函数与映射的概念
函数和映射的概念表示(教师版)

教学目标
1.理解函数和映射的概念;
2.了解构成函数的三个要素;
3.会求一些简单函数的定义域;
学习重难点
1.函数与映射概念及其区别;
2.构成函数的三个要素;
学生活动
教师活动
课前预习
查阅初中学习的函数的定义及学习过的函数,
阅读教材P23至P24完成下列填空
1.函数的初中定义:
④如果 是由几部分的数学式子构成的,那么函数的定义域是____________________________
随堂检测
1、如图所示的对应中,哪些是 到 的映射____________
2、若 ,试找出一个集合 ,使得 是 到 的映射。
3、在下列集合 到集合 的对应中是函数的是______
(1) ,对应法则:
(2) ,对应法则:
(3) ,对应法则:
(4) ,对应法则: 取倒数
4、已知映射 , 中的元素 对应 中的元素为
(1)求 中元素(1,2)与 中的哪个元素对应?
(2) 中哪些元素与 中元素(1,2)对应?
5、若
求 .
教学反思
点评:_______________________________________
二、同一函数的判断
例2、下列各组中的两个函数是:下列函数中哪个与函数 是同一个函数:
⑴ ;⑵ ;⑶
答案:_______________.
三、会求一些简单函数的定义域
例3、求下列函数的定义域:
议一议:映射与函数有什么区别与联系?
结论:_______________________________
课堂互动
一、函数的定义
例1、判断下列对应是否为函数:
高等数学-映射与函数

B ABAc
B AB A
7
二、 映射
1. 映射的概念 引例1.
某校学生的集合
学号的集合
按一定规则查号
某教室座位
某班学生的集合
的集合
按一定规则入座
8
引例2.
引例3.
(点集) (点集)
向 y 轴投影
9
定义4. 设 X , Y 是两个非空集合, 若存在一个对应规
则 f , 使得
有唯一确定的
引例2
11
例1. 海伦公式
(满射)
例2. 如图所示,
对应阴影部分的面积
则在数集
自身之间定义了一种映射 (满射)
例3. 如图所示, 则有 r
(满射)
12
说明:
映射又称为算子. 在不同数学分支中有不同的惯用
名称. 例如,
X (≠ ) f Y (数集)
f
X (≠ )
X
X (数集 或点集 ) f R
f 称为X 上的泛函 f 称为X 上的变换
f 称为定义在 X 上的为函数
13
2. 逆映射与复合映射 (1) 逆映射的定义 定义: 若映射
使
为单射, 则存在一新映射 其中
称此映射 f 1为 f 的逆映射 . 习惯上 , y f (x), x D D
f
f 1
f (D)
的逆映射记成
y f 1(x) , x f (D)
元素 a 不属于集合 M , 记作 a M ( 或 a M ) . M *表示 M 中排除 0 的集 ;
注: M 为数集
M 表示 M 中排除 0 与负数的集 .
3
表示法:
(1) 列举法:按某种方式列出集合中的全体元素 .
映射和函数的概念

教案一课题:映射与函数:一、映射与函数的概念.教学目标:1. 了解映射的概念.若是给出两个集合的对应关系,能判断它是不是映射关系.2. 理解以映射为基础的函数概念,加深对初中函数概念的理解和沟通.理解和掌握函数符号的意义和简单应用.3. 培育学生的观察能力、识图能力、逻辑思维能力和分析问题和解决问题的能力、运算能力.4. 学会分析综合、归纳演绎,用数形结合的思想分析问题和解决问题.渗透符号化思想和联系的观点.教学重点:函数的概念.教学难点:对函数概念的理解.教学方式:教学法.教学手腕:三角板、小黑板、投影仪、胶片. 课时安排:1课时.课堂类型:新讲课.教学进程:一、温习导入1. 温习提问:初中所学的函数的概念是什么?(学生口答这一问题.)2. 导入新课:初中所学函数的概念可看成是数集到数集的一种对应,有必然的局限性.其实,在现实生活和科学研究中有很多非数集之间的对应.这节课咱们将继续研究函数的概念,今天咱们学习第三章节映射与函数.(教师口述这些导入语,并板书课题,导入新课.)二、教学新课1. 实例分析例1: (出示小黑板)设表示东方职业高级中学全部同窗组成的集合,则对中任一元素(某个学生),通过测量身高,在实数集中必有唯一一个实数和对应.解:(教师口述)因为中的每一个同窗都有自己肯定的身高,身高是一个肯定的正实数,同一个同窗在同一次测量中只可能有一个身高,所以对中任一元素对应唯一一个正实数.这是典型的人与数的对应.(启发学生试探、回答,教师板书.)例2: (出示小黑板)对任一对有序实数对(,),在直角坐标系中对应唯一一点(,).解:(教师口述画图说明)任一有序实数对(,)与点(,)对应 ,演示课件:第节例2.如图,任一对有序实数对(,),作为点的坐标,在座标系中对应唯一一点(,).如取=1,=1,有序实数时(1,1),对应坐标系中唯一一点(1,1).这是典型的有序实数对与点的对应.(启发学生试探、回答,教师板书.)例3: (出示小黑板)△与△关于轴对称.对△边上任一点,在△上有唯一对称点与之对应.解:如图,对△边上任一点,在△上都有唯一对称点与之对应.如→,→,→,→.这是典型的点与点的对应.(启发学生试探、回答,教师板书.)2. 映射的概念(重点,红字突出,通过对上述三个实例的分析,归纳出映射的概念,并板书.)设、是两个非空集合,若是依照某种对应法则,对内任一个元素,在中总有一个,且仅有一个元素和对应,则称是集合到的映射;称是在映射的作用下的象,记作,于是=,称作的原象,映射可记为::→,→,其中叫做的概念域,由所有象所组成的集合叫做的值域.(强调值域不必然等于.)3. 函数的概念(重点,红笔突出.板书,在映射的基础上概念函数的概念,明确概念域、值域.的意义,强调允许函数的多种说法并存.)映射概念是初中函数概念的推行,通常就把映射叫做函数.函数的概念域是使函数成心义的实数全部组成的集合,函数的值域是所有函数值的集合.的意义是函数在的函数值.关于的函数常常写作函数=或函数.4. 例题分析例4:(出示投影.重点例题.)在图3-3中,图(1)、(2)、(3)、用箭头所标明的中元素与中元素的对应法则,是不是映射?解:(启发学生试探、分析、老师总结、分析、板书.)在图(1)中,中的一个元素,通过开平方运算,在中有两个元素与之对应.这种对应法则不符合上述映射的概念,所以这种对应关系不是映射;在图(2)中,中任一个元素,通过加倍运算,在中有且只有一个元素与之对应,所以这种对应法则是映射;图(3)中的平方运算法则一样是映射.因为中每一个数通过平方运算,在中都有唯一的一个数与之对应.图(3)与(2)不同的是,(启发学生分析比较,找出不同点.)在图(3)的中每两个元素同时对应中的一个元素,而在中,10和16在中没有原象.结论:(投影,启发学生归纳出映射的实质)到的映射只允许多个元素对应一个元素,而不允许一个元素对应多个元素.映射的值域不必然和相等,一般是的一个子集.例5:(投影)有、、三名射手参加射击比赛,他们在一轮射击中(每人5发子弹),射得的总环数别离为32,48,40.试问三名射手所组成的集合与每人射击可能得的总环数组成的集合之间的对应关系是不是映射?若是是映射,试写出映射的概念域和值域.解:(启发学生试探、分析讲解,老师分析、总结,投影.)设三名射手所组成的集合为,则={,,},每人5次射击所得可能总环数组成的集合是={∈|0≤≤50}.由于三名射手每在一轮射击中,有且只有一个总环数与之对应,所以A到B的对应法则是映射.概念域:;值域:{32,48,40}.三、课堂练习1.(重点练习题.投影,启发学生试探、分析、口答,老师定正.)在下列各题中,哪些对应法则是映射?哪些不是?若是是映射,哪些映射的值域与相等,哪些映射的值域是的真子集?(1)={0,1,2,3},={1,2,3,4},对应法则:“加1”;(2)=,=,对应法则:“求平方根”;(3)=,=,对应法则:“3倍”;(4)=,=,对应法则:“求绝对值”;(5)=,=,对应法则:“求倒数”.2.(重点练习题.投影,启发学生试探、练习、出示解题进程.) 已知函数=2-3,∈{0,1,2,3,5},求(0),(2),(5)及的值域.解:(老师强调值域的求法.)(0)=-3,(2)=1,(5)=7.又(1)=-1,(3)=3,∴的值域为{-3,-1,1,3,7}.3.(投影,启发学生分析、讨论、举例说明,老师定正.)已知集合到集合的对应是映射,试问中的元素在中是不是都有象?中的元素是不是在中都有原象?为何?四、课堂小结(老师口述投影)这节课咱们主要学习了映射与函数的概念及简单应用,要求同窗们加深对映射与函数概念的理解,掌握函数的意义.五、布置作业(投影说明)1. 温习本节课文,并整理笔记.2. 书面作业:第85页习题3-1第1,2题数学思想方式函数思想,数形结合思想.待定系数法.1.函数的思想本章的中心议题是函数.初顶用自变量和因变量之间的单值对应的概念初步探讨了函数的概念、函数关系的表示方式.本章则用集合、映射的思想对函数进行再熟悉,研究了函数关系的成立、函数的表示方式和函数的几个重要性质.在教学中要充分重视映射(函数)思想方式的培育,在练习和作业中,训练学生用函数的思想观察、分析有关问题.2.数形结合的思想本章在分析函数性质时,既观察函数图象,又重视对函数解析式的代数分析,充分表现了数形结合的思想.在教学中,不能单打一的让学生只通过观察图象来总结函数性质,也不能不看图只对解析式进行代数分析就得出函数性质.前者只会使学生仍停留在初中的具体直观思维阶段,而后者则容易离开学生原有熟悉水平,造成学习困难.正确的做法是数形结合,使学生顺利进行由具体直观思维到抽象思维、理论思维的进展.3.待定系数法本章专设一节待定系数法,应该专门好的利用那个优势,对学生进行待定系数法的教学.4.配方式在研究二次函数时,配方式是重要方式.在此后也有大量应用。
第一讲 函数及映射

