计算机分子模拟技术研究

计算机分子模拟技术研究
计算机分子模拟技术研究

计算机分子模拟技术研究

计算机技术模拟手段的提高及人工智能技术的逐渐成熟,使药物研发进入合理化药物设计阶段,即依据生物化学、分子生物学、遗传学、信息学和计算化学的成果,针对这些研究所揭示的酶、受体、离子通道等潜在的药物设计靶点,并参考其他类源性配体或天然底物的化学结构设计出合理的药物分子,以发现作用于特定靶点的新药。利用计算机图形学进行分子模拟的技术称为计算机分子模拟。计算机分子模拟的含义是利用计算机来构造、显示、分析分子模型,使分子结构直观化,通过计算机模拟出分子的立体构象,能形象地观察到药物小分子与生物大分子间的相互作用的过程,判断药物小分子与受体大分子结合的可能活性位点,还能对药物小分子的结构进行修正,提出改善药效学和药动力学性质的改良方案。使药物设计成为直观的、可视化的方式。作为当今最重要的技术变革,人工智能已成为创新应用的重要手段,AI+药物研发彻颠覆了药物设计观念。人工智能,即AI。是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。在药物研发中,人工智能利用大数据和机器学习方法,即从论文、专利、临床试验结果的大量信息中提取出药物靶点和小分子药物的结构特征,根据已有的药物研发数据提出新的可以被验证的

假设,自主学习药物小分子与受体大分子靶点之间相互作用机制,并且根据学习到的各种信息预测药物小分子的生物活性,设计出上百万种与特定靶标相关的小分子化合物,并根据药效、选择性、ADME等其他条件对化合物进行筛选。对筛选出来的化合物进行合成并经过实验检测,然后把实验数据再反馈到AI系统中,用于改善下一轮化合物的选择。经过多轮筛选,最终确定可用于进行临床研究的候选药物。人工智能的使用大大加速药物研发的过程,并对新药的有效性和安全性进行预测。

作为药物设计的核心技术,“分子对接”是基于受体分子结构虚拟筛选的核心,是在计算机上模拟小分子与生物大分子结合三维结构及其结合强度的计算方法,确定药物小分子与生物大分子的结合构象,并评价小分子与受体大分子结合的稳定性。分子对接的含义是利用化学计量学方法模拟分子的几何结构和分子间作用力来进行分子间相互作用。其过程是将已知3D小分子数据库中的小分子放置到生物大分子的活性位点,按照受体与配体形状、性质互补的原则,通过不断改变受体大分子的位置,寻找小分子化合物与靶标大分子作用的最佳构象,即配体和受体的形状和相互作用的匹配最佳,判别生物大分子-药物小分子复合物结合模式。然后按照与受体在各个活性位点的结合能为小分子打分,预测小分子与受体结合构象及结合能。计算机模拟技术可以为分子对接

提供以下信息:分子的三维结构;分子的物理和化学特性;分子间的结构比较;分子构象变化、柔性以及动力学性质;药物与靶点复合物的形式。因此,利用分子模拟可以观察、分析分子三维模型,研究药物与靶点间拟合情况和相互作用,是分子三维结构研究与利用分子对接探索药物靶点及先导物的发现的主要手段。

药物筛选是药物研发过程中获取具有特定生理活性分子的有效手段,是指从可能成为新药的候选药物中选择对某一特定作用靶点具有较高活性的分子,并进行生理活性检测和试验的过程,以求发现其药用价值和临床使用价值,为发展新药提供最初始的依据和资料。是一项枯燥、单一,容易出错的工作。而采用计算机的模拟进行药物虚拟筛选可以对这种现状有效改善。所谓虚拟筛选就是利用计算机进行筛选,通过计算机的预筛选,大大降低实际筛选的药物分子数,提高先导化合物发现效率;虚拟筛选可以对药物分子可能的活性作出预测,发现有潜在可能性的化合物,最终构建具有合理性质的化合物集合。是对实验模型的虚拟化,已成为创新药物研究的新方法和新技术。

通过筛选和合理药物设计获得的先导化合物往往存在选择性不够、作用强度较弱、药动力学性质不佳或有毒副作用等问题而不能直接用于临床,需要对先导化合物进行结构改造或修饰以达到优化的目的。即先导化合物的优化。药物

分子首先必须分布到受体生物大分子部位并与受体结合,才有可能发挥作用。使用计算机分子模拟软件,模拟生物大分子与先导物之间的相互作用,研究与药物的结合部位的静电场、疏水场、氢键分布、整体构象、π-π作用、化学结构特征等“描述符”。依靠这些描述符通过计算,通过计算和分析两者间的亲和力大小及结合模式,从而进行先导化合物的优化和改造,增加药物与受体之间的作用强度,提高药物的生物利用度,最终成为发现新药的候选药物。随着人工智能技术的不断提高,借助大数据在复杂数据中进行搜索并对数据的计算方法,进行新药的化学结构探索,使计算机领域中的数值计算、数据库、图形学广泛应用于药物小分子和生物大分子的三维结构研究,为构象分析、药物作用模式认定、机制推测、数据库搜寻和SAR研究等各种药物设计提供了先进的手段和方法;计算机模拟技术推动了药物设计理论和技术不断发展,药物结构及其活性关系的研究已由二维平面分析上升到三维空间研究。而人工智能在药物设计中的应用不仅增加了药物研发的准确性和可靠性,也为药物设计提供理论思维形象化的表达,更是对传统药物设计的彻底颠覆,是当今药物设计最有效、最直观、最方便的手段。计算机模拟技术作为分析工具,人工智能作为一种高效准确的算法,是一种“理性”药物分子设计,能为药物研发提供重要的数据依据和实验支撑。这种技术方式成为推动药物研发或者决定药物

研发成败的关键因素。彻底打破过去依赖于大量的实验筛选、并行的化学合成的那种耗时、费钱和劳动力密集型的方式,随着人类基因组计划的完成、蛋白组学的迅猛发展,以及大量与人类疾病相关基因的发现,药物作用的靶标分子急剧增加,在计算机和人工智能技术的推动下,利用计算机模拟和人工智能技术进行药物研发已成为药物设计的主要途径。

[1]GisbertSchneider.药物分子设计[M].华东理工大学出版社,2012.

