导数难题(含答案)

导数难题(含答案)
导数难题(含答案)

一、单选题

1.已知可导函数()f x 的导函数为()'f x , ()02018f =,若对任意的x R ∈,都有()()'f x f x >,则不等式()2018x

f x e <的解集为( )

A. ()0,+∞

B. 21,e ??

+∞

??? C. 21,e ?

?-∞ ???

D. (),0-∞ 2.定义在R 上的偶函数()f x 的导函数为()f x ',且当()()0,20x xf x f x +'><.则( ) A.

()()2

24

f e f e >

B. ()()931f f >

C.

()()2

39

f e f e -<

D.

()()2

24

f e f e -<

3.已知()f x 为定义在()0,+∞上的可导函数,且()()'f x xf x >恒成立,则不等式()2

10x f f x x ??

-> ???

的解集为( )

A. ()1,+∞

B. (),1-∞

C. ()2,+∞

D. (),2-∞

二、解答题

4.已知函数()()2

ln f x ax x a R =-+∈ .

(1)讨论()f x 的单调性;

(2)若存在()()1,,x f x a ∈+∞>-,求a 的取值范围.

5.设函数()()

222ln f x x ax x x x =-++-. (1)当2a =时,讨论函数()f x 的单调性;

(2)若()0,x ∈+∞时, ()0f x >恒成立,求整数a 的最小值.

6.已知函数()()()1ln ,a

f x x a x

g x a R x

+=-=-∈. 若1a =,求函数()f x 的极值;

设函数()()()h x f x g x =-,求函数()h x 的单调区间;

若在区间[]

()1, 2.71828e e =?上不存在...0x ,使得()()00f x g x <成立,求实数a 的取值范围.

7.已知函数()()ln ,f x x a x a R =-∈ . (1)当0a =时,求函数()f x 的极小值;

(2)若函数()f x 在()0,+∞上为增函数,求a 的取值范围.

8.已知函数()()

2x f x x ax a e =--. (1)讨论()f x 的单调性;

(2)若()0,2a ∈,对于任意[]

12,4,0x x ∈-,都有()()2124a f x f x e me --<+恒成立,求m 的取值范围

【解析】令()()()()()

()0,02018x

x

f x f x f x

g x g x g e e -<'=='=

因此()2018x

f x e < ()()()201800x

f x

g x g x e

?

点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x '<构造()()x

f x

g x e

=

, ()()0f x f x '+<构造

()()x g x e f x =, ()()xf x f x '<构造()()f x g x x

=

, ()()0xf x f x +<'构造()()g x xf x =等

2.D

【解析】根据题意,设g (x )=x 2f (x ),

其导数g′(x )=(x 2)′f (x )+x 2?f (x )=2xf (x )+x 2?f (x )=x[2f (x )+xf'(x )], 又由当x >0时,有2f (x )+xf'(x )<0成立,则数g′(x )=x[2f (x )+xf'(x )]<0, 则函数g (x )在(0,+∞)上为减函数,

若g (x )=x 2f (x ),且f (x )为偶函数,则g (-x )=(-x )2f (-x )=x 2f (x )=g (x ), 即g (x )为偶函数,所以()()2g e g < 即

()()2

24

f e f e <

因为()f x 为偶函数,所以()()2f 2f -=,

所以

()()2

24

f e f e -<

故选D

点睛:本题考查函数的导数与函数单调性的关系,涉及函数的奇偶性与单调性的应用,关键是构造函数g (x )并分析g (x )的单调性与奇偶性. 3.A

【解析】令()()f x g x x

=,则()()()

2

xf x f x g x x -=

''

∵()()f x xf x >'

∴()()0xf x f x -<',即()()()

2

0xf x f x g x x

'-='<在()0,+∞上恒成立

()g x ()0,+∞

∵()210x f f x x ??

->

???

∴()11f f x x x x

?? ?

??>,即()1g g x x ??> ???

1

x x

<,即1x > 故选A

点睛:本题首先需结合已知条件构造函数,然后考查利用导数判断函数的单调性,再由函数的单调性和函数值的大小关系,判断自变量的大小关系. 4.(1)()f x

在? ?

上递增,在?+∞??

上递减.;(2)1,2?

?-∞ ???. 【解析】试题分析:(1)对函数()f x 求导,再根据a 分类讨论,即可求出()f x 的单调性;(2)将()f x a >-化简得()21ln 0a x x --<,

再根据定义域()1,x ∈+∞,对a 分类讨论, 0a ≤时,满足题意, 0a >时,构造()()21ln g x a x x =--,求出()g x 的单调性,可得()g x 的最大值,即可求出a 的取值

范围.

试题解析:(1)()2

1122ax f x a x x

-='=-+,

当0a ≤时, ()0f x '>,所以()f x 在()0,+∞上递增, 当0a > 时,令()0f x '=

,得x =

, 令()0f x '>

,得x ?∈ ?;令()0f x '<

,得x ?

∈+∞??

所以()f x

在? ?

上递增,在?+∞??

上递减. (2)由()f x a >-,得()

21ln 0a x x --<,因为()1,x ∈+∞,所以2ln 0,10x x --, 当0a ≤时, ()

21ln 0a x x --<满足题意,

当12

a ≥时,设()()

()22

211ln (1),0ax g x a x x x g x x -'=-->=

>, 所以()g x 在()1,+∞上递增,所以()()10g x g >=,不合题意,

当10

2a <<

时,令()0g x '>,得x ?∈+∞??,令()0g x '<,得?

?

, 所以()()

max 10g x g g =<=,则()()1,0x g x ?∈+∞<, 综上, a 的取值范围是1,

2??-∞ ??

?

. 点睛:本题考查函数的单调性及恒成立问题,涉及函数不等式的证明,综合性强,难度大,属于难题.处理导数大题时,注意分层得分的原则.一般涉及求函数单调性时,比较容易入手,求导后注意分类讨论,对于恒成立问题一般要分离参数,然后利用函数导数求函数的最大值或最小值,对于含有不等式的函数问题,一般要构造函数,利用函数的单调性来解决,但涉及技巧比较多,需要多加体会. 5.(1) f (x )递增区间为(0,

12),(1,+∞),递减区间为(12

,1);(2)1. 【解析】试题分析:(1)求出函数f (x )的导数,解关于导函数的不等式,求出函数的单调区间即可; (2)问题转化为a>x-2(x-1)lnx 恒成立,令g (x )=x-2(x-1)lnx ,根据函数的单调性求出a 的最小值即可.

