2013年数学模型课程结业论文题目
2013年研究生数学建模优秀论文E2

二、模型假设
假设一: 收入是划分中等收入的主要依据。但反映收入水平的具体指标可以有多 种可能,如城镇居民人均年全部收入、人均年生活费收入、人均年可支配收入, 农村居民可以有人均年纯收入等,因为虽然这些指标的口径不同,但并不影响反 映居民收入水平的真实性只是在同一范围内应选用相同口径的指标进行分析
3
假设二:中等收入一个用区域值表示的数量,而不是一个确定的数值 假设三: 收入域值的界定具有一定的假定性从下面中等收入的界定方法中,可以 看到最低收入水平和最高收入水平的界定都有假定条件 假设四:收入域值的边界也是模糊的,可以有一定的上下浮动空间。
参赛密码 (由组委会填写)
第十届华为杯全国研究生数学建模竞赛
学
校
贵州大学
参赛队号
10657008 1.秦书琳
队员姓名
2.王影 3.任丽
参赛密码 (由组委会填写)
第十届华为杯全国研究生数学建模竞赛
题 目
E:中等收入人口度量与实证研究
摘
要:
本文对中等收入人口进行了定量研究, 并建立了有效的度量中等人口范围的 数学模型。 Lorentz 曲线是研究人口收入的一个重要手段,为此,本文首先提出了一种 拟合 Lorentz 曲线的模型,用 L( p) p (1 (1 p) ) , 1, 0 , 0 1, 来拟 合 Lorentz 曲线,得到了相当精确的结果(MSE 精确到 106 ) 。该模型在此时成 立,这是之前所没有的结论。 为了度量中等收入人口,本文提出了衡量社会分配公平的局部公平指数
此模型有效地解决了传统“人口空间”模型对两极分化不敏感的问题。 基于以上研究,本文提出了更为一般的中等收入人口的定义、原理、即经济 学意义,并提出了测算方法。 关键词:中等收入;Lorentz 曲线;分配公平度
2013高教社杯全国大学生数学建模竞赛一等奖论文

承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): D我们的参赛报名号为(即为你队的电子文件名):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期: 2013 年 9 月 16 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):公共自行车服务系统优化模型摘要本模型的解决是为了提高公共自行车的使用率。
问题一,根据附件1中的公共自行车数据可统计出各站点20天中每天及累计的借车频次和还车频次(见于附件1),并得出各个站点累计的借车频次和还车频次进行从小到大的排序(见于附件2)。
根据附件1,可以得知每次用车的时长的统计,并根据此统计数据使用EXCEL软件描绘每次用车时长的分布图,通过此图,可以得知:用车时间在0—60分钟的次数较多,在20分钟附近较为突出,超过60分钟的次数较少。
2013国赛优秀数模论文

车道被占用对城市道路通行能力的影响摘要本文主要研究交通事故占用车道对城市道路通行能力的影响.针对问题一,首先求出道路的基本通行能力,结合道路基本通行能力与定义的交通事故修正系数求得出事故发生后的实际通行能力.用SPSS软件采用Mann-Whitney U检验方法对事故发生前的实际通行能力值与事故发生后的实际通行能力值进行两独立样本检验,结果表明两者存在显著性差异.再作图观察实际通行能力值变化趋势,且对其分三个阶段进行描述,得到事故发生起伏期的实际通行能力变化很大,交通事故发生后实际通行能力在调整期相对稳定;稳定期曲线趋于平缓,实际通行能力基本稳定.针对问题二,由于在同一横断面发生的两次交通事故所占车道不同时,利用SPSS 软件对两起交通事故的实际通行能力值进行两配对样本检验,采用Wilcoxon配对秩检验方法得到:随时间的推移,两次事故发生后的实际通行能力的变化有显著性差异.然后计算两次事故稳定期车流量的比值为37%:63%,而右转与左转的流量比为38%:62%,说明左、右转流量的不同是造成两次交通事故对应的实际通行能力差异的直接原因.针对问题三,首先根据实际通行能力、上游车流量定义出拥堵系数;然后通过讨论拥堵系数与事故路段车辆排队长度之间的关系,确定了事故路段车辆排队长度与实际通行能力、事故持续时间以及上游车流量之间关系的积分模型;最后考虑到从视频中统计出的是离散型数据,因此将上述积分模型进行离散化处理,求出了事故发生后该路段部分时刻的排队长度的具体值,通过与视频中实际的排队长度进行比较,从而检验了模型的准确性.针对问题四,为了求出估算车队排队长度将到达上游路口的时间,建立了两个模型对其进行对比求解.从问题1得出的实际通行能力的数据可以拟合出其与时间的关系函数,进而得出不同时间段的实际通行能力值.模型A中,将上游车流量定为1500pcu/h,通过排队长度模型的求解得到排队长度达到140米时,持续时间为18min.模型B首先检验得到第一次交通事故发生后的上游车流量符合泊松分布.通过对实际情况的MATLAB实验仿真求出满足泊松分布的上游车流量在一小时内的随机分布数组,并将其代入排队长度模型进行求解,得到结果在1240s时,修正后的排队长度达到140米,即认为在事故持续时间20.5min左右时,车辆排队长度到达上游路口.通过对比得到,模型B较模型A更为贴近实际.关键词:两独立样本检验;Mann-Whitney U检验;Wilcoxon配对秩检验;拥堵系数;MATLAB仿真一、问题的重述车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低的现象.由于城市道路具有交通流密度大、连续性强等特点,一条车道被占用,也可能降低路段所有车道的通行能力,即使时间短,也可能引起车辆排队,出现交通阻塞.如处理不当,甚至出现区域性拥堵.车道被占用的情况种类繁多、复杂,正确估算车道被占用对城市道路通行能力的影响程度,将为交通管理部门正确引导车辆行驶、审批占道施工、设计道路渠化方案、设置路边停车位和设置非港湾式公交车站等提供理论依据.视频1(附件1)和视频2(附件2)中的两个交通事故处于同一路段的同一横断面,且完全占用两条车道.请研究以下问题:1.根据视频1(附件1),描述视频中交通事故发生至撤离期间,事故所处横断面实际通行能力的变化过程.2.根据问题1所得结论,结合视频2(附件2),分析说明同一横断面交通事故所占车道不同对该横断面实际通行能力影响的差异.3.构建数学模型,分析视频1(附件1)中交通事故所影响的路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的关系.4.假如视频1(附件1)中的交通事故所处横断面距离上游路口变为140米,路段下游方向需求不变,路段上游车流量为1500pcu/h,事故发生时车辆初始排队长度为零,且事故持续不撤离.请估算,从事故发生开始,经过多长时间,车辆排队长度将到达上游路口.二、问题的分析按照题目要求,本文主要研究因交通事故车道被占用对城市道路通行能力的影响.交通事故发生后,由于发生事故的车辆对自己所行驶车道造成堵塞,使得该横断面实际通行能力有很大变化;而对于不同交通事故发生后堵塞不同车道的情况,同一横断面交通事故所占车道不同,该横断面实际通行能力也会有差异;不同状况的交通事故所造成的道路堵塞,对路段车辆排队长度也有很大的影响.2.1问题一的分析问题一要求描述视频中交通事故发生至撤离期间,事故所处横断面实际通行能力的变化过程.