[2]朱瑞新.计算机辅助药物设计[M].大连理工大学出版社,2011.

[3]仇缀百.药物设计学[M].2版.高等教育出版社,2008.

[4]高祖新.医药数理统计方法[M].4版.人民卫生出版社,2007.

[5]李晓玲.医学信息检索与利用[M].4版.复旦大学出版社,2009.

[6]吴梧桐.生物化学[M].6版.人民卫生出版社,2007.

[7]袁身刚.计算机辅助药物设计[J].科学前沿,1995:28-31.

[8]郭宗儒.药物设计策略[M].科学出版社,2012.

[9]徐筱杰.计算机辅助药物分子设计[M].化学工业出版社,2004.

[10]叶德泳.计算机辅助药物设计导论[M].化学工业出版社,2004.

[11]EXSCIENTIAENTERSSTRATEGICDRUGDISCOVERYC OLLABORATIONWITHGSK.

[12]Exscientia官网.[13]BigpharmaturnstoAItospeeddrugdiscovery,GSKsignsdeal.

作者:刘景陶柳耀花单位:河套学院

计算机体系结构软件模拟技术探析

计算机体系结构软件模拟技术探析 随着时代的进步,信息化社会已经被人们所认可与接受。计算机相关技术在人们日常生活中取得广泛的应用。随着计算机软件普及范围不断扩大,其中应用模拟技术能够满足计算机使用者多方面要求,继而提升使用者满意程度。本文对计算机体系结构软件模拟技术进行简要分析。 标签:计算机体系结构;软件;模拟技术 1.计算机体系结构模拟技术的概述 目前所应用的计算机体系结构模拟技术主要是把计算机系统里的硬件功能与性能通过计算机软件系统来模拟,同时以模拟技术进行计算机体系结构的研究与设计,通过不断的实验最后获取到正确的数据结果,软件由此开发。和硬件开发做比较,软件开发的优势较大,适用范围广,不管是软件开发的周期还是软件开发的成木,都是其和硬件开发相比的优势除此之外,软件开发还可根据不同需求在开发中进行不同的修改直至达到实际要求,有着较高的灵活性。计算机体系结构软件中模拟技术的应用能够大大减少开发时间以及开发成木,这点和软件开发的特点相符合,对于软件开发有着很大的推进作用。 2.计算机体系软件模拟技术问题 计算机模拟技术是指在对电控系统进行开发和测试工作中,利用计算机模型及接口电路模拟真实的事物。尽管模拟技术在计算机体系软件中起到非常重要的作用,但是计算机体系软件模拟技术还存在一些问题。这就需要相关人员针对计算机体系软件模拟技术问题展开有效分析,逐步提升计算机使用者对其中软件模拟技术的了解。 2.1外界因素的影响 由于计算机体系软件模拟技术在实际操作过程中会因为各项外在因素的影响而出现误差问题,造成计算机体系软件系统中模拟器运行效果变差,模拟器运行精准度难以满足计算机体系软件实际运行要求,直接影响计算机体系中各类软件运行效果和计算机整体应用价值。 2.2开发难度较大 计算机的整体系统较为复杂,对系统的简化处理很有必要,体系结构由此形成,但在实际简化过后,软件开发中统的复杂程度没用明显的降低。如今在对软件进行开发工作时,还应切实的进行编程工作,这就导致时间成木的上升以及相关问题的出现。在进行软件开发时往往要经历从无到有,这一过程一般都要消耗许多的时间来对软件进行测试实验。

计算机模拟仿真技术在航空航天中的应用

计算机模拟仿真技术在航空航天中的应用 在本文开篇,我先粗略介绍一下计算机仿真模拟技术。 计算机仿真是应用电子计算机对系统的结构、功能和行为以及参与系统控制的人的思维过程和行为进行动态性比较逼真的模仿。它是一种描述性技术,是一种定量分析方法。通过建立某一过程和某一系统的模式,来描述该过程或该系统,然后用一系列有目的、有条件的计算机仿真实验来刻画系统的特征,从而得出数量指标,为决策者提供有关这一过程或系统得定量分析结果,作为决策的理论依据。(选自百度百科计算机仿真摘要) 仿真是对现实系统的某一层次抽象属性的模仿。人们利用这样的模型进行试验,从中得到所需的信息,然后帮助人们对现实世界的某一层次的问题做出决策。仿真是一个相对概念,任何逼真的仿真都只能是对真实系统某些属性的逼近。仿真是有层次的,既要针对所欲处理的客观系统的问题,又要针对提出处理者的需求层次,否则很难评价一个仿真系统的优劣。(选自百度百科) 计算机仿真模拟的原理是依靠计算机的迭代运算, 所以这是一门依靠计算机技术所衍生的一门有着实际意 义的学科,它与我们的生活息息相关。计算机仿真模拟技 术在科学技术、军事、国民经济、汽车、电子行业、体育、 交通运输、金融、管理、航空航天方面都有广泛的应用。 它的研究范围小到原子,大到宇宙,可以说在现实生活中 应用极为广泛。 传统的仿真方法是一个迭代过程,即针对实际系 统某一层次的特性(过程),抽象出一个模型,然后假 设态势(输入),进行试验,由试验者判读输出结果和 验证模型,根据判断的情况来修改模型和有关的参数。 如此迭代地进行,直到认为这个模型已满足试验者对 客观系统的某一层次的仿真目的为止。 模型对系统某一层次特性的抽象描述包括:系统的组成;各组成部分之间的静态、动态、逻辑关系;在某些输入条件下系统的输出响应等。根据系统模型状态变量变化的特征,又可把系统模型分为:连续系统模型——状态变量是连续变化的;离散(事件)系统模型——状态变化在离散时间点(一般是不确定的)上发生变化;混合型——上述两种的混合。 随着专门用于仿真的计算机——仿真机的出现,计算机仿真技术日趋成熟,现在已经趋于完善。随计算机技术的飞速发展,在仿真机中也出现了一批很有特色的仿真工作站、小巨机式的仿真机、巨型机式的仿真机。80年代初推出的一些仿真机,SYSTEM10和SYSTEM100就是这类仿真机的代表。 为了建立一个有效的仿真系统,一般都要经历建立模型、仿真实验、数据处理、分析验证等步骤。为了构成一个实用的较大规模的仿真系统,除仿真机外,还需配有控制和显示设备。 本文将主要从航空航天方面对计算机仿真模拟进行探讨。 航空技术是从上世纪60年代前苏联发射第一颗人造卫星开始,人类开始了对太空的探索。