试题解析:

(1)由题意可得f (x )的定义域为(0,+∞), 当a=2时,f (x )=﹣x 2+2x+2(x 2﹣x )lnx ,

所以f′(x )=﹣2x+2+2(2x ﹣1)lnx+2(x2﹣x )?=(4x ﹣2)lnx , 由f'(x )>0可得:(4x ﹣2)lnx >0,

所以或,

解得x >1或0<x <;

由f'(x )<0可得:(4x ﹣2)lnx <0,

所以或,

解得:<x <1.

综上可知:f (x )递增区间为(0,),(1,+∞),递减区间为(,1).

即a >x ﹣2(x ﹣1)lnx 恒成立,

令g (x )=x ﹣2(x ﹣1)lnx ,则a >g (x )max .

因为g′(x )=1﹣2(lnx+)=﹣2lnx ﹣1+,

所以g'(x )在(0,+∞)上是减函数,且g'(1)>0,g′(2)<0,

故存在x 0∈(1,2)使得g (x )在(0,x 0)上为增函数,在(x 0,+∞)上是减函数, ∴x=x 0时,g (x )max =g (x 0)≈0, ∴a >0,又因为a ∈Z ,所以a min =1.

点睛:导数问题经常会遇见恒成立的问题:

(1)根据参变分离,转化为不含参数的函数的最值问题;

(2)若()0f x >就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为()min 0f x >,若()0f x <恒成立,转化为()max 0f x <;

(3)若()()f x g x >恒成立,可转化为()()min max f x g x >.

6.(1)极小值为()11f =;(2)见解析(3)21

21

e a e +-≤≤-

【解析】试题分析:(1)先求导数,再求导函数零点,列表分析导数符号,确定极值(2)先求导数,求导函数零点,讨论1a +与零大小,最后根据导数符号确定函数单调性(3)正难则反,先求存在一点0x ,使得()()00f x g x <成立时实数a 的取值范围,由存在性问题转化为对应函数最值问题,结合(2)单调性可得实数a 的取值范围,最后取补集得结果

试题解析:解:(I )当1a =时, ()()1

ln '01x f x x x f x x x

-=-?=

>?>,列极值分布表 ()f x ∴在(0,1)上递减,在

1+∞(,)上递增,∴()f x 的极小值为()11f =; (II )()1ln a h x x a x x

+=-+ ()

()()211'x x a h x x ??+-+??∴= ①当1a ≤-时, ()()'0,h x h x >∴在0+∞(,)上递增; ②当1a >-时, ()'01h x x a >?>+,

∴()h x 在0,1a +()

上递减,在()1,a ++∞上递增; []

1,e x ()()f x g x <

()()()0h x f x g x ?=-<在[]1,e 上有解?当[]1,x e ∈时, ()min 0h x <

由(II )知

①当1a ≤-时, ()h x 在[]

1,e 上递增, ()min 1202h h a a ∴==+-时, ()h x 在0,1a +()

上递减,在()1,a ++∞上递增 当10a -<≤时, ()h x 在[]

1,e 上递增, ()min 1202h h a a ∴==+

1,e 上递减

()2min

1101a e h h e e a a e e ++∴==-+?-,∴21

1

e a e +>-;

当01a e <<-时, ()h x 在[]

1,1a +上递减,在()1,a e +上递增 ()()min 12ln 1h h a a a a ∴=+=+-+

令()()

()2ln 121ln 1a a a F a a a

a +-+=

=

+-+,则()221

'01F a a a

=--<+ ()F a ∴在()0,1e -递减, ()()2

101

F a F e e ∴>-=

>-, ()0F a ∴<无解, 即()min 2ln 10h a a a =+-+<无解;

综上:存在一点0x ,使得()()00f x g x <成立,实数a 的取值范围为: 2a <-或21

1

e a e +>-.

所以不存在一点0x ,使得()()00f x g x <成立,实数a 的取值范围为

.

点睛:函数单调性问题,往往转化为导函数符号是否变号或怎样变号问题,即转化为方程或不等式解的问题(有解,恒成立,无解等),而不等式有解或恒成立问题,又可通过适当的变量分离转化为对应函数最值问题.

7.(1)1

e

-(2)21,e ??-∞-

???

【解析】试题分析:(1)当0a =时,得出函数的解析式,求导数,令()'0f x =,解出x 的值,利用导数值的正负来求其单调区间进而求得极小值;

(2)求出()'f x ,由于函数()f x 在()0,+∞是增函数,转化为()'0f x ≥对任意()0,x ∈+∞恒成立,分类参数,利用导数()ln g x x x x =+的最小值,即可求实数a 的取值范围. 试题解析:

()0,+∞

当0a =时, ()ln f x x x =, ()'ln 1f x x =+. 令()'0f x =,得1x e

=

. 当10,x e ??∈ ???

时, ()'0f x <, ()f x 为减函数;

当1,x e ??∈+∞ ???

时, ()'0f x >, ()f x 为增函数.

所以函数()f x 的极小值是11f e e

??=- ???

. (2)由已知得()'ln x a

f x x x

-=+

. 因为函数()f x 在()0,+∞是增函数,所以()'0f x ≥对任意()0,x ∈+∞恒成立, 由()'0f x ≥得ln 0x a

x x

-+

≥,即ln x x x a +≥对任意的()0,x ∈+∞恒成立. 设()ln g x x x x =+,要使“ln x x x a +≥对任意()0,x ∈+∞恒成立”,只要()min a g x ≤. 因为()'ln 2g x x =+,令()'0g x =,得21x e

=. 当210,

x e ??

∈ ???

时, ()'0g x <, ()g x 为减函数; 当21,x e ??

∈+∞

???

时, ()'0g x >, ()g x 为增函数. 所以()g x 的最小值是22

1

1g e

e ??=-

???

. 故函数()f x 在()0,+∞是增函数时,实数a 的取值范围是21,e ?

?-∞-

??

?

. 点睛:本题主要考查了导数在函数中的综合应用,解答中涉及到利用导数求解函数的单调区间,利用导

数求解函数的极值与最值等知识点的综合应用,这属于教学的重点和难点,应熟练掌握,试题有一定的综合性,属于中档试题,解答中把函数()f x 在()0,+∞是增函数,所以()'0f x ≥对任意()0,x ∈+∞恒成立是解答的关键.

8.(1)见解析;(2)2

3

1e m e +>.

