鸡兔同笼--脚差

合集下载

鸡兔同笼问题的求解方法及数学思想

鸡兔同笼问题的求解方法及数学思想

鸡兔同笼问题的求解方法及数学思想鸡兔同笼,这个问题,是我国古代著名趣题之一。

大约在1500年前,《孙子算经》中就记载了这个有趣的问题。

书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。

求笼中各有几只鸡和兔?解题思路:先假设它们全是鸡,于是根据鸡兔的总数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看看差多少,每差2只脚就说明有1只兔,将所差的脚数除以2,就可以算出共有多少只兔。

概括起来,解鸡兔同笼题的基本关系式是:兔数=(实际脚数 - 每只鸡脚数×鸡兔总数)÷(每只兔子脚数 - 每只鸡脚数)。

类似地,也可以假设全是兔子。

解:假设全是鸡:2×35=70(只 ) 比总脚数少的:94-70=24 (只) 它们腿的差:4-2=2(条)24 ÷2=12 ( 只 ) ――兔35-12=23(只) ――鸡方程:解:设兔有 x只,则鸡有35-x只。

4x+2(35-x)=94,4x+70-2x=94 2x=24 x=12 35-x=35-12=23 答:兔有12 只,鸡有23 只。

我们也可以采用列方程的办法:设兔子的数量为x,鸡的数量为y 那么:x+y=35 那么4x+2y=94 这个算方程解出后得:兔子有 12 只,鸡有 23 只用假设法来解对于这个问题,我们给出如下几种求解方法,并给出相应的公式;解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数,总只数-鸡的只数 =兔的只数解法2:(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数,总只数-兔的只数 =鸡的只数解法3:总脚数÷2- 总头数 =兔的只数,总只数 - 兔的只数 =鸡的只数解法4:兔的只数=总脚数÷ 2―总头数,总只数 - 兔的只数 =鸡的只数解法5(方程):x=(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)(x=兔的只数),总只数 -兔的只数 =鸡的只数解法6(方程):x=:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)(x=鸡的只数),总只数-鸡的只数 =兔的只数解法7 鸡的只数=(4×鸡兔总只数 - 鸡兔总脚数)÷2,兔的只数=鸡兔总只数 - 鸡的只数解法8 兔总只数=(鸡兔总脚数 -2 ×鸡兔总只数)÷2,鸡的只数=鸡兔总只数-兔总只数解法:9 总腿数 /2- 总头数 =兔只数,总只数 - 兔只数 =鸡的只数“鸡兔同笼”中的数学思想方法一、化归思想化归是基本而典型的数学思想。

鸡兔同笼的五种解法

鸡兔同笼的五种解法

鸡兔同笼的五种解法鸡兔同笼的五种解法题目示例:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。

问笼中各有多少只鸡和兔?1、假设法(1)假设全是鸡:2×35=70(只)鸡脚比总脚数少:94-70=24 (只)兔子比鸡多的脚数:4-2=2(只)兔子的只数:24÷2=12 (只)鸡的只数:35-12=23(只)(2)假设全是兔子:4×35=140(只)兔子脚比总数多:140-94=46(只)兔子比鸡多的脚数:4-2=2(只)鸡的只数:46÷2=23(只)兔子的只数:35-23=12(只)2、一元一次方程法:(1)解:设兔有x只,则鸡有(35-x)只。

4x+2(35-x)=94 解得x=12鸡:35-12=23(只)(2)解:设鸡有x只,则兔有(35-x)只。

2x+4(35-x)=94 解得x=23兔:35-23=12(只)所以兔子有12只,鸡有23只。

3、二元一次方程组解:设鸡有x只,兔有y只。

x+y=35 2x+4y=94解得x=23 y=12所以兔子有12只,鸡有23只。

4、抬腿法(1)假如让鸡抬起一只脚,兔子抬起2只脚,还有94÷2=47(只)脚。

笼子里的兔就比鸡的脚数多1,这时,脚与头的总数之差47-35=12,就是兔子的只数。

(2)假如鸡与兔子都抬起两只脚,还剩下94-35×2=24只脚,这时鸡是屁股坐在地上,地上只有兔子的脚,而且每只兔子有两只脚在地上,所以有24÷2=12只兔子,就有35-12=23只鸡。

