x x x x f +++++=为标准形.解 由于f 中含变量型1x 的平方项,故把含1x 的项归并起来,配方可得32312123222182292x x x x x x x x x f +++++=322322232168)(x x x x x x x +++++=上式右端除第一项外已不再含1x .继续配方,可得232322321)3()(x x x x x x f -++++= 令⎪⎩⎪⎨⎧=+=++=3332232113x y x x y x x x y 即⎪⎩⎪⎨⎧=-=+-=33322321132y x y y x y y y x 就把f 化成标准形(规范形),232221y y y f -+=所用的变换矩阵为).0(100310211≠⎪⎪⎪⎭⎫⎝⎛--=C C(2) 如果所给的二次型全由混合项组成,而没有平方项,例如133221321),,(x x x x x x x x x f ++=,则需要先做类似于⎪⎩⎪⎨⎧=-=+=33212211y x y y x y y x 之类的非异线性变换,使变换后的二次型由平方项,再按(1)处理.二次型经非异线性变换化为标准型后,还可以再作非异线性变换,化为标准形.例3化二次型3231212x x x x x x f -+=成标准型,并求所用的变换矩阵.解 由于所给二次型中无平方项,所以令 ⎪⎩⎪⎨⎧=+=-=33212211yx y y x y y x 即⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛321321100011011y y y x x x 代入3231212x x x x x x f -+=得323122213y y y y y y f ++-=在配方,得.2)23()21(23232231y y y y y f +--+= 令⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=-=⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=+=333223113332231123212321z y z z y z z y y z y y z y y z即.10023102101321321⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛z z z y y y得2322212z z z f +-= 所用变换矩阵为.10011121110023102101100011011⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-=C )02(≠=C2、正交变换化二次型成标准型寻求正交变换,化二次型为标准型,其步骤如下: (1) 写出二次型的矩阵A ,求0-=A E λ的所有相异的根n λλλ,,,21 (n s ≤,n 为A 的阶数);(2) 对每个i λ(s ,,2,1 =i )求齐次线性方程组0)(=-x A E i λ的基础解系.如果i λ,基础解系只含1个解向量,则单位化.如果i λ,基础解系含有多于1个的解向量,则规范化,这样,总共得到n 个两两正交的单位向量.(3) 以所得的n 个两两正交的列向量得到矩阵P ,则P 为正交矩阵,正交变换Py x =化二次型Ax x T为标准形y y TΛ为对角阵,主对角线上第i ),,2,1(n i =个元素是P 的第i 个列向量所对应的特征值(k 重特征值出现k 次).经正交变换得到的标准形后,还可以再作非异的线性变换将标准后,还可以再作非异的线性变换将标准形化为规范形.但这一变换已不再是正交变换了.换言之,经正交变换,二次型一定可以化为标准型,但未必能化规范形.例4求一个正交变换Py x =,化二次型32312123222132184422),,(x x x x x x x x x x x x f ++---=为标准形.解 (1)写出二次型f 矩阵⎪⎪⎪⎭⎫ ⎝⎛----=242422221A (2) 求矩阵A 的特征值,写出特征多项式λλλλλλλλλλ------=-------=-------204622412204222212424222212)2)(7(6241)2(λλλλλ-+-=------=故特征值为2,7321==-=λλλ(3) 求矩阵A 的特征值所对应的特征向量 ①当71-=λ时, 解方程0)7(=+x E A ,由⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=+0001102101~5424522287r E A 得基础解系⎪⎪⎪⎭⎫ ⎝⎛-=2211ξ.②当232==λλ时, 解方程0)2(=-x E A ,由⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-----=-000000221~4424422212r E A得基础解系⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=102,01232ξξ.(4) 将32,ξξ正交化:取22ξη=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=-=5425101254102],[],[2223233ηηηξηξη(5) 将321,,ηηξ单位化,得,22131111⎪⎪⎪⎭⎫ ⎝⎛-==ξξp ,01251222⎪⎪⎪⎭⎫ ⎝⎛-==ηηp .542531333⎪⎪⎪⎭⎫ ⎝⎛==ηηp(5) 可得正交矩阵P.53503253451325325231),,(321⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--==p p p P 若令Py x =则Ax x x x x x x x x x x x x x f T =++---=32312123222132184422),,(233222211y y y APy P y T T λλλ++== 2322212271y y y ++-= 注 用正交变换法化二次型成标准型后,其平方项的系数就是矩阵A的特征值.而变换矩阵的各列,分别是这些特征值对应的规范正交的特征向量.例 5 已知,1001110101⎪⎪⎪⎭⎫⎝⎛--=a a A 二次型x A A x x x x f T T )(),,(321=的秩为2.(1) 求实数a 的值.(2) 求正交变换Qy x =将f 化为标准型. 解(1),3111101021001110101111010010122⎪⎪⎪⎭⎫⎝⎛+---+-=⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=a a a a a a a a a a A A T x A A x T T )( 秩为22)()(==∴A r A A r T可得 1-=a .(2) 令⎪⎪⎪⎭⎫⎝⎛==422220202B A A T由0)6)(2(422220202=--=-------=-λλλλλλλE B解之得.6,2,0321===λλλ① 当01=λ时,由0)0(=⋅-x E B ,可解得特征值为⎪⎪⎭⎫⎝⎛=11-1-1ξ.②当22=λ时,由0)2(=⋅-x E B ,可解得特征值为⎪⎪⎭⎫⎝⎛=011-2ξ.③当63=λ时,由0)6(=⋅-x E B ,可解得特征值为⎪⎪⎭⎫⎝⎛=2113ξ.将321,,ξξξ单位化,得⎪⎪⎭⎫ ⎝⎛==⎪⎪⎭⎫ ⎝⎛==⎪⎪⎭⎫ ⎝⎛==211613,011-212,11-1-313322111ξξξξξξr r r令⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--==6203161210612131),,(321r r r Q . 则Qy x =时,可得标准型232262y y Bx x f T +==. 例6 设二次型2221231231323(,,)(1)22f x x x ax ax a x x x x x =++-+-,若二次型f 的规范形为2212y y +,求a 的值. 解 若二次型f 的规范形为2212y y +,说明f 两个特征值为正,一个为0.当2=a 时,三个特征值为 0,2,3,这时,二次型的规范形为2212y y +.