数学建模论文题目

合集下载

大学生数学建模论文---两辆铁路平板车的装货问题

大学生数学建模论文---两辆铁路平板车的装货问题

大学生数学建模论文---两辆铁路平板车的装货问题题目:两辆铁路平板车的装货问题摘要:在现代物流运输中,铁路平板车被广泛应用于货物运输。

在铁路货运过程中,如何高效地装货是一个重要的问题。

本文通过数学建模的方法,研究了两辆铁路平板车的装货问题。

根据问题的具体要求和约束条件,我们建立了一个优化模型,旨在最大化装货效率和减少装货时间。

我们采用整数规划模型,并使用数值实例进行了求解和验证。

关键词:铁路平板车;装货问题;数学建模;优化模型1. 引言近年来,物流运输行业日益发展,货物运输效率成为一个关键问题。

铁路平板车是一种常用的货物运输工具,它具有运能大、运输距离长、安全可靠等优点。

然而,如何高效地装货是一个需要解决的问题。

2. 问题描述假设有两辆铁路平板车,它们需要装载一批货物。

货物的重量和体积不同,平板车的装载能力也有限制。

问题要求确定如何合理地将货物装载到平板车上,使得装货效率最大化,并且尽量减少装货时间。

3. 模型建立我们首先将问题进行数学抽象,定义相关的变量和参数。

然后根据问题的具体要求和约束条件,建立一个优化模型。

在模型中,我们考虑了货物的重量、体积以及平板车的装载能力等因素,并在保证装货的合理性的前提下,最大化装货效率。

4. 模型求解为了求解优化模型,我们采用整数规划的方法,并使用数学软件进行求解。

通过数值实例的求解和验证,我们得出了合理的装货方案,并评估了装货效率和装货时间等指标。

5. 结论与展望本文研究了两辆铁路平板车的装货问题,通过数学建模的方法,建立了一个优化模型,并采用整数规划进行求解。

通过数值实例的验证,我们证明了模型的合理性和有效性。

然而,由于时间和资源的限制,本文的研究还有一定的局限性。

未来的研究可以进一步考虑更多的因素和约束条件,以提高装货效率和减少装货时间。

全国大学生数学建模大赛国家一等奖论文A题

全国大学生数学建模大赛国家一等奖论文A题
海床情况进行求解。
=
− − ( − 1)′
, = 1, 2, · · ·, 210

当逐渐增大,锚链受到的竖直向下方向的合力与支持力之差先逐渐接近于0,
再等于0,直至小于0。当合力小于0时,锚链以海床接触,此时海床提供向上的支持
力,其大小与′ 相等。因此可将小于0 的值都作零处理,故锚链接触海床时,
对于问题二,首先考虑第一个子问题,将风速36/直接代入问题一的模型中,
得出此条件下的吃水深度为0.723,各钢管倾斜角度(度)依次为8.960、9.014、9.068
、9.123,钢桶倾斜角(度)为9.179,锚链链接处的切线方向与海床的夹角(度)为18.414,
游动区域半径为18.80。发现此条件下,水声通讯系统设备的工作效果较差,且锚被
计与应用对海上科学发展有重要意义。
1.2 问题的提出
已知某近浅海传输节点(如图1所示),将浮标视作底面直径2为、高为2、质量
为1000的圆柱体,锚的质量为600,钢管共4节,每节长度为1,直径为50,
每节钢管的质量为10。水声通讯系统安装在一个长为1、外径为30的密封圆
柱形钢桶内,设备和钢桶总质量为100。
Step1: 遍历求解
令吃水深度ℎ的初始值为0.1,以0.0005为单位逐步增加至2。( 浮标高度为2,
完全浸没时吃水深度ℎ则为2 ),记录对应的数据,选取水下物体竖直方向高度和
与海域水深最接近的组别,进一步进行计算,结果如下表所示(具体程序见附录):
表 1: 不同风速的相关结果表
以风速24/的情况为例,绘制游动区域图:
题意的变量临界值。以水深16、系统各部分递推关系式和钢桶与竖直方向夹角小
于5°为约束条件,将多目标优化转化为单目标优化。通过调节决策变量中锚链的型

