北京人大附中九年级数学下册第二十八章《锐角三角函数》综合知识点(含答案解析)
人教版九年级下册数学第二十八章 锐角三角函数 含答案

人教版九年级下册数学第二十八章锐角三角函数含答案一、单选题(共15题,共计45分)1、一架5米长的梯子斜靠在墙上,测得它与地面的夹角为,则梯子底端到墙角的距离为( )A. 米B. 米C. 米D. 米2、如图,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC高度应该设计为()A.(11﹣2 )米B.(11 ﹣2 )米C.(11﹣2 )米 D.(11 ﹣4)米3、如图,在平面直角坐标系xOy中,AB,CD,EF,GH是正方形OPQR边上的线段,点M在其中某条线段上,若射线OM与x轴正半轴的夹角为α,且sinα>cosα,则点M所在的线段可以是()A. AB和CDB. AB和EFC. CD和GHD. EF和GH4、如图,在△ABC中,AC=2 ,∠ABC=45°,∠BAC=15°,将△ACB沿直线AC翻折至△ABC所在的平面内,得△ACD.过点A作AE,使∠DAE=∠DAC,与CD的延长线交于点E,连接BE,则线段BE的长为()A. B.3 C.2 D.45、如图,已知在中,,,,则的值是()A. B. C. D.6、如图,在中,,,,,垂足为,的平分线交于点,则的长为()A. B. C. D.7、在平面直角坐标系中,已知点A(3,0),点B(0,-4),则tan∠OAB的值为().A. B. C. D.8、如图,矩形的四个顶点分别在直线,,,上.若直线且间距相等,,,则的值为()A. B. C. D.9、已知某条传送带和地面所成斜坡的坡度为1:2,如果它把一物体从地面送到离地面9米高的地方,那么该物体所经过的路程是( )A.18米B.4.5米C.9 米D.9 米.10、如图,一棵大树被台风拦腰刮断,树根A到刮断点P的长度是4m,折断部分PB与地面成40°的夹角,那么原来树的长度是()A. 米B. 米C.4+4sin40°米 D.4cos40°米11、如图,在四边形ABCD中,,,,AC与BD交于点E,,则tan∠BAC 的值是()A. B. C. D.= 12、如图,在平面直角坐标系中,∠AOB=90°,∠OAB=30°,反比例函数y1=﹣的图象经过点B,则m的值是的图象经过点A,反比例函数y2()A.m=3B.C.D.13、如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=5,AC=6,则tan ∠DCB的值是()A. B. C. D.14、如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于点D.若∠A=30°,AE=6cm,则BC等于()A.2 cmB.3cmC.3 cmD.4cm15、如图,点A是双曲线y= 上一点,过A作AB∥x轴,交直线y=-x于点B,点D是x轴上一点,连接BD交双曲线于点C,连接AD,若BC:CD=3:2,△ABD的面积为,tan∠ABD= ,则k的值为()A.-B.-3C.-2D.二、填空题(共10题,共计30分)16、如图,在矩形ABCD中,对角线AC与BD相交于点O,∠AOB=60°,AB=1,则AD的长为________.17、如图所示,PM切⊙O于点A,PO交⊙O于点B,点E为圆上一点,若BE∥AO,∠EAO=30°,若⊙O的半径为1,则AP的长为________.18、如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°.将△ABC绕点A按逆时针方向旋转15°后得到△AB1C1, B1C1交AC于点D,如果AD=2 ,则△ABC的周长等于________.19、如图,某数学兴趣小组为了测量河对岸l1的两棵古树A、B之间的距离,他们在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,∠ACD=45°,若l1、l2之间的距离为50m,则古树A、B之间的距离为________ m.20、如图是拦水坝的横断面,斜坡的高度为米,斜面的坡比为,则斜坡的长为________米.(保留根号)21、如图,矩形纸片,,点E在线段上,将沿向上翻折,点C的对应点落在线段上,点M、N分别是线段与线段上的点,将四边形沿向下翻折,点A恰好落在线段的中点处.则线段的长为________.22、已知菱形的边长为3,一个内角为60°,则该菱形的面积是________.23、如图,P是∠α的边OA上一点,且P点的坐标为(3,4),则sin(90°﹣α)=________.24、计算:sin30°+cos30°•tan60°=________.25、如图,利用标杆BE测量楼房CD的高度,如果标杆BE长为米,若,BC=16.8米,则楼高是________.三、解答题(共5题,共计25分)26、计算:(﹣)2﹣﹣﹣|1﹣|+2cos45°.27、如图,春节来临,小明约同学周末去文化广场放风筝,他放的风筝线AE长为115m,他的风筝线(近似地看作直线)与水平地面构成42°角,若小明身高AB为1.42m,求他的风筝飞的高度CF(精确到0.1m,参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)28、如图,为测量建筑物的高度,在A处测得建筑物顶部D处的仰角为,再向建筑物前进到达B处,测得建筑物顶部D处的仰角为(A,B,C在同一条直线上),求建筑物的高度(结果取整数).参考数据:.29、如图,为了测量河宽,在河的一边沿岸选取B、C两点,对岸岸边有一块石头A,在中,测得,,米,求河宽(即点A到边的距离)(结果精确到0.1米).(参考数据:,,,)30、生活中,我们经常看到有的窗户上安装着遮阳蓬,如图1,现在要为一个面向正南方向的窗户安装一个矩形遮阳蓬.如图2,表示窗户的高,表示遮阳莲,且,遮阳莲与窗户所在平面的夹角等于.已知该地区冬天正午太阳最低时,光线与水平线的夹角为;夏天正午太阳最高时,光线与水平线的夹角为,若使冬天正午阳光最低时光线最大限度的射入室内,而夏天正午阳光最高时光线刚好不射入室内,试求出遮阳蓬的宽度.参考答案一、单选题(共15题,共计45分)1、A2、D3、D4、C5、A6、C7、C8、A9、D10、B11、C12、A13、D14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、。
2021年九年级数学下册第二十八章《锐角三角函数》知识点(答案解析)

一、选择题1.已知:如图,四边形AOBC 是矩形,以O 为坐标原点,OB 、OA 分别在x 轴、y 轴上,点A 的坐标为(0,3),∠OAB =60°,以AB 为轴对折后,C 点落在D 点处,则D 点的坐标为( )A .33(3,)22-B .33(3,)22--C .33(,3)22D .(3,33)- 2.如图,PA ,PB 分别与⊙O 相切于A ,B 两点,延长PO 交⊙O 于点C ,若60APB ∠=︒,6PC =,则AC 的长为( )A .4B .22C .23D .333.在Rt ABC 中,90,C a b c ∠=︒、、分别是A B C ∠∠∠、、的对边,如果3,4a b ==,那么下列等式中正确的是( )A .4sin 3A =B .4cos 3A =C .4tan 3A =D .4cot 3A = 4.如图,四边形 ABCD 中,BD 是对角线,AB=BC ,∠ABC=60°,CD=4,∠ADC=60°,则△BCD 的面积为( )A .3B .8C .3D .365.如图,为了测量某建筑物MN 的高度,在平地上A 处测得建筑物顶端M 的仰角为30°,向N 点方向前进16m 到达B 处,在B 处测得建筑物顶端M 的仰角为45°,则建筑物MN 的高度等于( )A .8(31)+mB .8(31)-mC .16(31)+mD .16(31)-m6.如图,在Rt △ABC 中,∠B=90°,AB=5,BC=12,将△ABC 绕点A 逆时针旋转得到△ADE ,使得点D 落在AC 上,则tan ∠ECD 的值为( )A .23B .32C .255D .3557.某兴趣小组想测量一座大楼 AB 的高度.如图,大楼前有一段斜坡BC ,已知 BC 的长为 12 米它的坡度1:3i = .在离 C 点 40 米的 D 处,用测量仪测得大楼顶端 A 的仰角为 37度,测角仪DE 的高度为 1.5米,求大楼AB 的高度约为( )米(sin 370.60,cos370.80,tan 370.75,3 1.73︒=︒=︒==)A .39.3B .37.8C .33.3D .25.78.