分子蒸馏技术和应用

分子蒸馏技术及其应用 摘要 分子蒸馏又称短程蒸馏,是一种新型的液-液分离技术,与常规蒸馏相比具有许多优点,本文对分子蒸馏的基本原理、设备、特点以及在食品、医药、化工工业中的应用进行了阐述。 关键词:分子蒸馏、食品工业。 分子蒸馏是在高真空度下进行的非平衡蒸馏技术(真空度可达 0.01Pa),是以气体扩散为主要形式、利用不同物质分子运动自由程的差异来实现混合物的分离。由于蒸发面和冷凝面的间距小于或等于被分离物料的蒸气分子的平均自由程,所以也称短程蒸馏。由于分子蒸馏过程中。待分离物质组分可以在远低于常压沸点的温度下挥发,并且各组分的受热过程很短,因此分子蒸馏已成为对高沸点和热敏性物质进行分离的有效手段。目前已广泛应用于食品、医药、油脂加工、石油化工等领域,用于浓缩或纯化低挥发度、高分子量、高沸点、高黏度、热敏性、具有生物活性的物料。 一、分子蒸馏的概念原理和过程 1.1分子蒸馏的基本概念分子有效直径:分子在碰撞过程中,两分子质心的最短距离,即发生斥离的质心距离。分子运动自由程:指一个分子与其他气体分子相邻两次分子碰撞之间所走的路程。分子运动平均自由程:在一定的外界条件下,不同物质中各个分子的自由程各不相同。就某一种分子来说在某时间间隔自由程的平均值称为平均自由程。 1.2分子蒸馏的基本原理分子蒸馏的分离是建立在不同物质挥发度不同的基础上,其操作是在低于物质沸点下进行,当冷凝表面的温度与蒸发物质的表面温度有差别时就能进行分子蒸馏。根据分子运动理论,液体混合物中各个分子受热后会从液面逸出,不同种类的分子,由于其有效直径不同,逸出液面后直线飞行距离是不相同的。轻分子的平均自由程大,重分子的平均自由程小,若在离液面小于轻分子平均自由程而大于重分子平均自由程处设置一冷凝面,使得轻分子落在冷凝面上被冷凝,而重分子则因达不到冷凝面,返回原来液面这样就将混合物分离了,分子平均自由程是分子蒸馏基本理论的核心。 1.3分子蒸馏的基本过程根据分子蒸馏的基本理论,可将蒸馏过程分解为 以下5个步骤:①物料在加热面上形成液膜;②分子在液膜表面上自由蒸发;③分子从加热面向冷凝面的运动;④轻分子在冷凝面上被捕获,重分子返回物料液膜;⑤馏出物和残留物的收集。 二、分子蒸馏的特点

分子动力学模拟

分子动力学模拟 分子动力学就是一门结合物理,数学与化学的综合技术。分子动力学就是一套分子模拟方法,该方法主要就是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量与其她宏观性质。 这门技术的发展进程就是: 1980年:恒压条件下的动力学方法(Andersenの方法、Parrinello-Rahman法) 1983年:非平衡态动力学方法(Gillan and Dixon) 1984年:恒温条件下的动力学方法(能势‐フーバーの方法) 1985年:第一原理分子动力学法(→カー?パリネロ法) 1991年:巨正则系综的分子动力学方法(Cagin and Pettit)、 最新的巨正则系综,即为组成系综的系统与一温度为T、化学势为μ的很大的热源、粒子源相接触,此时系统不仅同热源有能量交换,而且可以同粒子源有粒子的交换,最后达到平衡,这种系综称巨正则系综。 进行分子动力学模拟的第一步就是确定起始构型,一个能量较低的起始构型就是进行分子模拟的基础,一般分子的其实构型主要就是来自实验数据或量子化学计算。在确定起始构型之后要赋予构成分子的各个原子速度,这一速度就是根据玻尔兹曼分布随机生成,由于速度的分布符合玻尔兹曼统计,因此在这个阶段,体系的温度就是恒定的。另外,在随机生成各个原子的运动速度之后须进行调整,使得体系总体在各个方向上的动量之与为零,即保证体系没有平动位移。 由上一步确定的分子组建平衡相,在构建平衡相的时候会对构型、温度等参数加以监控。 进入生产相之后体系中的分子与分子中的原子开始根据初始速度运动,可以想象其间会发生吸引、排斥乃至碰撞,这时就根据牛顿力学与预先给定的粒子间相互作用势来对各个例子的运动轨迹进行计算,在这个过程中,体系总能量不变,但分子内部势能与动能不断相互转化,从而体系的温度也不断变化,在整个过程中,体系会遍历势能面上的各个点,计算的样本正就是在这个过程中抽取的。 用抽样所得体系的各个状态计算当时体系的势能,进而计算构型积分。 作用势的选择与动力学计算的关系极为密切,选择不同的作用势,体系的势能面会有不同的形状,动力学计算所得的分子运动与分子内部运动的轨迹也会不同,进而影响到抽样的结果与抽样结果的势能计算,在计算宏观体积与微观成分关系的时候主要采用刚球模型的二体势,计算系统能量,熵等关系时早期多采用Lennard-Jones、morse势等双体势模型,对于金属计算,主要采用morse势,但就是由于通过实验拟合的对势容易导致柯西关系,与实验不符,因此在后来的模拟中有人提出采用EAM等多体势模型,或者采用第一性原理计算结果通过一定的物理方法来拟合二体势函数。但就是对于二体势模型,多体势往往缺乏明确的表达式,参量很多,模拟收敛速度很慢,给应用带来很大困难,因此在一般应用中,通过第一性原理计算结果拟合势函数的L-J,morse等势模型的应用仍非常广泛。 分子动力学计算的基本思想就是赋予分子体系初始运动状态之后,利用分子的自然运动在相空间中抽取样本进行统计计算,时间步长就就是抽样的间隔,因而时间步长的选取对动力学模拟非常重要。太长的时间步长会造成分子间的激烈碰撞,体系数据溢出;太短的时间步长会降低模拟过程搜索相空间的能力,因此一般选取的时间步长为体系各个自由度中最短运动周期的十分之一。但就是通常情况下,体系各自由度中运动周期最短的就是各个化学键的振动,而这种运动对计算某些宏观性质并不产生影响,因此就产生了屏蔽分子内部振动或其她无关运动的约束动力学,约束动力学可以有效地增长分子动力学模拟时间步长,提高搜索相空间的能

