第4章(随机变量的数字特征与极限定理)3.3

合集下载

概率论与数理统计

概率论与数理统计

2.和(并):
3.互斥(互不相容):对立:
事件的运算:
伯努利大数定律:当试验次数n足够大时,事件发生的频率就约等于事件发生的概率。

全概率公式、贝叶斯公式
定义:
引入随机变量后,可用随机变量的
等式或不等式来表达随机事件;
随机变量的函数一般也是随机变量
0-1分布是n=1时的二项分布
定义:性质:
定义:
F(x)是X的分布函数,X是连续型随机变量,f(x)是它的概率密度函数,简称概率密度
性质:
均匀分布:
标准正态分布N(0,1)
标准正态分布的分位数
举例:
期望反映了随机变量取值的平均,又称均值。

高等教育自学考试 概率论与数理统计期末自学 复习重要知识点

高等教育自学考试 概率论与数理统计期末自学 复习重要知识点

概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。

2.常用离散型分布:(1)两点分布(0-1分布): 若一个随机变量X 只有两个可能取值,且其分布为12{},{}1(01)P X x p P X x p p ====-<<,则称X 服从12,x x 处参数为p 的两点分布。

两点分布的概率分布:12{},{}1(01)P X x p P X x pp ====-<<两点分布的期望:()E X p =;两点分布的方差:()(1)D X p p =-(2)二项分布:若一个随机变量X 的概率分布由式{}(1),0,1,...,.k kn k n P x k C p p k n -==-=给出,则称X 服从参数为n,p 的二项分布。

记为X~b(n,p)(或B(n,p)).两点分布的概率分布:{}(1),0,1,...,.k k n kn P x k C p p k n -==-= 二项分布的期望:()E X np =;二项分布的方差:()(1)D X np p =-(3)泊松分布:若一个随机变量X 的概率分布为{},0,0,1,2,...!kP X k ek k λλλ-==>=,则称X 服从参数为λ的泊松分布,记为X~P (λ)泊松分布的概率分布:{},0,0,1,2,...!kP X k ek k λλλ-==>=泊松分布的期望:()E X λ=;泊松分布的方差:()D X λ=4.连续型随机变量:如果对随机变量X 的分布函数F(x),存在非负可积函数()f x ,使得对于任意实数x ,有(){}()xF x P X x f t dt-∞=≤=⎰,则称X 为连续型随机变量,称()f x 为X 的概率密度函数,简称为概率密度函数。

5.常用的连续型分布: (1)均匀分布:若连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<-=其它,0,1)(bx a a b x f ,则称X 在区间(a,b )上服从均匀分布,记为X~U(a,b)均匀分布的概率密度:⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a a b x f 均匀分布的期望:()2a bE X +=;均匀分布的方差:2()()12b a D X -= (2)指数分布:若连续型随机变量X 的概率密度为00()0xe xf x λλλ-⎧>>=⎨⎩,则称X 服从参数为λ的指数分布,记为X~e (λ)指数分布的概率密度:00()0xe xf x λλλ-⎧>>=⎨⎩指数分布的期望:1()E X λ=;指数分布的方差:21()D X λ=(3)正态分布:若连续型随机变量X的概率密度为22()2()x f x x μσ--=-∞<<+∞则称X 服从参数为μ和2σ的正态分布,记为X~N(μ,2σ)正态分布的概率密度:22()2()x f x x μσ--=-∞<<+∞正态分布的期望:()E X μ=;正态分布的方差:2()D X σ=(4)标准正态分布:20,1μσ==,2222()()x t xx x e dtϕφ---∞=标准正态分布表的使用: (1)()1()x x x φφ<=--(2)~(0,1){}{}{}{}()()X N P a x b P a x b P a x b P a x b b a φφ<≤=≤≤=≤<=<<=-(3)2~(,),~(0,1),X X N Y N μμσσ-=故(){}{}()X x x F x P X x P μμμφσσσ---=≤=≤={}{}()()a b b a P a X b P Y μμμμφφσσσσ----<≤=≤≤=-定理1: 设X~N(μ,2σ),则~(0,1)X Y N μσ-=6.随机变量的分布函数: 设X 是一个随机变量,称(){}F x P X x =≤为X 的分布函数。