如图,小明在一条东西走向公路的O 处,测得图书馆A 在他的北偏东60︒方向,且与他相距200m ,则图书馆A 到公路的距离AB 为( )A .100mB .1002mC .1003mD 20039.如图,若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使得其面积变为原矩形面积的一半,则平行四边形ABCD 的内角BCD ∠的大小为( )A .100°B .120°C .135°D .150°10.如图,小明想要测量学校操场上旗杆AB 的高度,他作了如下操作:(1)在点C 处放置测角仪,测得旗杆顶的仰角ACE α∠=;(2)量得测角仪的高度CD a =;(3)量得测角仪到旗杆的水平距离DB b =.利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为( )A .tan a b α+B .sin a b α+C .tan b a α+D .sin b a α+ 11.如图,平行四边形ABCD 中,AB ⊥AC ,AB =3,BC =7,对角线AC ,BD 相交于点O ,将直线AC 绕点O 顺时针旋转,分别交B C ,AD 于点E ,F ,下列说法:①在旋转过程中,AF =CE . ②OB =AC ,③在旋转过程中,四边形ABEF 的面积为212,④当直线AC 绕点O 顺时针旋转30°时,连接BF ,DE 则四边形BEDF 是菱形,其中正确的是( )A .①②④B .① ②C .①②③④D .② ③ ④ 12.如图,分别以直角三角形三边为边向外作等边三角形,面积分别为1S 、2S 、3S ;如图2,分别以直角三角形的三边为直径向外半圆,面积分别为4S 、5S 、6S .其中116S =,245S =,511S =,614S =,则34S S +=( )A.86 B.64 C.54 D.4813.如图,在扇形OAB中,120∠=︒,点P是弧AB上的一个动点(不与点A、BAOBCD=,则扇形AOB的面积为()重合),C、D分别是弦AP,BP的中点.若33A.12πB.2πC.4πD.24π14.如图所示,矩形ABCD的边长AB=2,BC=23,△ADE为正三角形.若半径为R的圆能够覆盖五边形ABCDE(即五边形ABCDE的每个顶点都在圆内或圆上),则R的最小值是()A.23B.4 C.2.8 D.2.5AB=米,迎水坡AB的坡比为1:3(坡比是坡面的15.河堤横断面如图所示,迎水坡10铅直高度BC与水平度AC之比),则AC的长是()A.53B.2米C.15米D.10米第II卷(非选择题)请点击修改第II卷的文字说明参考答案二、填空题16.如图,在Rt ABC 中,90C ∠=︒,30BAC ∠=︒,4AB =.将ABC 以点A 为中心,逆时针旋转60°,得到AB C ''△,连接BC '.则BC '=_____.17.如果在某建筑物的A 处测得目标B 的俯角为37°,那么从目标B 可以测得这个建筑物的A 处的仰角为_____.18.如图,在Rt ABC 中,,906A AC cm ∠==,8AB cm =,把AB 边翻折,使边落在BC 边上,点A 落在点E 处,折痕为BD ,则tan DBE ∠的值为_______ .19.在直角三角形ABC 中,∠ACB=90°,D 、E 是边AB 上两点,且CE 所在直线垂直平分线段AD ,CD 平分∠BCE ,BC=23,则AB=_____.20.如图,在四边形ABCD 中,AD =CD ,∠D=60°,∠A =105°,∠B =120°,则AD BC的值为__________.21.3cosA <sin70°,则锐角A 的取值范围是_________ 22.在矩形纸片ABCD 中,AB =6,BC =8.将矩形纸片折叠,使点C 与点A 重合,则折痕的长是______.23.如图,我市在建高铁的某段路基横断面为梯形ABCD ,DC ∥AB ,BC 长为6米,坡角β为45°,AD 的坡角α为30°,则AD 的长为 ________ 米 (结果保留根号)24.如图,已知∠AOB =60°,点P 在边OA 上,OP =12,点M ,N 在边OB 上,PM =PN ,若MN =2,则OM =____.25.如图,在直角三角形ABC 中,∠C=90°,AC=12cm ,BC=5cm ,AB=13cm ,则点C 到AB 边的距离是______cm .26.如图,已知2AB a =,P 为线段AB 上的一个动点,分别以AP ,PB 为边在AB 的同侧作菱形APCD 和菱形PBFE .点P ,C ,E 在一条直线上,60DAP ∠=︒,M 、N 分别是对角线AC 、BE 的中点.当点P 在线段AB 上移动时,点M 、N 之间的距离最短为_______.三、解答题27.如图,在A 处的正东方向有--港口B .某巡逻艇从A 处沿着北偏东60︒方向巡逻,到达C 处时接到命令,立刻在C 处沿东南方向以20海里/时的速度行驶3小时到达港口B .求A B ,间的距离.28.计算(1)cos 451-sin60︒︒(2)(12)-2-(π-3.14)0-│tan60°-2│ 29.计算:()301911223(60)tan π-+---︒30.如图,在平面直角坐标系中,矩形ABCO 的边6,12AB BC ==,直线32y x m =-+与y 轴交于点P ,与边BC 交于点E ,与边OA 交于点D .(1)已知矩形ABCO 为中心对称图形,对称中心(点F )为对角线AC OB ,的交点,若直线32y x m =-+恰好经过点F ,求点F 的坐标和m 的值﹒ (2)在(1)的条件下,过点P 的一条直线绕点P 顺时针旋转时,与直线BC 和x 轴分别交于点,N M 、试问是否存在ON 平分CNM ∠的情况.若存在,求线段AM 的长,若不存在,说明理由﹒(3)将矩形ABCO 落在(1)条件下的直线32y x m =-+折叠,若点О落在边CB 上,求出该点坐标,若不在边CB 上,请你说明将(1)中的直线32y x m =-+沿y 轴进行怎样的平移,使矩形ABCO 沿平移后的直线折叠,点O 恰好落在边CB 上.。
人教版九年级下册数学第二十八章 锐角三角函数 含答案

人教版九年级下册数学第二十八章锐角三角函数含答案一、单选题(共15题,共计45分)1、如图,将一块菱形ABCD硬纸片固定后进行投针训练.已知纸片上AE⊥BC于E,CF⊥AD于F,sinD= .若随意投出一针命中了菱形纸片,则命中矩形区域的概率是()A. B. C. D.2、如图,某天小明发现阳光下电线杆AB的影子落在土坡的坡面CD和地面BC 上,量的CD=8米,BC=20米,斜坡CD的坡度比为1:,且此时测得1米杆的影长为2米,则电线杆的高度为()A.14+2 )米B.28米C.(7+ )米D.9米3、在Rt△ABC中,各边的长度都扩大2倍,那么锐角A的正切值()A.都扩大2倍B.都扩大4倍C.没有变化D.都缩小一半4、在△ABC中,若tanA=1,sinB= ,你认为最确切的判断是()A.△ABC是等腰三角形B.△ABC是等腰直角三角形C.△ABC是直角三角形D.△ABC是一般锐角三角形5、如图,在两建筑物之间有一旗杆,高15米,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角α为60°,又从A点测得D点的俯角β为30°,若旗杆底点G为BC的中点,则矮建筑物的高CD为()A.20米B.10 米C.15 米D.5 米6、将两个等腰Rt△ADE、Rt△ABC如图放置在一起,其中∠DAE=∠ABC=90°.点E在AB上,AC与DE交于点H,连接BH、CE,且∠BCE=15°,下列结论:①AC垂直平分DE;②△CDE为等边三角形;③tan∠BCD=;④;正确的个数是()A.1B.2C.3D.47、如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A,B两岛的视角∠ACB等于()A.90°B.80°C.70°D.60°8、在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是()A.sinA=B.cosA=C.tanA=D.cotA=9、如图,平行四边形AOBC中,∠AOB=60°,AO=8,AC=15,反比例函数y =(x>0)图象经过点A,与BC交于点D,则的值为()A. B. C. D.10、如图,在菱形ABCD中,CE⊥AD于点E,cosD= ,AE=4,则AC的长为()A.8B.C.D.11、如图,在⊙O中,E是直径AB延长线上一点,CE切⊙O于点E,若CE=2BE,则∠E的余弦值为()A. B. C. D.12、在△ABC中,若∠A、∠B满足|cosA﹣|+(sinB﹣)2=0,则∠C=()A.45°B.60°C.75°D.105°13、如图,要焊接一个等腰三角形钢架,钢架的底角为35°,高CD长为3米,则斜梁AC的长为()米.A. B. C.3sin35° D.14、在△ABC中,∠C=90°,sinA= ,则cosB的值为( )A.1B.C.D.15、如图,P是∠α的边OA上一点,点P的坐标为(12,5),则tanα等于()A. B. C. D.