通过对附件视频1的观察,交通事故发生后,两辆相撞的车在第一时间对自己所行驶车道(第二、三车道)造成堵塞(附件3中所标注右转车道为车道一,直行车道为车道二,左转车道为车道三),仅剩唯一的第一车道可以通行.这导致事故所处横断面的实际通行能力有很大的变化.根据题目提供的视频附件,提取相关数据.通过对视频中所提供数据进行分析,统计以10秒为组距驶入驶出固定路段的车辆数.根据统计得到的数据,求出事故发生前道路的实际通行能力,并以此作为基准.再拟定事故发生后所处横断面的实际通行能力指标,求出从交通事故发生至事故撤离整个期间内的实际通行能力值.分析比较事故发生前的实际通行能力与事故发生后的实际通行能力的差异,说明发生事故后对道路通行能力的影响.再对事故发生后的各个实际通行能力值作散点图,观察其变化趋势,分阶段描述发生交通事故的整个期间,事故所处横断面实际通行能力的变化.2.2问题二的分析对于问题二中所要求的,分析说明同一横断面交通事故所占车道不同对该横断面实际通行能力影响的差异.根据两段附件视频可知,第一次交通事故的发生造成第二、三车道被堵塞,只有第一车道可以通行;第二次交通事故的发生造成第一、二车道被堵塞,只有第三车道可以通行.根据题目的附件三可知,第一车道为右转车道,通行流量比例为21%,第三车道为左转车道,通行流量比例为35%,即两条车道的通行流量是有差异的,就有可能造成两起交通事故实际通行能力的差异.为比较所占车道不同对实际通行流量的影响,首先按第一问求实际通行能力的思路进行求解,得到各时间段车流量的实际通行能力.然后进一步分析自发生事故起,两起交通事故的实际通行能力随时间推移有无显著性差异.对于产生差异的原因,从各车道流量不同的角度出发,说明车流量对实际通行能力的影响.2.3问题三的分析问题三中要求构建数学模型分析交通事故所影响的路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的关系.根据实际情况可知,当道路实际通行能力降低,而车流量较大时,道路车辆的排队现象越容易出现.车辆的排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量这三个变量均有很大关系.为研究该问题,建立用实际通行能力、上游车流量、事故持续时间表示排队长度的数学模型.事故发生后,道路横断面可供通车辆通行的车道减少,在很大程度上减弱了道路实际通行能力,使得车辆从路段上游驶入已知路段时的速度大于车辆驶出事故横断面的平均速度.当事故路段上游的车驶入该路段时发现路段内原有的车还没有驶离事故横断面,未驶出的车辆积少成多,就会导致该路段的拥堵.为此,定义一个拥堵系数来描述t时刻车辆进入拥堵队列的可能性大小.又由于本题道路的横断面有三条车道,且下游转道车流量的比例分别为21%,44%,35%,因此道路拥堵时,按照车流量比例最大的车道上的队列长度作为车辆排队长度计算,用微分确定单位时间内的车辆排队长度,最后建立积分模型得到排队长度的表达式,进行离散化处理,求出不同时间段的排队长度的具体值.2.4 问题四的分析问题四假设交通事故所处横断面距离上游路口变为140米,已知上游车流量和初始排队长度,要求估算车队排队长度将到达上游路口的时间.从问题1得出的实际通行能力的数据可以拟合出其与时间的关系函数,进而得出不同时间段的实际通行能力值.再分别建模模型A 、B 对此问题进行求解.模型A 中根据题意将上游车流量恒定为1500pcu/h ,再通过得到的实际通行能力值及排队长度进行求解.模型B 考虑到实际中路口上游车流量不可能在一小时内为一定值,分析在上游车流量为1500pcu/h 的情况下,车流量在一小时内连续的时间段内的车流量分布情况,所以先要得出在视频1中在交通事故发生后的上游车流量分布规律,进而求出1500pcu/h 的车流量在一小时的随机分布数组,并对实际情况的实验仿真.最后将各时间段实际通行能力值,上游车流量代入第三问模型的函数表达式中,得到各时间段的排队长度,计算第一次排队长度达到140米的时间.三、模型的假设1.假设题目中的发生的两个交通事故处于同一路段的同一横断面,且发生事故后完全占用两条车道;2.假设只考虑四轮及以上机动车、电瓶车的交通流量,且换算成标准车当量数;3.假设公交车及大巴车的的车长为标准小汽车车身长度的二倍;4.假设本文所研究的道路平坦,不考虑因发生交通事故的车辆造成道路堵塞以外的其它道路障碍.四、符号的说明1T :缺失数据的第一时间段;n T :缺失数据的第n 时间段 (42或 n );1N :驶入等待通行区域的车辆数;2N :驶出等待通行区域的车辆数;3N :标志性车辆前至事故发生地点的车辆数;4N :标志性车辆至等待通行区域的上游边界的车辆数;N : 缺失数据的补全值;11N :事故发生前驶入等待通行区域的车辆数;12N :事故发生前驶出等待通行区域的车辆数;13N :事故发生前等待通行区域内车辆数;11'N :事故发生前上一时间段驶入等待通行区域的车辆数;12'N :事故发生前上一时间段驶出等待通行区域的车辆数;13'N :事故发生前上一时间段等待通行区域内车辆数;21N :事故发生后驶入等待通行区域的车辆数;22N :事故发生后驶出等待通行区域的车辆数;N:事故发生后等待通行区域内车辆数;23'N:事故发生后上一时间段驶入等待通行区域的车辆数;21'N:事故发生后上一时间段驶出等待通行区域的车辆数;22'N:事故发生后上一时间段等待通行区域内车辆数;23U:正常通行时间内所处横断面的实际通行能力;1U:在交通事故影响下所处横断面的实际通行能力;2T:单位时间;hQ:基本通行能力;U:事故后实际通行能力;l:等待通行区域车辆排队长度;W:路段上游车流量;N:单位时间最大车流量;t:事故持续时间;:拥堵系数;v:汽车通过事故横断面的平均速度.五、模型的建立与求解5.1问题一:事故发生至撤离期间断面通行能力的变化问题一要求描述视频中交通事故发生至撤离期间,事故所处横断面实际通行能力的变化过程.针对此问题,具体求解分为以下三个步骤:Step1:根据统计得到的数据,求出事故发生前道路的实际通行能力;Step2:拟定事故发生后所处横断面实际通行能力指标,求出从交通事故发生至发生事故车辆撤离整个期间内的实际通行能力;Step3:分析比较以上两种情况的实际通行能力,并对其进行差异性检验;Step4:对事故发生后的实际通行能力值作图,通过适当的分析,分阶段描述在各不同阶段事故所处横断面实际通行能力的变化过程.5.1.1模型的准备1.通过视频统计数据为进行严谨详细的问题求解,首先从题目所给出的视频附件中统计详细数据.附件1中的视频记录了2013年2月28日16:38:39~17:03:50期间某路段的道路通行情况,视频共26分58秒,包括发生交通事故前的第一段正常通行时间,发生交通事故至撤离现场期间在事故影响下的实际通行时间,以及撤离后的第二段正常通行时间.第一段正常通行时间从16:38:39开始,大约持续了四分钟;发生交通事故至撤离现场时间为16:42:32~17:01:21,大约持续了19分钟.通过观察视频1中道路上车辆行驶的情况,将事故发生地点至其上游120米处划为等待通行区域的规定路段,由于统计每秒进出等待通行区域车辆数的过程时间太短,不利于统计数据,因此划定以10秒为统计时间间距,选定进出等待通行区域的参考系,根据城市道路工程设计规范内的车辆换算表,可知小汽车为1辆标准车辆,大客车换算为2辆标准车]1[.