电力系统次同步谐振分析
次同步振荡数据分析方法及应用

次同步振荡数据分析方法及应用在电力系统中,有很多情况会发生次同步振荡,我们如何对其进行有效分析是研究次同步振荡问题的关键。
1.理论基础:对于次同步振荡的问题,我们在研究这个问题的时候应该首先了解次同步振荡的常见基本类型和分析方法。
1.1常见的基本类型:第 1 类形态源于旋转电机的轴系扭振,中旋转电机包括大型汽轮机组、水轮机组、1-3 型风电机组和大型电动机;系统中的串联电容、高速控制装备/器(包括SVC、LCC-HVDC、VSC-HVDC、PSS/电液调速)以及进行投切操作的开关等对机械扭振做出反应,能导致机组在对应扭振模式上的阻尼转矩减弱乃至变负,成振荡的持续乃至放大。
第2 类形态源于电网中电感(L)-电容(C)构成的电气振荡,交流串补电网、各种滤波电路以及并联补偿都存在构成L-C 振荡的电路元件,从电网来看,于网络元件具正电阻特性,会导致该L-C振荡的持续或发散,旋转电机(包括同步/异步发电/电动机)或者电力电子变流器在特定工况下可能对该振荡模式呈现“感应发电机/负电阻”效应,负电阻超过电网总正电阻时,可能导致L-C 振荡发散;当然,机或变流器也会改变等值电感/电容参数,而在一定程度上改变振荡频率。
第 3 类形态则源于电力电子变流器之间或其与交流电网相互作用产生的机网耦合振荡,第1、2类形态不同,这一形态往往难以从机组或电网侧找到初始的固有振荡模态,果基于阻抗模型来解释,也可以看作是多变流器与电网构成的“虚拟阻抗”在特定频率上出现串联型(阻抗虚部、实部或并联型(阻抗无穷大)谐振的现象。
1.2次同步振荡分析的基本分析方法:1.2.1筛选法包括机组作用系数分析法;阻抗扫描分析法,主要用于定性分析与筛选,从众多发电机中筛选出存在次同步振荡风险的机组及运行工况,其计算方法简单,速度快,所需要的基础数据较少,不需要发电机组轴系等详细参数,但是分析结果误差较大。
1)机组作用系数分析法:2i i 1⎪⎪⎭⎫ ⎝⎛-=TOT HVDCi SC SC S S UIF其中i UIF 为第i 台发电机与直流输电之间的作用系数;HVDC S 为直流输电系统的额定容量(MW );i S 为第i 台发电机组的额定容量(MVA );i SC 为直流输电整流站交流母线上的三相短路容量,计算该短路容量时不包括第i 台发电机组的贡献,同时不包括交流滤波器的作用;TOT SC 为直流输电整流站交流母线上包括第i 台发电机组贡献的三相短路容量,计算该短路容量时不包括交流滤波器的作用。
第13章 电力系统的次同步振荡及轴系扭振

M
1
2,定义P
=AKA,则对实际系数P非负定,可设
其特征根对角阵
A ωn2
diag
(
2 n1
,
2 n2
,,
n2N,) 并设P
的特征向量阵为U,从而PU=UA,又由于 PT P对称,
故U可取为正交阵,即 U 1 。U T
若定义线性变换阵Q=AUS,及线性变换
δ Qδ(m)
(9)
右上角标“m”表示解耦模式,S为对角阵,其对角元 的取值使发电机质块 (设为第k质块) 对应的Q阵行元素 (即第k行元素)均等于1。
为 n 的扭转振荡。
若将式 (1)改写为
(用12 作变量)
1 2
K12 M1
12
K12 M2
12
(4)
式中, 12 1 2 为转子两
质块间相对运动角位移增量。则 由式(4)可得
12
K12
1 M1
1 M2
12
def
K M
12
(5)