【解析】试题分析:(1)求出()'f x ,分三种情况讨论,分别令()'0f x >求得x 的范围,可得函数()f x ()'0f x

所以

()()()2

max 24f x f a e -=-=+,

()()()

443+160f a e a f --=>-=,

()()2124a f x f x e me --<+恒成立,即()

222144a a e e e me ---++<+恒成立,即()

2

1a

a m e e ->

+恒成立,利用导数研究函数的单调性,求出

()

2

1a

a e e -+的最大值,即可得结果. 试题解析:(1)()()()2x

f x x x a e '=+-

①若2a <-,则()f x 在(),a -∞, ()2,-+∞上单调递增,在(),2a -上单调递减; ②2a =-,则(),-∞+∞在上单调递增;

③若2a >-,则()f x 在(),2-∞-, (),a +∞上单调递增,在()2,a -上单调递减; (2)由1知,当()0,2a ∈时, ()f x 在()4,2--上单调递增,在()2,0-单调递减, 所以()()()2

max 24f x f a e -=-=+, ()()()4

43+160f a e

a f --=>-=,

故()()

()()12max

20f x f x f f -=--= ()()

222414a e a a e e ---++=++,

()()2124a f x f x e me --<+恒成立,

即()

222144a a e e e me ---++<+恒成立

即()

2

1a

a m e e ->

+恒成立, 令()(),0,2x x

g x x e

=∈,

易知()g x 在其定义域上有最大值()11g e

=

, 所以2

3

1e m e +>

(完整版)导数的综合大题及其分类.

导数的综合应用是历年高考必考的热点,试题难度较大,多以压轴题形式出现,命题的热点主要有利用导数研究函数的单调性、极值、最值;利用导数研究不等式;利用导数研究方程的根(或函数的零点);利用导数研究恒成立问题等.体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用. 题型一 利用导数研究函数的单调性、极值与最值 题型概览:函数单调性和极值、最值综合问题的突破难点是分类讨论. (1)单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点的相对位置时,还需要对导数等于零的点的位置关系进行讨论. (2)极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点. (3)最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极值和区间端点函数值中最大的为最大值,最小的为最小值. 已知函数f (x )=x -1 x ,g (x )=a ln x (a ∈R ). (1)当a ≥-2时,求F (x )=f (x )-g (x )的单调区间; (2)设h (x )=f (x )+g (x ),且h (x )有两个极值点为x 1,x 2,其中x 1∈? ?? ?? 0,12,求 h (x 1)-h (x 2)的最小 值. [审题程序] 第一步:在定义域内,依据F ′(x )=0根的情况对F ′(x )的符号讨论; 第二步:整合讨论结果,确定单调区间; 第三步:建立x 1、x 2及a 间的关系及取值范围; 第四步:通过代换转化为关于x 1(或x 2)的函数,求出最小值. [规范解答] (1)由题意得F (x )=x -1 x -a ln x , 其定义域为(0,+∞),则F ′(x )=x 2-ax +1 x 2, 令m (x )=x 2-ax +1,则Δ=a 2-4. ①当-2≤a ≤2时,Δ≤0,从而F ′(x )≥0,∴F (x )的单调递增区间为(0,+∞); ②当a >2时,Δ>0,设F ′(x )=0的两根为x 1=a -a 2-42,x 2=a +a 2-4 2 ,

数学高考导数难题导数零点问题导数整理

f '(x) = (x - a)(2ln x ■ 1 - a ),但这时会发现 f' (x) = 0 的解除了 x = a 外还有 2In x ■ 1 - ◎ =0 的 x x 解,显然无法用特殊值猜出。 a 令 h(x) = 21 n x 1 ,注意到 h(1) = 1 -a :: 0 , h(a) = 2In a 0 , x 故f '(x) = 0在(1, a)及(1, 3e )至少还有一个零点, 又h(x)在(0, +^)内单调递增,所以函数h(x) 在(1,3e]内有唯一零点,但此时无法求出此零点怎么办。 我们可以采取设而不求的方法, 记此零点为x 0, 含参导函数零点问题的几种处理方法 方法一:直接求出,代入应用 对于导函数为二次函数问题,可以用二次函数零点的基本方法来求。 (1)因式分解求零点 例1讨论函数 f(x) 1 3 1 2 ax -(a )x 2x 1(a ? R)的单调区间 3 2 解析:即求f'(x)的符号问题。由f'(x)二ax 2 -(2a - 1)x 2 = (ax - 1)(x - 2)可以因式分 解析: f'(x) = (x -a)e x ? x 2 -( a ? 1)x ? a = (x -a)(e x ? x -1),只能解出 f '(x)的一个零点为 a , 方法二:猜出特值,证明唯一 对于有些复杂的函数,有些零点可能是很难用方程求解的方法求出的,这时我们可以考虑用特殊值去 猜出零点,再证明该函数的单调性而验证其唯一性。 1 1 例 4 讨论函数 f (x) =(x - a-1)e x x 3 (a 1)x 2 ax , a ?二 R ,的极值情况 其它的零点就是e x x 0的根,不能解。 例5(2011高考浙江理科)设函数 f (x) = (x - a)21n x,a ? R (I) 若x =e 为y = f (x)的极值点,求实数a (n) 求实数a 的取值范围,使得对任意的 2 (0,3e],恒有 f(x) — 4e 成立(注:e 为自然对数), 方法三:锁定区间,设而不求 对于例5,也可以直接设函数来求, ①当0 ::: x 乞1时,对于任意的实数 a ,恒有f (x)乞0 ::: 4e 2成立②当1 ::: x 乞3e ,由题意,首先 有 f (3e) =(3e - a )2 In(3e)乞4e 2 , 解 3e 2e 乞a 乞3e ---------- n ( , I 3e) 3e 且 h(3e) =2In(3 e) 1 a 3e -2I n(3e) 1 2e I n(3e) 3e = 2(I n3e- 1 3;I )>0 。