第一讲函数第1课时变量与函数的概念[学习目标]1.理解函数的概念,了解构成函数的三要素.2.能正确使用区间表示数集.3.会求一些简单函数的定义域、函数值.[知识链接]1.在初中,学习过正比例函数、反比例函数、一次函数、二次函数等,它们的表达形式分别为y=kx(k≠0),y=kx(k≠0),y=ax+b(a≠0),y=ax2+bx+c(a≠0).2.反比例函数y=kx(k≠0)在x=0时无意义.[预习导引]1.函数(1)函数的定义:设集合A是一个非空的数集,对A中的任意数x,按照确定的法则f,都有唯一确定的数y与它对应,则这种对应关系叫做集合A上的一个函数.记作y=f(x),x∈A.(2)函数的定义域:在函数y=f(x),x∈A中,x叫做自变量,自变量取值的范围(数集A)叫做这个函数的定义域.(3)函数的值域:所有函数值构成的集合{y|y=f(x),x∈A}叫做这个函数的值域.2.区间设a,b∈R,且a<b.3.要点一 函数概念的应用例1 设M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出下列四个图形,其中能表示从集合M 到集合N 的函数关系的有( )A.0个B.1个C.2个D.3个 答案 B 解析数集;(2)A 中任意一个数在B 中必须有并且是唯一的实数和它对应. 注意:A 中元素无剩余,B 中元素允许有剩余.2.函数的定义中“任意一个x ”与“有唯一确定的y ”说明函数中两变量x ,y 的对应关系是“一对一”或者是“多对一”而不能是“一对多”. 跟踪演练1 下列对应或关系式中是A 到B 的函数的是( ) A.A ∈R ,B ∈R ,x 2+y 2=1B.A ={1,2,3,4},B ={0,1},对应关系如图:C.A =R ,B =R ,f :x →y =1x -2D.A =Z ,B =Z ,f :x →y =2x -1 答案 B解析 对于A 项,x 2+y 2=1可化为y =±1-x 2,显然对任意x ∈A ,y 值不唯一,故不符合.对于B 项,符合函数的定义.对于C 项,2∈A ,但在集合B 中找不到与之相对应的数,故不符合.对于D 项,-1∈A ,但在集合B 中找不到与之相对应的数,故不符合. 要点二 求函数的定义域 例2 求下列函数的定义域:(1)y =x +12x +1-1-x ;(2)y =x +1|x |-x.解 (1)要使函数有意义,自变量x 的取值必须满足 ⎩⎨⎧x +1≠0,1-x ≥0,即⎩⎨⎧x ≠-1,x ≤1.所以函数的定义域为{x |x ≤1,且x ≠-1}. (2)要使函数有意义,必须满足|x |-x ≠0,即|x |≠x , ∴x <0.∴函数的定义域为{x |x <0}.规律方法 1.当函数是由解析式给出时,求函数的定义域就是求使解析式有意义的自变量的取值集合,必须考虑下列各种情形:(1)负数不能开偶次方,所以偶次根号下的式子大于或等于零;(2)分式中分母不能为0;(3)零次幂的底数不为0;(4)如果f (x )由几部分构成,那么函数的定义域是使各部分都有意义的实数的集合;(5)如果函数有实际背景,那么除符合上述要求外,还要符合实际情况. 2.求函数的定义域,一般是转化为解不等式或不等式组的问题,注意定义域是一个集合,其结果必须用集合或区间来表示.跟踪演练2 函数f (x )=x -2+1x -3的定义域是( )A.[2,3)B.(3,+∞)C.[2,3)∪(3,+∞)D.(2,3)∪(3,+∞)答案 C解析 要使函数有意义,需满足⎩⎨⎧x -2≥0,x -3≠0,即x ≥2且x ≠3. 要点三 求函数值或值域 例3 已知f (x )=11+x(x ∈R ,且x ≠-1),g (x )=x 2+2(x ∈R ). (1)求f (2),g (2)的值; (2)求f [g (3)]的值. 解 (1)∵f (x )=11+x ,∴f (2)=11+2=13.又∵g (x )=x 2+2, ∴g (2)=22+2=6. (2)∵g (3)=32+2=11, ∴f [g (3)]=f (11)=11+11=112. 规律方法 求函数值时,首先要确定出函数的对应法则f 的具体含义,然后将变量代入解析式计算,对于f [g (x )]型的求值,按“由内到外”的顺序进行,要注意f [g (x )]与g [f (x )]的区别. 跟踪演练3 求下列函数的值域. (1)y =2x +1,x ∈{1,2,3,4,5}; (2)y =x +1;(3)y =x x +1.解 (1)(直接法)将x =1,2,3,4,5分别代入y =2x +1计算得函数的值域为{3,5,7,9,11}.(2)(观察法)∵函数的定义域为{x |x ≥0}, ∴x ≥0, ∴x +1≥1.∴函数y =x +1的值域为[1,+∞). (3)(分离常数法)∵y =x x +1=1-1x +1, 且定义域为{x |x ≠-1},∴1x +1≠0,即y ≠1. ∴函数y =x x +1的值域为{y |y ∈R ,且y ≠1}.1.下列图形中,不可能是函数y =f (x )的图象的是( )答案 B解析 根据函数的存在性和唯一性(定义)可知,B 不正确. 2.函数f (x )=x -1x -2的定义域为( ) A.[1,2)∪(2,+∞) B.(1,+∞) C.[1,2) D.[1,+∞)答案 A解析 由题意可知,要使函数有意义,需满足 ⎩⎨⎧x -1≥0,x -2≠0,即x ≥1且x ≠2.3.已知f (x )=x 2+x +1,则f [f (1)]的值是( )A.11B.12C.13D.10答案 C解析f[f(1)]=f(3)=9+3+1=13.4.下列各组函数中,表示同一个函数的是( )A.y=x-1和y=x2-1 x+1B.y=x0和y=1C.f(x)=x2和g(x)=(x+1)2D.f(x)=x2x和g(x)=xx2答案 D解析A中的函数定义域不同;B中y=x0的x不能取0;C中两函数的对应关系不同,故选D.5.集合{x|-1≤x<0,或1<x≤2}用区间表示为________.答案[-1,0)∪(1,2]解析结合区间的定义知,用区间表示为[-1,0)∪(1,2].第2课时映射与函数[学习目标]1.了解映射、一一映射的概念及表示方法.2.了解象与原象的概念.3.了解映射与函数的区别与联系.[知识链接]函数的定义:设集合A是一个非空的数集,对A中的任意数x,按照确定的法则f,都有唯一确定的数y与它对应,则这种对应关系叫做集合A上的一个函数.记作y=f(x),x∈A.[预习导引]1.映射和一一映射的有关概念映射是函数概念的推广,函数是一种特殊的映射.典型例题要点一映射的判断例1 下列对应是不是从A到B的映射,能否构成函数?(1)A=R,B=R,f:x→y=1x+1;(2)A={a|a=n,n∈N+};B={b|b=1n,n∈N+},f:a→b=1a;(3)A=[0,+∞),B=R,f:x→y2=x;(4)A={x|x是平面M内的矩形},B={x|x是平面M内的圆},f:作矩形的外接圆.解(1)当x=-1时,y的值不存在,∴不是映射,更不是函数.(2)是映射,也是函数,因A中所有的元素的倒数都是B中的元素.(3)∵当A中的元素不为零时,B中有两个元素与之对应,所以不是映射,更不是函数.(4)是映射,但不是函数,因为A,B不是非空数集.规律方法按照映射定义可知,映射应满足存在性——集合A中的每一个元素在集合B中都有对应元素;唯一性——集合A中的每一个元素在集合B中只有唯一的对应元素.跟踪演练1 在图(1)(2)(3)(4)中用箭头所标明的A中元素与B中元素的对应法则,试判断由A到B是不是映射?是不是函数关系?解在图(1)中,集合A中任一个数,通过“开平方”在B中有两个数与之对应,不符合映射的定义,不是映射,当然也不是函数关系.图(2)中,元素6在B中没有象,则由A到B的对应关系不是映射,也不是函数关系.图(3)中,集合A中任一个数,通过“2倍”的运算,在B中有且只有一个数与之对应,所以A到B的对应法则是数集到数集的映射,并且是一一映射,这两个数集之间的对应关系是函数关系.图(4)中,对A中的每一个数,通过平方运算在B中都有唯一的一个数与之对应,是映射,数集A到B之间的对应关系是函数关系.要点二映射个数问题例2 已知A={a,b,c},B={-2,0,2},映射f:A→B满足f(a)+f(b)=f(c),求满足条件的映射的个数.解(1)当A中三个元素都对应0时,则f(a)+f(b)=0+0=0=f(c)有1个映射;(2)当A中三个元素对应B中两个时,满足f(a)+f(b)=f(c)的映射有4个,分别为2+0=2,0+2=2,(-2)+0=-2,0+(-2)=-2.(3)当A中的三个元素对应B中三个元素时,有2个映射,分别为(-2)+2=0,2+(-2)=0.因此满足条件的映射共有7个.规律方法对含有附加条件的映射问题,须按映射的定义一一列举或进行分类讨论.跟踪演练2 集合A={1,2,3},B={3,4},从A到B的映射f满足f(3)=3,则这样的映射共有( ) A.3个 B.4个 C.5个 D.6个 答案 B解析 由于要求f (3)=3,因此只需考虑剩下两个元素的象的问题,总共有如图所示的4种可能.要点三 映射的象与原象例3 已知映射f :A →B ={(x ,y )|x ∈R ,y ∈R },f :(x ,y )→(x +2y +2,4x +y ).(1)求A 中元素(5,5)的象; (2)求B 中元素(5,5)的原象.解 (1)当x =5,y =5时,x +2y +2=17,4x +y =25. 故A 中元素(5,5)的象是(17,25). (2)令B 中元素(5,5)的原象为(x ,y ), 则⎩⎨⎧x +2y +2=5,4x +y =5,得⎩⎨⎧x =1,y =1.故B 中元素(5,5)的原象是(1,1).规律方法 1.解答此类问题:关键是:(1)分清原象和象;(2)搞清楚由原象到象的对应法则.2.一般已知原象求象时,常采用代入法,已知象求原象时,通常由方程组求解,求解过程中要注意象与原象的区别和联系.跟踪演练3 已知映射f :A →B 中,A =B ={(x ,y )|x ∈R ,y ∈R },f :(x ,y )→(3x -2y +1,4x +3y -1). (1)求A 中元素(1,2)的象; (2)求B 中元素(1,2)的原象;解 (1)当x =1,y =2时,3x -2y +1=0,4x +3y -1=9. 故A 中元素(1,2)的象为(0,9).(2)令⎩⎨⎧3x -2y +1=1,4x +3y -1=2,得⎩⎪⎨⎪⎧x =617,y =917,故B 中元素(1,2)的原象是⎝ ⎛⎭⎪⎫617,917.1.在从集合A 到集合B 的映射中,下列说法正确的是( ) A.集合B 中的某一个元素b 的原象可能不止一个 B.集合A 中的某一个元素a 的象可能不止一个 C.集合A 中的两个不同元素所对应的象必不相同 D.集合B 中的两个不同元素的原象可能相同 答案 A解析 根据映射的概念可知:A 中元素必有唯一确定的象,但在象的集合中一个象可以有不同的原象,故A 正确.2.下列对应法则f 为A 到B 的函数的是( ) A.A =R ,B ={x |x >0},f :x →y =|x | B.A =Z ,B =N +,f :x →y =x 2 C.A =Z ,B =Z ,f :x →y =x D.A =[-1,1],B ={0},f :x →y =0 答案 D解析 在选项A 、B 、C 中,集合A 中的有些元素在对应法则作用下,在集合B 中找不到象.选项D 表示无论x 取何值y 都等于0.所以选D. 3.下列集合A 到集合B 的对应中,构成映射的是( )答案 D解析 按映射的定义判断知,D 项符合.4.设集合A 、B 都是坐标平面上的点集{(x ,y )|x ∈R ,y ∈R },映射f :A →B 使集合A 中的元素(x ,y )映射成集合B 中的元素(x +y ,x -y ),则在f 下,象(2,1)的原象是( )A.(3,1)B.⎝ ⎛⎭⎪⎫32,12C.⎝ ⎛⎭⎪⎫32,-12 D.(1,3)答案 B 解析 由⎩⎨⎧ x +y =2,x -y =1,得⎩⎪⎨⎪⎧ x =32,y =12,故选B.5.已知集合A ={a ,b },B ={c ,d },则从A 到B 的不同映射有________个. 答案 4解析 a →c ,b →c ;a →d ,b →d ;a →c ,b →d ;a →d ,b →c ,共4个.。