计算机科学与技术-认识实习报告

认识实习报告学院:应用技术学院 专业:计算机科学与技术 姓名: 指导教师: 题目:计算机科学与技术专业的认识实习 实习时间:2017年6月26日-2017年6月30日 应用技术学院

一、前沿技术总结 当代,发展最快而且对人类生活影响最大的学科无疑是计算机科学与信息技术了,计算机已经成为了21世纪的一种象征,当代的社会,计算机科学与信息技术的应用已经渗透到社会生活的各个方面,已经成为推动和社会进步的重要引擎,已被成为“计算机文化”和“计机思维”。计算机科学围绕信息、知识、智能等主题发展迅速。《计算机科学前沿技术》详细地介绍了计算机科学前沿热点的若干问题,并提出未来计算机科学的发展趋势。 智能化的超级计算机超高速计算机采用平行处理技术改进计算机结构,可以使计算机系统同时执行多条指令,或同时对多个数据进行处理,进一步提高计算机运行速度。超级计算机通常是由成百数千甚至更多的处理器构成,能完成普通计算机和服务器所不能计算的大型的复杂任务。从超级计算机获得的数据分析和模拟成果,能推动各个领域高精尖项目的研究与开发,为我们的日常生活带来更多的便利。 新型高性能计算机问世随着硅芯片技术的高速发展,硅技术越来越接近了其自身的物理发展极限。因此,迫切要求计算机从结构变革,到器件与技术的革命这一系列的技术都要产生一次质的飞跃才行。新型的量子计算机、光子计算机、分子计算机和纳米计算机由此应运而生。 随着这些新型计算机的诞生我们不难发现计算机的发展趋势再从多方面发展: 第一个是向“快”的方向。速度越来越快,性能越来越高,计算机的主频越来越快。专用计算机的并行程度比通用机更高,并行计算机的关键技术是如何高效率地把大量计算机互相连接起来,即各处理机之间的高速通信,以及如何有效地管理成千上万台计算机使之协调工作,这就是并行计算机的系统软件——操作系统的功能。 第二个方向就是向“广”度方向发展,计算机发展的趋势无处不在,应用范围更加广泛。近年来更明显的趋势是网络化与向各个领域的渗透,即在广度上的发展开拓。国外称这种趋势为普适计算或者叫无处不在的计算。未来计算机将存在于家中的各种电器中,到那时笔记本,书籍都将电子化、数字化。所以有人预言未来计算机也将成为最常用的日用品。 第三个方向是向“深”度方向发展,即向信息的智能化发展。网络上有大量的信息,

计算机科学与技术专业方向介绍

计算机科学与技术专业方向课程介绍 方向1:高性能计算 1、《数值计算方法》: ?课程介绍:数值计算方法重点讲述科学计算与工程出现的数学问题的数值解法。课程主要内容包括非线性方程解法、线性方程组的数值解法、插值法与曲线拟合、数值微分与数值积分、常微分方程的数值解法等。 ?课程目的:通过本课程的学习,使学生了解与掌握这门课程所涉及的各种常用的数值计算公式、数值方法的构造原理及适用范围,掌握数值计算的基本概念与基本理论,深入理解方法的设计原理与处理问题的技巧,重视误差分析与收敛性、数值稳定性,注重利用计算机进行科学计算能力的培养;使学生在学完高等数学、线性代数之后可以继续提高运用数学知识,为今后用计算机去有效地解决数值计算问题打下基础。 2、《并行计算机体系结构》: ?课程介绍:并行计算机体系结构就是当今计算机系统的研究热点。本课程从硬件与软件的角度,着重讨论对称多处理机系统、大规模并行处理机系统、机群系统与分布共享存储系统的组成原理、结构特性、关键技术、性能分析、设计方法及相应的系统实例等。 ?课程目的:并行计算的性能与并行算法的并行性与计算机系统的并行处理能力有很大关系。通过该课程的学习,使学生掌握如何开发计算机系统软、硬件的并行性, 以适应并行计算的性能需求与规模需求。 3、《高性能计算》: ?课程介绍:主要介绍高性能计算的历史沿革与发展,及其与科学计算与应用的相互关系、介绍高性能计算的基本支撑平台的常识与使用方法,包括linux操作系统,高性能数值软件库,工具链的基本使用、基于消息传递接口(MPI)的程序设计方法、计算加速器(GPU)的基本原理,程序设计与性能调优、典型并行算法与基本计算方法介绍。使学生对高性能计算的内涵与设计的计算机软硬件环境建立基本的概念,初步掌握在科研过程中所需使用的高性能计算工具与编程技术,通过具体实例介绍高性能计算问题的基本算法基础。 ?课程目的:本课程针对计算机学科的学生进行高性能计算的专业素质培养,介绍运用高性能并行计算机、深入解决科学计算问题所必须掌握的高性能计算原理、并行程序设计与性能优化等方