概率论知识点

概率论知识点

第一章 随机事件及其概率§1.1 随机事件及其运算随机现象:概率论的基本概念之一。

是人们通常说的偶然现象。

其特点是,在相同的条件下重复观察时,可能出现这样的结果,也可能出现那样的结果,预先不能断言将出现哪种结果.例如,投掷一枚五分硬币,可能“国徽”向上,也可能“伍分”向上;从含有5件次品的一批产品中任意取出3件,取到次品的件数可能是0,1,2或3.随机试验:概率论的基本概念之一.指在科学研究或工程技术中,对随机现象在相同条件下的观察。

对随机现象的一次观察(包括试验、实验、测量和观测等),事先不能精确地断定其结果,而且在相同条件下可以重复进行,这种试验就称为随机试验。

样本空间: 概率论术语。

我们将随机试验E 的一切可能结果组成的集合称为E 的样本空间,记为Ω。

样本空间的元素,即E 的每一个结果,称为样本点。

随机事件:实际中,在进行随机试验时,人们常常关心满足某种条件的那些样本点所组成的集合.称试验E 的样本空间Ω的子集为E 的随机事件,简称事件.在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.特别,由一个样本点组成的单点集,称为基本事件.样本空间Ω包含所有的样本点,它是Ω自身的子集,在每次试验中它总是发生的,称为必然事件.空集Ø不包含任何样本点,它也作为样本空间的子集,它在每次试验中都不发生,称为不可能事件.互斥事件(互不相容事件): 若事件A 与事件B 不可能同时发生,亦即ΦB A = ,则称事件A 与事件B 是互斥(或互不相容)事件。

互逆事件: 事件A 与事件B 满足条件ΦB A = ,Ω=B A ,则称A 与B 是互逆事件,也称A 与B 是对立事件,记作A B =(或B A =)。

互不相容完备事件组:若事件组n A A A ,,21满足条件ΦA A j i = ,(n 1,2j i, =),Ω== n 1i i A,则称事件组n A A A ,,21为互不相容完备事件组(或称n A A A ,,21为样本空间Ω的一个划分)。

自考04183概率论与数理统计(经管类) 自考核心考点笔记 自考重点资料

自考04183概率论与数理统计(经管类) 自考核心考点笔记 自考重点资料

《概率论与数理统计(经管类)》柳金甫、王义东主编,武汉大学出版社新版第一章随机事件与概率第二章随机变量及其概率分布第三章多维随机变量及其概率分布第四章随机变量的数字特征第五章大数定律及中心极限定理第六章统计量及其抽样分布第七章参数估计第八章假设检验第九章回归分析前言本课程包括两大部分:第一部分为概率论部分:第一章至第五章,第五章为承前启后章,第二部分为数理统计部分:第六章至第九章。

第一章随机事件与概率本章概述.内容简介本章是概率论的基础部分,所有内容围绕随机事件和概率展开,重点内容包括:随机事件的概念、关系及运算,概率的性质,条件概率与乘法公式,事件的独立性。

本章内容§1.1 随机事件1.随机现象:确定现象:太阳从东方升起,重感冒会发烧等;不确定现象:随机现象:相同条件下掷骰子出现的点数:在装有红、白球的口袋里摸某种球出现的可能性等;其他不确定现象:在某人群中找到的一个人是否漂亮等。