数学建模论文题目优选专业题目128个

数学建模论文题目优选专业题目128个

数学建模论文题目优选专业题目128个1. 基于偏最小二乘法的回归模型研究2. 城市道路网优化设计模型研究3. 基于多元时间序列的股票价格预测模型4. 基于PCA的图像压缩算法研究5. 基于神经网络的手写数字识别模型研究6. 基于逻辑回归的信用评分模型研究7. 基于多元回归的考试成绩预测模型8. 基于分层抽样的调查数据分析模型研究9. 基于粒子群算法的车辆路径规划模型10. 基于高斯混合模型的人脸识别模型研究11. 基于时间序列的气象预测模型研究12. 基于模糊数学的交通运输成本评价模型13. 基于Bayesian模型的风险管理模型研究14. 基于熵权法的供应链绩效评价模型研究15. 基于人工神经网络的物流配送路径规划模型16. 基于聚类分析的消费者购物行为模型研究17. 基于ARIMA模型的股票价格预测研究18. 基于线性规划的资源优化配置模型研究19. 基于灰色关联分析的品牌效应评价模型20. 基于神经网络的信用卡欺诈检测模型研究21. 基于分类决策树的客户流失预测模型22. 基于支持向量机的情感分类模型研究23. 基于聚类分析的企业竞争战略研究24. 基于随机森林算法的文本分类研究25. 基于多元回归的商品价格预测模型研究26. 基于模糊层次分析法的公共设施优化布局模型27. 基于BP神经网络的电网负荷预测模型研究28. 基于熵增资金流动模型的投资组合优化研究29. 基于支持向量机的时序自然语言处理模型研究30. 基于贝叶斯网络的风险评估模型研究31. 基于特征选择的糖尿病研究模型32. 基于ARMA-GARCH模型的黄金价格预测研究33. 基于随机森林算法的房价预测模型研究34. 基于半监督学习的数据建模方法研究35. 基于神经网络的新闻情感分析模型研究36. 基于多元回归的用户购买意愿预测研究37. 基于主成分分析法的医学数据挖掘模型研究38. 基于熵增二次规划的环保决策模型研究39. 基于支持向量机的产品缺陷分析模型研究40. 基于遗传算法的旅游路线规划模型研究41. 基于BP神经网络的房产估价模型研究42. 基于多元线性回归的企业税收影响因素研究43. 基于LDA主题模型的新闻推荐模型研究44. 基于半监督学习的文本分类方法研究45. 基于动态规划的优化管理模型研究46. 基于人工神经网络的汽车质量控制模型研究47. 基于SVM的留学生综合评价模型研究48. 基于熵权法的企业绩效评价模型研究49. 基于色彩分类的图像检索模型研究50. 基于PCA的公司财务分析模型研究51. 基于最小二乘法的时序预测模型研究52. 基于BP神经网络的信用风险评估模型研究53. 基于ARIMA模型的国际贸易数据预测研究54. 基于分层抽样的公共政策效果评价模型研究55. 基于遗传算法的网络优化模型研究56. 基于Logistic回归的客户流失模型研究57. 基于主成分回归的能源消费预测模型研究58. 基于熵增多目标规划的医院资源配置模型研究59. 基于LSTM的短期气温预测模型研究60. 基于支持向量机的销售预测模型研究61. 基于偏最小二乘法的时间序列分析模型研究62. 基于线性规划的物流成本控制模型研究63. 基于粒子群算法的生产排程问题研究64. 基于K-Means算法的用户购物行为分析模型研究65. 基于BP神经网络的就业市场预测模型研究66. 