§3 二次型及实对称矩阵的正定性二次型的标准形不是唯一的.标准形中所含项数是确定的(即是二次型的秩).限定变换为实变换时,标准形中正系数的个数是不变的.一、惯性定理定理3(惯性定理) 设有实二次型Ax x f T =它的秩是r ,有两个实的可逆变换Cy x =与Pz x =.使)0(,2222211≠+++i r r k y k y k y k 及,2222211r r y z z z +++ λλ)0(≠i λ则r k k k ,,,21 中正数的个数与r λλλ,,,21 中正数的个数相等. 正数的个数称为正惯性指数,负数的个数称为负惯性指数.例7 二次型,2223),,(323121232221321x x x x x x x x x x x x f +++++=求f 的正惯性指数.解:方法一:3231212322213212223),,(x x x x x x x x x x x x f +++++= 2223212)(x x x x +++= 令⎪⎩⎪⎨⎧==++=33223211xy x y x x x y , 则22212y y f +=.故f 的正惯性指数为2.方法二:f 的正惯性指数为所对应矩阵特征值正数的个数,由于二次型f 对应矩阵.111131111⎪⎪⎪⎭⎫ ⎝⎛=A所以λλλλλλλλλλλ---=---=---=-211231001111310111131111E A λλλ---=2112310)4)(1(2123---=---=λλλλλλ=0 故4,1,0321===λλλ.故f 的正惯性指数为2. 二、正定性的判别定义10 设有实二次型Ax x f T=如果对于任何0≠x ,都有0)(>x f ,(显然0)0(=f ),则称f 为正定二次型,并称对称阵A 是正定的.记作0>A ;如果对任何0≠x ,都有0)(<x f ,则称f 为负定二次型,并称对称阵A 是负定的,记作0<A .定理4 实二次型Ax x f T=为正定的充分必要条件是:它的标准形的n 个系数全为正,即f 的正惯性指数为n .证 设可逆变换Cy x =使21)()(ini i yk Cy f x f ∑===.先证充分性:设0>i k ),,2,1(n i =,任给0≠x ,故.0)(21>=∑=i ni i y k x f再证必要性: 用反证法,假设有0≤s k ,则当s e y =(单位坐标向量)时,0)(≤=s s k Ce f ,显然0≠s Ce 这与假设f 正定矛盾,故.0>i k推论 对称阵A 为正定的充分必要条件是: A 的特征值全为正.定理5 对称阵A 为正定的充分必要条件是:A 的各阶主子式都为正.即011>a ,022211211>a a a a,01111>nnn na a a a ; 对称阵A 为负定的充分必要条件是:奇数阶主子式为负,而偶数阶主子式为正.即,0)1(1111>-nrn rra a a a ),,2,1(n r =.这个定理称为霍尔维兹定理.注:对于二次型,除了有正定和负定以外,还有半正定和半负定及不定二次型等概念.例8设实二次型312322212x cx ax bx ax f +++=,当该二次型为正定二次型,c b a ,,应满足的条件?解 写出f 的矩阵 ⎪⎪⎪⎭⎫⎝⎛=a c b c a A 0000因为该二次型为正定二次型,所以0)(,0,022>-=>>∴b c a A ab ac b a ,,∴应满足0,>>b c a .定理6实二次型Ax x f T =为正定的充分必要条件是:存在可逆矩阵C ,使C C A T =,即矩阵A 与单位矩阵合同.证明 先证充分性:若存在可逆矩阵C ,使C C A T=,任取非零向量x ,则0≠Cx (如果0=Cx ,由C 可逆,则0=x 矛盾),对任取的0≠x ,有0)()()(T >====Cx Cx Cx Cx C x Ax x x f T T T,从而矩阵A 正定.再证必要性:设对称矩阵A 为正定矩阵,因为A 为对称矩阵,则存在正交矩阵Q ,使A 对角化,即),,,(21n T diag AQ Q λλλ =Λ=,其中n λλλ,,,21 为A 的特征值,而A 是正定矩阵,所以0>i λ,记),,,(211n diag λλλ =Λ.则Λ=Λ21,从而T T T Q Q Q Q Q Q A ))((1111ΛΛ=ΛΛ=Λ=令T Q C )(1Λ=,则C 可逆,而且得到C C A T=. 所以可得EC C A T=,故矩阵A 与单位矩阵合同.定理7实二次型Ax x f T =为正定的充分必要条件是:存在正定矩阵B ,使2B A =.证明 因为A 是正定矩阵,所以矩阵A 可以正交相似对角化。
同济大学数学系《工程数学—线性代数》(第5版)【教材精讲+考研真题解析】讲义与视频课程-线性空间与线

第6章线性空间与线性变换6.1本章要点详解本章要点■线性空间的定义与性质■维数、基与坐标■基变换与坐标变换■线性变换■线性变换的矩阵表示式重难点导学一、线性空间的定义与性质1.两种运算(1)加法运算设V是一个非空集合,R为实数域.如果在V中定义了一个加法,即对于任意两个元素α,β∈V,总有唯一的一个元素γ∈V与之对应,称为α与β的和,记作γ=α+β.(2)数乘运算在V中又定义了一个数与元素的乘法(简称数乘),即对于任一数λ∈R与任一元素α∈V,总有唯一的一个元素δ∈V与之对应,称为λ与α的数量乘积,记作δ=λα.2.线性空间定义设V是一个非空集合,R为实数域.如果在V中取任意两个元素α,β∈V,加法运算和乘法运算满足以下八条运算规律(设α、β、γ∈V,λ、μ∈R):(1)α+β=β+α;(2)(α+β)+γ=α+(β+γ);(3)在V中存在零元素0,对任何α∈V,都有α+0=α;(4)对任何α∈V,都有α的负元素β∈V,使α+β=0;(5)1α=α;(6)λ(μα)=(λμ)α;(7)(λ+μ)α=λα+μα;(8)λ(α+β)=λα+λβ,则V称为线性空间,又称向量空间.3.线性空间的性质(1)零向量是唯一的;(2)任一向量的负向量是唯一的,α的负向量记作-α;(3)0α=0,(-1)α=-α,λ0=0;(4)如果λα=0,则λ=0或α=0.4.子空间(1)定义设V是一个线性空间,L是V的一个非空子集,如果L对于V中所定义的加法和数乘两种运算也构成一个线性空间,则L称为V的子空间.(2)定理线性空间V的非空子集L构成子空间的充分必要条件是:L对于V中的线性运算封闭.二、维数、基与坐标1.维数与基在线性空间V中,如果存在n个向量,满足:(1)线性无关;(2)V中任一向量α总可由线性表示,则就称为线性空间V的一个基,n称为线性空间V的维数.注:维数为n的线性空间称为n维线性空间,记作V n.2.坐标设是线性空间V n的一个基.对于任一向量α∈V n,总有且仅有一组有序数,使这组有序数就称为向量α在这个基中的坐标,并记作3.同构设V与U是两个线性空间,如果在它们的向量之间有一一对应关系,且这个对应关系保持线性组合的对应,则线性空间V与U同构.三、基变换与坐标变换1.基变换定义设α1,…,αn及β1,…,βn是线性空间V n中的两个基,有(6-1)把α1,…,αn这n个有序向量记作(α1,…,αn),记n阶矩阵P=(p ij),利用向量和矩阵的形式,式(6-1)可表示为(6-2)式(6-2)称为基变换公式,矩阵P称为由基α1,…,αn到基β1,β2,…,βn的过渡矩阵.又β1,β2,…,βn线性无关,故过渡矩阵P可逆.2.坐标变换公式设V n中的向量α在基α1,…,αn中的坐标为(x1,x2,…,x n)T,在基β1,β2,…,βn 中的坐标为.若两个基满足关系式(6-2),则有坐标变换公式四、线性变换1.定义设V n,U m分别是n维和m维线性空间,T是一个从V n到U m的映射,若映射T满足:(1)任给α1、α2∈V n(从而α1+α2∈V n),有T(α1+α2)=T(α1)+T(α2);(2)任给α∈V n,λ∈R(从而λα∈V n),有T(λα)=λT(α).则T称为从V n到U m的线性映射,又称线性变换.2.线性变换基本性质(1)T0=0,T(-α)=-Tα;(2)若则;(3)若α1,α2,…,αm线性相关,则Tα1,Tα2,…,Tαm亦线性相关,反之不成立;(4)线性变换T的像集T(V n)是一个线性空间,称为线性变换T的像空间;(5)使Tα=0的α的全体N T={α|α∈V n,Tα=0}也是一个线性空间,且N T称为线性变换T的核.五、线性变换的矩阵表示式1.定义设T是线性空间V n中的线性变换,在V n中取定一个基α1,α2,…,αn,如果这个基在变换T下的像为记,上式可表示为其中则A就称为线性变换T在基α1,α2,…,αn下的矩阵.2.定理设线性空间V n中取定两个基α1,α2,…,αn;β1,β2,…,βn,由基α1,α2,…,αn到基β1,β2,…,βn的过渡矩阵为P,V n中的线性变换T在这两个基下的矩阵依次为A和B,则B=P-1AP.6.2配套考研真题解析本章为非重点,暂未编选考研真题,若有最新真题会及时更新.。