高中数学复习课件-第二章 映射

f(a) f(b) f(c)
0
0
0
1
0
1
0
1
1
-1
0
-1
0
-1
-1
1
-1
0
-1
1
0
由上表可知满足条件的映射有 7 个.
小结:
1、映射的概念 2、映射与函数的区别与联系
思考:映射与函数有什么区别与联系?
函数 映射
建立在两个非空数集上的特殊对应
扩展
建立在两个任意集合上的特殊对应
(1)函数是特殊的映射,映射是函数概念的扩展
1.可以是“一对一” 2.可以是“多对一” 3.不能“一对多”
4.A中不能有剩余元素
5.B中可以有剩余元素
例1 说出下图所示的对应中,哪些是A到B的映射?
求一定条件下映射的个数
已知 A={a,b,c},B={-1,0,1},映射 f:A→B 满足
f(a)+f(b)=f(c),求映射 f:A→B 的个数.
【解析】(法一)由于 f(a),f(b),f(c)∈{-1,0,1},故符合
f(a)+f(b)=f(c)条件的 f(a),f(b),f(c)的取值情况如下表所示:
练习1:下列对应是否为从集合A到集合B的映射?
(1)A R, B {y | y 0}, f : x | x |;
(2) A R, B R, f : x x2;
(3) A Z , B R, f : x x; (4) A Z, B N, f : x x2 3
练习2 :已知集合A={a , b},集合B={c, d, e}. (1)一共可建立多少个从集合A到集合B的映射?
(1)点(2,3)在映射f下的像是(1,7);
映射与函数有关概念常见错误及分析

l 。
爱|
意 元 素 在 B 中都 有 象 , 唯 一 . 且 函 数 的 概 念 : 非 空 数 集 A 到 非 空 数 集 B 的 从 特 殊 映 射 叫 函数 .
二、 函数 的奇 偶 性
函数奇偶性的定义 : 函数 _ ) 于 定 义 域 内 厂 对 ( 任 意 一 个 , 有 ,( ) 一 ,( ) 那 么 函数 , 都 一z = z -,
( ) 奇 函 数 ; 果 都 有 _ ~ z ,( , 么 函 z叫 如 厂 ( ) ) 那 数 , z 叫偶 函 数 . 函 数 _ z 在 原 点 有 意 义 , () 奇 厂 ) ( 则
是 , 意 理解 不 清 导 致 错 误 . 题
【 9 】 若 函数 _ z = 2 + 3 z∈[ 2 6 , 椤 3 厂 ) z ( , 一 , ] 则 函 数 , I 1是 ( ( )
A. 函数 _ { , , ) { , , ) 满 足 例 】 厂 12 3 一 1 2 3 , :
、
映射 与 函数 的概 念
映射的概念 : 映射 _ A— B 要 求 集 合 A 中任 , 、 :
l z 一3三 个 ; 对 一 即根 据 元 素 的 对 等 性 , 妨 厂 ) ( 二 不 设 当 厂 1 一 1 厂 2 一 1时 , 有 _ 3 一 3 假 设 () , ( ) 必 , ) . ’ (
r1 I 一mf l > 优『
一
2 1 ≤2解得 一1 ≤ ÷ . 以 7 的取 ≤ 一m , ≤m 所 " / / '
) .
的 任 意 一 个 元 素 , B 中 有 唯 一 的 元 素 与 之 对 在
高中数学第2章函数2.3映射的概念课件苏教版必修1
(3)A=B=R,f:x→±x;
(4)A={x|x是三角形},B=R,f:x→x的面积.
典例导学 即时检测 一 二 三
解(1)对于集合A中的元素3,在f作用下得0∉B,即3在集合B中没有 对应元素,所以不是映射.
(4)是映射,也是函数.因为当x≥2时,x-3≥-1,而y=x2-4x+3=(x-2)21≥-1,所以对集合A中每一个元素,在集合B中都有唯一元素与之对 应.A,B是非空数集,所以该对应既是映射,又是函数.
典例导学 即时检测 一 二 三
判断下列对应关系,哪些是集合A到B的映射,哪些不是?为什么? (导学号51790059)
(2)在f作用下,集合A中的0,1,2,9分别对应到集合B中的1,0,1,64,所 以是映射.
(3)对于集合A中元素1,在f作用下得±1,该对应是“一对多”,故不是
映射. (4)对于集合A中的每一个三角形,在f作用下,都有唯一的一个面
积相对应,所以是映射.
典例导学 即时检测 一 二 三
映射的判断要严格按照定义,映射定义包括如下性质:①方
典例导学 即时检测 一 二 三
解(1)是映射,也是函数.因为集合A中的每一个元素在集合B中都 能找到唯一的元素与之对应.又A、B均为非空数集,所以该映射是 函数.
(2)不是集合A到B的映射,更不是函数,因为集合A中元素0,在集合 B中无对应元素.
(3)不是集合A到B的映射,也不是函数,因为任何正数的平方根都 有两个值,即集合A中的任一元素,在集合B中都有两个元素与之对 应,所以不是映射.
������ + ������ = 2,解得 ������ = 3,
007函数与映射的概念
高三数学 序号007 高三 年级 8 班 教师 方雄飞 学生函数与映射的概念学习目标1、知识与技能:理解函数的概念、函数的三要素; 了解映射的概念2、过程与方法:通过实例,进一步体会函数是描述变量之间的关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用3、情感态度与价值观:使学生感受到学习函数的必要性的重要性,激发学习的积极性。
学习重点:理解函数的模型化思想,用集合与对应的语言来刻画函数 难点:函数、映射的概念,符号“y =f (x )”的含义 学习过程一、知识归纳1.函数与映射的概念2(1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的 ;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的 .显然,值域是集合B 的子集.(2)函数的三要素: 、 和 .(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据. (4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法. 3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的 ,这样的函数通常叫做分段函数. 二、例题讲解例1、下面对应关系f 是否为A 到B 的函数?并说明理由。
A={x|-2≤x≤2},B={y|0≤y≤4},2:x y f =分析:解本题的关键是抓住映射、函数的定义,当不是映射或函数时,只要列举出一个不符合定义的特例即可.变式:把例1中B 改为(1)B={y|y≥0}; 或(2)B={y|0≤y <4},情况又如何?方法点拨:理解:f A →B 的函数及映射的概念,应注意:①、集合A 中每一个元素,在集合B 中都有象,并且象是唯一的,这是映射区别于一般对应的本质特征; ②、集合A 中不同元素,在集合B 中对应的象可以是同一个; ③、不要求集合B 中的每一个元素在集合A 中都有元素与之对应; 练习1、下图中,可表示函数()x f y =的图像只能是( )练习2、已知集合{}40≤≤=x x P ,{}20≤≤=x x Q ,下列不表示从P 到Q 的映射是( ) A 、x y x f 21:=→ B 、x y x f 31:=→ C 、x y x f 32:=→ D 、x y x f =→:练习3、集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( ).例2、试判断以下各组函数是否表示同一函数?(1)、f (x )=|x |x ,g (x )=⎩⎪⎨⎪⎧1 x ≥0 ,-1 x <0 ;(2)、f (x )=2n +1x 2n +1,g (x )=2n -1x 2n -1(n ∈N *);练习4、试判断以下各组函数是否表示同一函数?(1)、f (x )=x 2,g (x )=3x 3; (2)、f (x )=x x +1,g (x )=x 2+x ;(3)、f (x )=x 2-2x -1,g (t )=t 2-2t -1.例3、已知函数1()2f x x =+(1)求函数的定义域;(2)求2(3),()3f f -的值; (3)求[])3(-f f 的值;(4)当0a >时,求(),(1)f a f a -;(5)若12)(+=x xg ,求f(g(x))的表达式.练习5.例3中,(1)求f(f(1)); (2)在(5)中求g(f(x)).三、课后小结课后作业1、设f:x→x 2是集合A 到集合B 的映射,如果B={1,2},则A∩B 等于( )A.∅B.{1}C.∅或{2}D.∅或{1}2、设A={x|x 是锐角},B=(0,1),从A 到B 的映射,对应法则是“求正弦”,与A 中元素600相对应的B 中元素是 ;与B 中元素22相对应的A 中元素是 。
映射、对应和函数1
中都有唯一的元素和它对应.