结论:随机现象是不确定现象之一。

2.随机试验和样本空间随机试验举例:E1:抛一枚硬币,观察正面H、反面T出现的情况。

E2:掷一枚骰子,观察出现的点数。

E3:记录110报警台一天接到的报警次数。

E4:在一批灯泡中任意抽取一个,测试它的寿命。

E5:记录某物理量(长度、直径等)的测量误差。

E6:在区间[0,1]上任取一点,记录它的坐标。

随机试验的特点:①试验的可重复性;②全部结果的可知性;③一次试验结果的随机性,满足这些条件的试验称为随机试验,简称试验。

样本空间:试验中出现的每一个不可分的结果,称为一个样本点,记作。

所有样本点的集合称为样本空间,记作。

举例:掷骰子:={1,2,3,4,5,6},=1,2,3,4,5,6;非样本点:“大于2点”,“小于4点”等。

3.随机事件:样本空间的子集,称为随机事件,简称事件,用A,B,C,…表示。

只包含一个样本点的单点子集{}称为基本事件。

必然事件:一定发生的事件,记作不可能事件:永远不能发生的事件,记作4.随机事件的关系和运算由于随机事件是样本空间的子集,所以,随机事件及其运算自然可以用集合的有关运算来处理,并且可以用表示集合的文氏图来直观描述。

概率论与数理统计课程教学大纲

概率论与数理统计课程教学大纲

概率论与数理统计课程教学大纲编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(概率论与数理统计课程教学大纲)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为概率论与数理统计课程教学大纲的全部内容。

《概率论与数理统计》课程教学大纲(2002年制定 2004年修订)课程编号:英文名:Probability Theory and Mathematical Statistics课程类别:学科基础课前置课:高等数学后置课:计量经济学、抽样调查、试验设计、贝叶斯统计、非参数估计、统计分析软件、时间序列分析、统计预测与决策、多元统计分析、风险理论学分:5学分课时:85课时修读对象:统计学专业学生主讲教师:杨益民等选定教材:盛骤等,概率论与数理统计,北京:高等教育出版社,2001年(第三版)课程概述:本课程是统计学专业的学科基础课,是研究随机现象统计规律性的一门数学课程,其理论及方法与数学其它分支、相互交叉、渗透,已经成为许多自然科学学科、社会与经济科学学科、管理学科重要的理论工具。

由于其具有很强的应用性,特别是随着统计应用软件的普及和完善,使其应用面几乎涵盖了自然科学和社会科学的所有领域。

本课程是统计专业学生打开统计之门的一把金钥匙,也是经济类各专业研究生招生考试的重要专业基础课。

本课程由概率论与数理统计两部分组成。

概率论部分侧重于理论探讨,介绍概率论的基本概念,建立一系列定理和公式,寻求解决统计和随机过程问题的方法。

其中包括随机事件和概率、随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理等内容;数理统计部分则是以概率论作为理论基础,研究如何对试验结果进行统计推断。

概率论与数理统计(含答案)

概率论与数理统计(含答案)