同济大学线性代数课件__第三章 矩阵的初等变换与线性方程组

0 0 0
1 0 0
1 0 0
1 2 0
0 6 0
B4
2020/12/12
12
1
rrr123rr1223
0 0 0
0 1 0 0
1 1
0 0
0 0 1 0
4
3 3 0
B5
行最简形
x1 x2
x3 x3
4 3
x4 3
令 x3 c
x1 c 4
x2 x3
c c
3
x4 3
3x2 3x3 4x4 3, ④
2020/12/12
(B1 )
(B2 )
3
② 1
x1
③52②
④3②
x2 2x3 x2 x3
x4 x4 2 x4
4, ① 0, ② 6, ③
x4 3.④
x1 x2 2x3 x4 4, ①
④ 12③
x2 x3 x4 0, ② 2x4 6, ③
2
用消元法
x1 x2 2x3 x4 4, ①
(1)
①③ 12② 22xx11
x2 3x2
x3 x4 2, ② x3 x4 2, ③
3x1 6x2 9x3 7 x4 9, ④
x1 x2 2x3 x4 4, ①
②③
③2①
④3①
2x2 2x3 2x4 0, ② 5x2 5x3 3x4 6, ③
1
1
01
第i行
1
E(i, j)
1 10
第
j
行
1
1
2020/12/12
17
1
1
E(i(k))
k
第i 行
1
工程数学_线性代数_同济大学1-6

,312213332112322311322113312312332211a a a a a a a a a a a a a a a a a a −−−++=333231232221131211a a a a a a a a a 例如()3223332211a a a a a −=()3321312312a a a a a −+()3122322113a a a a a −+333123211333312321123332232211a a a a a a a a a a a a a a a +−=一、余子式与代数余子式在 阶行列式中,把元素 所在的第 行和第 列划去后,留下来的阶行列式叫做元素 的余子式,记作n ij a i j 1−n ij a .M ij (),记ij j i ij M A +−=1叫做元素 的代数余子式.ij a 例如44434241343332312423222114131211a a a a a a a a a a a a a a a a D =44424134323114121123a a a a a a a a a M =()2332231M A +−=.23M −=,44434241343332312423222114131211a a a a a a a a a a a a a a a a D =,44434134333124232112a a a a a a a a a M =()1221121M A +−=.12M −=,33323123222113121144a a a a a a a a a M =().144444444M M A =−=+.个代数余子式对应着一个余子式和一行列式的每个元素分别引理 一个一个一个 阶行列式,如果其中第阶行列式,如果其中第阶行列式,如果其中第 行所有行所有元素除元素除 外都为零,那末这行列式等于外都为零,那末这行列式等于外都为零,那末这行列式等于 与它的与它的代数余子式的乘积,即代数余子式的乘积,即 ..ijij A a D =n i ij a ij a 44434241332423222114131211000a a a a a a a a a a a a a D =().14442412422211412113333a a a a a a a a a a +−=例如定理3 行列式等于它的任一行(列)的各元行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即inin i i i i A a A a A a D +++=⋯2211()n i ,,2,1⋯=证nnn n in i i n a a a a a a a a a D ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯212111211000000+++++++++=二、行列式按行(列)展开法则nn n n i n a a a a a a a ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2111121100=nn n n i n a a a a a a a ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2121121100+nnn n in n a a a a a a a ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯211121100++in in i i i i A a A a A a +++=⋯2211()n i ,,2,1⋯=例1335111024*******−−−−−−=D 03550100131111115−−−−−()312c c −+34c c +551111115)1(33−−−−−=+055026115−−−5526)1(31−−−−=+5028−−=.40=12r r +证用数学归纳法21211x x D =∵12x x −=,)(12∏≥>≥−=j i j i x x )式成立.时(当12=∴n 例2证明范德蒙德(Vandermonde Vandermonde))行列式∏≥>≥−−−−==1112112222121).(111j i n j i n n n n n n n x x x x x x x x x x x D ⋯⋮⋮⋮⋯⋯⋯)1(,阶范德蒙德行列式成立)对于假设(11−n )()()(0)()()(0011111213231222113312211312x x x x x x x x x x x x x x x x x x x x x x x x D n n n n n n n n n −−−−−−−−−=−−−⋯⋮⋮⋮⋮⋯⋯⋯就有提出,因子列展开,并把每列的公按第)(11x x i −)()())((211312j j i n i n n x x x x x x x x D −−−−=∴∏≥>≥⋯).(1j j i n i x x −=∏≥>≥223223211312111)())((−−−−−−=n nn n n n xxxx x x x x x x x x ⋯⋮⋮⋮⋯⋯⋯ n-1阶范德蒙德行列式推论 行列式任一行(列)的元素与另一行(列)行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即.j i ,A a A a A a jn in j i j i ≠=+++02211⋯,11111111nnn jn j in i n jnjn j j a a a a a a a a A a A a ⋯⋮⋮⋯⋮⋮⋯⋮⋮⋯⋯=++证行展开,有按第把行列式j a D ij )det(=,11111111nnn in i in i n jnin j i a a a a a a a a A a A a ⋯⋮⋮⋯⋮⋮⋯⋮⋮⋯⋯=++可得换成把),,,1(n k a a ik jk ⋯=行第j 行第i ,时当j i ≠).(,02211j i A a A a A a jn in j i j i ≠=+++⋯同理).