8
四.映射与函数的联系和区别
映射、对应和函数 2019/4/29
映射:
设A,B是两个非空集合,如果按照某种对应法则f,
对A中的任意一个元素x,在B中有一个且仅有一个元素y
与x对应,则称f是集合A到集合B的映射。
记作 f: A → B 函数: 设集合A是一个非空的数集,对A内任意数x,按
如果A、B是非空数集,那么A到B 的映射f:A B 就叫做A到B的函数
记作: y=f(x)
函数是一种特殊的映射
10
映射、对应和函数
例3:在下列对应中、哪些是映射、那些映射是20函19/4数/29 、
那些不是?为什么?
(1)设A={1,2,3,4},B={3,5,7,9},对应关系:
f(x)=2x+1,x∈A .
设A,B是两个非空集合,如果按照 某种对应法则f,对A中的任意一个 元素x,在B中有且仅有一个元素y与 x对应,则称f是集合A到集合B的映 射.
这时, X称作y的原象,y称作是x在映射f的作
用的象,记作f(x), 于是
y=f(x).
映射f也可记为:
f: A →B
X → f(x)
4
二、对概念的认识
映射、对应和函数 2019/4/29
照 确定的法则f,都有唯一确定的数值y与它应,则这 种对应关系叫做集合A上的一个函数。
记作 y=f(x),x∈A
联系:都是从A到B 的单值对应 区别:构成函数的两个集合必须是数集,而构成映射的两个集
合可以是其它集合
9
四.映射和函数的联系和区别
映射、对应和函数 2019/4/29
因此还可以用映射的概念来定义函数:
高考数学第二章 函数与基本初等函数Ⅰ
第二章函数与基本初等函数Ⅰ第一节函数的概念及其表示1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应法则.(3)相同函数:如果两个函数的定义域和对应法则完全一致,则这两个函数相同,这是判断两函数相同的依据.(4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应法则,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.[小题体验]1.(教材习题改编)下列五个对应f,不是从集合A到集合B的函数的是________(填序号).①A =⎩⎨⎧⎭⎬⎫12,1,32 ,B ={-6,-3,1},f ⎝⎛⎭⎫12 =-6,f (1)=-3,f ⎝⎛⎭⎫32 =1; ②A ={1,2,3},B ={7,8,9},f (1)=f (2)=7,f (3)=8; ③A =B ={1,2,3},f (x )=2x -1; ④A =B ={x |x ≥-1},f (x )=2x +1;⑤A =Z ,B ={-1,1},n 为奇数时,f (n )=-1,n 为偶数时,f (n )=1.解析:根据函数定义,即看是否是从非空数集A 到非空数集B 的映射.③中集合A 中的元素3在集合B 中无元素与之对应,故不是A 到B 的函数.其他均满足.答案:③2.(教材习题改编)若f (x )=x -x 2,则f ⎝⎛⎭⎫12 =________. 解析:f ⎝⎛⎭⎫12 =12-⎝⎛⎭⎫12 2=14. 答案:143.(教材习题改编)用长为30 cm 的铁丝围成矩形,若将矩形面积S (cm 2)表示为矩形一边长x (cm)的函数,则函数解析式为________,其函数定义域为________.解析:矩形的另一条边长为15-x ,且x >0,15-x >0. 故S =x (15-x ),定义域为(0,15). 答案:S =x (15-x ) (0,15) 4.函数f (x )=x -4|x |-5的定义域是________________. 答案:[4,5)∪(5,+∞)1.解决函数的一些问题时,易忽视“定义域优先”的原则.2.易混“函数”与“映射”的概念:函数是特殊的映射,映射不一定是函数,从A 到B 的一个映射,若A ,B 不是数集,则这个映射便不是函数.3.误把分段函数理解为几个函数组成. [小题纠偏]1.函数y =x 与函数y =xx________(填“是”或“不是”)同一函数. 解析:函数y =x 的定义域为[0,+∞),y =xx的定义域为(0,+∞).因为两个函数的定义域不同,所以不表示同一函数.答案:不是2.函数f (x )=x -1·x +1的定义域为________.解析:由题意,得⎩⎪⎨⎪⎧x -1≥0,x +1≥0,所以x ≥1,所以函数f (x )的定义域是[1,+∞).答案:[1,+∞)3.一个面积为100的等腰梯形,上底长为x ,下底长为上底长的3倍,则把它的高y 表示成x 的函数为______________________________________________________________.解析:由x +3x2·y =100,得2xy =100,所以y =50x (x >0). 答案:y =50x (x >0)4.已知f ⎝⎛⎭⎫1x =x 2+5x ,则f (x )=________. 解析:令t =1x ,∴x =1t .∴f (t )=1t 2+5t .∴f (x )=5x +1x 2(x ≠0).答案:5x +1x 2(x ≠0)考点一 函数的定义域(常考常新型考点——多角探明)[命题分析]函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分,研究函数问题必须树立“定义域优先”的观念.求给定函数的定义域往往转化为解不等式(组)的问题,在解不等式(组)取交集时可借助于数轴.常见的命题角度有:(1)求给定函数解析式的定义域; (2)求抽象函数的定义域; (3)已知定义域确定参数问题.[题点全练]角度一:求给定函数解析式的定义域 1.(2016·南师附中月考)y =x -12x -log 2(4-x 2)的定义域是________. 解析:要使函数有意义,必须⎩⎨⎧x -12x≥0,x ≠0,4-x 2>0,∴x ∈(-2,0)∪[1,2). 答案:(-2,0)∪[1,2) 2.函数f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为____________________.解析:由⎩⎪⎨⎪⎧1-|x -1|≥0,a x-1≠0⇒⎩⎨⎧0≤x ≤2,x ≠0⇒0<x ≤2,故所求函数的定义域为(0,2]. 答案:(0,2]角度二:求抽象函数的定义域3.若函数y =f (x )的定义域是[1,2 016],则函数g (x )=f (x +1)x -1的定义域是________. 解析:令t =x +1,则由已知函数的定义域为[1,2 016],可知1≤t ≤2 016.要使函数f (x +1)有意义,则有1≤x +1≤2 016,解得0≤x ≤2 015,故函数f (x +1)的定义域为[0,2 015].所以使函数g (x )有意义的条件是⎩⎪⎨⎪⎧0≤x ≤2 015,x -1≠0,解得0≤x <1或1<x ≤2 015.故函数g (x )的定义域为[0,1)∪(1,2 015]答案:[0,1)∪(1,2 015]4.若函数f (x 2+1)的定义域为[-1,1],则f (lg x )的定义域为________. 解析:因为f (x 2+1)的定义域为[-1,1], 则-1≤x ≤1,故0≤x 2≤1, 所以1≤x 2+1≤2.因为f (x 2+1)与f (lg x )是同一个对应法则, 所以1≤lg x ≤2,即10≤x ≤100,所以函数f (lg x )的定义域为[10,100]. 答案:[10,100]角度三:已知定义域确定参数问题 5.(2016·苏北四市调研)若函数f (x )= 2ax ax22+--1的定义域为R ,则a 的取值范围为______________________.解析:因为函数f (x )的定义域为R , 所以222ax ax +--1≥0对x ∈R 恒成立,即2ax ax22+-≥20,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0, 解得-1≤a ≤0. 答案:[-1,0][方法归纳] 函数定义域的2种求法考点二 求函数的解析式(重点保分型考点——师生共研)[典例引领](1)已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式; (2)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ); (4)已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝⎛⎭⎫1x ·x -1,求f (x ). 解:(1)由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2,所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2. (2)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg 2x -1,x >1.(3)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x ,x ∈R.(4)在f (x )=2f ⎝⎛⎭⎫1x x -1中, 用1x 代替x ,得f ⎝⎛⎭⎫1x =2f (x )1x-1, 将f ⎝⎛⎭⎫1x =2f (x )x -1代入f (x )=2f ⎝⎛⎭⎫1x x -1中, 可求得f (x )=23x +13.[由题悟法]求函数解析式的4个方法[即时应用]1.设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.解:设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x +c . 又∵方程f (x )=0有两个相等实根,∴Δ=4-4c =0,解得c =1.故f (x )=x 2+2x +1. 2.根据下列条件求各函数的表达式:(1)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x ); (2)已知f ⎝⎛⎭⎫x +1x =x 3+1x 3,求f (x ). 解:(1)设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +b +5a =2x +17,所以a =2,b =7,所以f (x )=2x +7.(2)因为f ⎝⎛⎭⎫x +1x =x 3+1x 3=⎝⎛⎭⎫x +1x 3-3⎝⎛⎭⎫x +1x ,所以f (x )=x 3-3x (x ≥2或x ≤-2).考点三 分段函数(重点保分型考点——师生共研)[典例引领]1.已知f (x )=⎩⎨⎧log 3x ,x >0,a x +b ,x ≤0,且f (0)=2,f (-1)=3,则f (f (-3))=________.解析:由题意得f (0)=a 0+b =1+b =2,解得b =1.f (-1)=a -1+b =a -1+1=3,解得a =12.故f (-3)=⎝⎛⎭⎫12-3+1=9, 从而f (f (-3))=f (9)=log 39=2. 答案:22.(2015·山东高考改编)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x , x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是________.解析:由f (f (a ))=2f (a )得,f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1.当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1.综上,a ≥23.答案:⎣⎡⎭⎫23,+∞ [由题悟法]分段函数2种题型的求解策略(1)根据分段函数解析式求函数值首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解. (2)已知函数值或函数值范围求自变量的值或范围应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.[提醒] 当分段函数的自变量范围不确定时,应分类讨论.[即时应用]1.已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≥0,3x 2,x <0,且f (x 0)=3,则实数x 0的值为________.