导数大题方法总结

导数大题方法总结 一总论 一般来说,导数的大题有两到三问。每一个小问的具体题目虽然并不固定,但有相当的规律可循,所以在此我进行了一个答题方法的总结。 二主流题型及其方法 *(1)求函数中某参数的值或给定参数的值求导数或切线 一般来说,一到比较温和的导数题的会在第一问设置这样的问题:若f(x)在x = k时取得极值,试求所给函数中参数的值;或者是f(x)在(a , f(a))处的切线与某已知直线垂直,试求所给函数中参数的值等等很多条件。虽然会有很多的花样,但只要明白他们的本质是考察大家求导数的能力,就会轻松解决。这一般都是用来送分的,所以遇到这样的题,一定要淡定,方法是: 先求出所给函数的导函数,然后利用题目所给的已知条件,以上述第一种情形为例:令x = k,f(x)的导数为零,求解出函数中所含的参数的值,然后检验此时是否为函数的极值。 注意:①导函数一定不能求错,否则不只第一问会挂,整个题目会一并挂掉。保证自己求导不会求错的最好方法就是求导时不要光图快,一定要小心谨慎,另外就是要将导数公式记牢,不能有马虎之处。②遇到例子中的情况,一道要记得检验,尤其是在求解出来两个解的情况下,更要检验,否则有可能会多解,造成扣分,得不偿失。所以做两个字来概括这一类型题的方法就是:淡定。别人送分,就不要客气。③求切线时,要看清所给的点是否在函数上,若不在,要设出切点,再进行求解。切线要写成一般式。 *(2)求函数的单调性或单调区间以及极值点和最值 一般这一类题都是在函数的第二问,有时也有可能在第一问,依照题目的难易来定。这一类题问法都比较的简单,一般是求f(x)的单调(增减)区间或函数的单调性,以及函数的极大(小)值或是笼统的函数极值。一般来说,由于北京市高考不要求二阶导数的计算,所以这类题目也是送分题,所以做这类题也要淡定。这类问题的方法是: 首先写定义域,求函数的导函数,并且进行通分,变为假分式形式。往下一般有两类思路,一是走一步看一步型,在行进的过程中,一点点发现参数应该讨论的范围,一步步解题。这种方法个人认为比较累,而且容易丢掉一些情况没有进行讨论,所以比较推荐第二种方法,就是所谓的一步到位型,先通过观察看出我们要讨论的参数的几个必要的临介值,然后以这些值为分界点,分别就这些临界点所分割开的区间进行讨论,这样不仅不会漏掉一些对参数必要的讨论,而且还会是自己做题更有条理,更为高效。 极值的求法比较简单,就是在上述步骤的基础上,令导函数为零,求出符合条件的根,然后进行列表,判断其是否为极值点并且判断出该极值点左右的单调性,进而确定该点为极大值还是极小值,最后进行答题。 最值问题是建立在极值的基础之上的,只是有些题要比较极值点与边界点的大小,不能忘记边界点。 注意:①要注意问题,看题干问的是单调区间还是单调性,极大值还是极小值,这决定着你最后如何答题。还有最关键的,要注意定义域,有时题目不会给出定义域,这时就需要你自己写出来。没有注意定义域问题很严重。②分类要准,不要慌张。③求极值一定要列表,不能使用二阶导数,否则只有做对但不得分的下

数学高考导数难题导数零点问题导数整理2017

含参导函数零点问题的几种处理方法方法一:直接求出,代入应用对于导函数为二次函数问题,可以用二次函数零点的基本方法来求。 1)因式分解求零点(1123)?Rx?1(?(a?)x)f(x?a?2ax 例1 讨论函数的单调区间232)?2?1)(x?1)x?2?(axf'(x)?ax?(2a)(xf'可以因式分的符号问 题。由解析:即求 方法二:猜出特值,证明唯一对于有些复杂的函数,有些零点可能是很难用方程求解的方法求出的,这时我们可以考虑用特殊值去猜出零点,再证明该函数的单调性而验证其唯一性。 112x3ax1)x??x(a?f(x)?(x?a?1)e?R?a,讨论函数,的极值情况例4 23x2x)1e?x?a?(x?a)(?(x?a)ex?(a?1)x?f'(x)?a)f'(x其它的零点就的一个零点为,解析:,只能解 出x0?1?e?x的根,不能解。是 2Ra?x?a)ln x,f(x)?(例5(2011高考浙江理科)设函数a?ex)xy?f(的极值点,求实数(Ⅰ)若为2exf()?4ea],3e(0,x?为自然对数),(Ⅱ)求实数恒有的取值范围,使得对任意的成立(注:方法三:锁定区间,设而不求对于例5,也可以直接设函数来求,2e)?0?4f(xa e1?1?x?30?x 有实时,对于任意的数题,恒有意,首②当先①当,由立成a e22e22,?e?a) 4e ln(3e)f(3e)?(3)1???a)(2ln xf'(x)?(x?e?e?3?a3,但这时解得由 x)e3ln(ln(3e)a??12ln x ax?0?'(x)f=0外还有会发现的解除了的解,显然无法用特殊值猜出。 xa??(x)2ln x?1h h(1)?1?a?0h(a)?2ln a?0,,令,注意到x2e?3e ln(3e)1a)f02(ln3e?h(3e)?2ln(3e?2ln(3e)?1?)?1?且。= e33e)e3ln(3f'(x)?0(1,a)h(x)h(x)(1,3e]内,及(13e在)至少还有一个零点,又在故+∞)内 单调递增,所以函数0在(,x1?x?a。,则有唯一零点,但此时无法求出此零点怎么办。我们 可以采取设而不求的方法,记此零点为从 00x?(x,a)(0,x))x?x(0,)x f x)0f()x f0f,x)f'(x f a?(a??)'('(f在时,;当而,当时,,即;当时, 000?2e?x(1,3)xa(ef?)(x4)a(??,恒成立,只要内单调递增,在对内单调递增。所以要使内单调递减,在0,. 22?f(x)?(x?a)ln x?4e,(1)?000成 立。?22f(3e)?(3e?a)ln(3e)?4e,(2)??a2320??2ln x?1?)h(xx f1a?2ln x?xe ln4xx?4,注意到函1)得, 又(,知3)将(3)代入(0000000x0231p x?exx ln2x ln x?x在(1.+ +∞)。再由()内单调递增,故数3)以及函数内单调递增,可得在[1,+∞02e2e2e?a?3e??a?3e3e3e??e13p a?。所以的取值范围为)解得,综上,a。由(2ln(3e)ln(3e)ln(3e23ea??3?。

高考数学难点突破_难点34__导数的运算法则及基本公式应用

难点34 导数的运算法则及基本公式应用 导数是中学限选内容中较为重要的知识,本节内容主要是在导数的定义,常用求等公式.四则运算求导法则和复合函数求导法则等问题上对考生进行训练与指导. ●难点磁场 (★★★★★)已知曲线C :y =x 3-3x 2+2x ,直线l :y =kx ,且l 与C 切于点(x 0,y 0)(x 0≠0),求直线l 的方程及切点坐标. ●案例探究 [例1]求函数的导数: )1()3( )sin ()2( cos )1(1)1(2322+=-=+-= x f y x b ax y x x x y ω 命题意图:本题3个小题分别考查了导数的四则运算法则,复合函数求导的方法,以及抽象函数求导的思想方法.这是导数中比较典型的求导类型,属于★★★★级题目. 知识依托:解答本题的闪光点是要分析函数的结构和特征,挖掘量的隐含条件,将问题转化为基本函数的导数. 错解分析:本题难点在求导过程中符号判断不清,复合函数的结构分解为基本函数出差错. 技巧与方法:先分析函数式结构,找准复合函数的式子特征,按照求导法则进行求导.