以此分别统计出每10秒驶入规定路段的车辆数及同时间段内驶出该规定路段的车辆数.2.缺失数据处理(1)由于视频1中事故发生后16:49:40~16:50:10与16:54:00~16:54:10两个时间段的影像被剪去,造成数据缺失.本文通过以标志性车辆为参考系,统计缺失数据的时间段中两个时间点1T 与n T 画面中出现的车辆数3N 与4N ,3N 为标志性车辆前至事故发生地点的车辆数,4N 为标志性车辆至等待通行区域的上游边界的车辆数. 其中1T 至n T 共经过了n 个时间间距.为补全数据,本文通过对统计的两时间点内的车辆数进行做差求平均值,得出缺失的数据均为均值N :n N N 34N -=. 补全数据结果如下:表1 补全数据表5.1.2模型的建立与求解道路通行能力是指道路上某一点某一车道或某一横断面处,单位时间内可能通过的最大交通实体(车辆或行人)数,用辆/h 或用辆/昼夜或辆/秒表示,车辆多指小汽车,当有其它车辆混入时,均采用等效通行能力的标准车辆(小汽车)为单位(pcu ). 影响道路通行能力的主要因素是道路条件、交通条件和交通外环境等.基本通行能力是指在理想的道路、交通、控制和环境条件下,理论上所能通行的最大小时交通量.实际通行能力是指在设计或评价某一具体路段时,根据该设施具体的公路几何构造、交通条件以及交通管理水平,按实际公路条件、交通条件等进行相应对基本通行能力进行修正后的小时交通量]1[.实际通行能力的计算是假定没有偶然事件发生的情况下进行的.实际交通系统中,路段可以服务的最大交通量除了受车道宽度、侧向净空等确定性因素以外,还受许多随机性因素影响,如交通事故,自然灾害、恶劣天气、道路维护等]2[.由于本文研究的对象是同一条道路,并且车道的宽度均为3.25m ,以及其他确定性因素均相同.由于研究的时间相差不大(26分钟),所以自然灾害、恶劣天气、道路维护等随机性因素均相同.因此,此路段的实际通行能力只受交通事故的影响.模型的具体建立求解过程如下:1.实际通行能力的确定实际通行能力是由道路的基本通行能力乘上若干个对其造成影响的修正系数而得到的,由于此路段的实际通行能力只受交通事故的影响,故设定交通事故修正系数来对发生交通事故后道路基本通行能力进行修正,修正后的基本通行能力即为发生交通事故后道路的实际通行能力.(1)确定交通事故修正系数f通过对视频1中事故发生至撤离的数据采集,得到了每10秒驶入等待通行区域的车辆数1N 以及驶出的车辆数2N 的数据,进而分别统计出进入等待通行区域的车流量与驶出等待通行区域的车流量.由统计结果可发现,当道路拥堵严重时,从上游路口进入该路段的车辆数会在很大程度上减少(初步分析出现这种状况的原因是由于红绿灯以及车主主观对道路的判断放弃从该路段上通行),而进出路段的车流量之比却很大,与实际通行能力相悖,因此无法直接用进出路段的车流量之比来表示事故发生后道路的实际通行能力.为此,结合道路实际情况以及上述统计结果,本文以每10秒内驶出等待通行区域的车辆数比上相同时间段等待通行区域内的车辆数来反映事故发生后的实际通行能力.处于等待通行区域的车辆越多,则实际通行能力越小,联系视频中出现的情形,当道路拥堵严重时,进入该路段的车辆数会减少,反映事故发生后的实际通行能力并不受进入车辆数的影响,而取决与等待的车辆数,因此此指标克服了上述矛盾的情况.交通事故前的第一段正常通行时间内的交通事故修正系数用1f 表示,驶入等待通行区域的车辆数为11N ,驶出此区域的车辆数为12N ,在区域内停留的车辆数为13N ,上一时间段的相应指标量分别表示为11'N ,12'N ,13'N ,定义1f 为:1312111213111'''N N N N N N f -+==; 设发生交通事故至撤离现场期间在事故影响下所处横断面的实际通行能力用2f 表示,驶入等待通行区域的车辆数为21N ,驶出的车辆数为22N ,在区域内停留的车辆数为23N ,上一时间段的相应指标量分别表示为21'N ,22'N ,23'N ,定义2f 为:2322212123212'''N N N N N N f -+==; 由于事故发生后某一时间段仍可能出现等待通行区域内的车辆数为0,即023=N .又因为22N 可能为0时,其交通事故修正系数求得为0,但事实上此处有两种可能:一是因为堵塞严重无车通过,交通事故修正系数为0;二是因为等待通行区域内无车通过,交通事故修正系数为1(表示正常通过),故产生歧义,所以采用加“1”的方法进行处理.采用加“1”法对实际通行能力影响较小,即23N 、22N 均加1后,再求两者之间的比仍可作为交通事故修正系数.因此本文采取加“1”法进行修正其交通事故系数,既消除歧义,又反映了实际通行能力.经过加“1”法修正后:事故发生前修正系数:1'''111'1312111213111+-++=++=N N N N N N f ; 事故发生后修正系数: 1'''111'2322212123212+-++=++=N N N N N N f . (2)确定基本通行能力Q由附件3图中可知,道路同一方向横断面上的三条车道,每条车道的宽度为固定的3.25m,根据查阅相关资料,宽度为3.25m 的车道最大通行速度为60km/h,当道路通行速度为60km/h 时,查表可知该段道路的一般基本通行能力为1800pcu/h ]3[.由于基本通行能力是指在理想状态下,理论上所能通行的最大小时交通量,为进一步确定已知道路基本通行能力,根据基本通行能力定义,道路基本通行能力为道路理想状态下单位时间h T 内,可能通过的最大车辆数N ,得到计算已知道路基本通行能力的公式:)/(h pcu T N Q h=; 设事故发生前没有任何堵塞的情况下道路为理想状态,且在此时间段内(不考虑堵车),通过该路段的车辆中,根据发生交通事故前道路上行驶的车流量统计数据,每10秒通过规定的120m 路程的车辆最大值为5辆,代入公式计算得:)(180********h / pcu ss pcu T N Q h===; (3)求解发生事故后实际通行能力U 根据相关资料]2[由基本通行能力与修正系数计算实际通行能力的关系公式为:f Q U ⨯=.2.事故发生前后实际通行能力的差异分析比较以上两组统计值,即未发生交通事故时的实际通行能力值和发生交通事故期间的道路实际通行能力值.由于视频所给出的两个时期时间长短不一致,故统计出的数值个数不同,并且我们对其总体分布不甚了解,两独立样本的非参数检验是在对总体的分布不了解的情况下,通过对独立样本的Mann-Whitney U 检验分析来推断样本来自的两个总体的分布等是否存在显著性差异的方法]4[.因此本文通过SPSS 采用两独立样本检验法来对这两组数据样本进行差异性检验(具体操作步骤及详细结果见附录1):表2 发生交通事故前后实际通行能力独立样本检验结果表检验统计量a实际通行能力Mann-Whitney U 344.500Wilcoxon W 7484.500Z -5.170渐近显著性(双侧) .000a. 分组变量: 是否发生车祸由上表知,采用Mann-Whitney U 检验,渐近显著性(双侧)值为0.000,小于0.01,因此拒绝原假设,认为发生车祸的前后的实际通行能力指标存在极显著差异.得出结论:由于突发的交通事故,对原来正常的道路通行能力有显著性影响,对比道路正常通行能力和事故期间的实际通行能力,可知交通事故的发生使得道路通行能力明显下降.3. 