解析:由条件可知,当x 0≥0时,f (x 0)=2x 0+1=3,所以x 0=1;当x 0<0时,f (x 0)=3x 20=3,所以x 0=-1,所以实数x 0的值为-1或1.答案:-1或12.已知f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0,使f (x )≥-1成立的x 的取值范围是________.解析:由题意知⎩⎪⎨⎪⎧x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧x >0,-(x -1)2≥-1,解得-4≤x ≤0或0<x ≤2,故x 的取值范围是[-4,2]. 答案:[-4,2]一抓基础,多练小题做到眼疾手快1.函数f (x )=x +3+log 2(6-x )的定义域是________.解析:要使函数有意义应满足⎩⎪⎨⎪⎧x +3≥0,6-x >0,解得-3≤x <6. 答案:[-3,6)2.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于________.解析:令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.答案:743.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为________________________.解析:设g (x )=ax 2+bx +c (a ≠0), ∵g (1)=1,g (-1)=5,且图象过原点, ∴⎩⎪⎨⎪⎧a +b +c =1,a -b +c =5,c =0,解得⎩⎪⎨⎪⎧a =3,b =-2,c =0,∴g (x )=3x 2-2x . 答案:g (x )=3x 2-2x4.已知函数f (x )=⎩⎪⎨⎪⎧(a -1)x +1,x ≤1,a x -1,x >1,若f (1)=12,则f (3)=________.解析:由f (1)=12,可得a =12,所以f (3)=⎝⎛⎭⎫122=14. 答案:145.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x +1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:由题意知f (1)=2+1=3,f (f (1))=f (3)=32+6a , 若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0,解得-1<a <3. 答案:(-1,3)二保高考,全练题型做到高考达标1.函数f (x )=10+9x -x 2lg (x -1)的定义域为________.解析:要使函数f (x )有意义,则x 须满足⎩⎪⎨⎪⎧10+9x -x 2≥0,x -1>0,lg (x -1)≠0,即⎩⎪⎨⎪⎧(x +1)(x -10)≤0,①x >1,x ≠2,解①得,-1≤x ≤10.所以函数f (x )的定义域为(1,2)∪(2,10]. 答案:(1,2)∪(2,10]2.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,x 2,x <0,则f (f (-2))=________.解析:因为f (-2)=(-2)2=4,而f (4)=4+1=5,所以f (f (-2))=5. 答案:53.(2016·福建四地六校联考)若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (1)=________.解析:令x =1,得2f (1)-f (-1)=4,① 令x =-1,得2f (-1)-f (1)=-2,② 联立①②得f (1)=2. 答案:24.已知函数f (x ),g (x )分别由下表给出:则满足f (g (x ))>g (f (x ))的x 的值是________.解析:当x =1时,f (g (1))=1,g (f (1))=3,不满足f (g (x ))>g (f (x ));当x =2时,f (g (2))=3,g (f (2))=1,满足f (g (x ))>g (f (x ));当x =3时,f (g (3))=1,g (f (3))=3,不满足f (g (x ))>g (f (x )).答案:25.已知函数f (x )=⎩⎪⎨⎪⎧3x,0≤x ≤1,92-32x ,1<x ≤3,当t ∈[0,1]时,f (f (t ))∈[0,1],则实数t 的取值范围是________.解析:当t ∈[0,1]时,f (t )=3t ∈[1,3];当3t =1,即t =0时,f (1)=3∉[0,1],不符合题意,舍去;当3t ∈(1,3]时,f (3t )=92-32×3t ∈[0,1],由f (3t )=92-32×3t ≥0,得3t ≤3,所以t ≤1;由f (3t )=92-32×3t ≤1,得3t ≥73,所以t ≥log 373.综上所述,实数t 的取值范围是⎣⎡⎦⎤log 373,1. 答案:⎣⎡⎦⎤log 373,1 6.(2016·南京一中检测)已知f (x )=⎩⎨⎧x 12,x ∈[0,+∞),|sin x |,x ∈⎝⎛⎭⎫-π2,0,若f (a )=12,则a =________.解析:若a ≥0,由f (a )=12得,a 1212=12,解得a =14;若a <0,则|sin a |=12,a ∈⎝⎛⎭⎫-π2,0,解得a =-π6. 综上可知,a =14或-π6.答案:14或-π67.已知函数y =f (x 2-1)的定义域为[-3, 3 ],则函数y =f (x )的定义域为________. 解析:∵y =f (x 2-1)的定义域为[-3,3], ∴x ∈[-3, 3 ],x 2-1∈[-1,2], ∴y =f (x )的定义域为[-1,2]. 答案:[-1,2]8.已知函数f (x )=2x +1与函数y =g (x )的图象关于直线x =2成轴对称图形,则函数y =g (x )的解析式为________.解析:设点M (x ,y )为函数y =g (x )图象上的任意一点,点M ′(x ′,y ′)是点M 关于直线x =2的对称点,则⎩⎪⎨⎪⎧x ′=4-x ,y ′=y .又y ′=2x ′+1,∴y =2(4-x )+1=9-2x ,即g (x )=9-2x . 答案:g (x )=9-2x9.规定[t ]为不超过t 的最大整数,例如[12.6]=12,[-3.5]=-4,对任意实数x ,令f 1(x )=[4x ],g (x )=4x -[4x ],进一步令f 2(x )=f 1[g (x )].(1)若x =716,分别求f 1(x )和f 2(x );(2)若f 1(x )=1,f 2(x )=3同时满足,求x 的取值范围. 解:(1)∵x =716时,4x =74,∴f 1(x )=⎣⎡⎦⎤74=1. ∵g (x )=74-⎣⎡⎦⎤74=34.∴f 2(x )=f 1[g (x )]=f 1⎝⎛⎭⎫34=[3]=3. (2)∵f 1(x )=[4x ]=1,g (x )=4x -1, ∴f 2(x )=f 1(4x -1)=[16x -4]=3.∴⎩⎪⎨⎪⎧1≤4x <2,3≤16x -4<4,∴716≤x <12.故x 的取值范围为⎣⎡⎭⎫716,12.10.(1)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式; (2)若函数f (x )=xax +b(a ≠0),f (2)=1,且方程f (x )=x 有唯一解,求f (x )的解析式.解:(1)当x ∈(-1,1)时,有 2f (x )-f (-x )=lg(x +1).① 以-x 代x ,得2f (-x )-f (x )=lg(-x +1).② 由①②消去f (-x ),得f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1).(2)由f (2)=1,得22a +b=1,即2a +b =2.由f (x )=x ,得xax +b=x ,变形得x ⎝ ⎛⎭⎪⎫1ax +b -1=0,解此方程得x =0或x =1-ba ,又因为方程有唯一解,故1-ba =0,解得b =1,代入2a +b =2,得a =12,所以f (x )=2xx +2. 三上台阶,自主选做志在冲刺名校1.(2016·金陵中学月考)已知f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是________.解析:要使函数f (x )的值域为R ,需使⎩⎪⎨⎪⎧1-2a >0,ln 1≤1-2a +3a ,∴⎩⎪⎨⎪⎧a <12,a ≥-1,∴-1≤a <12.即a 的取值范围是⎣⎡⎭⎫-1,12. 答案:⎣⎡⎭⎫-1,12 2.已知f 是有序数对集合M ={(x ,y )|x ∈N *,y ∈N *}上的一个映射,正整数数对(x ,y )在映射f 下的象为实数z ,记作f (x ,y )=z .对于任意的正整数m ,n (m >n ),映射f 由下表给出:则使不等式f 解析:∵∀x ∈N *,都有2x >x ,∴f (2x ,x )=2x -x , 则f (2x ,x )≤4⇔2x -x ≤4(x ∈N *)⇔2x ≤x +4(x ∈N *), 当x =1时,2x =2,x +4=5,2x ≤x +4成立; 当x =2时,2x =4,x +4=6,2x ≤x +4成立; 当x ≥3(x ∈N *)时,2x >x +4. 故满足条件的x 的集合是{1,2}. 答案:{1,2}3.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx+n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度.解:(1)由题意及函数图象,得⎩⎨⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x 100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70.∵x ≥0,∴0≤x ≤70.故行驶的最大速度是70千米/时.第二节 函数的单调性与最值1.函数的单调性(1)单调函数的定义(2)单调区间的定义如果函数y =f (x )在区间D 上是单调增函数或单调减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,单调增区间和单调减区间统称为函数y =f (x )的单调区间.2.函数的最值 [小题体验]1.(教材习题改编)下列函数中,在区间(0,2)上是单调增函数的是________.(填序号) ①y =1-3x ;②y =-1x;③y =x 2+1;④y =|x +1|.解析:y =1-3x 在区间(0,2)上是减函数,故①错误,其余均正确.故填②③④. 答案:②③④2.(教材习题改编)若函数y =ax 2+(2a +1)x 在(-∞,2]上是增函数,则实数a 的取值范围是________.解析:应分函数为一次函数还是二次函数两种情况:①若a =0,则y =x 在(-∞,2]上是增函数,所以a =0符合题意;②若a ≠0,则⎩⎨⎧a <0,-2a +12a ≥2,解得-16≤a <0.综合①②得实数a 的取值范围是⎣⎡⎦⎤-16,0. 答案:⎣⎡⎦⎤-16,0 3.已知函数f (x )=2x -1(x ∈[2,6]),则函数的最大值为______. 答案:21.易混淆两个概念:“函数的单调区间”和“函数在某区间上单调”,前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.2.若函数在两个不同的区间上单调性相同,则这两个区间要分开写,不能写成并集.例如,函数f (x )在区间(-1,0)上是减函数,在(0,1)上是减函数,但在(-1,0)∪(0,1)上却不一定是减函数,如函数f (x )=1x .3.两函数f (x ),g (x )在x ∈(a ,b )上都是增(减)函数,则f (x )+g (x )也为增(减)函数,但f (x )·g (x ),1f (x )等的单调性与其正负有关,切不可盲目类比. [小题纠偏]1.函数y =⎩⎪⎨⎪⎧2x +1,x <0,2x 2+x -1,x ≥0的单调增区间是________.解析:由题意画出函数y =⎩⎪⎨⎪⎧2x +1,x <0,2x 2+x -1,x ≥0的图象如图所示,所以函数的单调增区间是(-∞,0)和[0,+∞). 