二、填空题(共10题,共计30分)16、如图,O是坐标原点,边长为2的菱形OABC的顶点C在x轴的负半轴上,cos∠AOC=,函数的图象经过顶点B,则k的值为________.17、如图,已知⊙O上三点,,,切线交延长线于点,若,则________.18、如图,矩形的边在轴上,点在反比例函数的图象上,点在反比例函数的图象上,若,,则________.19、如图,在一次测绘活动中,小华同学站在点A的位置观测停泊于B、C两处的小船,测得船B在点A北偏东75°方向900米处,船C在点A南偏东15°方向1200米处,则船B与船C之间的距离为________米.20、如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE,若BE=5,BC=6,则sinC=________.21、如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为________米(结果保留根号).22、如图,△ABC为等边三角形,点D、E分别在AC、AB上,且AD=BE,连接BD、CE交于点P,在△ABC外部作∠ABF=∠ABD,过点A作AF⊥BF于点F,若∠ADB=∠ABF+90°,BF﹣AF=3,则BP=________.23、如图,四边形ABCD是矩形,AB=4,AD= ,以点A为圆心,AB长为半径画弧,交CD于点E,交AD的延长线于点F,则图中阴影部分的面积是________.24、在中,若,,,则________.25、一艘货轮由西向东航行,在A处测得灯塔P在它的北偏东60°方向,继续航行到达B处,测得灯塔P在它的东北方向,若灯塔P正南方向4海里的C处是港口,点A,B,C在一条直线上,则这艘货轮由A到B航行的路程为________海里(结果保留根号).三、解答题(共5题,共计25分)26、计算: 2tan45°- -2 60°+ cos30°27、周末,黄飞在广场放风筝.如图,为了计算风筝离地面的高度,黄飞测得风筝的仰角为60°,已知风筝线BC的长为15米,黄飞的身高AB为1.53米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到1米,参考数据:≈1414,≈1.73)28、如图,在热气球上A处测得塔顶B的仰角为52°,测得塔底C的俯角为45°,已知A处距地面98米,求塔高BC.(结果精确到0.1米)【参考数据:sin52°=0.79,cos52°=0.62,tan52°=1.28】29、等腰三角形中,两腰和底的长分别是10和13,求三角形的三个内角的度数(精确到l′).30、“兰州中山桥“位于兰州滨河路中段白塔山下、金城关前,是黄河上第一座真正意义上的桥梁,有“天下黄河第一桥“之美誉.它像一部史诗,记载着兰州古往今来历史的变迁.桥上飞架了5座等高的弧形钢架拱桥.小芸和小刚分别在桥面上的A,B两处,准备测量其中一座弧形钢架拱梁顶部C 处到桥面的距离AB=20m,小芸在A处测得∠CAB=36°,小刚在B处测得∠CBA=43°,求弧形钢架拱梁顶部C处到桥面的距离.(结果精确到0.1m)(参考数据sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)参考答案一、单选题(共15题,共计45分)1、B2、A3、C4、B5、A6、D7、A8、B9、C10、B11、B12、C13、D14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、30、。
人教版九年级下册数学第二十八章 锐角三角函数含答案

人教版九年级下册数学第二十八章锐角三角函数含答案一、单选题(共15题,共计45分)1、已知tanα=6.866,用计算器求锐角α(精确到1″),按键顺序正确的是()A. B.C.D.2、2sin45°的值等于()A.1B.C.D.23、如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB 于点M,OM=,则sin∠CBD的值等于()A. B. C. D.4、下列四个数,表示无理数的是()A.sin30°B.πC.D.5、已知为锐角,且,则的值是()A. B. C. D.6、如图,已知AB是⊙O的直径,CD是弦且CD⊥AB,BC=6,AC=8,则sin∠ABD 的值是()A. B. C. D.7、已知,△ABC中,∠C=90°,sinA=,则∠A 的度数是()A.30°B.45°C.60°D.90°8、在高为h的山顶上,测得山脚一建筑物的顶端与底部的俯角分别为30°、60°,那么建筑物的高度是()A. hB. hC. hD. h9、如图,秋千拉绳长3米,静止时踩板离地面0.5米,某小朋友荡该秋千时,秋千在最高处踩板离地面2米(左右对称),则该秋千所荡过的圆弧长为()A.π米B.2π米C. 米D. 米10、在△ABC中,a、b、c分别为角A、B、C的对边,若∠B=60°,则+的值为()A. B. C.1 D.11、在△ABC中,∠C=90°,cosA=,则tanB=()A. B. C. D.12、如图,热气球的探测器显示,从热气球A看一栋高楼顶部B的仰角为30°,看这栋高楼底部C的俯角为60°,热气球A与高楼的水平距离为120m,这栋高楼BC的高度为()A.40 mB.80 mC.120 mD.160 m13、如图,P为∠XOY上一点,作PH⊥OY于H,对于sin2∠XOY+cos2∠XOY的大小,下列说法正确的是()A.与点P的位置有关B.与PH的长度有关C.与∠XOY的大小有关 D.与点P的位置和∠XOY的大小都无关14、如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE ⊥BC于点E,连接BD,则tan∠DBC的值为( )A. B. C. D.15、在Rt△ABC中,∠C=90°,tanA=,则sinB=()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在△ABC中,∠C=90°,∠ABC=30°,将△ABC沿射线AB方向平移到A1B1C1的位置,A1是线段AB的中点,连接AC1,则tan∠A1AC1的值是________ .17、如图,AB是⊙O的直径,点C和点D是⊙O上位于直径AB两侧的点,连结AC,AD,BD,CD,若⊙O的半径是5,BD=8,则sin∠ACD的值是________。
人教版九年级下册数学第二十八章 锐角三角函数 含答案

人教版九年级下册数学第二十八章锐角三角函数含答案一、单选题(共15题,共计45分)1、在直角坐标平面内有一点P(3,4),OP与x轴正半轴的夹角为,则的值()A. B. C. D.2、sin58°、cos58°、cos28°的大小关系是()A.cos28°<cos58°<sin58°B.sin58°<cos28°<cos58° C.cos58°<sin58°<cos28° D.sin58°<cos58°<cos28°3、如图,矩形中,.以点为圆心,以任意长为半径作弧分别交、于点、,再分别以点、为圆心,以大于的长为半径作弧交于点,作射线交于点,若,则矩形的面积等于()A. B. C. D.4、如图,在等腰中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=,则AD的长为()A.3B.C.D.25、如图,在等腰 Rt△ABC 中,∠C=90°,AC=6,D 是 AC 上一点,若 tan ∠DBA=,则 AD 的长为( )A.2B.C.D.16、如图,在菱形ABCD中,DE⊥AB,,AE=3,则tan∠DBE的值是( )A. B.2 C. D.7、在平面直角坐标系中,已知点A(3,0),点B(0,-4),则tan∠OAB的值为().A. B. C. D.8、已知β为锐角,且tan β=3.387,则β约等于( )A.73°33'B.73°27'C.16°27'D.16°21'9、如图,小明在骑行过程中发现山上有一建筑物.