结果分析对事故发生后的实际通行能力值作图,并分阶段描述在各不同阶段事故所处横断面实际通行能力的变化过程.根据统计出的交通事故发生至事故撤离整个期间内的实际通行能力值,做出散点图如下:图1 第一起交通事故发生后实际通行能力变化图由图像观察可得,事故发生初期0~200秒的实际通行能力变化很大,定为交通事故发生后实际通行能力的起伏期;200~400秒相对稳定可设为交通事故发生后实际通行能力的调整期;400秒以后曲线趋于平缓,事故发生后的实际通行能力趋于稳定.对于事故发生初期实际通行能力起伏较大的原因,根据视频的显示,初步分析其原因为红绿灯的变化及上下班高峰期的影响,而对于后期实际通行能力趋于稳定的原因,是由于出现了交通堵塞,开始进行排队通过,且随着排队的车辆数目量增多,红绿灯对平稳期的通行影响逐渐较小.4.红绿灯的影响通过上诉的结果分析,可知红绿灯对实际通行能力有一定的影响,本文将以红绿灯的相位时间为统计时间间距对视频1中进出等待通行区域的车辆数进行统计.选定进出等待通行区域的参考系,以此分别统计出每30秒进入规定路段的车辆数及同时间段内驶出该规定路段的车辆数.将进入规定的等待通行区域对应的时间化为1,2,3, (26)做出实际通行能力与对应时间的关系图,如下:图2 实际通行能力与红绿灯对应时间的关系图通过对实际通行能力与对应时间的关系图的观察,可知在1~16的时间内,实际通行能力呈起伏状,红绿灯的相位周期为1分钟,整个阶段内红灯为峰值,绿灯为谷值.而在17~26的时间内,开始进行排队,实际通行能力趋于稳定,因此红绿灯对事故发生后前期有较显著变化,而对事故发生后末期并不影响.5.2问题二:交通事故所占车道不同对通行能力的影响问题二要求分析说明同一横断面交通事故所占车道不同对该横断面实际通行能力影响的差异.针对此问题,具体求解为以下三个步骤:Step1:拟定发生事故后事故所处横断面实际通行能力,求出从交通事故发生至事故撤离整个期间内的实际通行能力;Step2:对两次交通事故发生后,随时间的推移,对相同时段的道路实际通行能力值用SPSS软件两配对样本检验进行显著性差异分析;Step3:画图比较分析,说明两次交通事故发生所占车道不同对该横断面实际通行能力影响的差异.5.2.1模型的准备为对问题进行严谨详细的求解,首先从题目所给出的视频附件中统计详细数据.针对问题中所提出的对比两起事故在发生之后对道路实际通行能力的影响,我们仅对发生交通事故至撤离现场这一阶段进行数据统计.发生交通事故至撤离现场阶段的时间为。
数学系论文题目大全

数学系毕业论文题目大全1.浅析素质教育观下的数学教学2.论数学课堂的师生互动3.适合反证法命题的条件4.论导入《数学系毕业论文题目》正文开始>> 1.浅析素质教育观下的数学教学2.论数学课堂的师生互动3.适合反证法命题的条件4.论导入新课的直观方法5.优化数学课堂,培养创新意识6.剖析数学学习的心理障碍及对策7.谈数学教育中非智力因素的培养8.谈数学实验在中学数学中的作用9.论述中学生数学语言能力的培养10.对中学生数学解题能力培养的研究11.中学生创新意识的形成12.后进生数学水平提高的若干措施13.发挥课本习题的潜在功能14.论述中学数学的开放性教学15.如何培养学生的空间观念16.论新课程下的数学教师应具有的人格魅力17.谈谈数学课堂教学的语言艺术18.论数学归纳能力的培养19.浅析多媒体在数学教学中的应用20.论数学课程标准的新理念21.剖析影响数学教学的内在因素22.数学学习中的迁移现象及其对教学的意义23.论数学考试对数学学习的影响24.论述中学生数学应用意识的培养25.论述数学学习与学生身心发展关系26.中学生数学概念形成的心理分析B1.浅谈线性变换的对角化问题2.数学研究性学习的实施与评价3.范德蒙行列式的一些应用4.分块矩阵的应用5.行列式计算的若干方法6.“数形结合”在中学数学教学中的应用7.数学史在中学数学教学中的运用8.线性变换思想在中学数学中的应用9.矩阵可逆的若干判别方法10.数学归纳法在行列式计算机中的应用11.浅谈数学创造性思维及其培养12.反例在数学教学中的作用研究13.“高等代数”知识在几何中的应用14.猜想在数学中的应用15.引入多媒体进行数学课堂教学探究C1.“几何画板”在数学教学中的重要性2.数学实验和现代数学教育3.求最值问题的方法探讨4.从学习“微积分”中谈谈技巧和能力的提高5.谈谈“数形结合”6.线性规划应用举例7.绝对值概念在数学教学中的地位8.用概率方法证明一些恒等式9.浅谈平行公理及其在中学数学教材中的地位10.浅谈反证法11.不等式的证明12.关于指数函数13.高等数学方法在中学数学中的应用14.浅析数学反例15.利用建模进行思维训练16.高中数学教学中开展研究性学习的思考17.数学探究式学习的研究18.试论数学美19.中学课程数学教学思想方法教学初探20.大学生数学素质教育思考21.向量在几何证题中的运用22.数学概念教学初探23.数学教育中的问题解决及其教学途径24.对称思想在解题中的应用25.数学学科实施素质教育研究26.数学学习中的非认知因素27.数学教与学心理研究28.数学教师自身素质的提高29.数学教与学评价的改革30.数学文化教育研究D1.培养学生数学自学能力的尝试2.中学数学教学中学生思维能力的培养3.怎样培养学生的几何空间概念4.把握例题教学环节,培养学生的思维能力5.排列组合问题剖析6.数形结合在高中数学中的应用7.浅谈数学概念的教学8.培养学生数学兴趣,提高课堂教学质量9.设计“开放型”的问题,培养学生的创新能力10.把握隐含条件,提高解题能力11.浅谈函数概念的教学12.高中生数学解题能力的培养13.中学数学建模浅谈14.关于不等式的证明15.微分中值定理的某些应用16.数学教学中的非智力因素17.数学解题教学中的引深艺术18.浅谈课堂提问的艺术19.几何分布的统计分析20.指数分布的统计分析21.学困生心理障碍分析及对策22.关于初中数学教学改革的几点思考23.谈数学教学中的创新教育24.数学思想在解题中的应用25.初中数学课堂教学中“数学文化”的体现26.谈数学课堂教学评价标准27.调动非智力因素提高教学质量28.数学课/wenzi/堂教学中“问题能力”的培养29.构造法在中学数学教学中的应用30.级数敛散性判别的几种方法E1.谈数学分析中辅助函数的构造2.求数列极限的若干方法3.中学数学中的不等式的证法4.浅谈数学的概念性教学5.论数学创新能力及其培养6.泰勒公式在数学分析中的应用7.如何提高数学专业实习生课堂教学水平8.浅谈反例在数学教学中的应用9.关于方程f(x)=0根的研究10.浅谈数学的概念性教学11.有关数学归纳法的应用12.可导、可微与连续在多元函数中的区别与联系13.微分中值定理的有关应用14.数学教学中创造性思维能力的培养15.浅谈新课程理念下数学的导学方法16.不等式解题中的数学思想应用17.浅谈构造法证明不等式18.利用数形结合处理数学问题的技巧19.关于数学教学中现代教学与传统教学模式的结合20.论数学创新能力及其培养21.试论数学教学中学生思维品质的培养22.关于数项级数收敛性的判定23.如何激发和培养学生学习数学的兴趣24.计算机辅助教学在数学教学中的作用25.在数学教学中如何培养学生的创新能力F1.浅谈数学中的哲学问题2.试论数学中的美学3.论数学对培养创造性思维的作用4.一个极限定理条件的弱化5.证明Lebesgue积分三个定义的等价性6.试论实变函数论对中学教学函数理论研究的作用7.强渐进有界映射的不动点定理8.Banach空间内映射族的公共不动点定理9.关于充分必要条件的讨论10. 浅谈如何学好高等数学课G1.关于数列〈-N〉极限定义的分析与理解;2.浅谈极限概念发展的几个历史阶段;3.关于极限计算的各种方法;4.幂指函数极限计算的简单方法;5.等价无穷小代换在求极限过程中的应用;6.不定积分计算的各种方法;7.结合实际浅谈对函数导数概念的理解与体会;8.浅析微分中值定理的推广与应用;9.关于导数在研究函数中的应用;10.利用定积分求极限的方法;11.关于学生数学兴趣的培养技巧;12.如何激发和培养中学生学习数学的兴趣;13.结合数学教学浅谈教书育人的认识与实践;14.对新世纪数学发展趋势的一些展望;15.数学教育过程中学生创新能力的培养;16.关于现代教育技术与数学教学改革的探讨。