(3)我们可以先让兔子都抬起2只脚,那么就有35×2=70只脚,脚数和原来差94-70=24只脚,这些都是每只兔子抬起2只脚,一共抬起24只脚,用24÷2得到兔子有12只,用35-12得到鸡有23只。

5、公式法公式1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数总只数-鸡的只数=兔的只数公式2:(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数总只数-兔的只数=鸡的只数。

鸡兔同笼问题题型解析

鸡兔同笼问题题型解析

鸡兔同笼问题题型解析题型一:鸡兔同笼,头共46,足共128,鸡兔各几只?分析如果46只都是兔,一共应有4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚. 那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。

解:①鸡有多少只?(4×6-128)÷(4-2)=(184-128)÷2=56÷2=28(只)②免有多少只?46-28=18(只)答:鸡有28只,免有18只。

我们来总结一下这道题的解题思路:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是:鸡数=(每只兔脚数×兔总数-实际脚数)÷(每只兔子脚数每只鸡的脚数 ) 兔数=鸡兔总数-鸡数当然,也可以先假设全是鸡。

题型二:鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?分析这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢?假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80 (只)。

数学运算之鸡兔同笼问题专题

数学运算之鸡兔同笼问题专题

第五节鸡兔同笼(列方程求解)1. 《孙子算经》解法:设头数为a,足数是b。

则b/2-a是兔数,a-(b/2-a)是鸡数。

2. 《丁巨算法》解法:鸡数=(4*头总数-总足数)/2,兔数=总数-鸡数兔数=(总足数-2*头总数)/2鸡数=总数-兔数鸡兔同笼的变式,这种题目的思想是假设,假设全是鸡,算出脚数,与题目中给出的脚数比较,看差多少,每差一个(4-2)只就说明有一只兔子,将所差脚数除以(4-2),就可以求出兔子数,同理假设全是兔,可以求出鸡数。

例:红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元.问红、蓝铅笔各买几支?解:以“分”作为钱的单位.我们设想,一种“鸡”有11只脚,一种“兔子”有19只脚,它们共有16个头,280只脚.现在已经把买铅笔问题,转化成“鸡兔同笼”问题了.利用上面算兔数公式,就有:蓝笔数=(19×16-280)÷(19-11)=24÷8=3(支).红笔数=16-3=13(支).答:买了13支红铅笔和3支蓝铅笔.对于这类问题的计算,经常可以利用已知脚数的非凡性.例2中的“脚数”19与11之和是30.我们也可以设想16只中,8只是“兔子”,8只是“鸡”,根据这一设想,脚数是8×(11 19)=240.比280少40.40÷(19-11)=5。

就知道设想中的8只“鸡”应少5只,也就是“鸡”(蓝铅笔)数是3. 30×8比19×16或11×16要轻易计算些.利用已知数的非凡性,靠心算来完成计算.实际上,可以任意设想一个方便的兔数或鸡数。