(,02211j i A a A a A a nj ni j i j i ≠=+++⋯相同关于代数余子式的重要性质⎩⎨⎧≠===∑=;,0,,1j i j i D D A a ij nk kj ki 当当δ⎩⎨⎧≠===∑=;,0,,1j i j i D D A a ij nk jk ik 当当δ⎩⎨⎧≠==δ.,0,1j i j i ij 当,当其中例3 计算行列式277010353−−−=D 解27013−−=D .27=按第一行展开,得27005+77103−+532004140013202527102135−−−−=D 例4 计算行列式解532004140013202527102135−−−−=D66027013210−−−=()6627210−−⋅−=().1080124220−=−−=53241413252−−−⋅−()53204140132021352152−−−−−=+13r r +()122r r −+1.1. 行列式按行(列)展开法则是把高阶行列式的计算化为低阶行列式计算的重要工具.⎩⎨⎧≠===∑=;,0,,.21j i j i D D A a ij nk kj ki 当当δ⎩⎨⎧≠===∑=;,0,,1j i j i D D A a ij nk jk ik 当当δ⎩⎨⎧≠==δ.,0,1j i j i ij 当,当其中三、小结思考题阶行列式设n n n D n ⋯⋮⋱⋮⋮⋮⋯⋯⋯00103010021321=求第一行各元素的代数余子式之和.11211n A A A +++⋯思考题解答解第一行各元素的代数余子式之和可以表示成n A A A 11211+++⋯n ⋯⋮⋱⋮⋮⋮⋯⋯⋯001030100211111=.11!2⎟⎟⎠⎞⎜⎜⎝⎛−=∑=n j j n练习题计算下列行列式αβββαβββααααλ⋯⋮⋮⋮⋮⋯⋯⋯b b b .1xa a a a a x x x x n n n+−−−−−12211000000000100001.2⋯⋯⋮⋮⋮⋮⋮⋯⋯⋯答案及提示1.用降阶法,把第n 行的-1倍加到第i 行上去,再将第2列至第n-1列都加到第n 列,最后按第一列展开。
同济大学数学系《工程数学—线性代数》(第5版)【教材精讲+考研真题解析】讲义与视频课程-矩阵的初等变

第3章矩阵的初等变换与线性方程组[视频讲解]3.1本章要点详解本章要点■初等变换的概念与性质■矩阵之间的等价关系■初等变换与矩阵乘法的关系■初等变换的应用■矩阵的秩■线性方程组的解重难点导学一、矩阵的初等变换1.初等变换下面三种变换称为矩阵的初等行变换:(1)对调两行(对调i,j两行,记作r i↔r j);(2)以数k≠0乘某一行中的所有元(第i行乘k,记为r i×k);(3)把某一行所有元素的k倍加到另一行对应的元上去(第j行的k倍加到第i行上,记作r i+kr j).把定义中的“行”换成“列”,即得矩阵的初等列变换的定义,矩阵的初等行变换与初等列变换,统称为初等变换.2.矩阵等价(1)定义①若矩阵A经有限次初等行变换变成矩阵B,就称矩阵A与B行等价,记作;②若矩阵A经有限次初等列变换变成矩阵B,就称矩阵A与B列等价,记作;③若矩阵A经有限次初等变换变成矩阵B,则称矩阵A与B等价,记作A~B.(2)矩阵之间的等价关系的性质①反身性A~A;②对称性若A~B,则B~A;③传递性若A~B,B~C,则A~C.(3)矩阵的类型①两个矩阵,矩阵B4和B5都称为行阶梯形矩阵.行阶梯形矩阵B5又称为行最简形矩阵,其特点是:非零行的第一个非零元为1,且非零元所在的列的其他元素都为0.结论:对于任何非零矩阵A m×n总可经过有限次初等行变换把它变为行阶梯形矩阵和行最简形矩阵.②标准形矩阵F称为矩阵B的标准形,其特点是:F的左上角是一个单位矩阵,其余元素全为0.对于m×n矩阵A,总可经过初等变换(行变换和列变换)把它化为标准形此标准形由m,n,r三个数完全确定,其中r就是行阶梯形矩阵中非零行的行数.所有与A 等价的矩阵组成一个集合,标准形F 是这个集合中形状最简单的矩阵.3.初等变换与矩阵乘法的关系(1)定理设A 与B 为m ×n 矩阵,则:①的充分必要条件是存在m 阶可逆矩阵P ,使PA =B ;②的充分必要条件是存在n 阶可逆矩阵Q ,使AQ =B ;③A ~B 的充分必要条件是存在m 阶可逆矩阵P 及n 阶可逆矩阵Q ,使PAQ =B .(2)初等矩阵由单位矩阵E 经过一次初等变换得到的矩阵称为初等矩阵.(3)性质①设A 是一个m ×n 矩阵,对A 施行一次初等行变换,等价于在A 的左边乘以相应的m 阶初等矩阵;对A 施行一次初等列变换,等价于在A 的右边乘以相应的n 阶初等矩阵.②方阵A 可逆的充分必要条件是存在有限个初等矩阵P 1,P 2,…P l ,使A =P 1P 2…P l .③方阵A 可逆的充分必要条件是.4.初等变换的应用当||0A ≠时,由12l A PP P = ,有11111l l P P P A E ----= 及111111l l P P P E A -----= 所以()()()1111111111111111|||l l l l l l P P P A E P P P A P P P E E A -------------== 即对n ×2n 矩阵()|A E 施行初等行变换,当把A 变成E 时,原来的E 就变成A -1.二、矩阵的秩1.秩的定义(1)k阶子式在m×n矩阵A中,任取k行与k列(k≤m,k≤n),位于这些行列交叉处的k2个元素,不改变它们在A中所处的位置次序而得的k阶行列式,称为矩阵A的k阶子式.注:m×n矩阵A的k阶子式共有个.(2)矩阵的秩设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式(如果存在的话)全等于0,则D称为矩阵A的最高阶非零子式,数r称为矩阵A的秩,记作R(A).注:零矩阵的秩等于0.(3)最高阶非零子式由行列式的性质可知,在A中当所有r+1阶子式全等于0时,所有高于r+1阶的子式也全等于0,因此把r阶非零子式称为最高阶非零子式,而A的秩R(A)就是A的非零子式的最高阶数.(4)满秩矩阵与降秩矩阵可逆矩阵的秩等于矩阵的阶数,不可逆矩阵的秩小于矩阵的阶数.因此,可逆矩阵又称满秩矩阵,不可逆矩阵(奇异矩阵)又称降秩矩阵.(5)等价矩阵的秩①若A~B,则R(A)=R(B).②若可逆矩阵P,Q使PAQ=B,则R(A)=R(B).2.秩的性质(1)0≤R(A m×n)≤min{m,n}(2)R(A T)=R(A);(3)若A~B,则R(A)=R(B);(4)若P、Q可逆,则R(PAQ)=R(A);(5)max{R(A),R(B)}≤R(A,B)≤R(A)+R(B)特别地,当B=b为非零列向量时,有R(A)≤R(A,b)≤R(A)+1;(6)R(A+B)≤R(A)+R(B);(7)R(AB)≤min{R(A),R(B)};(8)若A m×n B n×l=0,则R(A)+R(B)≤n.3.满秩矩阵矩阵A的秩等于它的列数,称这样的矩阵为列满秩矩阵.当A为方阵时,列满秩矩阵就成为满秩矩阵.4.结论(1)设A为n阶矩阵,则R(A+E)+R(A-E)≥n.(2)若A m×n B n×l=C,且R(A)=n,则R(B)=R(C).。
线性代数课件_第五章_相似矩阵及二次型——第7节

2020/7/15
课件
14
思考题
设 A,B分别 m阶 为 ,n阶正定 ,试 矩判 阵定分 矩C 阵 A 0是否为正 . 定矩阵
0 B
2020/7/15
课件
15
思考题解答
解 C是正定.的 因为 ,设zT(xT,yT)为mn维向,其 量中 x,y分
是否正定.
5 2 4
解
fx1,x2,x3的矩阵 2 为 1
2
,
4 2 5
它的顺序主子式
50,
5 2
2 10, 1
5 2 4
2 1 2
4 2 10, 5
故上述二次型是正定的.
2020/7/15
课件
11
例2 判别二次型
f x 1 , x 2 , x 3 2 x 1 2 4 x 2 2 5 x 3 2 4 x 1 x 3
相等.
2020/7/15
课件
5
二、正(负)定二次型的概念
定义1 设有实二次f型 (x) xTAx,如果对任何
x 0,都有fx0显然f00,则称f为正定二
次 型,并 称对 称 矩 A是 阵正定;的 如 果对 任x何 0 都有f(x) 0,则称f为负定二次 ,并型称对称矩阵 A是负定.的
例如 fx24y21z6 2 为正定二次型
2020/7/15
课件
4
定理1(惯性定理) 设有实二次型f xT Ax,它的秩 为r,有两个实的可逆变换
x Cy 及 x Pz
使 f k1 y12 k2 y22 kr yr2 ki 0, 及 f 1z12 2z22 r zr2 i 0,
同济大学线性代数课件11

的线性方程组,
•精品课件
!