基于多元回归的房价分析模型研究67. 基于PCA-LDA算法的股票投资组合优化研究68. 基于熵增法的金融客户信用评估模型研究69. 基于ARIMA模型的出口贸易预测研究70. 基于主成分回归的汽车销售预测研究71. 基于支持向量机的客户信贷风险评估模型研究72. 基于自回归模型的煤矿生产数据分析模型研究73. 基于半监督学习的文本聚类算法研究74. 基于偏最小二乘法的多元时间序列预测模型研究75. 基于数据挖掘的酒店客户消费分析模型研究76. 基于BP神经网络的固定资产折旧预测模型研究77. 基于LSTM的外汇汇率预测模型研究78. 基于GARCH模型的期货价格波动预测研究79. 基于随机森林算法的个人信用评估模型研究80. 基于分层抽样的医院评价模型研究81. 基于主成分回归的员工绩效评价模型研究82. 基于特征选择的电商商品分类预测研究83. 基于组合多目标规划的供应链资源配置模型研究84. 基于支持向量机的农村扶贫模型研究85. 基于因子分析法的股票投资风险评估模型研究86. 基于熵权法的环境效益评价模型研究87. 基于ARMA-GJR模型的期权价格波动预测研究88. 基于线性规划的房地产项目开发决策模型研究89. 基于支持向量机的人体姿势识别模型研究90. 基于逻辑回归的疾病风险评估模型研究91. 基于随机森林算法的人群画像建模研究92. 基于特征选择的电商用户购买行为模型研究93. 基于主成分回归的债券价格预测研究94. 基于半监督学习的视频分类方法研究95. 基于GARCH模型的黄金价格波动预测研究96. 基于线性规划的物流配送网络优化模型研究97. 基于神经网络的推荐系统算法研究98. 基于多元回归的城市房价分析模型研究99. 基于决策树的产品质量评估模型研究100. 基于熵增的生态系统评价模型研究101. 基于ARMA-GARCH模型的汇率波动预测研究102. 基于偏最小二乘法的长期股票价格预测模型研究103. 基于支持向量机的广告点击率预测模型研究104. 基于最小二乘法的用户行为分析模型研究105. 基于主成分分析的国际贸易影响因素研究106. 基于熵权法的固体废物处置模型研究107. 基于BP神经网络的猪价预测模型研究108. 基于多元回归的医疗保险费用预测模型研究109. 基于半监督学习的语义分析方法研究110. 基于GARCH模型的股票市场风险度量研究111. 基于多元回归的房屋安全预测模型研究112. 基于主成分回归的银行收益预测模型研究113. 基于支持向量机的人脸识别模型研究114. 基于逻辑回归的考生录取预测模型研究115. 基于随机森林算法的股票涨跌预测模型研究116. 基于线性规划的生产物流系统优化研究117. 基于支持向量机的非线性预测模型研究118. 基于LSTM的股票走势预测模型研究119. 基于因子分析法的环保技术影响因素分析研究120. 基于聚类分析的电商平台用户行为分析研究121. 基于人工神经网络的物流配送路线优化模型研究122. 基于多元回归的房产投资模型分析研究123. 基于主成分回归的教育支出预测研究124. 基于熵增的商业银行绩效评价模型研究125. 基于遗传算法的能源资源优化配置模型研究126. 基于半监督学习的情感分类方法研究127. 基于GARCH模型的商品期货价格波动研究128. 基于支持向量机的房地产投资风险评估模型研究。