x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x y 2222222222 22222222222cos )1(sin )1)(1(cos )12(cos )1(]sin )1(cos 2)[1(cos )1(cos )1(] ))(cos 1(cos )1)[(1(cos )1(cos )1(]cos )1)[(1(cos )1()1(:)1(++-+--=++---+-=+'++'+--+-=-+' +--+'-='解 (2)解:y =μ3,μ=ax -b sin 2ωx ,μ=av -by v =x ,y =sin γ γ=ωx y ′=(μ3)′=3μ2·μ′=3μ2(av -by )′ =3μ2(av ′-by ′)=3μ2(av ′-by ′γ′) =3(ax -b sin 2ωx )2(a -b ωsin2ωx ) (3)解法一:设y =f (μ),μ=v ,v =x 2+1,则 y ′x =y ′μμ′v ·v ′x =f ′(μ)·21 v -21·2x =f ′(12+x )·211 1 2+x ·2x =),1(122+'+x f x x 解法二:y ′=[f (12+x )]′=f ′(12+x )·(12+x )′ =f ′(12+x )·21(x 2+1)21- ·(x 2+1)′

高考数学热点难点突破技巧第讲导数中的双变量存在性和任意性问题

第07讲:导数中的双变量存在性和任意性问题的处理 【知识要点】 在平时的数学学习和高考中,我们经常会遇到不等式的双变量的存在性和任意性问题,学生由于对于这类问题理解不清,很容易和不等式的恒成立问题混淆,面对这类问题总是感到很棘手,或在解题中出现知识性错误. 1、双存在性问题 “存在...),(1b a x ∈,存在..),(2d c x ∈,使得)()(21x g x f <成立”.称为不等式的双存在性问题,存在..),(1b a x ∈,存在..),(2d c x ∈,使得)()(21x g x f <成立,即)(x f 在区间),(b a 内至少有一个值......)(x f 比函数)(x g 在区间),(d c 内的一个函数值.....小.,即max min )()(x g x f <.(见下图1) “存在..),(1b a x ∈,存在..),(2d c x ∈,使得)()(21x g x f >成立”,即在区间),(b a 内至少有...一个值...)(x f 比函数)(x g 在区间),(d c 内的一个函数值.....大,即min max )()(x g x f >.(见下图2) 2、双任意性问题 “任意..),(1b a x ∈,对任意..的),(2d c x ∈,使得)()(21x g x f <成立” 称为不等式的双任意性问题. 任意..),(1b a x ∈,对任意..的),(2d c x ∈,使得)()(21x g x f <成立,即)(x f 在区间),(b a 任意一个值.....)(x f 比函数)(x g 在区间),(d c 内的任意.. 一个函数值都要小,即max min ()()f x g x <. “任意..),(1b a x ∈,对任意..的),(2d c x ∈,使得)()(21x g x f >成立”,即)(x f 在区间),(b a 内任意一...

导数练习题(含答案).

3 B 10 3 C 16 3 D 13 = 2 导数概念及其几何意义、导数的运算 一、选择题: 1 已知 f ( x ) = ax 3 + 3x 2 + 2 ,若 f '(-1) = 4 ,则 a 的值等于 A 19 3 2 已知直线 y = kx + 1 与曲线 y = x 3 + ax + b 切于点(1,3),则 b 的值为 A 3 B -3 C 5 D -5 3 函数 y (x + 2a )(x-a ) 的导数为 A 2( x 2 - a 2 ) B 3(x 2 + a 2 ) C 3(x 2 - a 2 ) D 2( x 2 + a 2 ) 1 4 4 曲线 y = x 3 + x 在点 (1, ) 处的切线与坐标轴围成的三角形的面积为 3 3 A 1 2 1 2 B C D 9 9 3 3 5 已知二次函数 y = ax 2 + bx + c 的导数为 f '( x ), f '(0) > 0 ,对于任意实数 x ,有 f ( x ) ≥ 0 ,则 最小值为 f (1) f '(0) 的 A 3 B 5 2 C 2 D 3 2 6 已知函数 f ( x ) 在 x = 1 处的导数为 3,则 f ( x ) 的解析式可能为 A C f ( x ) = ( x -1)2 + 3(x - 1) f ( x ) = 2( x - 1)2 B f ( x ) = 2( x - 1) D f ( x ) = x - 1 7 下列求导数运算正确的是 A 1 1 ( x + )' = 1 + x x 2 B (log x )' = 2 1 x ln 2 C (3x )' = 3x ? log e D ( x 2 cos x )' = -2 x sin x 3 8 曲线 y = A π 6 1 3 x 3 - x 2 + 5 在 x = 1 处的切线的倾斜角为 3π π π B C D 4 4 3 9 曲线 y = x 3 - 3x 2 + 1 在点 (1,-1) 处的切线方程为 A y = 3x - 4 B y = -3x + 2 C y = -4 x + 3 D y = 4 x - 5 10 设函数 y = x sin x + cos x 的图像上的点 ( x , y ) 处的切线斜率为 k ,若 k = g ( x ) ,则函数 k = g ( x ) 的图

高考数学热点难点突破技巧第06讲导数中的双参数问题的处理

第06讲:导数中的双参数问题的处理 【知识要点】 对于导数中的单参数问题(零点问题、恒成立问题和存在性问题),大家解答的比较多,一般利用分离参数和分类讨论来分析解答. 对于双参数这些问题,大家如何处理呢?一般利用下面分离次参法和反客为主法两种方法处理. 【方法讲评】 【例1】已知函数. (1)若函数与函数在点处有共同的切线,求的值;(2)证明:; (3)若不等式对所有,都成立,求实数的取值范围.【解析】(1),,, 与在点处有共同的切线, ,即, 设,, 故在上是增函数,在上是减函数,故,

; (3)由题得不等式对所有的,都成立, 因为,所以,所以,即 所以,所以 【点评】对于不等式,里面有两个参数和一个自变量,形式比较复杂,所以我们可以想到转化和化归的思想,想方法把双参数变成单参数,这个方法就是分离参数. 由于题目求的是的范围,所以我们称是主参数,是次参数.第(3)问首先分离次参,最后得到了的取值范围,因此这种方法可以称为“分离次参法”. 【反馈检测1】已知,设函数. (1)存在,使得是在上的最大值,求的取值范围; (2)对任意恒成立时,的最大值为1,求的取值范围. 【例2】已知函数.若不等式对所有,都成立,求实数的取值范围. 因为,所以

所以 令 所以函数在上是增函数,在上是减函数, 所以 所以综合得. 【点评】(1)在中,是自变量,要求的范围,所以是主参,是次参.(2)对于不等式,由于,有正有负,不便分离次参,所以我们 中把次参看成自变量,把看作参数,利要构造一次函数反客为主, 用一次函数的性质分析解答.(3)一次函数在上恒成立,只须满足 .(4)对于“分离次参”的题目,也可以利用反客为主的方法解答. 【反馈检测2】已知函数,,,. (Ⅰ)讨论的单调性; (Ⅱ)对于任意,任意,总有,求的取值范围. 【反馈检测3】已知函数. (1)当时,解关于的不等式; (2)若对任意及时,恒有成立,求实数的取值范围.