他测得仰角为15°;沿水平笔直的公路向山的方向行驶4千米后,测得该建筑物的仰角为30°,若小明的眼睛与地面的距离忽略不计,则该建筑物离地面的高度为()A.2 千米B.2 千米C.2千米D. 千米10、如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C 处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10cm,则树AB的高度是()m.A.20B.30C.30D.4011、如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB的中点,则cos∠ODA= ( )A. B. C. D.12、等腰梯形中,上底:腰:下底=1:2:3,则下底角的度数是()A.30°B.45°C.60°D.90°13、比较tan20°,tan50°,tan70°的大小,下列不等式正确的是()A.tan70°<tan50°<tan20°B.tan50°<tan20°<tan70° C.tan20°<tan50°<tan70° D.tan20°<tan70°<tan50°14、在Rt△ABC中,∠C=90°,AB=5,BC=4,则sinA的值为()A. B. C. D.15、若关于x的方程x2﹣x+sina=0有两个相等的实数根,则锐角a为()A.75°B.60°C.45°D.30°二、填空题(共10题,共计30分)16、计算:2﹣1×+2cos30°=________.17、如图,,点是射线上的点,,以点为圆心,为半径作圆.若绕点按逆时针方向旋转,当和相切时,旋转的角度是________.18、在△ABC中,AB=,BC=6,∠B=45°,D为BC边上一点将△ABC沿着过D点的直线折叠,使得点C落在AB边上,记CD=m,则AC=________,m 的取值范围是________19、若一个正多边形的一个外角等于36°,则这个正多边形有________条对角线;用科学计算器计算:135×sin13°≈________.(精确到0.1)20、请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.一个正n边形(n>4)的内角和是外角和的3倍,则n=________;B.小明站在教学楼前50米处,测得教学楼顶部的仰角为20°,测角仪的高度为1.5米,则此教学楼的高度为________米.(用科学计算器计算,结果精确到0.1米)21、如图,在平面直角坐标系中,点A是x轴正半轴上一点,菱形OABC的边长为5,且tan∠COA= ,若函数的图象经过顶点B,则k的值为________.22、如图,菱形AB1C1D1的边长为1,∠B1=60°;作AD2⊥B1C1于点D2,以AD2为一边,做第二个菱形AB2C2D2,使∠B2=60°;作AD3⊥B2C2于点D3,以AD3为一边做第三个菱形AB3C3D3,使∠B3=60°..则AD2=________ ,依此类推这样做的第n个菱形ABn CnDn的边ADn的长是 ________ .23、如图,小明爬一土坡,他从A处爬到B处所走的直线距离AB=4米,此时,他离地面高度为h=2米,则这个土坡的坡角∠A=________°.24、在Rt△ABC中,∠C=90°,若AC=2BC,则cosA=________.25、在锐角三角形ABC中.BC=,∠ABC=45°,BD平分∠ABC.若M,N分别是边BD,BC上的动点,则CM+MN的最小值是________.三、解答题(共5题,共计25分)26、计算:27、一艘救生船在码头A接到小岛C处一艘渔船的求救信号,立即出发,沿北偏东67°方向航行10海里到达小岛C处,将人员撤离到位于码头A正东方向的码头B,测得小岛C位于码头B的北偏西53°方向,求码头A与码头B的距离.【参考数据:sin23°≈0.39,cos23°≈0.92,tan23°≈0.42,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75】28、九(1)数学兴趣小组为了测量河对岸的古塔A、B的距离,他们在河这边沿着与AB平行的直线l上取相距20m的C、D两点,测得∠ACB=15°,∠BCD=120°,∠ADC=30°,如图所示,求古塔A、B的距离.29、如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(=1.7).30、 4月18日,一年一度的“风筝节”活动在市政广场举行,如图,广场上有一风筝A,小江抓着风筝线的一端站在D处,他从牵引端E测得风筝A 的仰角为67°,同一时刻小芸在附近一座距地面30米高(BC=30米)的居民楼顶B处测得风筝A的仰角是45°,已知小江与居民楼的距离CD=40米,牵引端距地面高度DE=1.5米,根据以上条件计算风筝距地面的高度(结果精确到0.1米,参考数据:sin67°≈,cos67°≈,tan67°≈,≈1.414).参考答案一、单选题(共15题,共计45分)1、D2、C3、D4、D5、A6、B7、C8、A9、C10、B11、A12、C13、C14、C15、D二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图,已知该圆锥的侧面展开图的圆心角为120°、半径长为6,圆锥的高与母线的夹角为α,则( )A .圆锥的底面半径为3B .2tan 2α=C .该圆锥的主视图的面积为82D .圆锥的表面积为12π 2.已知如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,AD=23,AB=4,连接AC ,若∠CAD=30°,则CD 为( )A .223+B .27C .1033D .123+3.如图,点A (-1,0),点B (-4,0),平行四边形ABCD 的顶点D 在第二象限,反比例函数y=k x(k<0)图像过点D 和BC 边的中点E ,若∠C=α,则k 的值(用含α的式子表示为)( )A .-4tanαB .-3tanαC .925-tanαD .289-tanα 4.在Rt ABC 中,90,C a b c ∠=︒、、分别是A B C ∠∠∠、、的对边,如果3,4a b ==,那么下列等式中正确的是( )A .4sin 3A =B .4cos 3A =C .4tan 3A =D .4cot 3A = 5.如图,将一副三角尺如图所示叠放在一起,则BE CE的值是( )A .3B .33C .2D .32 6.如图,O 是ABC 的外接圆,60BAC ∠=︒,若O 的半径OC 为1,则弦BC 的长为( )A .12B .32C .1D .37.如图,为了测量某建筑物MN 的高度,在平地上A 处测得建筑物顶端M 的仰角为30°,向N 点方向前进16m 到达B 处,在B 处测得建筑物顶端M 的仰角为45°,则建筑物MN 的高度等于( )A .8(31)+mB .8(31)-mC .16(31)+mD .16(31)-m8.如图,在矩形ABCD 中,AB =3,做BD 的垂直平分线E ,F ,分别与AD 、BC 交于点E 、F ,连接BE ,DF ,若EF =AE +FC ,则边BC 的长为( )A .3B .33C .63D 9329.在△ABC 中,若cosA=22,tanB=3,则这个三角形一定是( ) A .锐角三角形 B .直角三角形C .钝角三角形D .等腰三角形 10.三角形在正方形网格纸中的位置如图所示,则cos α的值是( )A .34B .43C .35D .4511.如图,在平面直角坐标系xOy 中,矩形ABCD 的顶点A 在x 轴的正半轴上,矩形的另一个顶点D 在y 轴的正半轴上,矩形的边,,AB a BC b DAO x ==∠=.则点C 到x 轴的距离等于( )A .cos sin a x b xB .cos cos a x b xC .sin cos a x b xD .sin sin a x b x 12.如图,菱形ABCD 的边长为2,且∠ABC =120°,E 是BC 的中点,P 为BD 上一点,且△PCE 的周长最小,则△PCE 的周长的最小值为( )A .3+1B .7+1C .23+1D .27+1 13.如图,Rt △ABC 中,AB =4,BC =2,正方形ADEF 的边长为2,F 、A 、B 在同一直线上,正方形ADEF 向右平移到点F 与B 重合,点F 的平移距离为x ,平移过程中两图重叠部分的面积为y ,则y 与x 的关系的函数图象表示正确的是( )A .B .C .D .14.