例如,设想16只中,“兔数”为10,“鸡数”为6,就有脚数19×10 11×6=256,比280少24。

24÷(19-11)=3,就知道设想6只“鸡”,要少3只。

要使设想的数,能给计算带来方便,经常取决于你的心算本领。

鸡兔同笼问题专题训练

鸡兔同笼问题专题训练

鸡兔同笼问题专题训练一、知识要点和基本方法1.鸡兔同笼的基本问题是:已知鸡、兔总头数和总脚数,求鸡、兔各有多少只.(1)解决鸡兔同笼问题的方法通常是用假设法,解题思路是:先假设笼子里装的全是鸡,根据鸡兔的总数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看看差多少,每差2只脚就说明有1只兔,将所差的脚数除以2,就可以算出共有多少只兔.(2)解决鸡兔同笼问题的基本关系式是:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数).兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数).注意,这两个基本关系式不必都用,用其中一个算出兔数或鸡数,又知总数,所以另一个也就知道了.2.鸡兔同笼问题的变型有两类:(1)将鸡、兔的总头数和总脚数中的“两数之和”变成“两数之差”,这样得到三种情况:已知鸡、兔头数之差和总脚数,求鸡兔各有多少只;已知鸡、兔脚数之差和总头数,求鸡兔各有多少只;已知鸡、兔头数之差和脚数之差,求鸡兔各有多少只.(2)将基本问题中同笼的是鸡、兔两种不同东西,还可以引伸到同笼中不同东西是三种,四种等等.注意:鸡兔同笼问题的两种变型均可转化成基本问题来解决.二、例题精讲例1、在同一个笼子中,有若干只鸡和兔,从笼子上看有40个头,从笼子下数有130只脚,那么这个笼子中装有兔、鸡各多少只?例2、蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀,现在这三种小虫共21只,有140条腿和24对翅膀,求每种小虫各几只?例3、鸡与兔共40只,鸡的脚数比兔的脚数少70,问鸡与兔各多少只?例4、在一个停车场上,停放的车辆(汽车和三轮摩托车)数恰好是24.其中每辆汽车有四个轮子,每辆摩托车有三个轮子.这些车共有86个轮子.那么,三轮摩托车有多少辆?三、专题特训1.有一首民谣:“一队猎手一队狗,二队并着一起走,数头一共三百六,数腿一共八百九。

”问民谣中有多少个猎手和多少条狗?2.用1元钱买4分、8分、1角的邮票共15张,问最多可以买1角的邮票多少张?3.春风小学3名同学去参加数学竞赛,共10道题,答对一道题得10分,答错一道倒扣3分,不做得0分,这3名同学都做了所有题.小明得了87分,小红得了74分,小华得了9分.问他们三人一共答对了多少题?4.某班同学外出春游,买车票99张,共花280元,其中单程每张2元,往返每张4元,问单程票与往返票相差几张?5.某商场为招揽顾客举办购物抽奖,奖金有三种:一等奖1000元,二等奖250元,三等奖50元,共有100人中奖,奖金总额为9500元.问其中二等奖有多少名?6.有一堆硬币,面值为1分、2分、5分三种,其中1分硬币个数是2分硬币个数的11倍,已知这堆硬币面值总和是1元,问5分的硬币有多少个?7.箱子里有红、白两种颜色的玻璃球.红球数是白球数的3倍多2个.每次从箱子里取出7只白球,15只红球.若经过若干次取球以后,箱子里剩下3只白球,53只红球.那么箱子里原有红球多少只?8.甲、乙二人射击,若命中,甲得4分,乙得5分,若不中甲失2分,乙失3分,每人各射10发,共命中14发,结算分数时,甲比乙多10分,问甲、乙各中几发?9.姣姣和甜甜两位同学进行数学比赛,商定算对一题给20分,错一题扣12分.姣姣和甜甜各算了10道题,两人共得208分,姣姣比甜甜多得64分,问姣姣和甜甜各算对了多少道题?10.某种考试已举行了24次,共出了426题,每次出的题数有25道,或者16道,或者20道,那么,其中考25题的有多少次?。

鸡兔同笼应用题

鸡兔同笼应用题

【含义】这是古典的算术问题。

已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。

已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。

【数量关系】第一鸡兔同笼问题:假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)第二鸡兔同笼问题:假设全都是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)假设全都是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)【解题思路和方法】解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。