导数难题(含答案)

一、单选题 1.已知可导函数()f x 的导函数为()'f x , ()02018f =,若对任意的x R ∈,都有()()'f x f x >,则不等式()2018x f x e <的解集为( ) A. ()0,+∞ B. 21,e ?? +∞ ??? C. 21,e ? ?-∞ ??? D. (),0-∞ 2.定义在R 上的偶函数()f x 的导函数为()f x ',且当()()0,20x xf x f x +'><.则( ) A. ()()2 24 f e f e > B. ()()931f f > C. ()()2 39 f e f e -< D. ()()2 24 f e f e -< 3.已知()f x 为定义在()0,+∞上的可导函数,且()()'f x xf x >恒成立,则不等式()2 10x f f x x ?? -> ??? 的解集为( ) A. ()1,+∞ B. (),1-∞ C. ()2,+∞ D. (),2-∞ 二、解答题 4.已知函数()()2 ln f x ax x a R =-+∈ . (1)讨论()f x 的单调性; (2)若存在()()1,,x f x a ∈+∞>-,求a 的取值范围.

5.设函数()() 222ln f x x ax x x x =-++-. (1)当2a =时,讨论函数()f x 的单调性; (2)若()0,x ∈+∞时, ()0f x >恒成立,求整数a 的最小值. 6.已知函数()()()1ln ,a f x x a x g x a R x +=-=-∈. 若1a =,求函数()f x 的极值; 设函数()()()h x f x g x =-,求函数()h x 的单调区间; 若在区间[] ()1, 2.71828e e =?上不存在...0x ,使得()()00f x g x <成立,求实数a 的取值范围.

高考数学难点突破_难点35__导数的应用问题

难点35 导数的应用问题 利用导数求函数的极大(小)值,求函数在连续区间[a ,b ]上的最大最小值,或利用求导法解决一些实际应用问题是函数内容的继续与延伸,这种解决问题的方法使复杂问题变得简单化,因而已逐渐成为新高考的又一热点.本节内容主要是指导考生对这种方法的应用. ●难点磁场 (★★★★★)已知f (x )=x 2+c ,且f [f (x )]=f (x 2+1) (1)设g (x )=f [f (x )],求g (x )的解析式; (2)设φ(x )=g (x )-λf (x ),试问:是否存在实数λ,使φ(x )在(-∞,-1)内为减函数,且在 (-1,0)内是增函数. ●案例探究 [例1]已知f (x )=ax 3+bx 2+cx (a ≠0)在x =±1时取得极值,且f (1)=-1. (1)试求常数a 、b 、c 的值; (2)试判断x =±1是函数的极小值还是极大值,并说明理由. 命题意图:利用一阶导数求函数的极大值和极小值的方法是导数在研究函数性质方面的继续深入.是导数应用的关键知识点,通过对函数极值的判定,可使学生加深对函数单调性与其导数关系的理解.属★★★★★级题目. 知识依托:解题的成功要靠正确思路的选择.本题从逆向思维的角度出发,根据题设结构进行逆向联想,合理地实现了问题的转化,使抽象的问题具体化.这是解答本题的闪光点. 错解分析:本题难点是在求导之后,不会应用f ′(±1)=0的隐含条件,因而造成了解决问题的最大思维障碍. 技巧与方法:考查函数f (x )是实数域上的可导函数,可先求导确定可能的极值,再通过极值点与导数的关系,建立由极值点x =±1所确定的相等关系式,运用待定系数法求值. 解:(1)f ′(x )=3ax 2+2bx +c ∵x =±1是函数f (x )的极值点, ∴x =±1是方程f ′(x )=0,即3ax 2+2bx +c =0的两根. 由根与系数的关系,得???????-==-13032a c a b 又f (1)=-1,∴a +b +c =-1, ③ 由①②③解得a =2 3,0,21==c b , (2)f (x )=21x 3-2 3x , ∴f ′(x )=23x 2-23=2 3(x -1)(x +1) 当x <-1或x >1时,f ′(x )>0 当-1<x <1时,f ′(x )<0 ∴函数f (x )在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上是减函数. ∴当x =-1时,函数取得极大值f (-1)=1, 当x =1时,函数取得极小值f (1)=-1. [例2]在甲、乙两个工厂,甲厂位于一直线河岸的岸边A 处,乙厂与甲厂在河的同侧,① ②

导数难题(含答案)教学提纲

一、单选题 1 ?已知可导函数f x的导函数为f' x , f 0 =2018,若对任意的R,都有f X f ' x , 则不等式f x :: 2018e x的解集为() A. 0, :: B. i | c. D. -:: ,0 2 丿I e丿 2?定义在R上的偶函数f x的导函数为「x,且当x?0,x「x 2f x :: 0.则() A.鼻 B. 9f 3 f 1 C.—:::字 D.鼻:::字 4 e 9 e 4 e 2 (1 \ 3 ?已知f x为定义在0「:上的可导函数,且f x xf ' x恒成立,则不等式x2f — -f X - 0 \ x 的解集为() A. 1, :: B. :—,1 C. 2, :: D. -::,2 二、解答题 2 4.已知函数f x 一-ax ? Inx a R . (1)讨论f x的单调性; (2)若存在x三[1, = , f x -a,求a的取值范围

5.设函数f x - -x2 ax 2 x2 -X Inx . (1)当a = 2时,讨论函数f x的单调性; (2)若x 0,亠「j时,f x ] - 0恒成立,求整数a的最小值.