如图,正方形ABCD 的边长为1,点A 与原点重合,B 在y 轴正半轴上,D 在x 轴负半轴上,将正方形ABCD 绕着点A 逆时针旋转30至AB C D ''',CD 与B C ''相交于点E ,则E 坐标为( )A .31,3⎛⎫- ⎪ ⎪⎝⎭B .11,2⎛⎫- ⎪⎝⎭ C .31,2⎛⎫- ⎪ ⎪⎝⎭ D .21,3⎛⎫- ⎪⎝⎭二、填空题15.先将一矩形ABCD 置于直角坐标系中,使点A 与坐标系的原点重合,边AB ,AD 分别落在x 轴、y 轴上(如图1),再将此矩形在坐标平面内按逆时针方向绕原点旋转30°(如图2),若4AB =,3BC =,则图1和图2中点B 点的坐标为_________,点C 的坐标_________.16.如图,一艘船由A 港沿北偏东65°方向航行302km 至B 港,然后再沿北偏西40°方向航行至C 港,C 港在A 港北偏东20°方向,则A ,C 两港之间的距离为______km .17.如果在某建筑物的A 处测得目标B 的俯角为37°,那么从目标B 可以测得这个建筑物的A 处的仰角为_____.18.如图,在ABC ∆中,AB=AC=10,3tan 4B =,点D 为BC 边上的动点(点D 不与点B ,C 重合),以D 为顶点作ADE B ∠=∠,射线DE 交AC 边于点E ,若BD=4,则AE= __________.19.如图,正方形ABCD 绕点B 逆时针旋转30°后得到正方形BEFG ,EF 与AD 相交于点H ,延长DA 交GF 于点K .若正方形ABCD 边长为3,则AH=__.20.如图所示,菱形ABCD 的边长为8,且AE ⊥BC 于E ,AF ⊥CD 于F ,∠B=60°,则菱形的面积为____.21.某人顺着山坡沿一条直线型的坡道滑雪,当他滑过130米长的路程时,他所在位置的竖直高度下降了50米,则该坡道的坡比是_________.22.将一副三角板如图摆放,使得一块三角板的直角边AC 和另一块三角板的斜边ME 重叠,点A 与点M 重合,已知AB=AC=8,则重叠的面积是__________.23.如图所示,AOB ∠是放置在正方形网格中的一个角,则sin AOB ∠的值是________.24.如图,△ABC 是等边三角形,AB =3,点E 在AC 上,AE 23=AC ,D 是BC 延长线上一点,将线段DE 绕点E 逆时针旋转90°得到线段FE ,当AF ∥BD 时,线段AF 的长为____.25.如图,已知直线l :y =33x ,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为_____.26.如图,ABCD 中,∠DAB =30°,AB =8,BC =3,P 为边CD 上的一动点,则PB +12PD 的最小值等于__________.三、解答题27.如图,某学校体育场看台的顶端C到地面的垂直距离CD为2m,看台所在斜坡CM 的坡比1:3i=,在点C处测得旗杆顶点A的仰角为30°,在点M处测得旗杆顶点A的仰角为60°,且B,M,D三点在同一水平线上.(1)求DM的长.(2)求旗杆AB的高度.(结果保留根号)28.热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30,看这栋高楼底部的俯角为60︒,热气球与高楼的水平距离为66m,这栋高楼有多高?(结果精确到0.1m,参考数据:3 1.73≈)29.计算:11126tan60|2433-⎛⎫︒+-⎪⎝⎭.30.平面直角坐标系中,抛物线y=ax2+bx+3交x轴于A,B两点,点A,B的坐标分别为(﹣3,0),(1,0),与y轴交于点C,点D为顶点.(1)求抛物线的解析式和tan∠DAC;(2)点E是直线AC下方的抛物线上一点,且S△ACE=2S△ACD,求点E的坐标;(3)如图2,若点P是线段AC上的一个动点,∠DPQ=∠DAC,DP⊥DQ,则点P在线段AC上运动时,D点不变,Q点随之运动.求当点P从点A运动到点C时,点Q运动的路径长.【参考答案】一、选择题1.C2.B3.D4.D5.B6.D7.A8.B9.A10.D11.A12.B13.B14.A二、填空题15.【分析】根据旋转的性质求解【详解】解:∵AB=4在x轴正半轴上∴图1中B坐标为(40)在图2中过B作BE⊥x轴于点E那么OE=4×cos30°=2BE=2在图2中B点的坐标为(22);易知图1中点C16.【分析】BE⊥AC于点E根据题意计算可得解直角三角形ABE可得BE=AE=30根据平行线性质计算可得解直角三角形CEB可得AE+CE的值即是AC两港之间的距离【详解】解:设过A点正北方向直线为AD过17.37°【分析】由俯角和仰角的定义和平行线的性质即可得到目标B可以测得这个建筑物的A处的仰角为37°【详解】如图∵某建筑物的A处测得目标B的俯角为37°∴目标B可以测得这个建筑物的A处的仰角为37°故18.【分析】先求出CD的长再证明△ABD∽△DCE得代入即可求解【详解】解:如图1作AH⊥BC于H∵∴∴BH=ABcosB=10×=8∵AB=AC∴BC=2BH=16∠B=∠C∴CD=16-4=12∵∠19.1【分析】连接BH证明Rt△ABH≌△Rt△EBH(HL)得出∠ABH=30°在Rt△ABH中解直角三角形即可【详解】解:连接BH如图所示:∵四边形ABCD和四边形BEFG是正方形∴∠BAH=∠AB20.【分析】根据已知条件解直角三角形ABE可求出AE的长再由菱形的面积等于底×高计算即可【详解】∵菱形ABCD的边长为8∴AB=BC=8∵AE⊥BC于E∠B=60°∴sinB=即∴AE∴菱形的面积故答案21.【分析】首先根据勾股定理求得滑行的水平距离然后根据坡比的定义即可求解【详解】解:滑行的水平距离是:=120(米)故坡道的坡比是:50:120=故答案是:【点睛】本题考查了勾股定理以及坡比的定义正确求22.【分析】过Q作QH⊥AC于H在△QHC中由于∠QCH=45°则CH=QH设CH=则QH=x在Rt△QHA中由于∠QAH=60°求得AH=然后利用CH+AH=AC求得的值再根据三角形面积公式计算得到结23.【分析】由题意可知要求出答案首先需要构造出直角三角形连接AB 设小正方形的边长为1可以求出OAOBAB 的长度由勾股定理的逆定理可得是直角三角形再根据三角函数的定义可以求出答案【详解】连接AB 如图所示:24.1【分析】过点E 作EM ⊥AF 于M 交BD 于N 根据30°直角三角形的性质求出AM=1再根据∠60°的三角函数值求出EN 的长再依据△EMF ≌△DNE (AAS )得出MF=EN 据此可得当AF ∥BD 时线段AF 的25.(0256)【分析】利用锐角三角函数分别计算得到的坐标利用规律直接得到答案【详解】解:∵l :y =x ∴l 与x 轴的夹角为30°∵AB ∥x 轴∴∠ABO =30°∵OA =1∴AB =∵A1B ⊥l ∴∠ABA1=626.4【分析】过点P 作PE ⊥AD 交AD 的延长线于点E 由锐角三角函数可得EP =即PB+=PB+PE 则当点B 点P 点E 三点共线且BE ⊥AD 时PB+PE 有最小值即最小值为BE 【详解】解:如图过点P 作PE ⊥AD 交三、解答题27.28.29.30.【参考解析】一、选择题1.C解析:C【分析】根据圆锥的侧面展开图的弧长等于圆锥底面周长,可知2πr =180n l ,求出r 以及圆锥的母线l 和高h 即可解决问题.解:设圆锥的底面半径为r ,高为h .A 选项,由题意:2πr =1206180π⨯⨯,解得r =2,故错误;B 选项,h =226242-=,所以tanα=22442=,故错误; C 选项,圆锥的主视图的面积=12×4×42=82,故正确; D 选项,表面积=4π+2π×6=16π,故错误.故选:C .【点睛】本题考查圆锥的有关知识,记住圆锥的侧面展开图的弧长等于圆锥底面周长,即2πr =180n l π,圆锥的表面积=πr 2+πrl 是解决问题的关键,属于中考常考题型. 2.B解析:B【分析】过C 点作CH ⊥AD 延长线于H 点,由CH=AB=4求出AH 的长,再减去AD 即得到DH 的长,再在Rt △DCH 中使用勾股定理即可求出CD .【详解】解:如图所示,过C 点作CH ⊥AD 延长线于H 点,∵AD ∥BC ,∠B=90°,∴∠BAH=90°,且∠H=90°,∴四边形ABCH 为矩形,∴AB=CH=4,在Rt △ACH 中,3343AHCH AB , ∴DH=AH-AD=23∴在Rt △CDH 中,22121627CDDH CH ,故选:B .【点睛】本题考查了解直角三角形,熟练掌握30°,60°,90°三角形中三边之比为3::是解决本题的关键. 