数学建模优秀论文

数学建模优秀论文

(数学建模B题)北京水资源短缺风险综合评价参赛队员:甘霖(20093133,数学科学学院)李爽(20093123,数学科学学院)崔骁鹏(20091292,计算机科学学院)参赛时间:2011年4月30 - 5月13日承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D 中选择一项填写):B所属学校(请填写完整的全名):黑龙江大学参赛队员:1.甘霖2、李爽3、崔骁鹏日期:2011 年5月12日目录1.摘要 -----------------------------------------42.关键词 ---------------------------------------43.问题重述 ---------------------------------------54.模型的条件和假设 ------------------------------55.符号说明 --------------------------------------56.问题的分析及模型的建立 ------------------------66.1问题一的分析与求解 -----------------------66.2问题二的分析与求解 -----------------------106.3问题三的分析与求解 -----------------------186.4问题死的求解 -----------------------------217.模型的评价 ------------------------------------238.参考文献 --------------------------------------239.附录 ------------------------------------------23北京水资源短缺风险综合评价甘霖﹑李爽﹑崔骁鹏【摘要】本文针对水资源短缺风险问题求出主要风险因子,并建立了水资源短缺风险评价模型,以北京为实例,做出了北京1979年到2009年的水资源短缺风险的综合风险评价,划分出了风险等级,以评价水资源短缺风险的程度。

全国研究生数学建模竞赛论文--范例

全国研究生数学建模竞赛论文--范例

全国第五届研究生数学建模竞赛题 目 货运列车的编组调度问题摘 要货运列车的编组调度问题是铁路运输系统的关键问题之一。

合理地设计编组调度方案对于提高铁路运输能力和运行效率具有十分重要的意义,是关乎我国铁路系统能否又好又快开展的全局性问题。

针对货运列车的编组调度问题,在深入研究编组站中到达列车的转发、解体及新车编发等规那么和要求的根底上,对所提供的数据进行了分析和处理,建立了各问题相应的数学模型,制订了相应的编组调度方案:针对问题一,详细探讨了白、夜班中所有车辆在编组站的滞留时间,包括解体等待时间、解体时间、编组时间、出发等待时间以及转发时间等等;求出了所有车辆在编组站的滞留时间之和,并用其除以所有车辆的总数,即得到每班中时的优化模型;模型以每班的最小中时为目标函数,其约束条件包括出发列车的总重量、总长度、每辆车的中时约束等等;最后利用遗传算法和Matlab 遗传算法工具箱,计算出了白班和夜班的最小中时,并给出了详细的列车解体方案和编组方案。

针对问题二,优先考虑了发往1S 的货物、军用货物及救灾货物等的运输问题;优先安排了含有专供货物和救灾货物车辆数较多的列车,使其尽快解体、编组和发车,以减少其等待时间。

建模时,在问题一模型的根底上添加了专供货物和救灾货物车辆的中时约束,并利用遗传算法计算出了每班的最小中时,制订了列车解体方案和编组方案。

针对问题三,由于所提供的信息具有动态性,所以在解编列车时,要对后续车辆和现存车辆的具体情况同时进行分析才能作出合理决策。

在考虑相邻时段递推关系的根底上,以每班的最小中时和发出车辆最大数目为目标函数,建立了一个多目标多阶段动态规划模型,并利用神经网络方法和Matlab 软件计算出了每班的最小中时和发出车辆的最大数目,制订了列车解体方案和编组方案。

针对问题四,首先根据条件处理了所给的数据,然后在模型一的根底上建立了相应的模型,并计算出了相应各班的中时,给出了相应的调度方案。

数学建模优秀优秀论文A题

数学建模优秀优秀论文A题

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则•我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):_________________________________ 我们的参赛报名号为(如果赛区设置报名号的话):_______________________________________ 所属学校(请填写完整的全名):________________________________________________________ 参赛队员(打印并签名):1. _______________________________________________2. ____________________________________________3. ____________________________________________指导教师或指导教师组负责人(打印并签名):____________________________日期:—年—月—日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):基于系统综合评价的城市表层土壤重金属污染分析摘要本文针对城市表层土壤重金属污染问题,首先对各重金属元素进行分析,然后对各种重金属元素的基本数据进行统计分析及无量纲化处理,再对各金属元素进行相关性分析,最后针对各个问题建立模型并求解。

数学建模课程优秀论文题目

数学建模课程优秀论文题目

嘉兴学院2012-2013年度第2学期数学建模课程论文题目要求:按照数学建模论文格式撰写论文,以A4纸打印,务必于2013年5月31日前纸质交到8号楼214室,电子版发邮箱:*************。