1 +a 6 .已知函数f x 二x—al nx, g x a? R ? x 若a =1,求函数f x的极值; 设函数hx=fx-gx,求函数h x的单调区间; 若在区间1,e】(e =2.71828 一一)上不存在x°,使得f(x o )vg(xo )成立,求实数7.已知函数f x 二x—a Inx,a R . (1)当a = 0时,求函数f x 的极小值; (2)若函数f x在0, 上为增函数,求a的取值范围 a的取值范围

导数综合练习题最新版

导数练习题(B ) 1.(本题满分12分) 已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示. (I )求d c ,的值; (II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式; (III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(3 1 的图象有三个不同的交点,求m 的取值范围. 2.(本小题满分12分) 已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间; (II )函数)(x f 的图象的在4=x 处切线的斜率为,2 3若函数]2)('[31)(23m x f x x x g ++=在区间 (1,3)上不是单调函数,求m 的取值范围. 3.(本小题满分14分) 已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围; (II )若方程9 )32()(2 +-=a x f 恰好有两个不同的根,求)(x f 的解析式; (III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 4.(本小题满分12分) 已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数. 5.(本小题满分14分) 已知函数()ln(1)(1)1f x x k x =---+. (I )当1k =时,求函数()f x 的最大值; (II )若函数()f x 没有零点,求实数k 的取值范围; 6.(本小题满分12分) 已知2x =是函数2 ()(23)x f x x ax a e =+--的一个极值点(???=718.2e ). (I )求实数a 的值; (II )求函数()f x 在]3,2 3[∈x 的最大值和最小值.

专题05 导数的概念(重难点突破)解析版

专题05 导数的概念 【重难点知识点网络】: 一、平均变化率 1.变化率 事物的变化率是相关的两个量的“增量的比值”。如气球的平均膨胀率是半径的增量与体积增量的比值; 2.平均变化率 一般地,函数f(x)在区间[]21,x x 上的平均变化率为: 2121 ()() f x f x x x -- 3.如何求函数的平均变化率 求函数的平均变化率通常用“两步”法: ①作差:求出21()()y f x f x ?=-和21x x x ?=- ②作商:对所求得的差作商,即 2121 ()()f x f x y x x x -?=?-。 二、导数的概念 定义:函数()f x 在0x x =处瞬时变化率是()()x x f x x f x y x x ?-?+=??→?→?0000lim lim ,我们称它为函数()x f y =在0x x =处的导数,记作() 或0x f '即 0 x x y ='()()()x x f x x f x y x f x x ?-?+=??'→?→?00000lim lim = 三、求导数的方法: 求导数值的一般步骤: ① 求函数的增量:00()()y f x x f x ?=+?-;

② 求平均变化率: 00()() f x x f x y x x +?-?= ??; ③ 求极限,得导数:00000()()'()lim lim x x f x x f x y f x x x ?→?→+?-?==??。 也可称为三步法求导数。

【重难点题型突破】: 一、平均变化率与瞬时变化率 函数(x)f 在某点()00x ,(x )f 处的导数()()00' 00 0(x )lim lim x x f x x f x y f x x →→+-????== ? ????? 例1.(1)设函数()y f x =,当自变量x 由0x 改变到0x +Δx 时,函数的增量Δy 为( ) A .0()f x x +? B .0()f x x +? C .0()f x x ?? D .00()()f x x f x +?- 【答案】 D 【解析】 由公式00()()y f x x f x ?=+?-可得,故选D 。 (2)若函数f (x )=2x 2 -1的图象上一点(1,1)及邻近一点(1+Δx ,1+Δy ),则 x y ??等于 A.4 B.4x C.4+2Δx D.4+2Δx 2 【答案】C 【解析】Δy =2(1+Δx )2 -1-1=2Δx 2 +4Δx , x y ??=4+2Δx . 例2. 函数()y f x == 在区间[1,1+Δx]内的平均变化率为________。 【解析】 ∵(1)(1)1y f x f ?=+?-= - == = ,∴y x ?=? 例3.求函数y=2x 2+5在区间[2,2+Δx]上的平均变化率;并计算当1 2 x ?= 时,平均变化率的值。

导数练习题(含答案)

导数练习题 1.已知函数f (x )=ax 3 +bx 2 +cx 在x =±1处取得极值,在x =0处的切线与直线3x +y =0平行. (1)求f (x )的解析式; (2)已知点A (2,m ),求过点A 的曲线y =f (x )的切线条数. 解 (1)f ′(x )=3ax 2 +2bx +c , 由题意可得???? ? f ′(1)=3a +2b +c =0,f ′(-1)=3a -2b +c =0, f ′(0)=c =-3, 解得???? ? a =1, b =0, c =-3. 所以f (x )=x 3 -3x . (2)设切点为(t ,t 3-3t ),由(1)知f ′(x )=3x 2-3,所以切线斜率k =3t 2 -3, 切线方程为y -(t 3 -3t )=(3t 2 -3)(x -t ). 又切线过点A (2,m ),代入得m -(t 3 -3t )=(3t 2 -3)(2-t ),解得m =-2t 3 +6t 2 -6. 设g (t )=-2t 3 +6t 2 -6,令g ′(t )=0, 即-6t 2 +12t =0,解得t =0或t =2. 当t 变化时,g ′(t )与g (t )的变化情况如下表: 作出函数草图(图略),由图可知: ①当m >2或m <-6时,方程m =-2t 3 +6t 2 -6只有一解,即过点A 只有一条切线; ②当m =2或m =-6时,方程m =-2t 3 +6t 2 -6恰有两解,即过点A 有两条切线; ③当-60得1 e ≤x <2;令f ′(x )<0,得2

函数导数难点突破

函数与导数难点突破 1.函数的零点与方程的根 (1)函数的零点 对于函数f (x ),我们把使f (x )=0的实数x 叫做函数f (x )的零点. (2)函数的零点与方程根的关系 函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点 的横坐标. (3)零点存在性定理 如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,且有f (a )·f (b )<0,那么,函数y =f (x ) 在区间(a ,b )内有零点,即存在c ∈(a ,b )使得f (c )=0,这个c 也就是方程f (x )=0的根. 注意以下两点: ①满足条件的零点可能不唯一; ②不满足条件时,也可能有零点. (4)二分法求函数零点的近似值,二分法求方程的近似解. 2.函数模型 解决函数模型的实际应用题,首先考虑题目考查的函数模型,并要注意定义域.其解题步骤是(1)阅 读理解,审清题意:分析出已知什么,求什么,从中提炼出相应的数学问题;(2)数学建模:弄清题 目中的已知条件和数量关系,建立函数关系式;(3)解函数模型:利用数学方法得出函数模型的数学 结果;(4)实际问题作答:将数学问题的结果转化成实际问题作出解答. 1.函数f (x )=ln(x 2+2)的图象大致是________. 2.(南京模拟)奇函数f (x )的定义域为R .若f (x +2)为偶函数,且f (1)=1,则f (8)+f (9)=________. 3.已知f (x )是定义在R 上的奇函数,若对于x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=e x -1, 则f (2 015)+f (-2 016)=________. 4.已知a =312,b =log 1312,c =log 213 ,则a ,b ,c 的大小关系为__________.