•精品课件
!
同济大学线性代数课件11
•我们先讨论未知量的个数与方程 的个数相等的特殊情形.
•在讨论这一类线性方程组时,我 们引入行列式这个计算工具.
第一章 行列式
内容提要
•行列式是线性代 数的一种工具! •学习行列式主要 就是要能计算行列 式的值.
§1 二阶与三阶行列式
§2 全排列及其逆序数 •行列式的概念.
•注意:对角线法则只适用于二阶与三阶行列式.
•2.•三阶行列式包括3!项,每一项都是位于不同行, •不同列的三个元素的乘积,其中三项为正,三项为 •负. • 利用三阶行列式求解三元线性方程组
• 如果三元线性方程组
•的系数行列式
•若记 •或
•记 •即
•得
•得
•则三元线性方程组的解为:
•例2 计算行列式 •解 •按对角线法则,有
•例1 •求解二元线性方程组 •解 •因为
•所以
•
二、三阶行列式
•定义 设有9个数排成3行3列的数表
•引进记号 •主对角线 •副对角线
•原则:横行竖列
•称为三阶行列式.
•二阶行列式的对角线法则 并不适用!
•三阶行列式的计算 •(1)沙路法
•.列标 •行标
•三阶行列式的计算•——对角线法则
•实线上的三个元素的乘积冠正号, •虚线上的三个元素的乘积冠负号.
•数表所确定的二阶行列式,即
•原则:横行竖列
•其中,
称为元素.
•i 为行标,表明元素位于第i 行; •j 为列标,表明元素位于第j 列.
•二阶行列式的计算•——对角线法则
•主对角线 •副对角线
•即:主对角线上两元素之积-副对角线上两元素之积
6-2同济大学 线性代数 第六章

于是α + β与kα的坐标分别为 T (a 1+ b1,a 2 + b 2 ,L,a n + b n )
= (a 1,a 2 ,L,a n ) + (b1,b 2 ,L,b n ) T T ( k a 1,k a 2 ,L,k a n ) = k (a 1,a 2 ,L,a n )
T T
上式表明 : 在向量用坐标表示后 , 它们的运算 就归结为坐标的运算 ,因而线性空间 V n 的讨论就 归结为 R n 的讨论 . 下面更确切地说明这一 点.
ε 1 = 1, ε 2 = ( x − a ), ε 3 = ( x − a ) ,L , ε n = ( x − a )
2
n−1
则由泰勒公式知
f ' ' (a ) 2 f ( x ) = f (a ) + f ' (a )( x − a ) + ( x − a) 2! ( n − 1) (a ) f n−1 +L+ ( x − a) ( n − 1)! 因此 f ( x )在基 ε 1 , ε 2 , ε 3 ,L , ε n 下的坐标是
λα ↔ λ ( x1 , x2 ,L, xn )
T
结论 1.数域 P上任意两个n 维线性空间都同 构. 同构的线性空间之间具有反身性、对称性 2.同构的线性空间之间具有反身性、 与传递性. 与传递性. 3.同维数的线性空间必同构. 同维数的线性空间必同构.
同构的意义
在线性空间的抽象讨论中, 在线性空间的抽象讨论中,无论构成线性空间 的元素是什么,其中的运算是如何定义的, 的元素是什么,其中的运算是如何定义的,我们所 关心的只是这些运算的代数性质. 关心的只是这些运算的代数性质.从这个意义上可 以说,同构的线性空间是可以不加区别的, 以说,同构的线性空间是可以不加区别的,而有限 维线性空间唯一本质的特征就是它的维数. 维线性空间唯一本质的特征就是它的维数.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
幻灯片1线性代数(第五版)幻灯片2●在以往的学习中,我们接触过二元、三元等简单的线性方程组.●但是,从许多实践或理论问题里导出的线性方程组常常含有相当多的未知量,并且未知量的个数与方程的个数也不一定相等.幻灯片3●我们先讨论未知量的个数与方程的个数相等的特殊情形.●在讨论这一类线性方程组时,我们引入行列式这个计算工具.幻灯片4●行列式是线性代数的一种工具!●学习行列式主要就是要能计算行列式的值.第一章行列式●内容提要●§1 二阶与三阶行列式●§2 全排列及其逆序数●§3 n 阶行列式的定义●§4 对换●§5 行列式的性质●§6 行列式按行(列)展开§7 克拉默法则●行列式的概念.●(选学内容)●行列式的性质及计算.●——线性方程组的求解.幻灯片5§1 二阶与三阶行列式●我们从最简单的二元线性方程组出发,探●求其求解公式,并设法化简此公式.幻灯片6一、二元线性方程组与二阶行列式●二元线性方程组●由消元法,得●当时,该方程组有唯一解幻灯片7●二元线性方程组●请观察,此公式有何特点?●分母相同,由方程组的四个系数确定.●分子、分母都是四个数分成两对相乘再相减而得.●求解公式为幻灯片8●我们引进新的符号来表示“四个数分成两对相乘再相减”.●二元线性方程组●记号●数表●其求解公式为●表达式称为由该●数表所确定的二阶行列式,即●其中,称为元素.●i 为行标,表明元素位于第i 行;●j 为列标,表明元素位于第j 列.●原则:横行竖列幻灯片9●二阶行列式的计算●——对角线法则●主对角线●副对角线●即:主对角线上两元素之积-副对角线上两元素之积幻灯片10●二元线性方程组●若令●(方程组的系数行列式)●则上述二元线性方程组的解可表示为幻灯片11●求解二元线性方程组●例1●解●因为●所以幻灯片12二、三阶行列式●定义设有9个数排成3行3列的数表●原则:横行竖列●引进记号●主对角线●副对角线●称为三阶行列式.●二阶行列式的对角线法则并不适用!幻灯片13●三阶行列式的计算●——对角线法则●实线上的三个元素的乘积冠正号,●虚线上的三个元素的乘积冠负号.●注意:对角线法则只适用于二阶与三阶行列式.幻灯片14●例2 计算行列式●解●按对角线法则,有幻灯片15●例3 求解方程●方程左端●解●由得幻灯片16§2 全排列及其逆序数幻灯片17●用1、2、3三个数字,可以组成多少个没有重复数字的三位数?●引例● 1 2 3●解● 1● 3● 2●百位●3种放法● 3● 1● 2● 1●2种放法●十位●1种放法● 1● 2● 3●个位●共有●种放法.幻灯片18●问题把 n 个不同的元素排成一列,共有多少种不同的●排法?●定义把 n 个不同的元素排成一列,叫做这 n 个元素的全排列. n 个不同元素的所有排列的种数,通常用Pn 表示.●显然●即n 个不同的元素一共有n! 种不同的排法.● 3个不同的元素一共有3! =6种不同的排法●123,132,213,231,312,321●所有6种不同的排法中,只有一种排法(123)中的数字是按从小到大的自然顺序排列的,而其他排列中都有大的数排在小的数之前.●因此大部分的排列都不是“顺序”,而是“逆序”.幻灯片20●对于n 个不同的元素,可规定各元素之间的标准次序.●n 个不同的自然数,规定从小到大为标准次序.●定义当某两个元素的先后次序与标准次序不同时,●就称这两个元素组成一个逆序.