用12 作变量,系统降为二阶,
则式(5)的特征根为
地区电网经济运行与自动化研究室
2
1 引言
1930s,发现电容会引起发电机自激。当时认为是纯电 气谐振问题,称之为“异步发电机效应”。
1970s,美国Mohave电站发电机大轴2次被扭振破坏。 揭示“机电扭振互作用”现象。
后来发现故障发生时,会出现“暂态力矩放大”现象。
1977年以前,统称为:次同步谐振(SSR)。共同点
N
1, N
K N 1,N N
(8a)
(Mp 2 Dp K )δ Tm Te T
M,D为对角阵,K为三对角阵,K T K 。
电力系统谐振原因及处理措施分析

一、概述铁磁谐振是由铁心电感元件,如发电机、变压器、电压互感器、电抗器、消弧线圈等和和系统的电容元件,如输电线路、电容补偿器等形成共谐条件,激发持续的铁磁谐振,使系统产生谐振过电压。
电力系统的铁磁谐振可分二大类:一类是在66kV及以下中性点绝缘的电网中,由于对地容抗与电磁式电压互感器励磁感抗的不利组合,在系统电压大扰动(如遭雷击、单相接地故障消失过程以及开关操作等)作用下而激发产生的铁磁谐振现象;另一类是发生在220kV(或110kV)变电站空载母线上,当用220kV、110kV带断口均压电容的主开关或母联开关对带电磁式电压互感器的空母线充电过程中,或切除(含保护整组传动联跳)带有电磁式电压互感器的空母线时,操作暂态过程使连接在空母线上的电磁式电压互感器组中的一相、两相或三相激发产生的铁磁谐振现象,即串联谐振,简单地讲就是由高压断路器电容与母线电压互感器的电感耦合产生谐振由于谐振波仅局限于变电站空载母线范围内,也称其为变电站空母线谐振。
二、铁磁谐振的现象1、铁磁谐振的形式及象征1)基波谐振:一相对地电压降低,另两相对地电压升高超过线电压;或两相电压降低、一相电压升高超过线电压、有接地信号发出2)分次谐波:三相对地电压同时升高、低频变动3)高次谐波:三相对地电压同时升高超过线电压2、串联谐振的现象:线电压升高、表计摆动,电压互感器开口三角形电压超过100V三、铁磁谐振产生的原因及其分析:1、铁磁谐振产生的原因:1)、有线路接地、断线、断路器非同期合闸等引起的系统冲击2)、切、合空母线或系统扰动激发谐振3)、系统在某种特殊运行方式下,参数匹配,达到了谐振条件2、串联谐振产生的原因:进行刀闸操作时,断路器隔离开关与母线相连,引发断路器端口电容与母线上互感器耦合满足谐振条件3、电力系统铁磁谐振产生的原因分析电力系统是一个复杂的电力网络,在这个复杂的电力网络中,存在着很多电感及电容元件,尤其在不接地系统中,常常出现铁磁谐振现象,给设备的安全运行带来隐患,下面先从简单的铁磁谐振电路中对铁磁谐振原因进行分析。
电力系统次同步振荡问题研究综述

电力系统次同步振荡问题研究综述摘要:随着我国互联电网规模的快速发展,尤其是(可控)串联补偿装置和高压直流输电的广泛应用,电力系统的次同步振荡问题已经变得比较突出。
本文介绍了电力系统次同步振荡问题的起因与危害,以及引起的次同步振荡现象的主要内容,指出了需要进一步关注和研究的问题。
关键词:电力系统;次同步振荡1 次同步振荡问题的起因与危害电力系统常见的失稳模式有振荡失稳和单调失稳等。
次同步振荡属于系统的振荡失稳,它是由电力系统中一种特殊的机电耦合作用引起的,其最大的危害是,严重的机电耦合作用可能直接导致大型汽轮发电机组转子轴系的严重破坏,造成重大事故,危及电力系统的安全运行。