3.D解析:D过点D 作DH ⊥OB 于H ,过点E 作EF ⊥x 轴于F ,根据平行四边形的对边相等可得DA=CB ,然后求出DA=2EB ,再求出HA=2FB ,设FB=a ,表示出点E 、D 的坐标,然后根据EF 、DH 的关系列方程求出a 的值,再求出HA 、DH ,然后利用∠DAH 的正切值列式整理即可得解.【详解】解:如图,过点D 作DH ⊥OB 于H ,过点E 作EF ⊥x 轴于F ,在平行四边形ABCD 中,DA=CB ,∵E 为边BC 的中点,∴DA=CB=2EB ,DH=2EF ,∴AH=2FB ,设FB=a ,∵点C 、D 都在反比例函数上,∴D(−2a−1,k−2a−1),∵B(−4,0),∴点E(−a -4,4k a --), ∴2214k k a a =⨯----,解得a= 23, ∴FB=a=23,EF=3241443k k k a ==-----, ∵∠C=α,∴tan ∠EBF=tan ∠α=EF FB , 即tanα=928k -,k=289-tanα. 故选D .【点睛】本题考查了平行四边形的性质,反比例函数图象上点的坐标特征,锐角三角函数,根据点C 、D 的纵坐标列出方程是解题的关键. 4.D解析:D【分析】分别算出∠A 的各个三角函数值即可得到正确选项.【详解】解:由题意可得:5c ==, ∴3434sin ,cos ,tan ,,5543a b a b A A A cotA c c b a ======== ∴正确答案应该是D ,故选D .【点睛】 本题考查锐角三角函数的定义,正确理解锐角三角函数的定义是解题关键.5.B解析:B【分析】设AC=AB=x,求得tan AC CD D ===,根据相似三角形的性质即可得到结论. 【详解】解:设AC=AB=x ,则tan AC CD D ===, ∵∠BAC=∠ACD=90°,∴∠BAC+∠ACD=180°,∴AB ∥CD ,∴△ABE ∽△DCE ,∴BE AB CE CD === 故选:B .【点睛】本题主要考查相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.6.D解析:D【分析】先作OD ⊥BC 于D ,由于∠BAC =60°,根据圆周角定理可求∠BOC =120°,又OD ⊥BC ,根据垂径定理可知∠BOD =60°,BD =12BC ,在Rt △BOD 中,利用特殊三角函数值易求BD ,进而可求BC .【详解】解:如右图所示,作OD ⊥BC 于D ,∵∠BAC =60°,∴∠BOC=120°,又∵OD⊥BC,∴∠BOD=60°,BD=12BC,∴BD=sin60°×OB=3,∴BC=2BD=23,故答案是23.【点睛】本题考查了圆周角定理、垂径定理、特殊三角函数计算,解题的关键是作辅助线OD⊥BC,并求出BD.7.A解析:A【解析】设MN=xm,在Rt△BMN中,∵∠MBN=45∘,∴BN=MN=x,在Rt△AMN中,tan∠MAN=MN AN,∴tan30∘=16xx=3√3,解得:3,则建筑物MN的高度等于3 +1)m;故选A.点睛:本题是解直角三角形的应用,考查了仰角和俯角的问题,要明确哪个角是仰角,哪个角是俯角,知道仰角是向上看的视线与水平线的夹角,俯角是向下看的视线与水平线的夹角,并与三角函数相结合求边的长.8.B解析:B【分析】根据矩形的性质和菱形的性质得∠ABE=∠EBD=∠DBC=30°,AB=BO=3,因为四边形BEDF是菱形,所以可求出BE,AE,进而可求出BC的长.【详解】解:∵四边形ABCD是矩形,//,DE BF ∴,,DEO BFO EDO FBO ∴∠=∠∠=∠ EF 垂直平分BD ,OB OD ∴=,BOF DOE ∴∆∆≌,,OE OF ∴=∴ 四边形BEDF 是菱形,∵四边形ABCD 是矩形,四边形BEDF 是菱形,∴∠A=90°,AD=BC ,DE=BF ,OE=OF ,EF ⊥BD ,∠EBO=FBO ,∴AE=FC .又EF=AE+FC ,∴EF=2AE=2CF ,又EF=2OE=2OF ,AE=OE ,∴△ABE ≌OBE , ∴∠ABE=∠OBE ,∴∠ABE=∠EBD=∠DBC=30°,∴BE= cos30BO ︒= ∴BF=BE=∴∴BC=BF+CF=故选B .【点睛】本题考查了矩形的性质、菱形的性质以及在直角三角形中30°角所对的直角边时斜边的一半,解题的关键是求出∠ABE=∠EBD=∠DBC=30°. 9.A解析:A【解析】试题∵cos A =2,tan B , ∴∠A =45°,∠B =60°.∴∠C =180°-45°-60°=75°.∴△ABC 为锐角三角形.故选A .10.D解析:D【分析】根据锐角三角函数的定义得出cosα=BC AB进而求出即可.解:如图所示:∵AC=3,BC=4,∴AB=5,∴cosα=45BC AB =. 故选:D .【点睛】此题主要考查了锐角三角函数的定义以及勾股定理,正确构造直角三角形是解题关键. 11.A解析:A【分析】作CE ⊥y 轴于E .解直角三角形求出OD ,DE 即可解决问题.【详解】作CE ⊥y 轴于E .在Rt △OAD 中,∵∠AOD=90°,AD=BC=b ,∠OAD=x ,∴OD=sin OAD sin AD b x ∠=,∵四边形ABCD 是矩形,∴∠ADC=90°,∴∠CDE+∠ADO=90°,又∵∠OAD+∠ADO=90°,∴∠CDE=∠OAD= x , ∴在Rt △CDE 中,∵CD=AB=a ,∠CDE=x , ∴DE= cos CDE cos CD a x ∠=,∴点C 到x 轴的距离=EO=DE+OD=cos sin a x b x ,【点睛】本题考查了解直角三角形的应用,矩形的性质,正确作出辅助线是解题的关键.12.B解析:B【分析】由菱形ABCD中,∠ABC=120°,易得△BCD是等边三角形,继而求得∠ADE的度数;连接AE,交BD于点P;首先由勾股定理求得AE的长,即可得△PCE周长的最小值=AE+EC.【详解】解:∵菱形ABCD中,∠ABC=120°,∴BC=CD=AD=2,∠C=180°﹣∠ABC=60°,∠ADC=∠ABC=120°,∴∠ADB=∠BDC=1∠ADC=60°,2∴△BCD是等边三角形,∵点E是BC的中点,∴∠BDE=1∠BDC=30°,2∴∠ADE=∠ADB+∠BDE=90°,∵四边形ABCD是菱形,∴BD垂直平分AC,∴PA=PC,++,∵△PCE的周长=PC PE CE若△PCE的周长最小,即PC+PE最小,也就是PA+PE最小,即A,P,E三点共线时,∵DE=CD•sin60°=3,CE=1BC=1,2∴在Rt△ADE中,227=+=,AE AD DE∴△PCE周长为:PC+PE+CE=PA+PE+CE=AE+CE=71+,故选:B.【点睛】本题考查了菱形的性质、最短路线问题、等边三角形的性质,熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.13.B解析:B【分析】分三种情况分析:当0<x≤2时,平移过程中两图重叠部分为Rt △AA'M ;当2<x≤4时,平移过程中两图重叠部分为梯形F'A'MN ;当4<x≤6时,平移过程中两图重叠部分为梯形F'BCN .分别写出每一部分的函数解析式,结合排除法,问题可解.【详解】设AD 交AC 于N ,A D ''交AC 于M ,当0<x ≤2时,平移过程中两图重叠部分为Rt △AA 'M ,∵Rt △ABC 中,AB =4,BC =2,正方形ADEF 的边长为2,AA x '=,∴tan ∠CAB =A M BC AA AB ='', ∴A 'M =12x , 其面积y=12AA A M ''=12x •12x =14x 2, 故此时y 为x 的二次函数,排除选项D ; 当2<x ≤4时,平移过程中两图重叠部分为梯形F 'A 'MN ,AA x '=,2AF x '=-,同理:A 'M =12x ,()122F M x ='-, 其面积y=12AA A M ''-12AF F M ''=12x •12x ﹣12(x ﹣2)•12(x ﹣2)=x ﹣1, 故此时y 为x 的一次函数,故排除选项C .当4<x ≤6时,平移过程中两图重叠部分为梯形F 'BCN ,AF '=x ﹣2,F 'N =12(x ﹣2),F 'B =4﹣(x ﹣2)=6﹣x ,BC =2, 其面积y =12 [12(x ﹣2)+2]×(6﹣x )=﹣14x 2+x +3, 故此时y 为x 的二次函数,其开口方向向下,故排除A ;综上,只有B 符合题意.故选:B .【点睛】本题考查了动点问题的函数图象以及三角函数的知识,数形结合并运用排除法,是解答本题的关键.14.A解析:A【分析】连接AE,由旋转性质知AD=AB′=1、∠BAB′=30°、∠B′AD=60°,证Rt△ADE≌Rt△AB′E得∠DAE=12∠B′AD=30°,由DE=ADtan∠DAE可得答案.