数学建模中计算机模拟运用方法研究

数学建模中计算机模拟运用方法研究 摘要:通过对实际问题的非线性、离散、连续三种类型的数学建模解决问题的分析与研究,给出了利用计算机模拟实验验证数学建模有效性的方法,从而使数学建模在解决实际问题中得到更有效的应用。 关键词:计算机模拟;数学建模;技术运用;研究分析 在现阶段信息技术发展的过程中,人们可以利用数学模型方法的设计解决现实中的实际问题,通过对现阶段计算机模拟在数学建模中的运用分析可以发现,其技术形式取得了较大的成就。通过数学与计算机技术的稳定结合,可以实现数学技术的稳定构建,因此,在计算机技术快速发展的今天,计算机及数学建模逐渐成为技术运用中较为重要的途径。通过对实际问题的构建,可以通过计算机模拟技术对于较难解决、而又重要的问题进行系统性的分析。在计算机运用的过程中,不仅可以使问题求解体现出方便、快捷以及精准性的特点,而且也可以使实际问题得到充分性的解决。通过计算机模拟或是计算机程序模拟运用中可以解决实际的问题,并在建立数学、逻辑等模型设计的基础上,可以通过计算机实验对系统资源进行科学化的规定,从而为计算机模拟与数学模型的构建提供稳定支持。 1、计算机模拟及数学建模的概述分析 1.1、计算机模拟 计算机模拟是利用计算机对一个系统使用过程所建立的模型,通过该模型的运用可以进行实验项目的设计。并通过对该系统行为的控制分析,对不同的数据资源进行评估。对于计算机模拟系统而言,其主要是将系统分析以及运筹学作为基础,所模拟的对象以及用途相对广泛,在模拟中可以实现从简单到复杂、从一个变量到多个变量的变化,在交通、经济、生活以及医疗等管理中均得到了广泛性的运用。 1.2、数学建模 对于数学建模而言,主要是运用数学模型解决相关问题,也就是在一组备选数据分析的过程中,选择合理性的数据资源。在现阶段数学模型构建的过程中,其中的空间作为主要的内容,在空间相对应位置设计的基础上,结合了限制条件的保护机制,所选择的模型分为线性以及非线性两种,其中的线性模型以及非线性模型是由变量的阶层所决定的[1]。 2、计算机模拟在数学建模中所解决的问题 第一,对于一些难以在计算环境中进行实验以及观察的数学建模而言,只能运用计算机进行模拟,例如,太空飞行中的数据研究。

软件技术基础模拟试题及参考答案

软件技术基础模拟试题(第二十次省统考) 一、是非判断题(正确选填A,错误选填B)(每小题1分,共10分) 1、数据元素是数据的基本单位,数据项是数据的最小单位。() 2、栈是特殊的线性表,须用一组地址连续的存储单元来存储其元素。() 3、引入虚拟存储技术后,逻辑内存总容量是由地址总线的位置确定的。() 4、编译程序是一种常用应用软件。() 5、顺序文件和链接文件的长度都可以动态变化。() 6、在文件系统中采用目录管理文件。() 7、允许多用户在其终端上同时交互地使用计算机的操作系统称为实时系统。() 8、程序、数据、和进程控制块是构成一个进程的三要素。() 9、黑盒测试时,既要考虑程序的内部逻辑结构又要考虑其外部特性。() 10、软件的总体设计和详细设计都要用PAD图形工具。() (参考答案:1~10:ABABB ABABB) 二、单项选择题:(每小题1分,共5分) 1、允许用户把若干作业提交计算机系统集中处理的操作系统称为()。 A分时操作系统B实时操作系统C网络操作系统D批处理操作系统2、分配到必要资源并获得了处理机时的进程的状态称为()。 A就绪状态B执行状态C等待状态D阻塞状态 3、利用通道技术可以在()之间直接交换数据。 A内存与CPU B CPU与外设C内存与外设D内存、CPU和外设三者4、以下的准则中哪个不是软件设计的准则()。 A编程语言选择准则B信息屏蔽准则 C结构化和模块化准则D抽象准则 5、有一数列:97657613294958经过一趟排序后得到: 65971376294958请问使用的是何种排序方法?() A简单插入排序B冒泡排序C2路归并排序D快速排序 (参考答案:DBCAC) 软件技术基础模拟试题(第十九次省统考) 一、是非判断题(正确选填A,错误选填B)(每小题1分,共10分) 1、在目前,用于保证软件质量的主要手段是进行软件测试。() 2、使用DMA方式传送数据期间不需要CPU干预。() 3、线性顺序队列会产生“假溢出”,而线性循环队列则不会。() 4、对同一种算法,用高级语言编写的程序比用低级语言编写的程序运行速度快。() 5、在线性表中,数据的存储方式有顺序和链接两种。() 6、进程由程序块、文件控件块和数据块三部分组成。() 7、在面向对象的程序设计中,派生类只能从一个基类产生。() 8、操作系统是用户和硬件的接口。() 9、个人计算机中可配置的最大内存容量受地址总线位数的限制。() 10、软件维护中最困难的问题是软件配置不全。() (参考答案:1~10:A、A、A、B、A、B、A、A、A、B) 二、单项选择题:(每小题1分,共5分)