并且每组至少推荐1人在课堂上做20分钟讲解。

题目1、产销问题某企业主要生产一种手工产品,在现有的营销策略下,年初对上半年6个月的产品需求预测如表1所示。

班时间不得超过10个小时。

1月初的库存量为200台。

产品的销售价格为240元/件。

该产品的销售特点是,如果当月的需求不能得到满足,顾客愿意等待该需求在后续的某个月内得到满足,但公司需要对产品的价格进行打折,可以用缺货损失来表示。

6月末的库存为0(不允许缺货)。

各种成本费用如表2所示。

(1)若你是公司决策人员,请建立数学模型并制定出一个成本最低、利润最大的最优产销方案;(2)公司销售部门预测:在计划期内的某个月进行降价促销,当产品价格下降为220元/件时,则接下来的两个月中6%的需求会提前到促销月发生。

试就一月份(淡季)促销和四月份(旺季)促销两种方案以及不促销最优方案(1)进行对比分析,进而选取最优的产销规题目2、汽车保险某保险公司只提供一年期的综合车险保单业务,这一年内,若客户没有要求赔偿,则给予额外补助,所有参保人被迫分为0,1,2,3四类,类别越高,从保险费中得到的折扣越多。

在计算保险费时,新客户属于0类。

在客户延续其保险单时,若在上一年没有要求赔偿,则可提高一个类别;若客户在上一年要求过赔偿,如果可能则降低两个类别,否则为0类。

客户退出保险,则不论是自然的还是事故死亡引起的,将退还其保险金的适当部分。

现在政府准备在下一年开始实施安全带法规,如果实施了该法规,虽然每年的事故数量不会减少,但事故中受伤司机和乘员数肯定会减少,从而医药费将有所下降,这是政府预计会出现的结果,从而期望减少保险费的数额。