●例如在排列32514中,● 3 2 5 1 4●思考题:还能找到其它逆序吗?●答:2和1,3和1也构成逆序.幻灯片21●定义排列中所有逆序的总数称为此排列的逆序数.●排列的逆序数通常记为 .●奇排列:逆序数为奇数的排列.●偶排列:逆序数为偶数的排列.●思考题:符合标准次序的排列是奇排列还是偶排列?●答:符合标准次序的排列(例如:123)的逆序数等于零,因而是偶排列.幻灯片22●计算排列的逆序数的方法●设是 1, 2, …, n 这n 个自然数的任一排列,并规定由小到大为标准次序.●先看有多少个比大的数排在前面,记为;●再看有多少个比大的数排在前面,记为 ;●最后看有多少个比大的数排在前面,记为 ;●则此排列的逆序数为幻灯片23●例1:●求排列 32514 的逆序数.●解:●练习:●求排列 453162 的逆序数.●解:幻灯片24§3 n 阶行列式的定义幻灯片25一、概念的引入●规律:●三阶行列式共有6项,即3!项.●每一项都是位于不同行不同列的三个元素的乘积.●每一项可以写成(正负号除外),其中●是1、2、3的某个排列.●当是偶排列时,对应的项取正号;当是奇排列时,对应的项取负号.幻灯片26●所以,三阶行列式可以写成●其中表示对1、2、3的所有排列求和.●二阶行列式有类似规律.下面将行列式推广到一般的情形.幻灯片27二、n 阶行列式的定义●简记作,●其中为行列式D的(i, j)元● n 阶行列式共有 n! 项.●每一项都是位于不同行不同列的 n 个元素的乘积.●每一项可以写成(正负号除外),其中●是1, 2, …, n 的某个排列.●当是偶排列时,对应的项取正号;当是奇排列时,对应的项取负号.幻灯片28●思考题:成立吗?●答:符号可以有两种理解:●若理解成绝对值,则;若理解成一阶行列式,则 .●注意:当n = 1时,一阶行列式|a| = a,注意不要与绝对值的记号相混淆. 例如:一阶行列式 .幻灯片29●例:●写出四阶行列式中含有因子的项.●解:●和●例:●计算行列式幻灯片30●解:●其中幻灯片31幻灯片32●四个结论:●(1) 对角行列式●(2)幻灯片33●(3) 上三角形行列式(主对角线下侧元素都为0)●(4) 下三角形行列式(主对角线上侧元素都为0)幻灯片34●思考题:用定义计算行列式●-1●解:用树图分析●3●1●-2●1●-1●2●-2●3●3●-1●故幻灯片35●思考题●已知,求的系数.幻灯片36●解●含的项有两项,即●对应于●故的系数为-1.幻灯片37§4 对换幻灯片38一、对换的定义●定义●在排列中,将任意两个元素对调,其余的元素不动,这种作出新排列的手续叫做对换.●将相邻两个元素对换,叫做相邻对换.●例如幻灯片39●备注●相邻对换是对换的特殊情形.●一般的对换可以通过一系列的相邻对换来实现.如果连续施行两次相同的对换,那么排列就还原了.幻灯片40二、对换与排列奇偶性的关系●定理1 对换改变排列的奇偶性.●证明●先考虑相邻对换的情形.幻灯片41●注意到除外,其它元素的逆序数不改变.幻灯片42●当时,,, .●当时,,, .●因此相邻对换改变排列的奇偶性.幻灯片43●既然相邻对换改变排列的奇偶性,那么●因此,一个排列中的任意两个元素对换,排列的奇偶性改变.●推论●奇排列变成标准排列的对换次数为奇数,●偶排列变成标准排列的对换次数为偶数.●由定理1知,对换的次数就是排列奇偶性的变化次数,而标准排列是偶排列(逆序数为零),因此可知推论成立.●证明幻灯片44●因为数的乘法是可以交换的,所以 n 个元素相乘的次序是可以任意的,即●每作一次交换,元素的行标与列标所成的排列●与都同时作一次对换,即与同时改变奇偶性,但是这两个排列的逆序数之和的奇偶性不变.幻灯片45●设对换前行标排列的逆序数为,列标排列的逆序数为 .●设经过一次对换后行标排列的逆序数为●列标排列的逆序数为●因为对换改变排列的奇偶性,是奇数,也是奇数.●所以是偶数,●即是偶数.●于是与同时为奇数或同时为偶数.●因此,交换中任意两个元素的位置后,其行标排列与列标排列的逆序数之和的奇偶性不变.幻灯片46●经过一次对换是如此,经过多次对换还是如此. 所以,在一系列对换之后有幻灯片47幻灯片48●例1 试判断和●是否都是六阶行列式中的项.幻灯片49●例2 用行列式的定义计算幻灯片50●解幻灯片51三、小结● 1. 对换改变排列奇偶性.● 2. 行列式的三种表示方法幻灯片52§5 行列式的性质幻灯片53一、行列式的性质●记●行列式称为行列式的转置行列式.●若记,则 .●性质1 行列式与它的转置行列式相等,即 .幻灯片54●性质1 行列式与它的转置行列式相等.●证明●若记,则●根据行列式的定义,有●行列式中行与列具有同等的地位,行列式的性质凡是对行成立的对列也同样成立.幻灯片55●性质2 互换行列式的两行(列),行列式变号.●备注:交换第行(列)和第行(列),记作 .●验证●于是●推论如果行列式有两行(列)完全相同,则此行列式为零.●证明●互换相同的两行,有,所以 .幻灯片56●性质3 行列式的某一行(列)中所有的元素都乘以同一个倍数,等于用数乘以此行列式.●备注:第行(列)乘以,记作 .●验证●我们以三阶行列式为例. 记●根据三阶行列式的对角线法则,有幻灯片57●推论行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面.●备注:第行(列)提出公因子,记作 .幻灯片58●性质4 行列式中如果有两行(列)元素成比例,则此行列式为零.●验证●我们以4阶行列式为例.幻灯片59●性质5 若行列式的某一列(行)的元素都是两数之和,●例如:●则幻灯片60●验证●我们以三阶行列式为例.幻灯片61●性质6 把行列式的某一列(行)的各元素乘以同一个倍数然后加到另一列(行)对应的元素上去,行列式不变.●备注:以数乘第行(列)加到第行(列)上,记作 .●验证●我们以三阶行列式为例. 记●则幻灯片62二、应用举例●计算行列式常用方法:利用运算把行列式化为●上三角形行列式,从而算得行列式的值.●例1幻灯片63●解幻灯片64幻灯片65幻灯片66幻灯片67幻灯片68●解幻灯片69幻灯片70●例3 设●证明幻灯片71●证明●对作运算,把化为下三角形行列式●设为●对作运算,把化为下三角形行列式●设为幻灯片72●对 D 的前 k 行作运算,再对后 n 列作运算,●把 D 化为下三角形行列式●故幻灯片73三、小结● (行列式中行与列具有同等的地位, 凡是对行成立的性质对列也同样成立).●行列式的6个性质●计算行列式常用方法:(1)利用定义;(2)利用性质把行列式化为上三角形行列式,从而算得行列式的值.幻灯片74●思考题●计算4阶行列式幻灯片75●思考题解答●解幻灯片76幻灯片77§6 行列式按行(列)展开●对角线法则只适用于二阶与三阶行列式.●本节主要考虑如何用低阶行列式来表示高阶行列式.幻灯片78一、引言●结论三阶行列式可以用二阶行列式表示.●思考题任意一个行列式是否都可以用较低阶的行列式表示?