【详解】如图:连接AE∵将边长为1的正方形ABCD绕点A逆时针旋转30°得到正方形AB C D''',∴AD=AB′=1,∠BAB′=30°,∴∠B′AD=60°,在Rt△ADE和Rt△A B′E中,∵AD AB AE AE'=⎧⎨=⎩∴Rt△ADE≌Rt△AB′E(HL),∴∠DAE=∠B′AE=12∠B′AD=30°,∴DE=ADtan∠33∴点E的坐标为(-13故选:A【点睛】本题考查了正方形的性质、坐标与图形旋转.图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.二、填空题15.【分析】根据旋转的性质求解【详解】解:∵AB=4在x轴正半轴上∴图1中B坐标为(40)在图2中过B作BE⊥x轴于点E那么OE=4×cos30°=2BE=2在图2中B点的坐标为(22);易知图1中点C 解析:()23,2433334,22⎛⎫-+ ⎪⎝⎭ 【分析】根据旋转的性质求解.【详解】解:∵AB=4,在x 轴正半轴上, ∴图1中B 坐标为(4,0),在图2中过B 作BE ⊥x 轴于点E ,那么OE=4×cos30°=23,BE=2,在图2中B 点的坐标为(23,2);易知图1中点C 的坐标为(4,3),在图2中,设CD 与y 轴交于点M ,作CN ⊥y 轴于点N ,那么∠DOM=30°,OD=3, ∴3OM=3÷cos30°3,那么3∠NCM=30°,∴43-,433-, 则334+, ∴图2中C 点的坐标为(4332,3342). 【点睛】此题主要考查了旋转性质的应用,旋转前后对应角的度数不变,对应线段的长度不变,注意构造直角三角形求解.16.【分析】BE ⊥AC 于点E 根据题意计算可得解直角三角形ABE 可得BE=AE=30根据平行线性质计算可得解直角三角形CEB 可得AE+CE 的值即是AC 两港之间的距离【详解】解:设过A 点正北方向直线为AD 过解析:303+【分析】BE ⊥AC 于点E ,根据题意计算可得45EAB ∠=︒,解直角三角形ABE ,可得BE=AE=30,根据平行线性质计算可得60C ∠=°,解直角三角形CEB 可得,103CE =,AE+CE 的值即是AC 两港之间的距离.【详解】解:设过A 点正北方向直线为AD ,过B 点正北方向直线为BG ,过B 作BE ⊥AC 于E ,过C 作CF ∥AD ,如图:∵由题意得:∠CAB =65°﹣20°=45°,∠AEB =∠CEB =90°,AB 2km . ∴在Rt ABE △中,∠ABE =45°,∴△ABE 是等腰直角三角形.∵AB 2km ,∴AE =BE =22AB =30(km ). ∵CF ∥AD ∥BG , ∴∠ACF =∠CAD =20°,∠BCF =∠CBG =40°,∴∠ACB =20°+40°=60°,∵在Rt CBE 中,∠ACB =60°,tan ∠ACB =BE CE, ∴CE =tan 603BE ︒=3km ),∴AC =AE +CE 3km ),∴A 、C 两港之间的距离为(3km .故答案为:(3【点睛】本题考查解直角三角形的应用——方位角问题,添加辅助线构建直角三角形,熟练运用解直角三角形的方法是解题关键.17.37°【分析】由俯角和仰角的定义和平行线的性质即可得到目标B 可以测得这个建筑物的A 处的仰角为37°【详解】如图∵某建筑物的A 处测得目标B 的俯角为37°∴目标B 可以测得这个建筑物的A 处的仰角为37°故解析:37°【分析】由俯角和仰角的定义和平行线的性质即可得到目标B可以测得这个建筑物的A处的仰角为37°.【详解】如图,∵某建筑物的A处测得目标B的俯角为37°,∴目标B可以测得这个建筑物的A处的仰角为37°,故答案为:37°.【点睛】考查了解直角三角形,解题关键是理解向下看,视线与水平线的夹角叫俯角;向上看,视线与水平线的夹角叫仰角.18.【分析】先求出CD的长再证明△ABD∽△DCE得代入即可求解【详解】解:如图1作AH⊥BC于H∵∴∴BH=ABcosB=10×=8∵AB=AC∴BC=2BH=16∠B=∠C∴CD=16-4=12∵∠解析:26 5【分析】先求出CD的长,再证明△ABD∽△DCE,得CE CDBD AB=,代入即可求解.【详解】解:如图1,作AH⊥BC于H,∵3tan4B=∴cos45B=∴BH=ABcosB=10×45=8,∵AB=AC,∴BC=2BH=16,∠B=∠C,∴CD=16-4=12,∵∠ADC=∠ADE+∠EDC=∠BAD+∠B ,∵∠ADE=∠B ,∴∠EDC=∠BAD ,∴△ABD ∽△DCE , ∴CE CD BD AB =, ∴12410CE =, ∴245CE =. ∴26105AE CE =-=故答案是:265. 【点睛】 本题考查的是三角形综合题,涉及到三角形相似、解直角三角形,等腰三角形的性质等. 19.1【分析】连接BH 证明Rt △ABH ≌△Rt △EBH (HL )得出∠ABH=30°在Rt △ABH 中解直角三角形即可【详解】解:连接BH 如图所示:∵四边形ABCD 和四边形BEFG 是正方形∴∠BAH=∠AB解析:1【分析】连接BH ,证明Rt △ABH ≌△Rt △EBH (HL ),得出∠ABH =30°,在Rt △ABH 中解直角三角形即可.【详解】解:连接BH ,如图所示:∵四边形ABCD 和四边形BEFG 是正方形,∴∠BAH=∠ABC=∠BEH=∠F=90°,由旋转的性质得:AB=EB ,∠CBE=30°,∴∠ABE=60°,在Rt △ABH 和Rt △EBH 中,∵BH=BH ,AB=EB ,∴Rt △ABH ≌△Rt △EBH (HL ),∴∠ABH=∠EBH=12∠ABE=30°,∴AH=AB•tan ∠, 故答案为:1.【点睛】本题考查了旋转的性质、正方形的性质、全等三角形的判定与性质、解直角三角形.能正确作出辅助线得出Rt △ABH ≌△Rt △EBH ,从而求得∠ABH =30°是解题关键.20.【分析】根据已知条件解直角三角形ABE 可求出AE 的长再由菱形的面积等于底×高计算即可【详解】∵菱形ABCD 的边长为8∴AB=BC=8∵AE ⊥BC 于E ∠B=60°∴sinB=即∴AE ∴菱形的面积故答案解析:【分析】根据已知条件解直角三角形ABE 可求出AE 的长,再由菱形的面积等于底×高计算即可.【详解】∵菱形ABCD 的边长为8,∴AB=BC=8,∵AE ⊥BC 于E ,∠B=60°,∴sinB=AE AB ,即28AE =, ∴AE =,∴菱形的面积8=⨯=故答案为:【点睛】本题考查了菱形的性质以及特殊角的三角函数值,菱形面积公式的运用.关键是掌握菱形的性质.21.【分析】首先根据勾股定理求得滑行的水平距离然后根据坡比的定义即可求解【详解】解:滑行的水平距离是:=120(米)故坡道的坡比是:50:120=故答案是:【点睛】本题考查了勾股定理以及坡比的定义正确求 解析:512【分析】首先根据勾股定理求得滑行的水平距离,然后根据坡比的定义即可求解.【详解】(米),故坡道的坡比是:50:120=512.故答案是:512. 【点睛】 本题考查了勾股定理,以及坡比的定义,正确求得滑行的水平距离是关键.22.【分析】过Q 作QH ⊥AC 于H 在△QHC 中由于∠QCH=45°则CH=QH 设CH=则QH=x 在Rt △QHA 中由于∠QAH=60°求得AH=然后利用CH+AH=AC 求得的值再根据三角形面积公式计算得到结解析:48163-【分析】过Q 作QH ⊥AC 于H ,在△QHC 中,由于∠QCH=45°,则CH=QH ,设CH=x ,则QH=x ,在Rt △QHA 中,由于∠QAH=60°,求得AH=33x ,然后利用CH+AH=AC 求得x 的值,再根据三角形面积公式计算得到结果. 【详解】 过Q 作QH ⊥AC 于H ,如图,∠ACB=45°,∠DME=60°,AC=8,在△QHC 中,∠QCH=45°,∴CH=QH ,设CH=x ,则QH=x ,在Rt △QHA 中,∠QAH=60°,∴AH=QH tan 60︒ =33x , ∵CH+AH=AC , ∴38x x +=, 解得:(433x =,∴QAC 12S =QH•AC (14338481632=⨯⨯=- 故答案为:483-【点睛】本题主要考查了解直角三角形,作出辅助线构造直角三角形,利用条件求得AC边上的高是解题的关键.23.