早在20世纪30年代,人们就发现发电机在容性负载或经串联补偿电容补偿的线路接入系统时,在一定的条件下可能会发生“自励磁(Self Excitation)”现象。
此外,投切空载长输电线路时,由于线路分布电容的存在,在某些运行情况下也可能会引起“自励磁”的问题。
一般来说,“自激”可分为两种:同步“自激”和异步“自激”。
由于不当的参数配合或系统进入不当的运行方式,使电力系统中的上述“自激”条件得到满足,且这时发电机组仍运行在同步运行状态,在这种情况下发生的“自激”是“同步自激”。
当发生异步自励磁时,同步发电机定子电流中的次同步频率(即定子回路电感和电容的谐振频率)分量,是靠同步发电机对此分量发出的异步功率来维持的,是一种单纯的电气谐振振荡。
在此谐振频率下,同步发电机相当于一台异步发电机,它提供了振荡时所需要的能量。
这种自激方式通常又称为“异步发电机效应”或“感应发电机效应(Induction Generator Effect)”。
尽管感应发电机效应在实际电力运行中早已被人们发现,并观察到了所伴随的次同步频率自激振荡现象,但由于早期发现的这种振荡造成的危害不大,而且问题很快得到了解决,所以这个问题并没有得到人们的特别广泛关注。
次同步震荡产生原因分析:交流输电产生次同步震荡的原因分析,输电系统为了提高输电能力和增加瞬态稳定性,有时在电网中串联补偿电容,使整个电网形成R-L-C 回路,此回路将发生次同步谐振。
某地区电网全电磁暂态仿真分析及次同步谐振风险分析

某地区电网全电磁暂态仿真分析及次同步谐振风险分析亢朋朋,宋朋飞,樊国伟(国网新疆电力有限公司,新疆乌鲁木齐830000)前言为解决和田地区电网冬季电采暖负荷增长的需求,提升莎车-和田750千伏和叶城-皮山220千伏断面下网输电能力,计划在220千伏皮山变、洛浦变、于田变的35千伏侧各配置一套SVG,容量为±52Mvar。
鉴于和田电网光伏并网比例高,需对配置SVG后振荡风险开展分析。
本研究采用时域仿真法,是通过电磁暂态仿真程序PSCAD[1-3],建立包括光伏站、光伏站SVG、系统网络、发电机和新投运SVG在内的仿真系统。
通过时域求解的方法模拟系统故障或扰动过程,观察系统状态量[4-5],判断是否存在次同步谐振问题,研究电网次同步振荡风险。
1和田地区全电磁暂态建模1.1交流电网电磁暂态建模为更精确地建立和田电网全电磁模型,校核了所收资的线路参数和主变参数。
根据校核后参数,在PSCAD软件中建立了和田地区电网全电磁交流网络(图1)。
1.2开关器件换流器和平均值换流器的一致性研究因和田地区光伏站数量多,若换流器采用开关元件建模仿真效率太低,本研究采用基于等效受控电压源和电流源的平均值建模。
为验证基于等效受控源的平均值建模换流器同开关器件在电磁暂态仿真中的一致性,首先建立了基于开关器件换流器的光伏并网单元,然后建立了同开关换流器参数一致的平均值换流器,最后对比了两者在控制器指令跃变和交流故障时的响应情况。
图2为基于开关器件的光伏并网单元,图3为基于等效受控源的平均值的光伏并网单元,两者控制部分一致。
基于开关器件换流器和平均值换流器的光伏并网单元参数如下,逆变器额定容量0.5MW;逆变器直流侧额定电压0.617kV;逆变器交流侧额定电压0.315kV;直流电容7560μf;交流侧滤波器LCL型滤波器,L1=100μh,C(角型)=200μf,L2=20μh;并网变压器额定电压/容量/阻抗,38.5kV±2*2.5/0.315/0.315,1MVA,6.43%;控制器基准容量0.5MVA,基准电压0.315kV及38.5kV。