计算机模拟技术

计算机模拟技术 课程名:计算机模拟技术 计算机模拟是在科学研究中常采用的一种技术,特别是在科学试验环节,利用计算机模拟非常有效。所谓计算机模拟就是用计算机来模仿真实的事物,用一个模型(物理的-实物模拟;数学的-计算机模拟)来模拟真实的系统,对系统的内部结构、外界影响、功能、行为等进行实验,通过实验使系统达到优良的性能,从而获得良好的经济效益和社会效益。 计算机模拟方面的研究始于六十年代,早期的研究主要用于国防和军事领域(如航空航天、武器研制、核试验等),以及自动控制等方面。随着计算机应用的普及,应用范围也在扩大,现在已遍及自然科学和社会科学的各个领域。在农业方面,我国从80年代开始进行作物生长发育模拟模型和生产管理系统的研究,目前有一定基础的:在小麦方面有北农大、中科院;棉花方面有中国农业大学、中国棉花所;水稻方面有江西农科院;在土壤水份、水资源及灌溉方面西北农业科技大学。目前影响较大的有比较成形的有江苏省农科院。目前的主要成果有:我国主要农作物栽培模拟优化决策系统RCSODS(水稻)和WCSODS(小麦-江苏省农科院)、MCSODS(玉米-河南省农科院)、CCSODS(棉花-中国农业大学)等。 计算机模拟特别适合于实验条件苛刻、环境恶劣(如真空、高温、高压、有毒有害的场所)、试验周期长,花费大的场合。 农作物的生产系统就很适合于计算机模拟:农作物的生产受各种条件的影响,不同作物、不同品种也有差异。比如,要想提高一种作物的产量,就先要作试验,通过试验了解这种作物的特性:抗旱性、耐寒性、对氮、磷、钾哪种肥更有效等。但农业的田间实验不能保证精度(除人为可控条件外,还有许多随机因素)、周期长(周期一年),耗费大。可通过计算机模拟来实现:先建立这种作物生产系统的数学模型(依靠专业知识或试验数据。一般来说,诸如作物产量和农业环境的关系可用微分方程或其它方程来描述),通过计算机模拟来找出这种作物的生长与农业环境相互作用的关系,以及各种条件之间的协迫情况。不仅可大大节省实验经费、加快研究进度(周期一年的实验结果几秒钟内即可得到),这种模拟软件的开发还可与农业生产管理系统,决策系统相联系,实现对农作物生产的预测、分析、调控、设计的数字化和科学化。 作为一门课程,不是研究某个特定系统的模拟问题,而是了解计算机模拟的一般过程、基本原则,掌握基础知识,掌握建模及动态模拟的一般方法。 第一章计算机模拟概述 1.1 计算机模拟技术 ●研究对象在一个计算机模拟问题中,我们研究的对象是一个系统。 系统:一些具有特定功能的、相互之间按一定规律联系着的实体的集合。如作物的生产系统可看作由作物、环境、技术、经济等要素构成的。各要素之间相互影响、相互联系,称为系统的相关性;一个系统是一个整体,整体内的各个部分不能分割,各因素之间必须相互协调,不能在任何一个环节出问题,才能使系统达到优良的状态,称为系统的完整性。 ●目标计算机模拟的目标是了解系统的各个实体之间的相互制约关系,从而使系统在预定的目标下达到最优和完善。如在作物生产系统中,怎样控制、实施各水、肥、栽培技术等,从而使产量最高,以获得最优的经济效益。 ●方法模拟的方法是先建立系统与环境相互作用的数学模型,用数学模型来类比、模仿现实系统(一个数学模型就是从数学上表达系统各因素之间的数量关系,或各因素之间协调的规则;从整个模拟过程来看就是一个算法,或一系列数据,这些数据综合描述一个系统过程或现象的重要行为),然后在数学模型和对系统深刻了解的基础上,开发模拟软件,用影响系统目标的因素作为输入,通过计算机技术来表达系

计算机科学与技术的应用领域简述论文

《计算机科学引论》课程专题报告题目:计算机科学与技术的应用领域简述

目录 第一部分:计算思维的作用及其背景 1.为什么要讲述计算思维? 2.计算思维的设立背景是什么? 3.计算思维的概念? 第二部分:计算机科学与技术专业介绍 1.计算机科学与技术的课程 2.计算机科学与技术的培养目标 第三部分:计算机的应用领域 1.根据前两部分的介绍可以看出该专业同学的实际技能 2.具体的计算机应用领域 3.根据科幻电影的情节设想的未来的应用领域

计算机导论的作用及其背景 (1)为什么要讲述计算思维? 计算思维与计算机导论课程有紧密关系,计算思维的倡 导者卡耐基*梅隆大学计算机科学系主任周以真教授就 在该校开设了“计算思维导论”课程,作为计算机传业 学生的第一门课程。计算机导论是讲述计算思维。2007 年秋,周以真教授在CMU率先开设了“计算思维导论”。 2008年6月,对CS2001(CC2001)进行中期审查的报 告(CS2001 Interim Review)(草案)中将“计算思维” 与“计算机导论”课程绑定在一起,明确要求“计算机 导论”课程讲授计算思维的本质。巧合的是,本课程与 周以真倡导的“计算思维导论”课程异曲同工,讲授的 都是计算机学科的本质。若用“思想与方法”代替“基 础概念”,计算思维又可以解释为采用计算机科学的思 想与方法进行问题求解、系统设计,以及人类行为理解 等涵盖计算机科学之广度的一系列思维活动。经过十几 年的教学实践,美国这一教学理念已被国内相当多的人 接受,而从计算思维,或者说从更为具体的学科思想方 法这一层面讲授计算机科学,更是的道理越来越多的人 的支持。计算推动着人类科技的进步,影响这各门学科 的发展,并产生了一系列的新兴学科,如计算生物学、计算物理学、计算化学、计算经济学、计算社会学、计

分子蒸馏技术及其应用的研究进展(精)

综述与专论 分子蒸馏技术及其应用的研究进展 陈立军陈焕钦 (华南理工大学化学工程研究所,广州510640 摘要分子蒸馏是一种在高真空下进行的特殊蒸馏技术。分子蒸馏是一项国内外正在工业化开发应用的高新分离技术,尚未实现大规模的工业化。分子蒸馏技术同普通蒸馏技术的差别很大。介绍了分子蒸馏基本原理、技术特点、主要装置和优势。此外还详细介绍了分子蒸馏技术在国内外的应用新进展,并提出了未来分子蒸馏领域的重点研究方向。关键词 平均自由程分子蒸馏应用进展R esearch Progress in the T echnique of Molecular Distillation and its Application Chen Lijun Chen H uanqin (R esearch I nstitute of Chemical E ngineering ,Southern China U niversity of T echnology ,G uangzhou 510640 Abstract The m olecular distillation (short -path distillation or unobstructed distillation is a special separation technique of liquid -liquid and a special distillation technique under the high vacuum.It is an industrializing Hi -tech at home and abroad and not used in