2013B数学建模国赛论文

dist Oder
跳变距离,与英文字母之间的行距和字母大小相关
存储图片拼合顺序的矩阵 拼接正确数目比 标准化处理后的变量 样本与聚类中心的欧式距离 效率因子
(0)
z ij
min F
(t)
五、模型的建立与求解
一、模型一的建立与求解 1.1 基于 canny 边缘检测算子的二值化处理 Canny 边缘检测是高斯函数的一阶导数,是对信噪比与定位能力的乘积的最优化 逼近算子,广泛运用于图像处理和模式识别问题中。在本题中,需要通过获取每个字 的边界来获取其位置信息,所以利用 Canny 算子进行边缘检测,确定每个字的边界。 Canny 算子的边缘检测最优性与以下标准有关: (1)好的信噪比,即非边缘点判为边缘点或将边缘点判为非边缘点的概率低。信噪 比越大,则边缘提取质量越好。 (2)好的定位性能,即检测出的边缘点要尽可能在实际边缘的中心。 (3)对单一边缘具有唯一响应,并且对虚假边缘响应应得到最大抑制。 算法步骤如下:
M [ x, y ] G x ( x, y ) 2 G y ( x, y ) 2
[ x, y ] arctan(Gx ( x, y ) / G y ( x, y )) M [ x, y ] 反映了图像的边缘强度, [ x, y ] 反映了图像的边缘方向。使得 M [ x, y ] 取得局部 最大值的方向角 [ x, y ] ,就反映了边缘的方向。
三、模型假设
1.假设每一个字体的大小可有一个正方形将其完全包含,而且这个正方形的长宽是固 定值。 2.假设和每个包含字的正方形都并行排列 (其底边在一条直线上) , 即不可能出现正方 形的底边在这条直线的下方或者是上方。 3.假设人工干预所做的处理都是有效的
3
四、符号说明
数学论文题目参考

数学论文题目参考
关于数学的论文题目有哪些?数学是整个教育教学的重点和难点,同时也是很多学生的弱项,数学教师如何提高教学质量,激发学生学习兴趣,是贯穿于整个教学中的主要任务。
下面给大家带来数学论文题目参考_数学教学论文题目有哪些,希望能帮助到大家!中学数学论文题目1、用面积思想方法解题2、向量空间与矩阵3、向量空间与等价关系4、代数中美学思想新探5、谈在数学中数学情景的创设6、数学创新思维及其培养7、用函数奇偶性解题8、用方程思想方法解题9、用数形结合思想方法解题10、浅谈数学教学中的幽默风趣11、中学数学教学与女中学生发展12、论代数中同构思想在解题中的应用13、论教师的人格魅力14、论农村中小学数学教育15、论师范院校数学教育16、数学在母校的发展17、数学学习兴趣的激发和培养18、谈新课程理念下的数学教师角色的转变19、数学新课程教材教学探索20、利用函数单调性解题21、数学毕业论文题目汇总22、浅谈中学数学教学中学生能力的培养23、变异思维与学生的创新精神24、试论数学中的美学25、数学课堂中的提问艺术26、不等式的证明方法27、数列问题研究28、复数方程的解法29、函数最值方法研究30、图象法在中学数学中的应用31、近年来高考命题研究32、边数最少的自然图的构造33、向量线性相关性讨论34、组合数学在中学数学中的应用35、函数最值研究36、中学数学符号浅谈37、论数学交流能力培养(数学语言、图形、符号等)38、探影响解决数学问题的心理因素39、数学后进学生的心理分析40、生活中处处有。
2013全国数模竞赛A题优秀论文祥解
2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):车道被占用对城市道路通行能力的影响摘要本文主要研究车道被占用对城市道路通行能力的影响并建立了相应的数学模型。
针对问题一,考虑到交通信号灯的周期,我们选择1分钟为周期,结合不同车辆的标准车当量的折算系数,求出每个采样点的交通量,通过MATLAB作图,从定性方面对道路通行能力进行分析,然后通过基本通行能力和4个修正系数建立动态通行能力的模型。
图像显示,事故发生后(采样点5附近),实际通行能力下降至一个较低水平,并且横断面处的实际能力变化过程呈先下后上的波形变化,在事故解决(第20个采样点)以后,由图像看出实际通行能力持续上升。
针对问题二,利用问题一建立的模型,结合视频二,比较交通事故所占不同车道时横断面的实际通行能力,可以发现二者实际通行能力变化趋势大致相同,但视频二实际通行能力大于视频一实际通行能力。
可见占用车流量大的车道使道路通行能力降低更多。
针对问题三,首先我们建立单车道排队车辆数目的积分模型,单个车道的滞留车辆为上游车流量和实际通行能力的差值。
我们以30s为一个时间段,对视频一中的车流量进行统计,得到横截面处每个监测段的实际通行能力。
本题要求考虑三车道,总体排队长度不容易通过积分模型确定,所以我们将队列长度问题转化为车辆数目问题,通过视频资料统计120米对应24辆车,据此关系转换,从而得到车辆排队长度与事故横断面实际通行能力、事故持续时间和上游车流量的关系。
针对问题四,在对问题3研究的基础上,根据问题3建立的数学模型,建立起某一段时间间隔车辆排队的长度,然后,通过求得的关系得到当排队长度为140m的时候所对应的时间段,由于每段时间间隔设为30s,因此,可以求得排队长度到达上游时用的时间为347.7273s。
关键词:交通事故车道占用通行能力排队论一、问题的重述车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低的现象。
数学建模论文题目(优选专业题目128个)
数学建模论文就是探讨根据实际问题来建立数学模型中的问题及解决措施,本篇文章就给大家介绍一些数学建模论文题目,作为大家写作论文时的题目参考,希望可以为大家提供一定的帮助。