如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。

这类问题也叫置换问题。

通过先假设,再置换,使问题得到解决。

例1长毛兔子芦花鸡,鸡兔圈在一笼里。

数数头有三十五,脚数共有九十四。

请你仔细算一算,多少兔子多少鸡?解假设35只全为兔,则鸡数=(4×35-94)÷(4-2)=23(只)兔数=35-23=12(只)也可以先假设35只全为鸡,则兔数=(94-2×35)÷(4-2)=12(只)鸡数=35-12=23(只)答:有鸡23只,有兔12只。

例22亩菠菜要施肥1千克,5亩白菜要施肥3千克,两种菜共16亩,施肥9千克,求白菜有多少亩?解此题实际上是改头换面的“鸡兔同笼”问题。

“每亩菠菜施肥(1÷2)千克”与“每只鸡有两个脚”相对应,“每亩白菜施肥(3÷5)千克”与“每只兔有4只脚”相对应,“16亩”与“鸡兔总数”相对应,“9千克”与“鸡兔总脚数”相对应。

假设16亩全都是菠菜,则有白菜亩数=(9-1÷2×16)÷(3÷5-1÷2)=10(亩)答:白菜地有10亩。

鸡兔同笼问题五种基本公式和例题讲解

鸡兔同笼问题五种基本公式和例题讲解

鸡兔同笼问题五种基本公式和例题讲解【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(例题略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时(例题略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时(例题略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元……。

它的解法显然可套用上述公式。

)(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。

1、“灯泡厂生产灯泡的工人,按得分的多少给工资。

每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。

某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”2、有两次自然测验,第一次24道题,答对1题得5分,答错(包含不答)1题倒扣1分;第二次15道题,答对1题8分,答错或不答1题倒扣2分,小明两次测验共答对30道题,但第一次测验得分比第二次测验得分多10分,问小明两次测验各得多少分?3、有一辆货车运输2000只玻璃瓶,运费按到达时完好的瓶子数目计算,每只2角,如有破损,破损瓶子不给运费,还要每只赔偿1元.结果得到运费379.6元,问这次搬运中玻璃瓶破损了几只?4、有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。

鸡兔同笼.doc(奥数)

鸡兔同笼.doc(奥数)

鸡兔同笼解决方案:用假设法平衡两组数据,得出这两组数据的结果。

解题要点:鸡兔同笼,已知总的脚数和头数;(1)假定全是鸡或者全是兔,算出假定情况下的脚数的差数。

(2)①(实际的脚数—每只鸡的脚数)÷每一只鸡兔脚数差=兔的只数②(每只兔的脚数×鸡兔总数—实际的脚数)÷每一只鸡兔脚数之差=鸡的只数典型例题:1.鸡和兔同关在一个笼子里,它们有头12只,有脚32只.笼中鸡、兔个有多少只?分析:如果将这12只动物全看成鸡,那么共有_____只脚,比实际的_____了_____只脚.那么兔的个数有______只.列式:练一练:⑴李奶奶家养鸡和兔共55只,共有腿160条,问李奶奶家养鸡、兔各多少只?⑵赵老师到商店买了日记本和笔记本共9本,用去了23元。

日记本每本3元,笔记本每本2元。

他买了日记本和笔记本各多少本?⑶五年级(三)班和(十一)班共100个同学,现在要分160个铜锣烧,男生1人分3个铜锣烧,女生一人分1个铜锣烧。

那么男、女生各有多少人?⑷少年文化宫有象棋、跳棋共有26副,恰好可供120个学生同时进行活动。

象棋2人下一副,跳棋6人下一幅。

象棋和跳棋各有多少副?⑸大学进行军训活动,晴天每天行军17.5千米,雨天每天行军11千米,13天共行201.5千米。

这期间有多少天是雨天?⑹电影院全天售出甲、乙两种票540张,收入9600元。

甲种票价每张20元,乙种票每张15元。

电影院售出甲、乙两种票各多少张?2.鸡兔同笼,共有脚180只,兔比鸡少15只,那么兔有多少只?分析:①由于兔比鸡少15只,可以算得15只鸡有______只脚;②除去这15只鸡的脚后还剩下_____只脚,而这时的鸡和兔数量相同;③由于一只鸡比一只兔多______只脚,若假设全是鸡,那么有______只鸡,是鸡总数的三倍;④再加上_____只鸡,就得到鸡的数量了,而兔子的数量也可以算得了。