计算机科学与技术心得体会

计算机科学与技术心得体会篇一:对计算机科学与技术的专业认识 对专业的认识 上世纪90年代,万维网在世界范围的蓬勃兴起,使“计算”的概念发生了深刻的变化,社会对于计算机人才的需求急剧增长。这使得计算机科学与技术专业的内涵和外延发生较大变化。计算机科学与技术专业的教育内容已不再局限于传统的计算理论、计算机组织与体系结构,而计算机软件、计算机网络、多媒体及其应用技术、网络与信息安全等教育内容得以强化。 本专业旨在培养具有良好的科学素养,系统地、较好地掌握计算机科学与技术包括计算机硬件、软件与应用的基本理论、基本知识和基本技能与方法,能在科研部门、教育单位、企业、事业、技术和行政管理部门等单位从事计算机教学、科学研究和应用的计算机科学与技术学科的高级科学技术人才。 计算机科学与技术是一门理论与实践相结合的学科。通过对核心课程的学习,掌握必备的专业基础知识,如学习高等数学、C语言、操作系统原理及应用、数据库原理及应用、Java应用开发技术、C#程序设计、Internet应用开发、计算机网络、软件工程、编译原理、网络协议分析等课程,为更为深入地学习计算机科学打下了基础。如果说理论学习

给我们提供了一个基础,那么实践课程就是要求我们将这种基础能力锻炼为实际操作能力。而这种实践能力无论是对于以后继续学习,还是今后面临的就业问题,都有至关重要的意义。 计算机科学与技术同时也是一门不断发展的学科,这是因为随着社会发展的不断加快,计算机作为当今社会重要的工具已渗透到人类生活的各个领域,但其功能仍需要不断升级改造以满足人们的日益增长的需求。这就要求我们在掌握已有知识的同时,还应该时刻关注和学习计算机科学与技术领域的新知识。 在学习专业的过程中,我注意到当今信息产业迎来了发展的黄金时期,大数据技术、云计算等新兴技术应运而生。云计算是分布式计算技术的一种,其最基本的概念,是透过网络将庞大的计算处理程序自动分拆成无数个较小的子程序,再交由多部服务器所组成的庞大系统经搜寻、计算分析之后将处理结果回传给用户。透过这项技术,网络服务提供者可以在数秒之内,达成处理数以千万计甚至亿计的信息,达到和“超级计算机”同样强大效能的网络服务。从云计算还衍生出云物联应用、云安全、云储存应用、云呼叫应用、云教育应用等相关应用。可以看出,云计算在未来具有广阔的发展前景。我们应该在学习专业的过程中,关注云计算,学习云计算的相关技术。

地下水数值模拟研究进展和发展趋势

地下水数值模拟研究进展与发展趋势 摘要:地下水数值模拟的应用研究进展国外对地下水数值模拟的研究和应用较早,且理论、技术等各方面相对成熟,目前已经从“水量问题”的应用研究逐步过渡到“水质问题”的应用研究上,以解决各种更复杂的地下水问题。国内相关研究起步较晚、同国外存在一定的差距,主要应用研究在地下水位预测、地下水资源开发利用、地下水循环机制研究、地下水资源预报评价等水量、水位问题方面,但在加油站渗漏场、石油渗漏场、垃圾填埋场、工业废料填埋场、矿区、核废料处置场等污染场地污染物的迁移问题方面的应用研究逐渐增多,并已取得了一定的成果。 关键词:数值模拟、进展、发展趋势 随着计算机技术的快速发展,科学有效的数值计算方法在处理地下水污染、分析地下水资源评估等问题中的应用越来越广泛; 利用数值模拟软件对地下水流等问题进行模拟,以其有效性、灵活性和相对廉价性逐渐成为地下水研究领域的一种不可缺少的重要方法[1]。尤其针对加油站渗漏场、石油渗漏场、垃圾填埋场、工业废料填埋场、矿区、核废料处置场等污染场地污染物的迁移问题,建立准确的数值模型进行预测是查明污染物污染潜水范围、程度及其分布特征最有效最直观的方法之一,同时还可以为污染区实施污染防治与修复等优化配置提供科学技术支持[2]。 地下水数值模拟的应用研究进展国外对地下水数值模拟的研究和应用较早,且理论、技术等各方面相对成熟,目前已经从“水量问题”的应用研究逐步过渡到“水质问题”的应用研究上,以解决各种更复杂的地下水问题。国内相关研究起步较晚、同国外存在一定的差距,主要应用研究在地下水位预测、地下水资源开发利用、地下水循环机制研究、地下水资源预报评价等水量、水位问题方面,但在加油站渗漏场、石油渗漏场、垃圾填埋场、工业废料填埋场、矿区、核废料处置场等污染场地污染物的迁移问题方面的应用研究逐渐增多,并已取得了一定的成果[4]。 近几十年来,随着地下水科学和计算机科学的发展,地下水数值模拟也得到了快速发展,主要体现在:加拿大Borden基地、美国Cape Cod基地与Columbus基地开展的大型野外试验场研究,大大丰富了地下水溶质运移的理论和方法,取得不少新的认识,并为发展和检验溶质运移理论和相应数学模型提供了大量数据(MacKay et al,1986; LeBlanc et al,1991;Bogga et al,1992;Zheng and Gorelick,2003);随机方法在非均质介质渗流和溶质运移的模拟中得到比较多的应用,从而加深、甚至改变了人们对此类介质中流体运动和溶质运移的认识(Dagan and Neuman,1997; Zhang D,2002);通过多孔介质中水流运动、溶质运移和化学反应,甚至生物过程的耦合建立模型来集成地研究这些过程也取得很多进展(van Genuchten and Sudicky,1999; Yeh and Tripathi,1989; Barry et al,2002)。此外,计算方法也取得不少进展,但溶质运移模拟中数值弥散和振荡问题的解决和地下水模拟逆问题的求解进展比较缓慢(Sun and Yeh,2007)。 由于种种原因,国内地下水数值模拟开展得比较晚,始于20世纪70年代初,当时文化大革命还没有结束,所以从事这项工作困难重重,而且人也不多,主要来自高等学校和研究部门,以后才逐步扩展到产业部门。为了加快我国地下水数值模拟的发展,深切感到有必要