一、数学建模论文题目1、高中数学核心素养之数学建模能力培养的研究2、小学数学建模数字化教学的设计与实施策略——以“自行车里的数学问题”为例3、培养低年段学生数学建模意识的微课教学4、信息化背景下数学建模教学策略研究5、数学建模思想融入解析几何的实际应用探讨6、以数学建模为平台培养大学生创新能力的SWOT分析──以内蒙古农业大学为例7、基于高等数学建模思维的经济学应用8、以数学建模促进应用型本科院校数学专业的发展9、高等代数在数学建模中的应用探讨10、融入数学建模思想的线性代数案例教学研究11、以“勾股定理的应用”为例谈初中数学的建模教学12、经管概率统计中的数学建模思想研究——评《经管与财税基础》13、数学建模实例——河西学院校内充电站最佳选址问题14、基于数学建模探讨高职数学的改革途径15、大数据时代大学生数学建模应用能力的提升研究16、“数学写作之初见建模”教学设计及思考17、大学数学教学过程中数学建模意识与方法的培养简析18、基于建模思想的高等数学应用研究19、小学数学建模教学实践20、依托对口支援平台培养大学生的数学建模能力21、跨界研究在数学建模教与学中的应用22、基于结构参数的机织物等效导热率数学建模23、数学建模对大学生综合素质影响的调查研究24、计算机数学建模中改进遗传算法与最小二乘法应用25、数学建模在高中数学课堂的教学策略分析26、发动机特性数字化处理与数学建模27、数学建模中的数据处理——以大型百货商场会员画像描绘为例28、数学建模竞赛对医学生学习态度和自学能力的影响29、数学建模思想与高等数学教学的融会贯通30、试论数学建模思想在小学数学教学中的应用31、浅析飞机地面空调车风量测控系统数学建模及工程实施32、高中数学教学中数学建模能力的培养——基于核心素养的视角33、注重数学建模提炼解题思路——对中考最值问题的探究34、在数学建模教学中培养思维的洞察力35、刍议数学建模思想如何渗透于大学数学教学中36、数学建模竞赛背景下对高校数学教学的思考37、数学建模课程对高职学生创新能力的培养探究38、高等数学教学中数学建模思想方法探究39、初中数学教学中数学建模思想的渗透40、无线激光通信网络海量信息快速调度数学建模41、基于多元线性回归模型的空气质量数据校准——2019年大学生数学建模竞赛D题解析42、中学数学建模教学行为探究43、数学建模竞赛成果诊断倒逼教学资源库优化的机制研究44、基于数学建模活动的高校数学教学改革45、数学建模与应用数学的结合研究46、谈初中数学建模能力的培养47、数学建模在初中数学应用题解答中的运用48、基于数学建模思想的高等数学教学方法研究49、数学建模融入高等数学翻转课堂模式研究50、数学软件融入数学建模课程教学的探讨51、数学建模促进大学数学教学改革52、建模思想在小学数学教学中的应用53、基于数据挖掘对城市公交站点优化的数学建模54、浅谈中学数学建模教学55、大专师范生数学建模能力水平的实验分析56、风电场电气功率预测数学建模研究57、关于“电梯问题”的数学建模教学与思考58、意义建模:让数学教学焕发“模”力59、基于数学建模的高职数学教学改革创新研究60、案例教学法在“数学建模”课程中的应用61、数学建模在中年女性减脂营养早餐搭配中的应用62、浅析将数学建模融入高职高等数学课程教学63、谈现代信息技术环境下数学建模的创新教育64、数学建模课程的任务型教学探究65、数学核心素养之数学建模能力的培养初探66、纸飞机的飞行原理数学建模67、核心素养下“数学建模”素养的培养途径探究68、数学建模的思想方法在中学数学学习过程中的渗透69、基于数学建模素养的高中数学课堂教学策略研究70、多矢量推进水下航行器深度分组控制数学建模分析71、高等数学教学方法改革与数学建模思想培养的研究72、“互联网+建模思想”下小学中年段学生的数学概念学习73、核心素养视角下数学建模与数学探究单元教学的思考74、数学建模过程的理解与教学实施75、MATLAB在数学建模中的应用76、注重数学建模教学发展数学核心素养77、基于数学建模的网络数据流异常检测仿真78、用数学建模与数学实验优化高等数学课堂79、刍议大学工科数学教学中数学建模思想的应用80、例谈直觉对学生数学建模的影响81、数学建模在概率论与数理统计教学中的应用82、高职数学建模教学83、我院数学建模教学训练相关问题分析及建议84、地震波动强度非平稳特征提取数学建模分析85、核心素养下初中数学建模能力的培养86、高职院校开展数学建模活动的研究87、防火服热湿传递数学建模及人体皮肤烧伤预测88、基于数学建模的高职学生创新思维培养89、数学教学中建模意识及方法的养成90、浅谈数学建模中快速学习能力的应用91、基于高职数学教学中融入数学建模思想分析92、纳流体忆阻器数学建模及仿真93、基于数学建模竞赛的大学生创新创业能力培养研究94、基于数学建模验证的三维振镜激光扫描仪95、数学建模思想在经管专业概率统计教学中的渗透96、数学建模融入应用型大学数学教学探究97、数学建模方法在中小企业经营中的应用98、翻转课堂模式下数学建模案例教学的实践与研究99、应用型本科院校数学建模活动探析100、基于职业能力培养的高职数学建模课程教学改革101、数学建模在高中数学教学中的运用初探102、高职院校数学建模竞赛的探讨103、初中数学建模教学研究——PISA视域下104、农村初中学生数学建模能力培养策略105、基于数学建模竞赛的高职创新人才培养模式研究106、基于新课标的数学建模能力评价探讨107、初中数学建模教学的策略分析108、探寻数学建模素养落地生根的有效路径109、建模思想在数学教学中的应用探究110、非对称耦合传感网络同步控制数学建模仿真111、数学建模开放创新实验室的建设与探索112、教育实习中将数学建模融入中学数学教学的探究113、基于MATLAB的中成药数学建模与数据分析114、试述大学数学教学中数学建模思想的融入115、计算机技术在数学建模领域的应用研究116、谈初中数学学习中的函数建模思想117、数字工具支持下数学建模的研究综述118、核心素养视角下小学数学建模素养的培养策略探究119、PBL教学模式与数学建模高效课堂的构建120、国内高职数学建模教学方法研究综述121、基于建模能力培养的高中数学教学探究122、数学建模技术在现代农业发展中的应用分析123、核心素养背景下的高中数学建模教学124、数学建模思想融入大学数学教学中的策略125、地方院校研究生数学建模的思考126、数学建模思想在小学数学教学中的应用探析127、高职数学中融入数学建模思想的意义与实施途径128、建模思想在初中数学复习中的应用以上就是为大家精选的“数学建模论文题目(优选专业题目128个)”希望以上的论文题目对大家的论文选题有所帮助。
数学教育毕业论文题目参考选题大全
数学教育毕业论文题目参考选题大全在一篇数学教育论文中,题目是论文的要件之首,它不同于一般文章的题目,我们要重视题目的重要性。
以下是店铺为大家精心准备的数学教育论文题目,欢迎阅读!数学教育论文题目(一)1、浅谈中学数学中的反证法2、数学选择题的利和弊3、浅谈计算机辅助数学教学4、数学研究性学习5、谈发展数学思维的学习方法6、关于整系数多项式有理根的几个定理及求解方法7、数学教学中课堂提问的误区与对策8、中学数学教学中的创造性思维的培养9、浅谈数学教学中的“问题情境”0、市场经济中的蛛网模型11、中学数学教学设计前期分析的研究12、数学课堂差异教学13、浅谈线性变换的对角化问题14、圆锥曲线的性质及推广应用15、经济问题中的概率统计模型及应用数学教育论文题目(二)1、二阶变系数齐次微分方程的求解问题2、一种函数方程的解法3、微分中值定理的再讨论4、学生数学学习的障碍研究;5、中学数学教育中的素质教育的内涵;6、数学中的美;7、数学的和谐和统一----谈论数学中的美;8、推测和猜想在数学中的应用;9、款买房问题的决策;10、线性回归在经济中的应用;11、数学规划在管理中的应用;12、初等数学解题策略;13、浅谈数学CAI中的不足与对策;14、数学创新教育的课堂设计;15、中学数学教学与学生应用意识培养;16、关于培养和提高中学生数学学习能力的探究;17、运用多媒体培养学生18、高等数学课件的开发19、广告效益预测模型;数学教育论文题目(三)1、浅谈菲波纳契数列的内涵和应用价值2、一道排列组合题的解法探讨及延伸3、整除与竞赛4、足彩优化5、向量的几件法宝在几何中的应用6、递推关系的应用7、坐标方法在中学数学中的应用8、小议问题情境的创设9、数学概念探索启发式教学10、柯西不等式的推广与应用11、关于几个特殊不等式的几种巧妙证法及其推广应用12、一道高考题的反思13、数学中的研究性学习15、数字危机16、数学中的化归方法17、高斯分布的启示18、的变形推广及应用19、网络优化20、泰勒公式及其应用。