电力系统次同步振荡及其抑制方法

电力系统次同步振荡及其抑制方法
电力系统次同步振荡是一种频率接近电网同步频率的振荡,可能会对电力系统造成损害。
其主要原因是由于输电线路的传输延迟和惯性导致的功率传输不对称性。
针对该问题,目前较为常用的抑制方法有以下几种:
1. 安装可控补偿装置:通过补偿装置改善系统传输特性,减小传输延迟,降低频率扰动。
2. 加装动态阻尼器:显著提高电力系统的阻尼比,降低了系统的振荡级别。
3. 控制系统参数辨识:通过对系统参数进行精确的辨识以及优化线路配置,降低系统的振荡频率,提高系统的稳定性。
4. 强化稳态控制:通过实时监测系统状态,提高系统对突发负荷变化的响应能力,以及对传输系统的控制能力。
综上,通过以上几种措施的综合应用,可以有效抑制电力系统次同步振荡,确保电力系统的安全稳定运行。
次同步谐振含义
次同步谐振含义
次同步谐振(SubSynchrous Resonance SSR )物理概念比较复杂。
当高压远距离输电采用串联电容补偿时,电容量C 与线路的电感量L 组成一个固有谐振频率
LC f s π21
=
此频率 一般低于50Hz 。
发电机定子也出现频率为f-f s 的三相自激电流,在气隙中产生频率为f s 的旋转磁场。
此旋转磁场的转速,低于主磁场的同步转速。
气隙中两个磁场同时存在对轴系产生一个交变扭矩,其频率为
f t =f-f s
式中 f t ——交变扭矩的频率;
f ——电网频率;
f s ——串联电容补偿固有频率。
如果轴系的自然扭振频率f v 正好等于交变扭矩频率 f t ,即
f v =f t =f-f s 或 f v +f s =f
此时,发电机组轴系的自然扭振频率f v 与串联补偿产生的电磁谐振频率f s 相加恰好等于电网频率f 0 ,相互“激励”,形成“机一电谐振”。
因为f s 低于电网频率,所以叫“次同步谐振”。
SSR-DS ——次同步谐振动态稳定器。
电力系统谐振原因及处理措施分析
一、概述铁磁谐振就是由铁心电感元件,如发电机、变压器、电压互感器、电抗器、消弧线圈等与与系统的电容元件,如输电线路、电容补偿器等形成共谐条件,激发持续的铁磁谐振,使系统产生谐振过电压。
电力系统的铁磁谐振可分二大类:一类就是在66kV及以下中性点绝缘的电网中,由于对地容抗与电磁式电压互感器励磁感抗的不利组合,在系统电压大扰动(如遭雷击、单相接地故障消失过程以及开关操作等)作用下而激发产生的铁磁谐振现象;另一类就是发生在220kV(或110kV)变电站空载母线上,当用220kV、110kV带断口均压电容的主开关或母联开关对带电磁式电压互感器的空母线充电过程中,或切除(含保护整组传动联跳)带有电磁式电压互感器的空母线时,操作暂态过程使连接在空母线上的电磁式电压互感器组中的一相、两相或三相激发产生的铁磁谐振现象,即串联谐振,简单地讲就就是由高压断路器电容与母线电压互感器的电感耦合产生谐振由于谐振波仅局限于变电站空载母线范围内,也称其为变电站空母线谐振。