对外经济贸易大学远程教育学院2006-2007学年第一学期《概率论与数理统计》期末复习大纲(附参考答案)一、复习方法与要求学习任何数学课程,要求掌握的都是基本概念、基本定理、基本方法,《概率论与数理统计》同样.对这些基本内容,习惯称三基,自己作出罗列与总结是学习的重要一环,希望尝试自己完成.学习数学离不开作题,复习时同样.正因为要求掌握的是基本内容,将课件中提供的练习题作好就可以了,不必再找其他题目.如开学给出的学习建议中所讲:作为本科的一门课程,在课件中我们讲述了大纲所要求的基本内容.考虑到学员的特点,在学习中可以有所侧重.各章内容要求与所占分值如下:第一章介绍的随机事件的关系与运算,概率的基本概念与关系. 约占20分.第二章介绍的一维随机变量的分布. 约占20分.第三章二维随机变量的分布,主要要求掌握二维离散型随机变量的联合分布律、边缘分布律以及随机变量独立的判别. 约占15分.第四章介绍的随机变量的数字特征. 约占20分.第五章的中心极限定理. 约占5分.分布);第六章介绍的总体、样本、统计量等术语;常用统计量的定义式与分布(t分布、2正态总体样本函数服从分布定理. 约占7分.第七章的矩估计与一个正态总体期望与方差的区间估计. 约占8分.第八章一个正态总体期望与方差的假设检验. 约占5分.对上述内容之外部分,不作要求.二、期终考试方式与题型本学期期终考试采取开卷形式,即允许带教材与参考资料.题目全部为客观题,题型有判断与选择.当然有些题目要通过计算才能得出结果.其中判断题约占64分,每小题2分;选择题约占36分,每小题3分.三、 应熟练掌握的主要内容1.了解概率研究的对象——随机现象的特点;了解随机试验的条件.2. 理解概率这一指标的涵义.3. 理解统计推断依据的原理,会用其作出判断.4. 从发生的角度理解事件的包含、相等、和、差、积、互斥、对立的定义,掌握样本空间划分的定义.5. 熟练掌握用简单事件的和、差、积、划分等表示复杂事件 掌握事件的常用变形:AB A B A -=- (使成包含关系的差),A B -=AB (独立时计算概率方便)B A A B A +=+(使成为两互斥事件的和)n AB AB AB A +++= 21 (n B B B 、、、其中 21是一个划分)(利用划分将A 转化为若干互斥事件的和)B A AB A +=(B B 与即一个划分)6. 掌握古典概型定义,熟悉其概率计算公式.掌握摸球、放盒子、排队等课件所举类型概率的计算.7. 熟练掌握事件的和、差、积、独立等基本概率公式,以及条件概率、全概、逆概公式,并利用它们计算概率.8. 掌握离散型随机变量分布律的定义、性质,会求简单离散型随机变量的分布律.9. 掌握(0-1)分布、泊松分布、二项分布的分布律 10. 掌握一个函数可以作为连续型随机变量的概率密度的充分必要条件11. 掌握随机变量的分布函数的定义、性质,一个函数可以作为连续型随机变量的分布函数的条件.12. 理解连续型随机变量的概率密度曲线、分布函数以及随机变量取值在某一区间上的概率的几何意义13. 掌握随机变量X 在区间(a ,b )内服从均匀分布的定义,会写出X 的概率密度. 14. 掌握正态分布(,)N μσ2概率密度曲线图形; 掌握一般正态分布与标准正态分布的关系定理; 会查正态分布函数表;理解服从正态分布μ(N ),2σ的随机变量X ,其概率{P |X-μ|<σ}与参数μ和σ的关系. 15. 离散型随机变量有分布律会求分布函数;有分布函数会求分布律. 16. 连续型随机变量有概率密度会求分布函数;有分布函数,会求概率密度. 17. 有分布律或概率密度会求事件的概率.18. 理解当概率()P A =0时,事件A 不一定是不可能事件;理解当概率()P A =1时,事件A 不一定是必然事件. 19. 掌握二维离散型随机变量的联合分布律定义;会利用二维离散型随机变量的联合分布律计算有关事件的概率;有二维离散型随机变量的联合分布律会求边缘分布律以及判断是否独立.20.掌握期望、方差、协方差、相关系数的定义式与性质,会计算上述数字;了解相关系数的意义,线性不相关与独立的关系.21. 掌握(0-1)分布、泊松分布、二项分布、均匀分布、正态分布、指数分布的参数 与期望、方差的关系.22. 会用中心极限定理计算概率.理解拉普拉斯中心极限定理的涵义是:设随机变量X 服从二项分布(,)b n p ,当n 较大时,~(,)X N np npq 近似,其中q p =-123.