2013年五一数学建模联赛 A题论文
图 1 男女大学生体重指数一览表
人数
体重指数一览表
800
712
700
600 500
475
400
300
200 100
10264 38
237 183157 26
0
7267 5
低体重者
正常体重者
超重者
四类人群
肥胖者
学生数 男生数 女生数
2
4.2.3 结果与分析
对照表 1 及相关的频数表,反映出大学生 BMI 指数基本正常,正常体重人群相对集
关键词: 独立样本 t 检验 方差检验 K-S 检验 模糊综合评价 SPSS
一 问题重述
据数据显示,近年来中国大学生的体质健康水平呈下降趋势。学生或者过重或者过 瘦,对大学生体质健康的评价问题对于如何提高大学生的体质健康水平具有指导意义。
根据对某高校大一新生 36 个班级共 1000 多名学生进行的体质与健康测试,得到了 一组相关资料,由于测试过程中学生未能按照要求规范测试,导致测量结果中出现一些 偏差,进而影响了体质健康的测试,请结合各项测试评分标准,回答下列问题: 问题 1:影响大一新生的体质健康状况的因素很多,体重是体现体质健康状况的重要指 标,分析体重对体质健康的影响;在体质健康测试中,测试结果可能存在误差,在附表 1 中,有些测量资料不能反映同学的真实水平,根据附表 1 数据,请建立数学模型检验 测试结果的正确性和准确性,找出附表 1 中 1、2、3 班同学的可能偏差测试结果,并说 明理由。 问题 2:生源地是影响体质健康状况的因素,请在不同生源地选取适当的样本,试检验 不同地区学生的体能健康是否具有显著差别。 问题 3:目前,我国体能测试主要采用《国家体质健康标准》对学生体质进行评价,根 据附表 2 中(男生:sheet1;女生:sheet2)项目评价标准,试建立体质健康评价模型, 评价该校学生的体质健康状况,并对 1 班的 30 名同学进行体质健康评价。 问题 4:我国大多数高校学生体质健康合格率未达到国家要求,对于未达标的大一新生 来说,就如何让学生在在校期间提高自身的体质健康写一份建议报告书,其中包括提高 体质健康水平的措施和手段,如何量化提高体质健康指标等问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年数学模型课程结业论文题目 1.某厂用原料A,B生产甲、乙、丙三种产品,已知生产单件产品所需原料、所获利润等有关数据如下表所示: 甲 乙 丙 原料拥有量 A 6 3 5 45 B 3 4 5 30 单件利润 4 1 5 试分别回答下列问题: (1)建立线性规划模型,求使该厂获利最大的生产计划; (2)若产品乙、丙的单件利润不变,甲的单件利润增加到6,是否改变生产计划? (3)若原料A市场紧缺,除拥有量外一时无法购进,而原料B如数量不足可去市场购买,单价为0.5,问该厂是否购买,以购进多少为宜。
2.下表是1980年到1999年世界人口统计数据(单位:百万)。请利用1980年到1998年世界人口数据建立世界人口模型,用所建立的模型预测1999年人口,并与实际人口进行对比,作出模型检验,预测2010年世界人口数量。 年 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 人口 4454 4530 4610 4690 4770 4851 4933 5018 5105 5190 年 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 人口 5277 5359 5442 5523 5603 5682 5761 5840 5919 5996
3.一垂钓俱乐部鼓励垂钓者将钓上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用于测量。请你设计按照测量的长度估计鱼的重量的方法。假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长):
身长(cm) 36.8 31.8 43.8 36.8 32.1 45.1 35.9 32.1 重量(g) 765 482 1162 737 482 1389 652 454 胸围(cm) 34.8 21.3 27.9 24.8 21.6 31.8 22.9 21.6 先用机理分析建立模型,再用数据确定参数。
4. 在甲乙双方的一次战役中,甲乙双方在开始时投入士兵数分别为x0和y0,t时刻甲乙双方的士兵数分别为x(t)和y(t),甲乙双方战斗的有效系数(包括士气、武器装备、指挥艺术等)分别为b和a,即甲方平均一个士兵使乙方士兵在单位时间内的减员数为b。若甲乙双方都不考虑增援兵力,也不考虑士兵病故、逃亡等因素,试研究甲乙双方士兵人数的变化规律,并判断战役的结局情况。
5.配件厂为装配线生产若干种部件,轮换生产不同的部件时因更换设备要付出生产准备费(与生产数量无关)。同一部件的产量大与需求量时因积压资金、占用仓库要付贮存费。今已知某一部件厂的日需求量为常数r,日生产速率为常数k,k>r,每次生产准备费为c1,每天每件产品贮存费为c2。假设不允许缺货,当存量降到零时立即开始生产(不计生产准备时
表1 世界人口统计数据表 间),并且在每个生产周期T内,开始的一段时间(0间(T06. 我国公务员制度已实施多年,1993年10月1日颁布施行的《国家公务员暂行条例》规定:“国家行政机关录用担任主任科员以下的非领导职务的国家公务员,采用公开考试、严格考核的办法,按照德才兼备的标准择优录用”。目前, 我国招聘公务员的程序一般分三步进行:公开考试(笔试)、面试考核、择优录取。 现有某市直属单位因工作需要,拟向社会公开招聘8名公务员,具体的招聘办法和程序如下: (一)公开考试:凡是年龄不超过30周岁,大学专科以上学历,身体健康者均可报名参加考试,考试科目有:综合基础知识、专业知识和“行政职业能力测验”三个部分,每科满分为100分。根据考试总分的高低排序按1:2的比例(共16人)选择进入第二阶段的面试考核。 (二)面试考核:面试考核主要考核应聘人员的知识面、对问题的理解能力、应变能力、表达能力等综合素质。按照一定的标准,面试专家组对每个应聘人员的各个方面都给出一个等级评分,从高到低分成A/B/C/D四个等级,具体结果见表1所示。 (三)由招聘领导小组综合专家组的意见、笔初试成绩以及各用人部门需求确定录用名单,并分配到各用人部门。 该单位拟将录用的8名公务员安排到所属的7个部门,并且要求每个部门至少安排一名公务员。这7个部门按工作性质可分为四类:(1)行政管理、 (2)技术管理、(3)行政执法、(4)公共事业。见表2所示。 招聘领导小组在确定录用名单的过程中,本着公平、公开的原则,同时考虑录用人员的合理分配和使用,有利于发挥个人的特长和能力。招聘领导小组将7个用人单位的基本情况(包括福利待遇、工作条件、劳动强度、晋升机会和学习深造机会等)和四类工作对聘用公务员的具体条件的希望达到的要求都向所有应聘人员公布(见表2)。每一位参加面试人员都可以申报两个自己的工作类别志愿(见表1)。请研究下列问题: (1)如果不考虑应聘人员的意愿,择优按需录用,试帮助招聘领导小组设计一种录用分配方案; (2)在考虑应聘人员意愿和用人部门的希望要求的情况下,请你帮助招聘领导小组设计一种分配方案; (3)你的方法对于一般情况,即N个应聘人员M个用人单位时,是否可行? (4) 你对上述招聘公务员过程认为还有哪些地方值得改进,给出你的建议。