幻灯片79●在n 阶行列式中,把元素所在的第行和第列划后,留下来的n-1阶行列式叫做元素的余子式,记作 .●把称为元素的代数余子式.●例如●结论因为行标和列标可唯一标识行列式的元素,所以行列●式中每一个元素都分别对应着一个余子式和一个代数余子式.幻灯片80●引理一个n 阶行列式,如果其中第行所有元素除●外都为零,那么这行列式等于与它的代数余子式的乘积,即.●例如幻灯片81●当位于第1行第1列时,●分析●即有●(根据P.14例10的结论)●又●从而●下面再讨论一般情形.幻灯片82●我们以4阶行列式为例.●思考题:能否以代替上述两次行变换?幻灯片83●思考题:能否以代替上述两次行变换?●答:不能.幻灯片84●被调换到第1行,第1列幻灯片85二、行列式按行(列)展开法则●定理3 行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即幻灯片86●同理可得幻灯片87●例(P.12例7续)幻灯片88●例证明范德蒙德(Vandermonde)行列式●证明用数学归纳法●所以n=2时(1)式成立.幻灯片89●假设(1)对于n-1阶范德蒙行列式成立,从第n行开始,后行●减去前行的倍:●按照第1列展开,并提出每列的公因子,就有幻灯片90● n−1阶范德蒙德行列式幻灯片91●推论行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即●分析我们以3阶行列式为例.●把第1行的元素换成第2行的对应元素,则幻灯片92●定理3 行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即●推论行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即●综上所述,有●同理可得幻灯片93●例计算行列式●解幻灯片94幻灯片95●例设 , 的元的余子式和●代数余子式依次记作和,求●及●分析利用幻灯片96●解幻灯片97幻灯片98§7 克拉默法则幻灯片99●二元线性方程组●若令●(方程组的系数行列式)●则上述二元线性方程组的解可表示为幻灯片100一、克拉默法则●如果线性方程组●的系数行列式不等于零,即幻灯片101●那么线性方程组(1)有解并且解是唯一的,解可以表示成●其中是把系数行列式中第列的元素用方程组右端的常数项代替后所得到的阶行列式,即幻灯片102●定理中包含着三个结论:●方程组有解;(解的存在性)●解是唯一的;(解的唯一性)●解可以由公式(2)给出.●这三个结论是有联系的. 应该注意,该定理所讨论的只是系数行列式不为零的方程组,至于系数行列式等于零的情形,将在第三章的一般情形中一并讨论.幻灯片103关于克拉默法则的等价命题●设●定理4 如果线性方程组(1)的系数行列式不等于零,则该线性方程组一定有解,而且解是唯一的 .●定理4′如果线性方程组无解或有两个不同的解,则它的系数行列式必为零.幻灯片104●例解线性方程组●解幻灯片105幻灯片106幻灯片107●线性方程组●常数项全为零的线性方程组称为齐次线性方程组,否则称为非齐次线性方程组.●齐次线性方程组总是有解的,因为(0,0,…, 0)就是一个解,称为零解. 因此,齐次线性方程组一定有零解,但不一定有非零解.●我们关心的问题是,齐次线性方程组除零解以外是否存在着非零解.幻灯片108●齐次线性方程组的相关定理●定理5 如果齐次线性方程组的系数行列式,则齐次●线性方程组只有零解,没有非零解.●定理5′如果齐次线性方程组有非零解,则它的系数行列式必为零.●备注●这两个结论说明系数行列式等于零是齐次线性方程组有非零解的必要条件.●在第三章还将证明这个条件也是充分的. 即:齐次线性方程组有非零解系数行列式等于零幻灯片109●练习题:问取何值时,齐次方程组●有非零解?●解●如果齐次方程组有非零解,则必有 .●所以时齐次方程组有非零解.幻灯片110●思考题●当线性方程组的系数行列式为零时,能否用克拉默法则解方程组?为什么?此时方程组的解为何?●答:当线性方程组的系数行列式为零时,不能用克拉默法●则解方程组,因为此时方程组的解为无解或有无穷多解.幻灯片111三、小结● 1. 用克拉默法则解线性方程组的两个条件●(1)方程个数等于未知量个数;●(2)系数行列式不等于零.● 2. 克拉默法则的意义主要在于建立了线性方程组的解●和已知的系数以及常数项之间的关系.它主要适用于●理论推导.幻灯片112第二章矩阵及其运算幻灯片113§1 矩阵●一、矩阵概念的引入●二、矩阵的定义●三、特殊的矩阵●四、矩阵与线性变换幻灯片114● B一、矩阵概念的引入● C● A●例某航空公司在A、B、C、D 四座城市之间开辟了若干航线,四座城市之间的航班图如图所示,箭头从始发地指向目的地.● D●城市间的航班图情况常用表格来表示:●√●√幻灯片115● A B C D●√●√● A● B● C● D●√●√●√●√●√●为了便于计算,把表中的√改成1,空白地方填上0,就得到一个数表:●这个数表反映了四个城市之间交通联接的情况.幻灯片116二、矩阵的定义●由 m×n 个数排成的 m 行 n 列的数表●称为 m 行 n 列矩阵,简称 m×n 矩阵.●记作幻灯片117●简记为●这 m×n 个数称为矩阵A的元素,简称为元.●元素是实数的矩阵称为实矩阵,●元素是复数的矩阵称为复矩阵.幻灯片118矩阵行列式●行数不等于列数●共有m×n个元素●本质上就是一个数表●行数等于列数●共有n2个元素幻灯片119●三、特殊的矩阵●行数与列数都等于 n 的矩阵,称为 n 阶方阵.可记作 .●只有一行的矩阵称为行矩阵(或行向量) .●●只有一列的矩阵称为列矩阵(或列向量) .元素全是零的矩阵称为零距阵.可记作 O .●例如:幻灯片120●形如的方阵称为对角阵.●特别的,方阵称为单位阵.●记作●记作.幻灯片121●同型矩阵与矩阵相等的概念●两个矩阵的行数相等、列数相等时,称为同型矩阵.●例如●为同型矩阵.●两个矩阵与为同型矩阵,并且对应元●素相等,即则称矩阵 A 与 B 相等,记作 A = B .幻灯片122●例如●注意:不同型的零矩阵是不相等的.幻灯片123●四、矩阵与线性变换● n 个变量与 m 个变量之间的●关系式●表示一个从变量到变量线性变换,●其中为常数.幻灯片124●系数矩阵●线性变换与矩阵之间存在着一一对应关系.幻灯片125●例线性变换●称为恒等变换.●单位阵 En幻灯片126●例 2阶方阵●投影变换●例2阶方阵●以原点为中心逆时针●旋转j 角的旋转变换幻灯片127§2 矩阵的运算幻灯片128●一、矩阵的加法●定义:设有两个 m×n 矩阵 A = (aij),B = (bij) ,那么矩阵 A 与 B 的和记作 A+B,规定为●说明:只有当两个矩阵是同型矩阵时,才能进行加法运算.幻灯片129●知识点比较幻灯片130●矩阵加法的运算规律●设 A、B、C 是同型矩阵设矩阵 A = (aij) ,记-A = (-aij),称为矩阵 A 的负矩阵.