答案:(-∞,0)和[0,+∞)2.设函数f (x )是(-3,3)上的增函数,若f (m -1)>f (2m -1),则实数m 的取值范围是________.解析:由题意,得⎩⎪⎨⎪⎧m -1>2m -1,-3<m -1<3,-3<2m -1<3,所以-1<m <0.答案:(-1,0)3.设定义在[-1,7]上的函数y =f (x )的图象如图所示,则函数y =f (x )的增区间为________.答案:[-1,1],[5,7]考点一 函数单调性的判断(基础送分型考点——自主练透)[题组练透]1.函数y =-(x -3)|x |的递增区间是________.解析:y =-(x -3)|x |=⎩⎪⎨⎪⎧-x 2+3x ,x >0,x 2-3x ,x ≤0.作出该函数的图象,观察图象知递增区间为⎣⎡⎦⎤0,32. 答案:⎣⎡⎦⎤0,32 2.讨论函数f (x )=axx 2-1(a >0)在x ∈(-1,1)上的单调性. 解:法一(定义法): 设-1<x 1<x 2<1, 则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1 =ax 1x 22-ax 1-ax 2x 21+ax 2(x 21-1)(x 22-1) =a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1). ∵-1<x 1<x 2<1,a >0,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0.∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),故函数f (x )在(-1,1)上为减函数. 法二(导数法):f ′(x )=a (x 2-1)-2ax 2(x 2-1)2=-a (x 2+1)(x 2-1)2.又a >0, 所以f ′(x )<0,所以函数f (x )在(-1,1)上为减函数.[谨记通法]判断或证明函数的单调性的2种重要方法及其步骤 (1)定义法,其基本步骤:(2)导数法,其基本步骤: 求导函数确定符号得出结论考点二 求函数的单调区间(重点保分型考点——师生共研)[典例引领]求下列函数的单调区间: (1)y =-x 2+2|x |+1; (2)y =log 12(x 2-3x +2).解:(1)由于y =⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0,即y =⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0.画出函数图象如图所示,单调增区间为(-∞,-1]和[0,1],单调减区间为[-1,0]和[1,+∞).(2)令u =x 2-3x +2,则原函数可以看作y =log 12u 与u =x 2-3x +2的复合函数.令u =x 2-3x +2>0,则x <1或x >2.∴函数y =log 12(x 2-3x +2)的定义域为(-∞,1)∪(2,+∞).又u =x 2-3x +2的对称轴x =32,且开口向上.∴u =x 2-3x +2在(-∞,1)上是单调减函数,在(2,+∞)上是单调增函数. 而y =log 12u 在(0,+∞)上是单调减函数,∴y =log 12(x 2-3x +2)的单调减区间为(2,+∞),单调增区间为(-∞,1).[由题悟法]确定函数的单调区间的3种方法[提醒] 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.[即时应用]1.若将[典例引领](1)中的函数变为“y =|-x 2+2x +1|”,则结论如何? 解:函数y =|-x 2+2x +1|的图象如图所示.由图象可知,函数y =|-x 2+2x +1|的单调增区间为(1-2,1)和(1+2,+∞);单调减区间为(-∞,1-2)和(1,1+2).2.函数y =⎝⎛⎭⎫13x x 1223-+的单调递增区间为________. 解析:令u =2x 2-3x +1=2⎝⎛⎭⎫x -342-18. 因为u =2⎝⎛⎭⎫x -342-18在⎝⎛⎦⎤-∞,34上单调递减,函数y =⎝⎛⎭⎫13u 在R 上单调递减.所以y =⎝⎛⎭⎫1322x 3x 1-+在⎝⎛⎦⎤-∞,34上单调递增. 答案:⎝⎛⎦⎤-∞,34考点三 函数单调性的应用(常考常新型考点——多角探明)[命题分析]高考对函数单调性的考查多以填空题的形式出现,有时也应用于解答题中的某一问中. 常见的命题角度有: (1)求函数的值域或最值;(2)比较两个函数值或两个自变量的大小; (3)解函数不等式;(4)利用单调性求参数的取值范围或值.[题点全练]角度一:求函数的值域或最值1.函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2. 答案:2角度二:比较两个函数值或两个自变量的大小2.(2016·苏州调研)已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为_____. 解析:因为f (x )的图象关于直线x =1对称.由此可得f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.由x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.∵1<2<52<e ,∴f (2)>f ⎝⎛⎭⎫52>f (e),∴b >a >c . 答案:b >a >c角度三:解函数不等式3.f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x-8)≤2时,x 的取值范围是________.解析:2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.答案:(8,9]角度四:利用单调性求参数的取值范围或值4.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是________.解析:当a =0时,f (x )=2x -3, 在定义域R 上是单调递增的, 故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a ,因为f (x )在(-∞,4)上单调递增, 所以a <0, 且-1a ≥4,解得-14≤a <0.综上所述,实数a 的取值范围是⎣⎡⎦⎤-14,0. 答案:⎣⎡⎦⎤-14,0 5.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x -1,x ≤1,log a x ,x >1,若f (x )在(-∞,+∞)上单调递增,则实数a的取值范围为________.解析:要使函数f (x )在R 上单调递增, 则有⎩⎪⎨⎪⎧a >1,a -2>0,f (1)≤0,即⎩⎪⎨⎪⎧a >1,a >2,a -2-1≤0,解得2<a ≤3,即实数a 的取值范围是(2,3]. 答案:(2,3][方法归纳]函数单调性应用问题的常见类型及解题策略(1)求函数值域或最值.常用方法有:单调性法、图象法、基本不等式法、导数法、换元法.(2)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(3)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(4)利用单调性求参数.视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数.[提醒] ①若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的;②分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.一抓基础,多练小题做到眼疾手快1.已知函数y =f (x )的图象如图所示,那么该函数的单调减区间是________.解析:由函数的图象易知,函数f (x )的单调减区间是[-3,-1]和[1,2]. 答案:[-3,-1]和[1,2]2.函数f (x )=|x -2|x 的单调减区间是________.解析:由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象可知函数的单调减区间是[1,2]. 答案:[1,2]3.(2016·学军中学检测)已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值范围是________.解析:因为函数f (x )在(-∞,-a )上是单调函数,所以-a ≥-1,解得a ≤1. 答案:(-∞,1]4.函数f (x )=1x -1在区间[a ,b ]上的最大值是1,最小值是13,则a +b =________.解析:易知f (x )在[a ,b ]上为减函数,∴⎩⎪⎨⎪⎧f (a )=1,f (b )=13,即⎩⎪⎨⎪⎧1a -1=1,1b -1=13,∴⎩⎪⎨⎪⎧a =2,b =4.∴a +b =6. 答案:65.已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________________.解析:函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知,函数在(-∞,a ]和[a ,+∞)上都具有单调性,因此要使函数f (x )在区间[1,2]上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪[2,+∞).答案:(-∞,1]∪[2,+∞) 二保高考,全练题型做到高考达标1.函数f (x )=x -a x 在[1,4]上单调递增,则实数a 的最大值为________.解析:令x =t ,所以t ∈[1,2],即f (t )=t 2-at ,由f (x )在[1,4]上递增,知f (t )在[1,2]上递增,所以a2≤1,即a ≤2,所以a 的最大值为2.答案:22.已知函数f (x )=x 2-2x -3,则该函数的单调增区间为________. 解析:设t =x 2-2x -3,由t ≥0, 即x 2-2x -3≥0,解得x ≤-1或x ≥3. 所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t 在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f (x )的单调增区间为[3,+∞). 答案:[3,+∞)3.已知函数f (x )=⎩⎪⎨⎪⎧-x +3a ,x <0,a x ,x ≥0(a >0且a ≠1)是R 上的减函数,则a 的取值范围是________.解析:由f (x )在R 上是减函数,得0<a <1,且-0+3a ≥a 0,由此得a ∈⎣⎡⎭⎫13,1. 答案:⎣⎡⎭⎫13,14.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于________.解析:由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6. 答案:65.(2016·南通调研)已知f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,log a x ,x ≥1是(-∞,+∞)上的减函数,那么a 的取值范围是________.解析:当x =1时,log a 1=0,若f (x )为R 上的减函数,则(3a -1)x +4a >0在x <1时恒成立,令g (x )=(3a -1)x +4a ,则必有⎩⎪⎨⎪⎧ 3a -1<0,g (1)≥0,即⎩⎪⎨⎪⎧3a -1<0,3a -1+4a ≥0⇒17≤a <13.此时,log a x 是减函数,符合题意. 答案:⎣⎡⎭⎫17,136.函数y =x -x (x ≥0)的最大值为________.解析:令t =x ,则t ≥0,所以y =t -t 2=-⎝⎛⎭⎫t -122+14,结合图象知,当t =12,即x =14时,y max =14.答案:147.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为________.解析:由已知可得⎩⎪⎨⎪⎧a 2-a >0,a +3>0,a 2-a >a +3,解得-3<a <-1或a >3.