二、铁磁谐振的现象1、铁磁谐振的形式及象征1)基波谐振:一相对地电压降低,另两相对地电压升高超过线电压;或两相电压降低、一相电压升高超过线电压、有接地信号发出2)分次谐波:三相对地电压同时升高、低频变动3)高次谐波:三相对地电压同时升高超过线电压2、串联谐振的现象:线电压升高、表计摆动,电压互感器开口三角形电压超过100V三、铁磁谐振产生的原因及其分析:1、铁磁谐振产生的原因:1)、有线路接地、断线、断路器非同期合闸等引起的系统冲击2)、切、合空母线或系统扰动激发谐振3)、系统在某种特殊运行方式下,参数匹配,达到了谐振条件2、串联谐振产生的原因:进行刀闸操作时,断路器隔离开关与母线相连,引发断路器端口电容与母线上互感器耦合满足谐振条件3、电力系统铁磁谐振产生的原因分析电力系统就是一个复杂的电力网络,在这个复杂的电力网络中,存在着很多电感及电容元件,尤其在不接地系统中,常常出现铁磁谐振现象,给设备的安全运行带来隐患,下面先从简单的铁磁谐振电路中对铁磁谐振原因进行分析。
大规模双馈风电场次同步谐振的分析与抑制
大规模双馈风电场次同步谐振的分析与抑制摘要:在中国,风电场规模正在逐年扩大,中国地域辽阔,且人口分布不均匀,导致电力负荷中心(中东部及沿海城市)与风力能源中心(华北和西北)呈现逆向分布,电能无法大规模存储,需要及时地将发电机产生的电能传输给用户,一般采用大容量远距离输电来满足功率传送的需求。
但是由于输电线路过长,不可避免地会出现线路的电感效应。
为了减小线路电感的影响,一般在线路上装设串联电容来改善电气参数,提高线路的稳定性及输送容量,这样不但可以减小线路等效电抗和两端电压的相位差,而且能调节并行线之间的功率分配,增强系统的稳定性,有效地解决线路电感效应的问题。
关键词:大规模双馈风;电场次同步谐振;分析;抑制1风电场的SSR分析模型1.1大规模风电场的近似等值虽然风力发电机参数和馈线长度等都会对SSR的稳定临界点产生影响,但利用单一大容量风力发电机等值整个风电场的分析精度仍可以接受。
采用以上建模方法分析SSR时,难以分析并网风力发电机台数对SSR的影响,因此,本文用连接于同一母线的多台型号和运行状态相同的小容量发电机代替整个风电场的所有发电机。
在并网发电机台数确定时,本文中的多台小容量发电机并联模型与单一大容量发电机模型是完全等价的。
华北某风电场的输电系统示意图如图1所示。
众多风电场经辐射状的220kV输电线路接至升压站,然后经两条含固定串补的500kV线路接入华北电网。
该系统的等值模型如图2所示。
等值模型中所有的风力发电机均为1.5MW的DFIG。
图1华北某风电场的输电系统示意图图2风电场SSR分析的等值模型建立该模型的关键是计算模型中输电线路的等值参数。
对于220kV线路电抗而言,可以利用所有风电场为升压站提供的短路电流来计算。
500kV线路电抗为无串补时从升压站向华北电网看去的等效电抗;在上述电抗的基础上减去线路中含有串补时从升压站向华北电网看去的等效电抗就可以得到等值模型中串补电容的容抗。
电力系统的谐振与谐波分析
电力系统的谐振与谐波分析电力系统是现代社会中不可或缺的基础设施,它为人们的生活提供了稳定可靠的电能供应。
然而,在电力系统运行过程中,谐振与谐波问题常常会引起系统的不稳定和设备的损坏,因此对电力系统的谐振与谐波进行分析和控制是非常重要的。
谐振是指电力系统中的电容、电感和电阻等元件之间的相互作用导致的电压或电流的周期性振荡现象。
谐振可能会导致电力系统的频率偏离标准值,甚至引起系统的不稳定和设备的损坏。
为了分析和控制谐振问题,我们需要了解电力系统中的谐振机理和谐振的影响因素。
谐振机理主要涉及电力系统中的电容、电感和电阻等元件之间的相互作用。
当电容和电感元件之间的谐振频率等于系统的固有频率时,谐振现象就会发生。