显然幻灯片131●二、数与矩阵相乘●定义:数 l 与矩阵 A 的乘积记作 l A 或 A l ,规定为幻灯片132●数乘矩阵的运算规律设 A、B是同型矩阵,l , m 是数矩阵相加与数乘矩阵合起来,统称为矩阵的线性运算.幻灯片133●知识点比较幻灯片134●一、矩阵与矩阵相乘●定义:设,,那么规定矩阵 A 与矩阵 B 的乘积是一个 m×n 矩阵,其中●并把此乘积记作 C = AB.幻灯片135●矩阵乘法的运算规律●(1) 乘法结合律●(2) 数乘和乘法的结合律(其中 l 是数)●(3) 乘法对加法的分配律●(4) 单位矩阵在矩阵乘法中的作用类似于数1,即●纯量阵不同于对角阵●推论:矩阵乘法不一定满足交换律,但是纯量阵 lE 与任何同阶方阵都是可交换的.幻灯片136●(5) 矩阵的幂若 A 是 n 阶方阵,定义●显然●思考:下列等式在什么时候成立?●A、B可交换时成立幻灯片137●四、矩阵的转置●定义:把矩阵 A 的行换成同序数的列得到的新矩阵,叫做的转置矩阵,记作AT .●例幻灯片138●转置矩阵的运算性质幻灯片139●解法2幻灯片140●定义:设 A 为 n 阶方阵,如果满足,即●那么 A 称为对称阵.●如果满足 A = -AT,那么 A 称为反对称阵.●对称阵●反对称阵幻灯片141●例:设列矩阵 X = ( x1, x2, …, xn )T 满足 X T X = 1,E 为 n 阶单位阵,H = E-2XXT,试证明 H 是对称阵,且 HHT = E.●证明:●从而 H 是对称阵.幻灯片142●五、方阵的行列式●定义:由 n 阶方阵的元素所构成的行列式,叫做方阵 A 的行列式,记作|A|或detA.●运算性质幻灯片143●定义:行列式 |A| 的各个元素的代数余子式 Aij 所构成的如下矩阵●称为矩阵 A 的伴随矩阵.●性质幻灯片144●六、共轭矩阵●当为复矩阵时,用表示的共轭复数,记,称为的共轭矩阵.●运算性质●(设A,B 为复矩阵,l 为复数,且运算都是可行的):幻灯片145§3 逆矩阵幻灯片146●矩阵与复数相仿,有加、减、乘三种运算.●矩阵的乘法是否也和复数一样有逆运算呢?●这就是本节所要讨论的问题.●这一节所讨论的矩阵,如不特别说明,所指的都是 n 阶方阵.●从乘法的角度来看,n 阶单位矩阵 E 在同阶方阵中的地位类似于 1 在复数中的地位.一个复数 a ≠ 0的倒数 a-1可以用等式 a a-1 = 1 来刻划. 类似地,我们引入幻灯片147●定义: n 阶方阵 A 称为可逆的,如果有 n 阶方阵 B,使得●这里 E 是 n 阶单位矩阵.●根据矩阵的乘法法则,只有方阵才能满足上述等式.●对于任意的 n 阶方阵 A,适合上述等式的矩阵 B 是唯一的(如果有的话).●定义:如果矩阵 B 满足上述等式,那么 B 就称为 A 的逆矩阵,●记作 A-1 .幻灯片148●下面要解决的问题是:●在什么条件下,方阵 A 是可逆的?如果 A 可逆,怎样求 A-1 ?幻灯片149●结论:,其中幻灯片150●例:求3阶方阵的逆矩阵.●解:| A | = 1,幻灯片151●方阵A可逆●此时,称矩阵A为非奇异矩阵●定理:若方阵A可逆,则.幻灯片152●推论:如果 n 阶方阵A、B可逆,那么、、●与AB也可逆,且幻灯片153●线性变换●的系数矩阵是一个n 阶方阵 A ,若记●则上述线性变换可记作 Y = AX .幻灯片154§4 矩阵分块法幻灯片155前言●由于某些条件的限制,我们经常会遇到大型文件无法上传的情况,如何解决这个问题呢?●这时我们可以借助WINRAR把文件分块,依次上传.●家具的拆卸与装配●问题一:什么是矩阵分块法?问题二:为什么提出矩阵分块法?幻灯片156问题一:什么是矩阵分块法?定义:用一些横线和竖线将矩阵分成若干个小块,这种操作称为对矩阵进行分块;每一个小块称为矩阵的子块;矩阵分块后,以子块为元素的形式上的矩阵称为分块矩阵.●这是2阶方阵吗?幻灯片157思考题伴随矩阵是分块矩阵吗?答:不是.伴随矩阵的元素是代数余子式(一个数),而不是矩阵.幻灯片158问题二:为什么提出矩阵分块法?答:对于行数和列数较高的矩阵 A,运算时采用分块法,可以使大矩阵的运算化成小矩阵的运算,体现了化整为零的思想.幻灯片159分块矩阵的加法幻灯片160●若矩阵A、B是同型矩阵,且采用相同的分块法,即●则有●形式上看成是普通矩阵的加法!幻灯片161分块矩阵的数乘幻灯片162●若l 是数,且●则有●形式上看成是普通的数乘运算!幻灯片163分块矩阵的乘法●一般地,设A为m l 矩阵,B为l n矩阵,把A、B 分块如下:幻灯片164按行分块以及按列分块m n 矩阵A 有m 行n 列,若将第i 行记作若将第j 列记作则幻灯片165于是设 A 为 m s 矩阵,B 为 s n 矩阵,若把 A 按行分块,把 B 按列块,则幻灯片166分块矩阵的转置若,则例如:●分块矩阵不仅形式上进行转置,●而且每一个子块也进行转置.幻灯片167分块对角矩阵●定义:设 A 是 n 阶矩阵,若● A 的分块矩阵只有在对角线上有非零子块,●其余子块都为零矩阵,●对角线上的子块都是方阵,●那么称 A 为分块对角矩阵.例如:幻灯片168分块对角矩阵的性质●| A | = | A1 | | A2 | … | As |●若| As | ≠0,则 | A | ≠0,并且幻灯片169第三章矩阵的初等变换与线性方程组幻灯片170知识点回顾:克拉默法则●设●结论 1 如果线性方程组(1)的系数行列式不等于零,则该线性方程组一定有解,而且解是唯一的.(P. 24定理4)●结论 1′如果线性方程组无解或有两个不同的解,则它的系数行列式必为零. (P.24定理4')●线性方程组的解受哪些因素的影响?●用克拉默法则解线性方程组的两个条件:●(1) 方程个数等于未知量个数;●(2) 系数行列式不等于零.幻灯片171§1 矩阵的初等变换●一、初等变换的概念●二、矩阵之间的等价关系●三、初等变换与矩阵乘法的关系●四、初等变换的应用幻灯片172一、矩阵的初等变换●引例:求解线性方程组幻灯片173●③÷2幻灯片174●②-③●③-2×①●④-3×①幻灯片175●②÷2●③+5×②●④-3×②幻灯片176●④-2×③幻灯片177●①●②●③●恒等式●④●取x3 为自由变量,则●令x3 = c ,则幻灯片178●三种变换:●交换方程的次序,记作;●以非零常数 k 乘某个方程,记作;●一个方程加上另一个方程的 k 倍,记作 .●结论:●由于对原线性方程组施行的变换是可逆变换,因此变换前后的方程组同解.在上述变换过程中,实际上只对方程组的系数和常数进行运算,未知数并未参与运算.●其逆变换是:幻灯片179●定义:下列三种变换称为矩阵的初等行变换:●对调两行,记作;●以非零常数 k 乘某一行的所有元素,记作;●某一行加上另一行的 k 倍,记作 .●其逆变换是:●初等行变换。