这样的结果真会出现吗?这是该保险公司目前最关心的问题。

数学建模优秀论文的范文

数学建模优秀论文的范文

以下是一篇数学建模优秀论文的范文,供您参考:题目:基于支持向量机的分类模型研究引言:分类是数学建模中的一个重要问题,其在很多领域都有着广泛的应用。

支持向量机(SVM)是一种基于统计学习理论的分类算法,具有较好的泛化能力和鲁棒性,被广泛应用于图像分类、文本分类、生物信息学等领域。

本文旨在研究支持向量机在分类问题中的应用,并对其性能进行评估。

问题分析:分类问题的核心在于根据已知标签的数据集,训练出一个能够对未知数据进行分类的模型。

支持向量机是一种基于结构风险最小化原则的分类算法,其基本思想是将输入空间映射到高维特征空间,并在此空间中构建最大间隔分类器。

在支持向量机中,关键参数的选择和核函数的选取对模型的性能有着重要影响。

模型建立:支持向量机是一种基于统计学习理论的分类算法,其基本思想是在高维空间中构建一个超平面,将不同类别的数据分隔开。

该算法的核心在于寻找到一个能够将数据分隔开的最优超平面,使得分类间隔最大化。

在训练过程中,支持向量机会通过求解一个二次规划问题来寻找最优超平面。

模型求解:在模型训练过程中,我们采用了LIBSVM工具包来实现支持向量机。

LIBSVM是一种常用的支持向量机实现工具包,其提供了高效的求解算法和方便的接口。

在实验中,我们采用了交叉验证和网格搜索等方法来选择最优的参数组合,并对其进行评估。

结果分析:在实验中,我们采用了多种数据集来验证支持向量机的性能,包括图像分类、文本分类和生物信息学等领域的数据集。

实验结果表明,支持向量机在多个领域中都取得了较好的分类效果,其准确率、召回率和F1得分等指标均优于其他传统分类算法。

同时,我们还对其进行了误差分析,发现支持向量机具有较好的泛化性能和鲁棒性。

结论与展望:本文研究了支持向量机在分类问题中的应用,并对其性能进行了评估。

实验结果表明,支持向量机在多个领域中都取得了较好的分类效果,其准确率、召回率和F1得分等指标均优于其他传统分类算法。

同时,支持向量机还具有较好的泛化性能和鲁棒性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011-2012年度第二学期数学模型考查试题要求:在第19周的星期一下午将数学建模论文和实验报告交上来,论文大体包括:中文摘要,问题重述,模型假设,模型建立,模型求解,结果分析,模型改进,模型评价,参考文献,附录等。

引用别人的成果或其它公开的资料(包括网上查阅的资料)必须按照规定的参考文献的标示方式在正文引用处和参考文献中均明确列出。

正文引用处用方括号表示参考文献的编号,如([1]、[3])等;引用书籍还必须指出页码。

附录里有一篇作为示范的论文。

题目:在如下8道题目中任选一题作为考试内容,或者历年来的高教社杯数学建模竞赛的A或B题中任选一题作为考试内容。

1、如何更合理的利用学生打分评价教师的教学效果在中学,学校常拿学生的考试成绩评价教师的教学水平,虽存在一定的合理性,但这与素质教育相悖。

在高校不存在以学生考试乘积评价教师教学水平的条件。

很多高校让每一位学生给每一位授课教师教学效果打一个分,来评价教师的教学效果,这样能全面体现教师教学效果。

现某高校要从甲、乙、丙三位教师中选一位优秀教师,他们在A、B、C、D班的得分如下:方案一:取每位教师的最高得分作为最后得分,则应选丙。

方案二:取每位教师的最低得分作为最后得分,则应选乙。

方案三:取每位教师的平均得分作为最后得分,则应选乙。

但大家都会感觉甲应该当选,显然上述三种方案都有不合理的地方。

如何利用全校同学的打分给每一位教师整体教学效果一个更合理、更公平的评价,对提高教师和同学的积极性,提高学校的教学氛围有促进作应。

问:1)、请根据你们班的具体情况进行分析,对某位教师的得分统计建立一个合理的教学效果评价模型。

2)、已知数学学院的所有同学给信息系教师的打分,建立一个模型给出各位教师更合理、更公平的教学效果得分,并根据你的模型给出后面某高校(其中数据认定为根据你在问题1中方法得出)各位教师一个得分,见附件一。

3)若学校采用了你的模型,请给全校同学写一封信给教师打分应注意哪些事项,让你的模型更合理、更公平。

附件一:在洪水肆虐时,从全局出发有必要采取破堤泄洪,但从何处破堤分洪要考虑破堤的最小损失。

现在选定在河岸一边完全封闭的某一区域破堤泄洪,根据区域内地形以及当前地面财产总数的不同,可将该区域分成17个小区域,各个相邻小区之间有相对高度为1.2米的小堤互相间隔。

如下图所示:----------------河----------------------------流----------------------------每个小区域内分别标有该区域的海拔高度h(米)、面积s(平方千米)和泄洪后完全淹没时各种损失之和k (百万元)。

约定:(1) 泄洪后洪水淹没一个小区的损失、小区总资产以及水位的高度p 之间的关系如下:损失=⎪⎩⎪⎨⎧>≤hp k h p k h p,,;(2) 在大堤和小堤上的决口数不受限制,可在任意地方选择决口,但决口后不可再补合;(3)大堤决口后流入小区的洪水量按决口宽度成比例,小区之间一经决口则认为该小堤完全决口;(4)在各小区之间,若水位高于某一相邻小堤,则水将向邻近最低的小区自动泄洪,若有多个同高小区,则约定平均泄洪。

求解:(1) 整个区域最大损失的最小洪水量max Q ? (2) 选取满足条件max max6Q Q Q ≤≤的不同洪水量为Q ,制定损失最小的泄洪方案(至少选择4个不同的洪水量)并计算该方案的损失数。