【分析】由题意可知要求出答案首先需要构造出直角三角形连接AB设小正方形的边长为1可以求出OAOBAB的长度由勾股定理的逆定理可得是直角三角形再根据三角函数的定义可以求出答案【详解】连接AB如图所示:解析:2 2【分析】由题意可知,要求出答案首先需要构造出直角三角形,连接AB,设小正方形的边长为1,可以求出OA、OB、AB的长度,由勾股定理的逆定理可得ABO是直角三角形,再根据三角函数的定义可以求出答案.【详解】连接AB如图所示:设小正方形的边长为1,∴2OA=23+1=10,22BA=3+1=10,222OB=4+2=20,∴ABO是直角三角形,∴BA102sin AOB=OB20∠=,故答案为:2 2.【点睛】本题主要考查了勾股定理的逆定理和正弦函数的定义,熟练掌握技巧即可得出答案. 24.1【分析】过点E作EM⊥AF于M交BD于N根据30°直角三角形的性质求出AM=1再根据∠60°的三角函数值求出EN的长再依据△EMF≌△DNE(AAS)得出MF=EN据此可得当AF∥BD时线段AF的解析:13 +.【分析】过点E作EM⊥AF于M,交BD于N,根据30°直角三角形的性质求出AM =1,再根据∠60°的三角函数值求出EN的长,再依据△EMF≌△DNE(AAS)得出MF=EN32=,据此可得,当AF∥BD时,线段AF的长为132 +.【详解】如图过点E作EM⊥AF于M,交BD于N.∵△ABC是等边三角形,∴AB=BC=AC=3,∠ACB=60°.∵AE23=AC,∴AE=2,EC=1.∵AF∥BD,∴∠EAM=∠ACB=60°.∵EM⊥AF,∴∠AME=90°,∴∠AEM=30°,∴AM12=AE=1.∵AF∥BD,EM⊥AF,∴EN⊥BC,∴EN=EC•sin60°32=,∵∠EMF=∠END=∠FED=90°,∴∠MEF+∠MFE=90°,∠MEF+∠DEN=90°,∴∠EFM=∠DEN.∵ED=EF,∴△EMF≌△DNE(AAS),∴MF=EN32=,∴AF=AM+MF=13.故答案为:13.【点评】本题主要考查了直角三角形的性质、特殊角的三角函数值和全等三角形的判定的综合运用,解题的关键是作辅助线构造直角三角形和全等三角形,熟记特殊角的三角函数值.25.(0256)【分析】利用锐角三角函数分别计算得到的坐标利用规律直接得到答案【详解】解:∵l :y =x ∴l 与x 轴的夹角为30°∵AB ∥x 轴∴∠ABO =30°∵OA =1∴AB =∵A1B ⊥l ∴∠ABA1=6解析:(0,256)【分析】利用锐角三角函数分别计算得到12,A A 的坐标,利用规律直接得到答案.【详解】解:∵l :y =3x ∴l 与x 轴的夹角为30°∵AB ∥x 轴∴∠ABO =30°∵OA =1∴AB∵A 1B ⊥l∴∠ABA 1=60°∴AA 1=3∴A 1(0,4)同理可得A 2(0,16)…∴A 4纵坐标为44=256∴A 4(0,256)故答案为:(0,256).【点睛】本题考查的是一次函数综合题,先根据所给一次函数判断出一次函数与x 轴夹角是解决本题的突破点;根据含30°的直角三角形的特点依次得到123,,A A A …的点的坐标是解决本题的关键.26.4【分析】过点P 作PE ⊥AD 交AD 的延长线于点E 由锐角三角函数可得EP =即PB+=PB+PE 则当点B 点P 点E 三点共线且BE ⊥AD 时PB+PE 有最小值即最小值为BE 【详解】解:如图过点P 作PE ⊥AD 交解析:4【分析】过点P 作PE ⊥AD ,交AD 的延长线于点E ,由锐角三角函数可得EP =12PD ,即PB+12PD =PB+PE ,则当点B,点P ,点E 三点共线且BE ⊥AD 时,PB+PE 有最小值,即最小值为BE .【详解】解:如图,过点P 作PE ⊥AD ,交AD 的延长线于点E ,∵AB ∥CD∴∠EDP =∠DAB =30°,∴sin ∠EDP =12EP DP = ∴EP =12PD ∴PB +12PD =PB +PE ∴当点B ,点P ,点E 三点共线且BE ⊥AD 时,PB +PE 有最小值,即最小值为BE , ∵sin ∠DAB =12BE AB = ∴BE =12AB =4 故答案为:4【点睛】本题考查了平行四边形的性质,垂线段最短,锐角三角函数的性质,作出适当的辅助线是解题的关键.三、解答题27.(1)DM =6m ;(2)AB =3【分析】(1)根据斜坡CM 的坡比i =1:3,CD 为2m ,进而可得DM 的长;(2)过点C 作CE ⊥AB 于点E ,设BM =x ,根据矩形的性质以及锐角三角函数的定义即可求出答案.【详解】解:(1)∵CD =2,tan ∠CMD =CD DM =13, ∴2DM =13, ∴DM =6m ; (2)过点C 作CE ⊥AB 于点E ,设BM =x ,∴BD =x +6,∵∠AMB =60°,∴∠BAM =30°,∴AB =3x , ∵四边形CDBE 是矩形,∴BE =CD =2,CE =BD =x +6,∴AE =AB ﹣BE =3x ﹣2,在Rt ACE 中,∵tan30°=AE CE , ∴13=326x x -+, 解得:x =3+3,∴AB =3x =(33+3)(m ).【点睛】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义以及矩形的性质,本题属于中等题型.28.152.2【分析】过点A 作AD BC ⊥于点D ,根据仰角和俯角的定义得到BAD ∠和CAD ∠的度数,利用特殊角的正切值求出BD 和CD 的长,加起来得到BC 的长.【详解】解:如图,过点A 作AD BC ⊥于点D ,根据题意,30BAD ∠=︒,60CAD ∠=︒,66AD m =,3tan 3066223BD AD m =⋅︒==, tan 60663663CD AD m =⋅︒==,223663883152.2BC m =+=≈.【点睛】本题考查解直角三角形的应用,解题的关键是掌握利用特殊角的三角形函数值解直角三角形的方法.29.1【分析】分别进行负整数指数幂运算、二次根式的化简、特殊角的三角函数值、绝对值运算、合并同类项进行计算即可.【详解】解:11126tan60|243 3-⎛⎫︒+-⎪⎝⎭=32363432+=1.【点睛】本题考查实数的混合运算,涉及负整数指数幂、二次根式、特殊角的三角函数值,绝对值、合并同类项等知识,是中考必考计算题,必须熟练掌握.30.(1)y=﹣x2﹣2x+3,AC=32DC2;(2)E(1,0);(32【分析】(1)将点A(﹣3,0),B(1,0)分别代入抛物线y=ax2+bx+3可解的a,b的值,从而得到解析式,tan∠DAC=DCAC,可根据表达式求出C,D的坐标然后计算DC和AC的长度计算;(2)可取一点E,过E作EF平行于x轴,交AC于F此时可表示出S△ACE,根据类方程S△ACE=2S△ACD,求E点坐标即可;(3)根据题能得到Q的运动轨迹为直线,且当P在A处时Q在C处,当P运动到C处时,可以得到△ADC∽PQD,根据形似性质可得到PQ长度即为Q的运动路径长.【详解】解:(1)将A(﹣3,0),B(1,0)分别代入抛物线y=ax2+bx+3可得:093303a b a b =-+⎧⎨=++⎩,解得12a b =-⎧⎨=-⎩;∴抛物线解析式为y =﹣x 2﹣2x +3,∴D (﹣1,4),C (0,3);∴AC =DC ;∴tan ∠DAC =1=3DCAC .(2)如图1所示,过E 作EF //x 轴交AC 于点F ,设点E (m ,﹣m 2﹣2m +3),直线AC 的表达式为y =kx +n ,将A (﹣3,0),C (0,3)分别代入y =kx +n 可得:033k n n =-+⎧⎨=⎩,解得13k n =⎧⎨=⎩,∴直线AC 表达式为y =x +3,∴F (﹣m 2﹣2m ,﹣m 2﹣2m +3),∴EF =m +m 2+2m =m 2+3m ,∴S △ACE =12(x C ﹣x A )EF ,∵S △ACD =12AC •CD =3,∴S △ACE =12(x C ﹣x A )EF =2S △ACD =6, ∴32(m 2+3m )=6,解得m 1=1,m 2=﹣4(舍),∴E (1,0).(3)如图2所示当点P与点A重合时,∵∠ADQ=∠DCA=90°,∴∠DAC+∠ADC=90°=∠ADC+∠QDC,∴∠DAC=∠QDC,又∵∠DCA=∠DCQ=90°,∴△ADC∽△DQC,∴DC CQ=,AC DC∴222CQ==,.332当点P与点C重合时,∴∠Q'DC=∠ACD=90°,∴DQ'∥CQ ,∵∠DAC=∠Q'P'D ,∠Q'DP'=∠ACD=90°,∴△ADC ∽△P'Q'D , ∴DQ DC DC AC'=,∴DQ '=, ∴DQ'=CQ ,∴四边形DQ'QC 是平行四边形,∴.【点睛】本题综合性比较强,主要考查二次函数点相关知识,解题的关键在于找出变换后的图形,根据已知条件,建立方程求解.。