所以实数a 的取值范围为(-3,-1)∪(3,+∞). 答案:(-3,-1)∪(3,+∞) 8.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.解析:由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.函数图象如图所示,其递减区间是[0,1). 答案:[0,1)9.(2016·苏州调研)已知函数f (x )=1a -1x (a >0,x >0), (1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在 ⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值. 解:(1)证明:任取x 1>x 2>0,则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2,∵x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0, ∴f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是增函数.(2)由(1)可知f (x )在⎣⎡⎦⎤12,2上为增函数, ∴f ⎝⎛⎭⎫12=1a -2=12,f (2)=1a -12=2, 解得a =25.10.已知f (x )=xx -a(x ≠a ). (1)若a =-2,试证明f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围. 解:(1)证明:任设x 1<x 2<-2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). ∵(x 1+2)(x 2+2)>0,x 1-x 2<0, ∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)上单调递增. (2)任设1<x 1<x 2,则 f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). ∵a >0,x 2-x 1>0, ∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0在(1,+∞)上恒成立,∴a ≤1. 综上所述,a 的取值范围是(0,1]. 三上台阶,自主选做志在冲刺名校1.已知函数f (x )=⎩⎪⎨⎪⎧e x -k ,x ≤0,(1-k )x +k ,x >0是R 上的增函数,则实数k 的取值范围是________.解析:由题意得⎩⎪⎨⎪⎧e 0-k ≤k ,1-k >0,解得12≤k <1.答案:⎣⎡⎭⎫12,12.(2016·泰州中学期中)已知函数y =log 12(x 2-ax +a )在区间(-∞,2]上是增函数,则实数a 的取值范围是________.解析:设y =log 12t ,t =x 2-ax +a .因为y =log 12t 在(0,+∞)上是单调减函数,要想满足题意,则t =x 2-ax +a 在(-∞, 2 ]上为单调减函数, 且t min >0,故需⎩⎪⎨⎪⎧a 2≥ 2,(2)2-2a +a >0,解得22≤a <2+2 2. 答案:[22,22+2)3.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值. 解:(1)令x 1=x 2>0, 代入得f (1)=f (x 1)-f (x 1)=0, 故f (1)=0.(2)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2, 则x 1x 2>1,由于当x >1时,f (x )<0, 所以f ⎝⎛⎭⎫x 1x 2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数. (3)∵f (x )在(0,+∞)上是单调递减函数. ∴f (x )在[2,9]上的最小值为f (9). 由f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2)得,f ⎝⎛⎭⎫93=f (9)-f (3),而f (3)=-1,所以f (9)=-2. ∴f (x )在[2,9]上的最小值为-2.第三节 函数的奇偶性及周期性1.函数的奇偶性(1)周期函数对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f (x )的最小正周期.[小题体验]1.(教材习题改编)函数f (x )=mx 2+(2m -1)x +1是偶函数,则实数m =________. 解析:由f (-x )=f (x ),得2m -1=0,即m =12.答案:122.(教材习题改编)已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 3+x +1,则当x <0时,f (x )=________.解析:若x <0,则-x >0,f (-x )=-x 3-x +1,由于f (x )是奇函数,所以f (-x )=-f (x ),所以f (x )=x 3+x -1.答案:x 3+x -13.若函数f (x )是周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (8)-f (14)=________. 答案:-11.判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.2.判断函数f (x )的奇偶性时,必须对定义域内的每一个x ,均有f (-x )=-f (x )或f (-x )=f (x ),而不能说存在x 使f (-x )=-f (x )或f (-x )=f (x ).3.分段函数奇偶性判定时,误用函数在定义域某一区间上不是奇偶函数去否定函数在整个定义域上的奇偶性.[小题纠偏]1.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b =________. 解析:∵f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数, ∴a -1+2a =0,∴a =13.又f (-x )=f (x ),∴b =0,∴a +b =13.答案:132.设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时, f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝⎛⎭⎫32=________. 解析:由题意得,f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12=-4×⎝⎛⎭⎫-12 2+2=1. 答案:13.函数f (x )=(2x +2)2+x2-x的奇偶性为________. 解析:由2+x2-x ≥0,得函数f (x )=(2x +2)2+x2-x的定义域为[-2,2),不关于原点对称,所以函数f (x )为非奇非偶函数.答案:非奇非偶考点一 函数奇偶性的判断(基础送分型考点——自主练透)[题组练透]判断下列函数的奇偶性: (1)f (x )=1-x 2+x 2-1; (2)f (x )=3-2x +2x -3; (3)f (x )=3x -3-x ;(4)f (x )=4-x 2|x +3|-3;(5)(易错题)f (x )=⎩⎪⎨⎪⎧x 2+x ,x >0,x 2-x ,x <0.解:(1)∵由⎩⎪⎨⎪⎧x 2-1≥0,1-x 2≥0,得x =±1,∴f (x )的定义域为{-1,1}.又f (1)+f (-1)=0,f (1)-f (-1)=0, 即f (x )=±f (-x ).∴f (x )既是奇函数又是偶函数. (2)∵函数f (x )=3-2x +2x -3的定义域为⎩⎨⎧⎭⎬⎫32,不关于坐标原点对称,∴函数f (x )既不是奇函数,也不是偶函数. (3)∵f (x )的定义域为R ,∴f (-x )=3-x -3x =-(3x -3-x )=-f (x ), 所以f (x )为奇函数.(4)∵由⎩⎪⎨⎪⎧4-x 2≥0,|x +3|-3≠0,得-2≤x ≤2且x ≠0.∴f (x )的定义域为[-2,0)∪(0,2],∴f (x )=4-x 2|x +3|-3=4-x 2(x +3)-3=4-x 2x ,∴f (-x )=-f (x ), ∴f (x )是奇函数.(5)易知函数的定义域为(-∞,0)∪(0,+∞),关于原点对称,又当x>0时,f(x)=x2+x,则当x<0时,-x>0,故f(-x)=x2-x=f(x);当x<0时,f(x)=x2-x,则当x>0时,-x<0,故f(-x)=x2+x=f(x),故原函数是偶函数.[谨记通法]判定函数奇偶性的3种常用方法(1)定义法:(2)图象法:(3)性质法:①设f(x),g(x)的定义域分别是D1,D2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.②复合函数的奇偶性可概括为“同奇则奇,一偶则偶”.[提醒](1)“性质法”中的结论是在两个函数的公共定义域内才成立的.(2)判断分段函数的奇偶性应分段分别证明f(-x)与f(x)的关系,只有对各段上的x都满足相同的关系时,才能判断其奇偶性.如“题组练透”第(5)题.考点二函数的周期性(题点多变型考点——纵引横联)[典型母题]设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2.(1)求函数的最小正周期;(2)计算f(0)+f(1)+f(2)+…+f(2 015).[解](1)∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x).∴f(x)的最小正周期为4.(2)f(0)=0,f(1)=1,f(2)=0,f(3)=f(-1)=-f(1)=-1.又∵f(x)是周期为4的周期函数,∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=f(2 012)+f(2 013)+f(2 014)+f(2 015)=0,∴f(0)+f(1)+f(2)+…+f(2 015)=0.[类题通法]1.判断函数周期性的2个方法(1)定义法.(2)图象法.2.周期性3个常用结论对f(x)定义域内任一自变量的值x:(1)若f(x+a)=-f(x),则T=2a;(2)若f(x+a)=1f(x),则T=2a;(3)若f(x+a)=-1f(x),则T=2a.(a>0)[越变越明][变式1]若母题中条件变为“f(x+2)=-1f(x)”,求函数f(x)的最小正周期.解:∵对任意x ∈R ,都有f (x +2)=-1f (x ),∴f (x +4)=f (x +2+2)=-1f (x +2)=-1-1f (x )=f (x ),∴f (x )的最小正周期为4.[变式2] 若母题条件改为:定义在R 上的函数f (x )满足f (x +6)=f (x ),当-3≤x <-1时,f (x )=-(x +2)2;当-1≤x <3时,f (x )=x .求f (1)+f (2)+f (3)+…+f (2 015)的值.解:∵f (x +6)=f (x ),∴T =6.∵当-3≤x <-1时,f (x )=-(x +2)2; 当-1≤x <3时,f (x )=x ,∴f (1)=1,f (2)=2,f (3)=f (-3)=-1,f (4)=f (-2)=0,f (5)=f (-1)=-1,f (6)=f (0)=0,∴f (1)+f (2)+…+f (6)=1,∴f (1)+f (2)+…+f (6)=f (7)+f (8)+…+f (12) =…=f (2 005)+f (2 006)+…+f (2 010)=1, ∴f (1)+f (2)+…+f (2 010)=1×2 0106=335. 而f (2 011)+f (2 012)+f (2 013)+f (2 014)+f (2 015) =f (1)+f (2)+f (3)+f (4)+f (5)=1+2-1+0-1=1. ∴f (1)+f (2)+…+f (2 015)=335+1=336.[变式3] 在母题条件下,求f (x )(x ∈[2,4])的解析式. 解:当x ∈[-2,0]时,-x ∈[0,2],由已知得f (-x )=2(-x )-(-x )2=-2x -x 2, 又f (x )是奇函数, ∴f (-x )=-f (x )=-2x -x 2. ∴f (x )=x 2+2x .