了解样本与样本值的区别,掌握样本均值与样本方差的定义24. 了解2χ分布、t 分布的背景、概率密度图象,会查两个分布的分布函数表,确定上α分位点.25. 了解正态总体μ(N ),2σ中,样本容量为n 的样本均值X与22)1(σS n -服从的分布.26. 掌握无偏估计量、有效估计量定义. 27. 会计算参数的矩估计.28. 会计算正态总体(,)N μσ2参数μ与2σ的区间估计.29. 掌握一个正态总体μ(N ),2σ,当2σ已知或未知时,μ的假设检验,2σ的假设检验.30.了解假设检验的两类错误涵义四、复习题(附参考答案 )注 为了方便学员复习,提供复习题如下,这些题目都是课件作业题目的改造,二者相辅相成,希望帮助大家学懂基本知识点. 期终试卷中70分的题目抽自复习题.(一)判断题(Y —正确,N —错误)第一章 随机事件与概率 1.写出下列随机试验的样本空间(1) 三枚硬币掷一次,观察字面朝上的硬币个数,样本空间为S={}321,,. N 2.一项任务:甲、乙、丙三人分别去干,设A ,B ,C 分别为甲、乙、丙完成任务. 用A 、B 、C 三个事件的关系式表示下列事件,则(1)(三人中,仅甲完成了任务)=BC A N (2)(三人都没完成任务)=ABC N (3)(至少一人没完成任务)=C B A ++ Y3.一批产品中有3件次品,从这批产品中任取5件检查,没A i =(5件中恰有i 件次品),i=0,1,2,3 叙述下列事件(1)0A =(至少有一件次品) Y (2)32A A + =(有3件次品) N 4.指出下列命题中哪些成立,哪些不成立 (1)B A A B A +≠+ N (2)AB A B A -=- Y5.设事件A 、B 互斥,2.0)(=A P ,5.0)(=+B A P 则)(B P = . Y6.设A 、B 、C 是三事件,且81)(,0)()(,41)()()(======AC P BC P AB P C P B P A P .则A 、B 、C 至少有一个发生的概率为7/8. N7. 事件设,6.0)(,=⊃A P B A ,则)(B A P =. N8. 设A 、B 是两事件,且7.0)(,6.0)(==B P A P ,则当,B A ⊂()P AB 取到最大值. Y 9.若)(,32)(,31)(,21)(B A P A B P B P A P 则==== 1. Y 10.一个教室中有100名学生,则其中至少有一人的生日在元旦的概率(一年以365天计)为1001003653641- . Y 11.将3个球随机地放入4个杯子中,杯子的容量不限,则杯中球最多个数为1的概率为P 3434.Y12.设甲袋中有6只红球,4只白球,乙袋中有7只红球,3只白球,现在从甲袋中随机取一球,放入乙袋,再从乙袋中随机取一球,则:(1)P (两次都取到红球)=⨯681011 Y (2)P (从乙袋中取到红球)=710N13. 已知10只电子元件中有2只是次品,在其中取2次,每次任取一只,作不放回抽样,则(1)P (一次正品,一次次品 )= 2101218C C C Y (2) P (第二次取到次品)=7/9 N14. 41)(,5.0)(,4.0)(,3.0)(=+===B A B P B A P B P A P 则已知. Y 15.几点概率思想(1)概率是刻画随机事件发生可能性大小的指标. Y (2)随机现象是没有规律的现象. N(3)随机现象的确定性指的是频率稳定性,也称统计规律性.N(4)频率稳定性指的是随着试验次数的增多,事件发生的频率接近一个常数.Y (5)实际推断原理为:一次试验小概率事件一般不会发生.Y (6)实际推断原理为:一次试验小概率事件一定不会发生.N第二章 随机变量及其分布16. 在6只同类产品中有2只次品,从中每次取一只,共取五次,每次取出产品立即放回,再取 下一只,则(1)取出的5只产品中次品数X 的分布律为{}kkk C k X P -⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==553231 k=0,1,…5 . Y(2)取出的5只产品中次品数X 的分布律为{}kk k C k X P -⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==553231 k=1,2 . N17.某人有5发子弹,射一发命中的概率为,如果命中了就停止射击,如果不命中就一直射到子弹用尽。