这种谐振现象可能会导致电压或电流的不稳定振荡,进而引起设备的损坏。
因此,我们需要对电力系统中的谐振频率进行分析和控制,以确保系统的稳定运行。
谐振的影响因素主要包括电力系统中的元件参数、系统拓扑结构和外部扰动等。
元件参数的变化会直接影响谐振频率的大小和位置,因此我们需要对电力系统中的元件参数进行准确的测量和控制。
此外,电力系统的拓扑结构也会对谐振频率产生影响,因为不同的拓扑结构会导致不同的电容和电感的连接方式。
最后,外部扰动如电力负荷的突变和电源的波动等也会引起谐振现象,因此我们需要对外部扰动进行合理的分析和控制。
除了谐振问题外,谐波问题也是电力系统中需要关注的重要问题。
谐波是指电力系统中频率为整数倍于基波频率的非线性电压或电流成分。
谐波问题可能会导致电力系统中的电压和电流失真,进而引起设备的损坏和电能的浪费。
因此,对电力系统中的谐波进行分析和控制也是非常重要的。
谐波的分析和控制需要了解电力系统中的非线性元件和谐波滤波器等技术。
非线性元件如电力电子器件和非线性负载等会引起谐波的产生,因此我们需要对非线性元件进行合理的设计和控制。
此外,谐波滤波器可以用来抑制电力系统中的谐波,它通过选择合适的频率响应特性来实现谐波的消除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相应的角速度增量为: Am cosmt
二.次同步谐振的基本概念
在忽略定子回路电磁暂态过程和定子 电阻的条件下发电机定子电压方程为:
ud q
uq
d
令:
ud ud 0 ud
d d 0 d
,uq
, q
uq0 uq
q0
q
Department of Electrical Engineering
动态电力系统分析与 控制
目录
一.电力系统数学模型及参数 二.电力系统小干扰稳定性分析 三.电力系统次同步谐振分析 四.电力系统暂态稳定性分析 五.直接法在暂态稳定分析中的应用 六.电力系统电压稳定性分析 七.线性最优控制系统 八.非线性控制系统
二.次同步谐振的基本概念
以上就是具有串联补偿的电力系统发生次 同步谐振的机理.
对于超同步频率 1m 的电压分量也会在定 子中产生相应的超同步频率电流分量.但由于 定子回路的谐振频率一般不超过同步频率,而 且超同步电流分量形成的转矩产生的是正阻 尼转矩,因此不会出现超同步谐振.
九.电力系统广域控制
第三章 电力系统次同步谐振分析
一.概述 二.次同步谐振的基本概念 三.简单电力系统的次同步谐振分析 四.多机电力系统的次同步谐振分析 五.轴系暂态扭矩计算
一.概述
大型汽轮发电机组转子轴系 具有显著的机械弹性,在一定条 件下会电气量相互作用自发产生 振荡 。
这种自发振荡属于微小扰动 下的不稳定性,因此可以用系统 的线性化微分方程进行分析。
0 1
二.次同步谐振的基本概念
由于 ud 0 q0 , uq0 d 0
所以 ud q q0
uq
d
d 0
应用派克反变换,得定子A相电压
ua ua0 ua cos ud 0 ud sin uq0 uq
其中 cos cos0 cost cost sin t sin sin0 sint sin t cost
量.
每个自然扭矩频率振荡分量称为一个模式,
qi 反映各质量块角度中该模式的相对大小.
各个 qi 中对应于某个模式的值的连线为一折线, 这些折线被称为振型.
振型能清晰地描绘各模式下轴系的扭转情况.