又当x ∈[2,4]时,x -4∈[-2,0], ∴f (x -4)=(x -4)2+2(x -4).又f (x )是周期为4的周期函数,∴f (x )=f (x -4)=(x -4)2+2(x -4)=x 2-6x +8. 故x ∈[2,4]时,f (x )=x 2-6x +8. [破译玄机]利用函数的周期性,求函数的解析式,应把问题转化为已知区间上的相应问题,即把区间[2,4]转化为[-2,0]上.考点三 函数性质的综合应用(常考常新型考点——多角探明)[命题分析]函数的奇偶性、周期性以及单调性是函数的三大性质,在高考中常常将它们综合在一起命制试题,其中奇偶性多与单调性相结合,而周期性常与抽象函数相结合,并以结合奇偶性求函数值为主.多以填空题形式出现.常见的命题角度有: (1)奇偶性的应用; (2)单调性与奇偶性结合; (3)周期性与奇偶性结合; (4)单调性、奇偶性与周期性结合.[题点全练]角度一:奇偶性的应用1.已知f (x )是R 上的偶函数,且当x >0时,f (x )=x 2-x -1,则当x <0时,f (x )=________. 解析:∵f (x )是定义在R 上的偶函数, ∴当x <0时,-x >0.由已知f (-x )=(-x )2-(-x )-1=x 2+x -1=f (x ), ∴f (x )=x 2+x -1. 答案:x 2+x -1 2.设函数f (x )=(x +1)(x +a )x为奇函数,则a =________. 解析:∵f (x )=(x +1)(x +a )x 为奇函数,∴f (1)+f (-1)=0,即(1+1)(1+a )1+(-1+1)(-1+a )-1=0,∴a =-1. 答案:-1角度二:单调性与奇偶性结合3.(2016·刑台摸底考试)已知定义在(-1,1)上的奇函数f (x ),其导函数为f ′(x )=1+cos x ,如果f (1-a )+f (1-a 2)<0,则实数a 的取值范围为________.解析:依题意得,f ′(x )>0,则f (x )是定义在(-1,1)上的奇函数、增函数.不等式f (1-a )+f (1-a 2)<0等价于f (1-a 2)<-f (1-a )=f (a -1),则-1<1-a 2<a -1<1,由此解得1<a < 2.答案:(1,2)角度三:周期性与奇偶性结合4.已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为________.解析:∵f (x )是定义在R 上的周期为3的偶函数, ∴f (5)=f (5-6)=f (-1)=f (1), ∵f (1)<1,f (5)=2a -3a +1, ∴2a -3a +1<1,即a -4a +1<0, 解得-1<a <4. 答案:(-1,4)角度四:单调性、奇偶性与周期性结合5.已知函数f (x )是定义在R 上以5为周期的奇函数,若f (-1)>1,f (2 016)=a +3a -3,则a的取值范围是________.解析:因为f (x )的周期为5, 所以f (2 016)=f (1), 又因为f (x )是奇函数, 所以f (-1)=-f (1),即f (2 016)=-f (-1)<-1, 所以a +3a -3<-1,解得0<a <3.答案:(0,3)[方法归纳]函数性质综合应用问题的常见类型及解题策略(1)函数单调性与奇偶性结合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.一抓基础,多练小题做到眼疾手快1.函数f (x )=1x-x 的图象关于________对称.解析:因为函数f (x )的定义域为(-∞,0)∪(0,+∞),且对定义域内每一个x ,都有f (-x )=-1x+x =-f (x ),所以函数f (x )是奇函数,其图象关于原点对称.答案:原点2.下面四个结论:①偶函数的图象一定与y 轴相交;②奇函数的图象一定过原点;③偶函数的图象关于y 轴对称;④没有一个函数既是奇函数又是偶函数.其中正确的结论是________(填序号).解析:函数y =1x 2是偶函数,但不与y 轴相交,故①错;函数y =1x 是奇函数,但不过原点,故②错;由偶函数的性质,知③正确;函数f (x )=0既是奇函数又是偶函数,故④错.答案:③3.(2016·南通调研)设函数f (x )为偶函数,当x ∈(0,+∞)时,f (x )=log 2x ,则f (-2)=________.解析:因为函数f (x )是偶函数,所以f (-2)=f (2)=log 22=12.答案:124.设奇函数f (x )的定义域为[-6,6].若当x ∈[0,6]时,f (x )的图象如图所示,则不等式f (x )>0的解集是________.解析:奇函数的图象关于原点对称,作出函数f (x )在[-6,0]上的图象(图略),由图象,可知不等式f (x )>0的解集是[-6,-2)∪(0,2).答案:[-6,-2)∪(0,2)5.函数f (x )在R 上为奇函数,且x >0时,f (x )=x +1,则当x <0时,f (x )=________________.解析:∵f (x )为奇函数,x >0时,f (x )=x +1, ∴当x <0时,-x >0,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《必修1》 第二章 函数
一、函数与映射的概念 1、函数定义:
设集合A 是一个非空数集,对A 中的任意数x ,按照确定的法则f ,都有唯一确定的数y 与它对应,则这种对应关系叫做集合A 上的一个函数. 记作:y=f(x),x A ∈
自变量x 的取值范围(即数集A )叫做函数的定义域 自变量x 取某一特殊值a 时,对应的y 的值叫做函数在x=a 处的函数值,记作: y=f(a),或a
x y
=
所有函数值构成的集合{A x x f y y ∈=),(}叫做函数的值域.
【注】函数y=f(x)也常记作:函数f(x)或函数f.
2. 函数的三要素:定义域,值域,对应法则. ,
从逻辑上讲,定义域,对应法则决定了值域,是两个最基本的因素. 3. 区间的概念
4.映射的定义:设非空集合A ,B ,若按照某种对应法则f ,对集合A 中任一元素x ,在集合B 中有唯一元素y 与之对应,则称从A 到B 的对应为映射,记为f :A →B ,x →f(x)
其中,x 叫做原象,y 叫做在映射f 下的象,即有y=f(x). 若A 中不同元素的象也不同,且B 中每一个元素都有原象与之对应, 则称从A 到B 的映射为一一映射。
若B 中任何元素都有原象,则称映射为满射.
【注】(1) 三要素:A → B
(2) A 中元素的任意性,B 中元素的唯一性
(3)可以“多对一”,不可以“一对多”. 5. 函数与映射的关系
函数就是定义在非空数集A ,B 上的映射,此时称数集A 为定义域,象集C ={f (x )|x ∈A }为值域。
B C ⊆。
因此函数是一种特殊的映射。
练习1:函数的概念
1、(07北京理14)已知函数()f x ,()g x 分别由下表给出
f
则[(1)]f g 的值为
;满足[()][()]f g x g f x >的x 的值是
.
2、设M ={x |0≤x ≤2},N ={y |0≤y ≤3},给出下列四个图形(如图所示),其中能表示从集合M 到集合N 的函数关
系的有 ( )
A .0个
B .1个
C .2个
D .3个
注: 同样的抛物线由于开口方向不同,有的是函数,而有的就不是。
3、(07山东文13)设函数1()f x =1122
23()(),x f x x f x x -==,,则
123(((2007)))f f f = .
4、函数y =f (x )的图像与直线x =2的公共点个数有_______个
练习2:具体函数的定义域:
2、(08
全国)函数y 的定义域为( ) A .{}|0x x ≥
B .{}|1x x ≥
C .{}{}|10x x ≥
D .{}|01x x ≤≤
5、函数1
3
2)(2-+-=
x x x x f 的定义域是 .
抽象函数的定义域:
1、 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )4
1
(-⋅x f 的定义域。
2、已知:f (2x +1)的定义域是[-1,1],则f (x )的定义域是________
f (3-2x ) 的定义域是________
3、(08北京模拟)若函数422
1
2+-=x x y 的定义域、值域都是闭区间[2,2b ],
则b 的值为 。
4、(江西08)若函数()y f x =的定义域是[0,2],则函数(2)
()1
f x
g x x =-的定义
域是
A .[0,1]
B .[0,1)
C . [0,1)(1,4]
D .(0,1)
练习3:映射的概念
1、若对应关系f ::A →B 是从集合A 到集合B 的一个映射,则下面说法错误的是( ) (A ).A 中的每一个元素在集合B 中都有对应元素
(B ).A 中两个元素在B 中的对应元素必定不同
(C).B 中两个元素若在A 中有对应元素,则它们必定不同 (D).B 中的元素在A 中可能没有对应元素
2、设集合A 和集合B 都是自然数集合N ,映射B A f →:把集合A 中的元素n 映射到集合B 中的元素n n +2,则在映射f 下,象20的原象是( ) (A )2 (B )3 (C )4 (D )5
3、设(x , y )在映射f 下的象是)2
,2(y
x y x -+,则(-5,2)在f 下的象为______, (-5,2)在f 下的原象为_______
4、集合M ={a ,b },N ={-1,0,1},映射f ::M →N. (1)映射f :有多少个?
(2)若M ={a ,b ,c },且映射f :满足f (a )+f (b )+f (c )=0,那么映射f 有多少个?
5.(2010年海淀二模)给定集合{1,2,3,...,}n A n =,映射:n n f A A →满足: ①当,,n i j A i j ∈≠时,()()f i f j ≠;
②任取,n m A ∈若2m ≥,则有m {(1),(2),..,()}f f f m ∈. 则称映射f :n n A A →是一个“优映射”.
例如:用表1表示的映射f :33A A →是一个“优映射”. 表1
已知表2表示的映射f : 44A A →是一个优映射,请把表2补充完整(只需填出一个满足条件的映射)
2、解析式:求法⎪⎩
⎪
⎨⎧列函数方程法换元法待定系数法
例题1、求解析式 \\ 待定系数法\\
1、设二次函数y =f (x )的最大值为13,且f (3)=f (-1)=5,求:f (x )的解析式 解:设n m x a x f +-=2)()(,则a <0,列式得f (x )=13)1(22+--x
注:二次函数的三种常见形式⎪⎩
⎪
⎨⎧--=+-=++=)
)(x x )(x x (a y )()()(2122双根式顶点式一般式n m x a y c bx ax y
\\ 换元法与配凑法 \\
2、已知:2
2
11)11(x
x x x f +-=+-,则f (x )=_________________ 解:换元法令t =
x x +-11反解x 代入可得: 2
12)(x
x
x f +=
\\ 函数方程法 \\
3、已知:f (x )满足x x
f x f 3)1
(2)(=+,求:f (x )的解析式
解:以x 1代替原式中的x 然后两式联立可得:x x
x f -=2
)(
注:此法常出现的三种情况(有互为关系):
x x
f x f 3)1
(2)(=+
x x f x f 3)(2)(=-+ x x
f x f 3)1
(2)(=-+
练习:
1、设23)1(2+-=+x x x f ,求)(x f .
2、设33221
)1(,1)1(x
x x x g x x x x f +=++=+,求)]([x g f .
5、已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x ;
6、已知,11)1(22x x
x x x f ++=+求)(x f . 8、若x x
x f x f +=-+1)1
(
)( 求)(x f . 9、设)0,,()1
()()(b a ,c b a cx x
bf x af x f ±≠=+且均不为其中满足,求)(x f 。
11、若g (x )=2x -1,f (g (x ))=1
22
x x 求:f (3)的值。