随机变量分布与数字特征

上一页 下一页 返回
5. 1 随机变量
(1)离散型随机变量:取有限个或无限可列个值。如例(1)、例(2 ) 。 (2)非离散型随机变量:可在整个数轴上取值或取实数某部分区间的全部
值。非离散型随机变量范围较广,本书只研究其中常遇见的一种—连续 型随机变量,如例(3)、例(4)。 例5.1.1设有2个一级品,3个二级品的产品,从中随机取出3个产品,如 果用X表示取出产品中一级品的个数,求X取不同值时相应的概率。 解:X可取值为{0,1,2}。
分布,分别求(1)每分钟恰好接到3次呼叫的概率;(2)每分钟内接到呼叫次 数不布
在二项分布中,当n很大(n>>10)且P很小(P≤1)时,也可近似用泊松分布 公式计算,其中λ=np。
例5. 2. 7若一年中参加某种寿险的人死亡率为0. 002,现有2 000人参加, 每人交保险费24元,一旦死亡保险公司赔偿5 000元,求(1)保险公司亏 本的概率;(2)保险公司盈利不少于10 000元的概率。
也有不少试验结果初看与数字无直接关系,但可通过如下示性函数使之
数值化。比如,产品合格与不合格可令 否
,事件A发生与

,这些事件数值化后,数量是会变化的,称为变量。
但变量取值机会有大有小,所以叫随机变量。
下一页 返回
5. 1 随机变量
定义5.1.1在某一随机试验中,对于试验的每一个样本点ω都唯一对应一 个数,这样依不同样本点ω而取不同值的点叫随机变量。通常用希腊字 母或大写英文字母X, Y, Z等表示随机变量,用小写英文字母xi、yi表示 随机变量相应于某个试验结果所取的值。
例5. 2. 1某汽车公司销售汽车数据表示在过去100天营业时间中,有24 天每天销售汽车是0辆,有38天每天销售为1辆,有20天每天销售为2辆, 有12天每天销售为3辆,有6天每天销售为5辆。定义随机变量X为一天 中售出汽车数取值为{0,1,2,3,5},概率用P(X)表示,可求出P(X=0)

《概率论与数理统计》第4-7 章复习与自测题

《概率论与数理统计》第4-7章复习第四章 随机变量的数字特征常用分布的期望与方差第五章 大数定律及中心极限定理第六章 数理统计的基本概念第七章参数估计常用概率分布的参数估计表自测题第四章﹑数字特征1. 设随机变量X 的密度函数f(x)= ⎩⎨⎧5x 4 0≤x ≤1 0 其他, 求数学期望EX 。

2.设随机变量X ~N (-1,3),Y ~N (0,5),Cov(X ,Y )=0.4,求D (X +Y )的值。

3. 设随机变量X 和Y 的密度函数分别为f X (x)= ⎩⎨⎧0.5, 1≤x ≤30, 其它 ,f Y (y)= ⎩⎨⎧3e -3y , y>00, y ≤0, 若X ,Y 相互独立,求: E(XY)4. 设 X 服从参数为 λ 的普阿松分布(λ>0),则下列6个等式中那几个是错误的。

DX=1λ, E(X)D(X) =1 , E(X 2)=E(X)[E(X)+1] , E(X) = λ , E (X - λ)2 = 0, EX=λ2+λ5.设随机变量的联合分布律为⎣⎢⎡⎦⎥⎤X ╲Y 1 2 0 1/4 1/12 2 1/6 1/2 求:(1) E(X), E(Y);(2)D(X), D(Y);(3) ρxy 。

6.设二维随机变量(X ,Y)的联合分布律为⎣⎢⎡⎦⎥⎤X ╲Y 0 1 3 0 0.1 0.2 0.1 1 0.2 0.4 0,求(1)E(XY); (2)Cov(X,Y)。

试问:X 与Y 是否相互独立?为什么?7. 设随机变量X 的分布律为 ⎣⎡⎦⎤X -2 0 1 2P 0.2 0.3 0.4 0.1.记Y =X 2, 求:(1)D (X ),D (Y );(2)Cov(X,Y ), ρxy .8. 已知投资某短期项目的收益率R 是一随机变量,其分布为:⎣⎡⎦⎤R -2% 0% 3% 10%P 0.1 0.1 0.3 0.5 。