二.次同步谐振的基本概念
设在某一稳态状况下,机组轴系受到一微 小扰动,使发电机转子块产生绝对角位 移增量: Asin mt
所以定子A相电压增量为
ua q0 sin t d0 cost q0 cost d0 sin t q cost d sin t
二.次同步谐振的基本概念
略去与 和 不直接相关的最后一项,加上轴
系扰动的影响,得:
ua
2 q0
2 d0
A 2
1
m
sin1 m
t
二.次同步谐振的基本概念
由于K阵的奇异性, 中有一个零特征值,所以 这些频率中有一个频率为零.除此之外其他频 率就是轴系的固有振荡频率,也称自然扭矩频 率。可见,N个质量块的轴系中只有N-1个自 然扭矩频率。
二与 '
的关系式:
qi
' i
i 1
可知:每一质量
块的角偏移包含所有的自然扭矩频率振荡分
可见该电流分量在空间形成转速为 1m 的旋
转磁场.其转矩为
Te
d 0iq q0id
2 q0
2 d0
I
cosmt
2 q0
2 d0
1 m 2m
R
二.次同步谐振的基本概念
根据参考方向的规定,可知 Te 与扰动 同相 位,即对轴系中频率为 m 的振荡分量产生负阻 尼转矩,使振荡趋于增大.
因此,当定子回路的电磁振荡频率 e 与轴系的 某一自然扭矩频率m 互补时,发电机转子频率 为m 的振荡分量在定子绕组引起的次同步频率 为 1m 的电流分量将对这一振荡分量产生负 阻尼作用,形成机械与电气间的相互激励.当这 种激励超过了机械和电磁振荡的各种阻尼和 电阻上的功耗,则振荡便能持续存在.
的质量-弹簧系统,当忽略阻尼且外加转矩为 零时,其运动方程可写成如下二阶齐次微分方 程。
二.次同步谐振的基本概念
TJ1 0 0 1 K12 K12 0 0
0 1 0
0
TJ 2
0
d2 dt2
2
K12
K12 K23
K23
0
0
2
0
0
0
TJN
一.概述
次同步谐振在轴系产生的扭 矩,严重时会导致大轴出现裂纹 甚至断裂,或者造成大轴疲劳积 累,使轴系寿命降低。
因此不仅要计算和分析SSR, 还要采取监视、保护及抑制措施。
二.次同步谐振的基本概念
一.轴系的固有振荡频率和振型 轴系的固有振荡频率是无外施转矩时轴
系本身的自由振荡频率。 为一般起见,考虑轴系为N个质量块构成
一.概述
次同步谐振的振荡频率比系 统低频振荡的频率高的多,故网 络元件不能采用准稳态模型,需 计及系统的电磁暂态过程。
一.概述
另外,当系统发生不对称短路及 非同期并列等大扰动的暂态过程中, 由于机电相互作用,轴系上可能引起 很大的远远超过发电机端三相短路时 产生的扭矩,形成暂态扭矩放大现象。
计算扭矩需要用数字仿真方法, 同时计及电磁和机电暂态过程。
N
0
0
0
KN1,N
K
N
1,N
N
0
或简写成
TJ p 2 K 0
二.次同步谐振的基本概念
取非奇异矩阵Q对 进行坐标变换
Q '
有
p 2 '
Q
T 1 1 J
KQ
'
0
可以证明,总能找到Q,使下式成立
Q
T 1 1 J
KQ
diag1 ,
2
,N
代入前式,有 p 2 ' ' 0
解此方程,得 1 1 , 2 2 , , N N
定子回路中频率为 1m 的电流分量与电压分
量相位相同,其表达式为:
ia I sin1 m t ib I sin1 m t 2 3 ic I sin1 m t 2 3
其中
I
2 q0
2 d0
A 1m
2R
二.次同步谐振的基本概念
转换为d,q分量:id I sinmt iq I cosmt
A 2
1
m
sin1 m
t
其中 arctg d 0 q0
同样可得ub 和 uc 的表达式.从式中可看出:当轴 系机械运动出现频率为m 的振荡分量时,在发 电机定子将引起次同步频率 1m 和超同步频率
1 m
二.次同步谐振的基本概念
当输电线路使用串联电容补偿,而且定子
回路的电感和电容的谐振频率正好是 1m ,则