3、投资的收益和风险市场上有n 种资产(如股票、债券 、)i S ),,2,1(n i =供投资者选择,某公司有数额为M 的一笔相当大的资金可用作一个时期的投资。

公司财务分析人员对这n 种资产进行了评估,估算出在这一时期内购买i S 的平均收益为i r ,并预测出购买i S 的风险损失率为i q 。

考虑道投资越分散,总的风险越小,公司确定,当用这笔资金购买若干种资产时,总体风险用所投资的i S 种最大的一个风险来度量。

购买i S 要付交易费,费率为i p ,并且当购买额不超过给定值i u 时,交易费按购买i u 计算(不买当然无须付费)。

另外,家丁同期银行存款利率是0r ,且既无交易费又无风险费。

(%50=r )已知4=n 时的相关数据如下:试给该公司设计一种投资组合方案,即用给定的资金M ,有选择地购买若干种资产或存银行生息,使净收益尽可能大,而总体风险尽可能小。

4、服务机构劳务安排的优化设计在一些大型服务机构中,不同的时间段内需要的服务量有显著的不同。

例如,交通管理人员、医院医护人员、宾馆服务人员、超市卖场营销人员等。

在不同的时段劳务需求量不同,主管单位在不同时段支付的劳务工资往往也不同。

因此对于既要满足需要,又要尽量节约劳务开支是管理者必须思考的决策问题。

现就某公司超市卖场营销人员工作安排问题建立一个数学模型来进行优化设计,使得既要满足公司超市卖场需要,又使公司的劳务开支最少。

超市卖场的营业时间是上午8点到21点,以两小时为一时段,各时段内所需的服务人员数如表1,每个营销人员可在任一时段开始时上班,但要连续工作8小时,中途需要1小时的吃饭和休息时间。

为保证营业时间内都有人值班,公司安排了四个班次,其班次与休息时间安排如表2,在不同时段的工资标准不同,上午8点到17点工作的人员月工资为1200元,中午12点到21点工作的人员月工资为1500元。

的变化。

5、调度计划某公司下设三个工厂,生产同一种产品,现在要把三个工厂生产的产品运送给四个订户。

工厂的供应量、订户的需求量以及从三个工厂到四个订户的单①:订户4的订货量首先要保证全部予以满足;②:其余用户的定货量满足程度应不低于80%;③:工厂3调运给订户1的产品量应不少于15个单位;④:因线路限制,工厂2应尽可能不分配给订户4;⑤:订户1和订户3的需求满足程度应尽可能平衡;⑥:力求使总运费最少。

6、售后服务数据的运用产品质量是企业的生命线,售后服务是产品质量的观测点,如何用好售后服务的数据是现代企业管理的重要问题之一。

现以某轿车生产厂家为例考虑这个问题。

假设该厂的保修期是三年,即在售出后三年中对于非人为原因损坏的轿车免费维修。

在全国各地的维修站通过网络将保修记录送到统一的数据库里面,原始数据主要包含哪个批次生产的轿车(即生产月份)、售出时间、维修时间、维修部位、损坏原因及程度、维修费用等等。

通过这样的数据可以全面了解所有部件的质量情况,若从不同的需求角度出发科学整理数据库中的数据,可得到不同用途的信息,从而实现不同的管理目的。

整车或某个部件的“千车故障数”是一个很重要的指标,常用于描述轿车的质量。

首先将轿车按生产批次划分成若干个不同的集合(下面表格的同一行数据就来自同一集合),再对每个集合中迄今已售出的全部轿车进行统计,由于每个集合中的轿车是陆续售出的,因此它们的统计时间的起点即售出时间是不同的。

但在下面表格中,每一列数据的统计时间的长度却是相同的(例如2002年3月底出厂的轿车,到2002年8月底;或2003年10月初出厂的轿车,到2004年3月初都是最多使用了五个月,显然它们的统计时间的终点也是不同的),在相同使用时间长度(例如下表中第5列都是使用10个月的)内的整车或某个部件的保修总次数乘以1000再除以迄今已售出的轿车数量,即为下面表格中的千车故障数。