(1) 求R 的数学期望值E(R)与方差D(R);(2) 若一位投资者在该项目上投资100万元,求他预期获得多少收益(纯利润)(万元)?9. 假定暑假市场上对冰淇淋的需求量是随机变量X 盒,它服从区间[200,400]上的均匀分布,设每售出一盒冰淇淋可为小店挣得1元,但假如销售不出而屯积于冰箱,则每盒赔3元。

概率论与数理统计PPT课件第四章大数定律及中心极限定理(1)

分别就是该分布的数学期望和方差,
因此,正态分布完全可由它的数学期望 和方差所确定
ppt课件
16
例1 甲 、 乙 两 人 射 击 , 他 们 的 射 击 水 平 由 下 表 给 出 :
X: 甲 击 中 的 环 数 ; Y: 乙 击 中 的 环 数 ;
X
8
9
10
P
0.3 0.2 0.5
Y
8
9
10
P
0.2 0.4 0.4
(3)若随机变量X的方差Var(X)存在, 则
V a r(X )E (X 2) [E (X )]2
ppt课件
8
证明: Var(X)=E(X2)-[E(X)]2 证:Var(X)=E[X-E(X)]2
=E{X2-2XE(X)+[E(X)]2} =E(X2)-2[E(X)]2+[E(X)]2 =E(X2)-[E(X)]2

••
甲炮射击结果
••中• •• 心••••• 乙炮射击结果
乙炮
你认为哪门炮射击效果好一些呢?
因为乙炮的弹着点较集中在中心附近,
所以乙炮的射击效果好.
ppt课件
3
为此需要引进另一个数字特征, 用它来度量随机变量取值相对于其 中心的离散程度. 这个数字特征就是下面要介绍的
方差
ppt课件
4
方差的概念
ppt课件
10
(2)二项分布B(n, p)
分布列为: P (X k ) C n kp k q n k , k 0 ,1 , ,n .
已计算过:E(X)=np,又
E (X2)E [X(X1)]E X
n
k(k1)Cnkpkqnknp
k0
n

概率论第一章习题答案

概率论11、甲、乙两艘轮船驶向一个不能同时停泊两艘船的码头停泊.它们在一昼夜内到达码头的时刻是等可能的.如果甲船停泊的时间是一小时,乙船停泊的时间是两小时,求这两艘船都不等候码头的概率. 解:分别用x、y表示甲、乙船到达时刻,在直角坐标系下作直线x=24、y=24,它们与x轴及y轴围成一个正方形,点(x,y)总是落入这个正方形的;作直线y=x+1与y=x-2,如果点(x,y)落入两直线所夹以外区域就不需要等待,所以不需要等待的概率为:p=(22*22/2+23*23/2)/(24*24)=1013/1152≈0.87934027777777825、已知男人中5%是色盲患者,女人中有0.25%;今从男女人数相等的人群中随机挑选一人,恰好是色盲患者,问此人是男人的概率是多少?解:可以算出色盲的人占总人数的比率是5%x50%+0.25%x50%=2.625%,而在2.625%的人中,男的占5%x50%,所以是男的几率为5%x50%除以2.625%=20/21第一章随机事件与概率1.设A,B,C为三个事件,试用A、B、C表示下列事件,并指出其中哪俩个事件是互逆事件:1)仅有一个事件发生;2)至少有一个事件发生;3)三个事件都发生;4)至多有两个事件发生;5)三个事件都不发生;6)恰好两个事件发生。

用a,b,c分别表示A,B,C的补事件,那么有1)abC∪aBc∪Abc2)1-abc3)ABC4)1-ABC5)abc6)ABc∪AbC∪aBC其中(2)和(5) (3)和(4) 是互逆事件2.设对于事件A,B,C,有P(A)=P(B)=P(C)=1/4,P(AC)=1/8,P(AB)=P(BC)=0,求A、B、C至少出现一个的概率。

因为P(AB)=0,所以P(ABC)=0,所以P(A+B+C)=PA+PB+PC-PAB-PAC-PBC+PABC=5/83.设A,B为随机事件,P(A)=0.7,P(A-B)=0.3,求P(AB(—))。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档