表1:招聘公务员笔试成绩,专家面试评分及个人志愿 应聘 人员 笔试 成绩 申报类别志愿
专家组对应聘者特长的等级评分
知识面 理解能力 应变能力 表达能力 人员1 290 (2) (3) A A B B 人员2 288 (3) (1) A B A C 人员3 288 (1) (2) B A D C 人员4 285 (4) (3) A B B B 人员5 283 (3) (2) B A B C 人员6 283 (3) (4) B D A B 人员7 280 (4) (1) A B C B 人员8 280 (2) (4) B A A C 人员9 280 (1) (3) B B A B 人员10 280 (3) (1) D B A C 人员11 278 (4) (1) D C B A 人员12 277 (3) (4) A B C A 人员13 275 (2) (1) B C D A 人员14 275 (1) (3) D B A B 人员15 274 (1) (4) A B C B 人员16 273 (4) (1) B A B C
表 2: 用人部门的基本情况及对公务员的期望要求 用人 部门 工作 类别
各用人部门的基本情况 各部门对公务员特长的希望达到的要求 福利待遇 工作条件 劳动强度 晋升机会 深造机会
知识面 理解能力 应变能力 表达能力
部门1 (1) 优 优 中 多 少 B A C A 部门2 (2) 中 优 大 多 少 A B B C
部门3 (2) 中 优 中少多
部门4 (3) 优 差 大 多多 C C A A
部门5 (3) 优 中中中 中
部门6 (4) 中 中 中 中 多 C B B A
部门7 (4) 优 中 大少 多
7公平的竞赛评卷系统 数学建模竞赛吸引了众多的大学生、研究生甚至中学生的参与,越来越多的人关心竞赛评卷的公平性。现今大多数的评卷工作是这样进行的:先将答卷编成密号,评委由各参赛学校(20-50所)派出,按不同的题目分成几个题组,每个题组由M个评委组成,评阅N份答卷,每份答卷经L个评委评阅,评委对每份答卷给出等级分(A+,A,A-,B+,B,B-,C+ ,C,C-,D),如果L个评委给出的分数基本一致,就给出这份答卷的平均分,否则需讨论以达成一致(其中M = 5-10,N = 60-200,L = 3-5)。现在需要你解决如下问题:
1.有A,B,C,D四个题目,P(P ≥ M)所学校参赛,给出一种答卷编号加密和解密的数学公式方法(其中题号为明号);要求方法简单易算、可随意变换且保密性能好;对你的方法给出分析。
2.每个题组的M个评委来自不同学校,给出一种评阅答卷分配的数学公式方法,要求回避本校答卷,并且每个评委评阅的答卷尽可能广泛,并满足某些特殊的要求。
3.给出评分一致性或公正性的检验方法,该方法要求对每个评委的公平性给出评价(某评委分数普遍给的偏高或低属于尺度偏差,不应算作不公平,可在下面的问题中调整)。 4.给出最终的分数调整计算公式。该公式要处理那些可能出现的“不公平”,及尺度偏差。对可能出现的“不公平”构造例子,说明你的方法。
5.对评卷中的其他问题(如采用百分制还是等级分,一份答卷由几个评委评阅可以满足既经济又公平,等等)提出你的看法和根据。
6.假定有35所学校298个参赛队参赛,数据如附表。 其中:数字前两位代表学校,甲组选做A,B题;乙组选做C,D题; 25名评委所属的学校编号为:1-17,20,21,22,24,26,28,29,30。 每份试卷经四位评委评阅,编号为15,22的只容许评C,D题,编号为26的只容许评A,B题,编号为1,4,6,12,16的评委要求评A题,编号为2,5,7,10的评委要求评B题;编号为24的评委要求评C题,编号为29的评委要求评D题。其余按所在学校的甲、乙组别及个人的要求安排。 要求对问题1,2给出具体的算法及结果。对问题3,4,5给出模拟数据再进行分析和运算。
附表:XX赛区参赛情况表 序 号 选 题 序 号 选 题 序 号 选 题 序 号 选 题 序 号 选 题 序 号 选 题 序 号 选 题 序 号 选 题 序 号 选 题 序 号 选 题 0101 A 0201 A 0507 A 0801 A 1001 B 1301 A 1501 A 2001 C 2401 C 2804 C 0102 B 0202 B 0508 A 0802 B 1002 A 1302 A 1502 B 2002 C 2402 D 2805 C 0103 B 0203 A 0509 B 0803 B 1003 B 1303 A 1503 B 2003 D 2403 C 2806 D 0104 A 0204 B 0510 B 0804 A 1004 A 1304 A 1504 A 2004 D 2404 D 2901 C 0105 A 0205 B 0511 A 0805 B 1005 A 1305 B 1505 B 2005 D 2405 D 2902 D 0106 B 0206 B 0512 C 0806 B 1006 B 1306 B 1601 B 2006 C 2406 D 2903 C 0107 B 0207 A 0513 C 0807 B 1007 B 1307 A 1602 B 2007 D 2407 C 2904 D 0108 A 0208 A 0514 D 0808 B 1008 A 1308 B 1603 B 2101 C 2501 C 2905 D 0109 B 0301 A 0515 D 0809 A 1009 B 1309 B 1604 A 2102 D 2502 D 2906 D 0110 B 0302 B 0601 B 0810 A 1010 B 1310 B 1605 A 2103 D 2503 C 2907 C 0111 A 0303 A 0602 A 0811 B 1101 B 1311 B 1606 B 2104 C 2504 C 2908 C 0112 B 0304 B 0603 B 0812 B 1102 B 1312 A 1607 B 2105 D 2505 D 3001 D 0113 A 0305 A 0604 A 0813 A 1103 A 1313 A 1701 A 2106 D 2506 C 3002 C 0114 B 0306 B 0605 B 0814 A 1104 A 1314 B 1702 A 2107 D 2601 C 3003 C 0115 A 0401 A 0606 A 0815 B 1105 B 1315 B 1703 A 2108 D 2602 D 3004 D 0116 B 0402 B 0607 B 0816 B 1106 B 1401 A 1704 A 2201 C 2603 D 3005 D 0117 A 0403 A 0608 A 0817 A 1107 A 1402 A 1708 B 2202 C 2604 D 3101 C