数据利用的时效性是很强的,厂方希望知道近期生产中的质量情况,但刚出厂的轿车还没有全售出去,已售出的轿车也没使用几个月,因此数据显得滞后很多。

当一个批次生产的轿车的三年保修期都到时,我们对这批轿车的质量情况有了最准确的信息,可惜时间是轿车出厂的四、五年后,这些信息已无法指导过去的生产,对现在的生产也没有什么作用。

所以如何更科学地利用少量数据预测未来情况是售后服务数据利用的重要问题。

现有2004年4月1日从数据库中整理出来的某个部件的千车故障数,见下页的表。

其中的使用月数一栏是指售出轿车使用了的月份数,使用月数0的列中是已售出的全部轿车在用户没使用前统计的千车故障数,1的列中是某一批次已售出的每一辆轿车,在它被使用到第一个月结束时统计的,对于该批次售出的全部轿车累计的千车故障数(即没使用时和第一个月中千车故障数的和),12的列中是每辆车使用到恰好一年结束时的累计千车故障数。

生产月份是生产批次,如0201表示2002年1月份生产的。

随着时间的推移,轿车不断地销售出去,已售出轿车使用一段时间后的千车故障数也能不断自动更新,再打印出的表中数据也将都有变化。

1. 该表是工厂的真实数据,没有修改,反映的情况很多,请你分析表中是否存在不合理数据,并对制表方法提出建议;2.利用这个表的数据预测时请注意区分水平和垂直方向。

请你设计相应的模型与方法,并预测:0205批次使用月数18时的千车故障数,0306批次使用月数9时的千车故障数,0310批次使用月数12时的千车故障数。

轿车某部件千车故障数的数据表提示:1.预测时用的数据表最好是增量表,就是把原表相邻列作差的到的表,含义是第几个月期间的千车故障数。

预测后再恢复到原表的形式。

2. 轿车出厂后的运输是个复杂的事,体积大又贵重,要花费很多时间,从表中数据分析可以得到:出厂后三个月才开始有销售量,于是每个批次的前三个数据(斜三列)可认为是无效数据。

7、运输调度某城区有36个垃圾集中点,每天都要从垃圾处理厂(第37号节点)出发将垃圾运回。

现有一种载重6吨的运输车。

每个垃圾点需要用10分钟的时间装车,运输车平均速度为40公里/小时(夜里运输,不考虑塞车现象);每台车每日平均工作4小时。

运输车重载运费1.8元/吨公里;运输车和装垃圾用的铲车空载费用0.4元/公里;并且假定街道方向均平行于坐标轴。

请你给出满意的运输调度方案以及计算程序。

回答下列3个问题:1. 运输车应如何调度(需要投入多少台运输车,每台车的调度方案,运营费用)2. 铲车应如何调度(需要多少台铲车,每台铲车的行走路线,运营费用)3. 如果有载重量为4吨、6吨、8吨三种运输车,又如何调度?8、生产计划:某厂生产三种产品I∏I I I每种产品要经过A、B两道工序加工。

设该厂有两种规格的设备能完成A工序,他们以A1、A2表示;有三种规格的设备能完成B工序,它们以B1、B2、B3表示,产品I可以在A、B任何一种规格设备上加工;产品∏可在任何一种规格的A设备上加工,但完成B工序时只能在B1设备上加工;产品III只能在A2与B2设备上加工。

已知各种机床设备的单件工时,原材料费,产品销售价格,各种设备有效台时以及满负荷操作时机床的设备费用,如下表所示,要求安排最优的生产计划,使厂方利润最大。

附录:电力市场的输电阻塞管理一、摘要电力市场的调度是一个综合平衡的过程,涉及到发电厂、网商、用户之间的盈利。

相关文档
最新文档