列式:练一练:⑴一堆货物用中型卡车装,要用36辆,如果只用大卡车装载,只需要27辆,已知大卡车比中型卡车每辆多装2吨,这堆货物由多少吨?⑵小明买了一些4角一张和8角一张的卡片,共花了34元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《鸡兔同笼--脚差》教学设计
【教学目标】
1、知识与技能
初步认识鸡兔同笼的数学趣题,了解有关的数学史。能用画图法解决相关的实际
问题,结合图解法理解假设的方法解决鸡兔同笼问题。

2、过程与方法
通过画图分析、列表举例、假设计算等方法理解数量关系,体会数形结合的方便
性,体验解决问题方法的多样化,提高解决实际问题的能力。

3、情感、态度与价值观
培养学生的合作意识,在现实情景中,在交流的过程中,使学生感受到数学思想
方法的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,受到多
种数学思想方法的熏陶,进而让学生体会数学的价值。

【教学重点】用画图法解决相关的实际问题。
【教学难点】体会解决问题策略的多样化,培养学生分析问题、解决问题的能力。
【教学准备】课件。
【教学流程】
〔一〕问题引入,揭示课题。
师:有鸡和兔子8只,兔子比鸡多14只脚,鸡和兔子各有多少只〞
〔板书课题:鸡兔同笼--脚差的问题〕
〔二〕主动探究、合作交流、学习新知。
师:说明为了研究方便,我们先将题目的条件做一个简化。
〔课件出示〕例1:有鸡和兔子8只,兔子比鸡多14只脚,鸡、兔各有几只?
师:同学们先讨论一下,看能不能给大家提供一种或几种解这道题的思路,让其
它的同学能很容易就理解、弄懂这道题。〔学生讨论〕

师:请同学们先认真思考,以小组为展开讨论、交流,看看你们小组该选择什么
方法来解决这个问题?再把你们的想法,你的思考过程用你自己的方式记录下
来。

学生思考、分析、探索,接下来小组讨论、交流。
小组活动充分后进入小组汇报、集体交流阶段。
师:谁能说一说你们小组探究的过程,你们是怎样得出结论的?鸡兔各有几只?
学生汇报探究的方法和结论:
假设法:〔随学生能否出现此种情况作为机动出示〕
兔,那么一共只有32条腿。减去兔子比鸡多的脚,观察可以发现剩余的鸡和兔
的只数相同。
板书:
方法一:假设8只都是鸡,那么兔有:
〔8×4-14〕÷〔4+2〕=3〔只〕
鸡有8-3=5〔只〕
小结方法:刚刚我们用假设法解决了鸡兔同笼--脚差的问题,现在练一练
〔三〕再次探究,寻找方法。
1、笼子里有假设干只鸡和兔。从上面数,有12个头,兔比鸡多16条腿。鸡和
兔各有几只?

2、有100枚1角和2角的硬币,2角的硬币比1角的硬币多16.4元,1角和2
角的硬币各有多少枚?

〔四〕课堂小结:
通过今天的学习,你有哪些收获?
师总结:这节课,我们一起用画图法、假设法解决了我国古代著名的“鸡兔同笼〞
脚差问题。

鸡的只数=〔头×4-多的脚〕÷〔鸡脚+兔脚〕
其实在1500年以来,我们中国历代的数学家都在不断的研究和探索这个问题,
也得出了许多的解决“鸡兔同笼〞问题的方法,而且从中得到了很多的数学思想。
希望同学们在今后的学习中,善于思考,善于发现,善于总结方法。

相关文档
最新文档