导数练习题及答案

章末检测 一、选择题 1.已知曲线y=x2+2x-2在点M处的切线与x轴平行,则点M的坐标是( ) A.(-1,3) B.(-1,-3) C.(-2,-3) D.(-2,3) 答案 B 解析∵f′(x)=2x+2=0,∴x=-1. f(-1)=(-1)2+2×(-1)-2=-3.∴M(-1,-3). 2.函数y=x4-2x2+5的单调减区间为( ) A.(-∞,-1)及(0,1) B.(-1,0)及(1,+∞) C.(-1,1) D.(-∞,-1)及(1,+∞) 答案 A 解析y′=4x3-4x=4x(x2-1),令y′<0得x的围为(-∞,-1)∪(0,1),故选A. 3.函数f(x)=x3+ax2+3x-9,在x=-3时取得极值,则a等于( ) A.2 B.3 C.4 D.5 答案 D 解析f′(x)=3x2+2ax+3.由f(x)在x=-3时取得极值, 即f′(-3)=0,即27-6a+3=0,∴a=5. 4.函数y=ln 1 |x+1|的大致图象为( )

答案 D 解析函数的图象关于x=-1对称,排除A、C,当x>-1时,y=-ln(x+1)为减函数,故选D. 5.二次函数y=f(x)的图象过原点,且它的导函数y=f′(x)的图象过第一、二、三象限的一条直线,则函数y=f(x)的图象的顶点所在象限是( ) A.第一B.第二 C.第三D.第四 答案 C 解析∵y=f′(x)的图象过第一、二、三象限,故二次函数y=f(x)的图象必然先下降再上升且对称轴在原点左侧,又因为其图象过原点,故顶点在第三象限. 6.已知函数f(x)=-x3+ax2-x-1在(-∞,+∞)上是单调函数,则实数a的取值围是( ) A.(-∞,-3) B.[-3,3] C.(3,+∞) D.(-3,3) 答案 B 解析f′(x)=-3x2+2ax-1≤0在(-∞,+∞)恒成立,Δ=4a2-12≤0?-3≤a≤ 3. 7.设f(x)=x ln x,若f′(x0)=2,则x0等于( ) A.e2B.ln 2 C.ln 2 2D.e 答案 D 解析f′(x)=x·(ln x)′+(x)′·ln x=1+ln x. ∴f′(x0)=1+ln x0=2, ∴ln x0=1,

导数练习题及答案

一、选择题(每小题只有一个选项是正确的,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。) 1.已知某函数的导数为y′=12(x-1),则这个函数可能是 () A.y=ln1-x B.y=ln11-x C.y=ln(1-x) D.y=ln11-x 2.(2009?江西)设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处切线的斜率为 () A.4 B.-14 C.2 D.-12 3.(2009?辽宁)曲线y=xx-2在点(1,-1)处的切线方程为 () A.y=x-2 B.y=-3x+2 C.y=2x-3 D.y=-2x+1 4.曲线y=ex在点(2,e2)处的切线与坐标轴所围成三角形的面积为 () A.94e2 B.2e2 C.e2 D.e22 5.已知函数y=f(x),y=g(x)的导函数的图象如图,那么y=f(x),y=g(x)的图象可能是() 6.设y=8x2-lnx,则此函数在区间(0,14)和(12,1)内分别 () A.单调递增,单调递减 B.单调递增,单调递增 C.单调递减,单调递增 D.单调递减,单调递减 7.下列关于函数f(x)=(2x-x2)ex的判断正确的是 () ①f(x)>0的解集是{x|0<x<2}; ②f(-2)是极小值,f(2)是极大值; ③f(x)没有最小值,也没有最大值. A.①③ B.①②③C.② D.①② 8.已知f(x)=-x3-x,x∈[m,n],且f(m)?f(n)<0,则方程f(x)=0在区间[m,n]上() A.至少有三个实根 B.至少有两个实根C.有且只有一个实根 D.无实根 9.已知函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则实数a的取值范围是() A.-1<a<2 B.-3<a<6 C.a<-3或a>6 D.a<-1或a>2 10.要做一个圆锥形漏斗,其母线长为20cm,要使其体积最大,其高应为 () A.2033cm B.100cm C.20cm D.203cm 11.(2010?河南省实验中学)若函数f(x)=(2-m)xx2+m的图象如图所示,则m的范围 为 () A.(-∞,-1) B.(-1,2) C.(1,2) D.(0,2) 12.定义在R上的函数f(x)满足f(4)=1.f′(x)为f(x)的导函数,已知函数y=f′(x)的图象如图所示.若两正数a,b满足f(2a+b)<1,则b+2a+2的取值范围是 () A.(13,12) B.(-∞,12)∪(3,+∞)C.(12,3) D.(-∞,-3) 二、填空题(本大题共4小题,每小题5分,共20分,请将答案填在题中的横线上。) 13.(2009?武汉模拟)函数y=xln(-x)-1的单调减区间是________. 14.已知函数f(x)=x3-12x+8在区间[-3,3]上的最大值与最小值分别为M,m,则M-m=________. 15.(2009?南京一调)已知函数f(x)=ax-x4,x∈[12,1],A、B是其图象上不同的两点.若直线AB的斜率k总满足12≤k≤4,则实数a的值是________.

导数习题精选

导数习题精选 [基础训练A 组] 一、选择题 1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()lim h f x h f x h h →+-- 的值为( ) A .'0()f x B .'02()f x C .'02()f x - D .0 2.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3.函数3y x x =+的递增区间是( ) A .),0(+∞ B .)1,(-∞ C .),(+∞-∞ D .),1(+∞ 4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( ) A .319 B .316 C .313 D .3 10 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( ) A .充分条件 B .必要条件 C .充要条件 D .必要非充分条件 6.函数344+-=x x y 在区间[]2,3-上的最小值为( ) A .72 B .36 C .12 D .0 二、填空题 1.若3'0(),()3f x x f x ==,则0x 的值为_________________; 2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin x y x =的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________; 5.函数552 3--+=x x x y 的单调递增区间是___________________________。 三、解答题 1.求垂直于直线2610x y -+=并且与曲线3235y x x =+-相切的直线方程。 2.求函数()()()y x a x b x c =---的导数。

相关文档
最新文档