分子模拟技术在炼油领域的应用

分子模拟技术在炼油领域的应用 摘要:分子模拟技术是近些年发展起来的一门新兴计算化学技术。本文简要介绍了近几年来分子模拟技术在炼油领域的应用,如炼油催化剂的开发、炼制过程反应化学研究以及油品添加剂分子设计等。分子模拟作为一种能模拟炼油过程细节的有效工具已经在炼油工业各个领域的研究中发挥了重大作用。 关键词:分子模拟技术;炼油领域;催化剂;反应化学;油品添加剂 1前言 20世纪80年代以来,随着计算机性能的提高以及各种计算化学方法的改进,分子模拟技术日渐成熟,并逐步发展成为人们进行科学研究的一项新的有效的工具。它借助计算机强大的计算能力和图像显示能力,从原子和分子水平上模拟分子的结构与行为,能够更好地帮助人们从微观角度认识物质的基本特征。分子模拟技术在炼油领域,如对各炼制过程核心转化规律的认识、渣油团聚物结构研究、油品添加剂分子设计以及分子筛催化剂等方面的应用,可以帮助研究人员更深人地理解所研究的体系,以便选择更合理的研发途径,更快地进行催化剂的改性和开发及改性以及油品添加剂新产品的研制,减少实验工作,推动炼油领域的技术进步。 2分子模拟技术简介 分子模拟是以计算机为工具,在原子水平上建立分子模型用以模拟分子的结构与行为,进而模拟分子体系的各种物理化学性质。具体而言,就是先在计算机屏幕上构建分子模型,包括对所研究对象的原子位置的详细描述和建立分子间相互作用力方程,然后用恰当的统计力学关系对分子的位置和运动情况进行统计平均以求算所需的宏观性质。分子模拟技术包括量子力学、分子力学、蒙特卡洛和分子动力学等方法。 2.1量子力学方法 量子力学[1](QM)认为微观粒子运动服从Schrêdinger方程,分子或原子处于(稳)定态的Schrêdinger方程为本征值的方程:?7=E7。式中:?表示Hamilton

计算机科学与技术的应用及其发展趋势 任慧君

计算机科学与技术的应用及其发展趋势任慧君 摘要:随着科学技术的发展,我国的计算机科学技术有了很大进展。当前是电 子计算机科学与技术快速发展的时期,各类硬件配置、软件配置产品已成功开发 并高效应用,从而提升电子计算机的特性。电子计算机应用范围的广泛改变了社 会传统的生产生活方式。在此基础上,文章重点介绍电子计算机科学与技术的使 用现状和发展趋势。 关键词:计算机科学与技术;应用;未来趋势 引言 计算机科学与技术在内容上涵盖计算机硬件技术与软件技术,其具体应用十 分广泛,涉及到诸多方面。同时,其相关理论体系的建设水平也十分重要。因此,诸多学者在其相关领域都展开了相应的研究工作,并取得了一定的成果。然而, 在现阶段各个领域与计算机科学与技术相融合的发展进程中,一些问题并没有得 到妥善的解决,想要促进各个领域对于计算机科学与技术的进一步利用,必须重 点关注这些问题并着手解决。 1计算机科学与技术现代化应用的必要性 计算机科学与技术是一门较为先进的技术,不仅能够为人们提供高效便捷的 服务,还能够推动行业的改革,更是作为也别说他了增强生产力的得力助手,在 各行各业发挥着巨大的作用。计算机科学与技术所依赖的是强大的计算与分析能力,这种能力能够在短时间内完成人工所需要耗费巨大人力财力所能完成的工作,能够极大的提高工作的效率,因此在现代社会中计算机科学与技术必须要进行广 泛的应用。例如,自然资源系统的不动产登记系统是以超图软件为基础开发的平台,是基于内部局域网运行的,它也是计算机技术的一种运用。不动产登记系统 包括申请、受理、审核、登簿等全流程提供服务,实现各级不动产登记日常业务 的网络化、透明化、柔性化和规范化管理。通过不动产登记系统的运行,实现不 动产登记数据库的实时更新。在整个业务的办理过程中,都是采用网上审批的形式,相对于以往用纸质材料审批,效率得到了大大的提高。 2计算机科学与技术的现代化应用现状 在现代各个领域对于计算机科学与技术的实际应用状况来看,其现阶段的实 际应用状况体现在以下3个方面。(1)现阶段计算机科学与技术的实际应用的 实际普及面越来越广,其实际应用的普适化程度越来越高。随着实体制造业相关 技术水平的不断提升,现阶段的计算机科学与技术在硬件上的相关建设水平早已 远远超过其在刚被研发出来时的硬件上的建设水平。这也就导致计算机科学与技 术的实际应用在硬件支持方面的外形尺寸、生产成本等诸多因素所受到的限制越 来越小,进一步导致其普及面越来越广,普适化程度越来越高,人们也越来越依 赖计算机科学与技术的实际应用。(2)因为计算机科学与技术对于信息化建设 的重要性,我国学者一直十分重视对于该领域的研究,对于其在不同领域的实际 应用,学者所研究的方向也不相同,但其研究实现了针对应用领域的专业化研究。这也就使计算机科学与技术在不同领域的实际应用展现了与所应用领域相关特点 相契合,展现出多元化应用现状。(3)随着大数据、人工智能等多种新型发展 方向的提出,计算机科学与技术在诸多发展方向上展现出其强大的适应能力。这 也就导致计算机科学与技术目前在各个领域的应用充分彰显了其在大数据、人工 智能等发展方向的所达成的成果,能够协助相关领域更好地完成生产、研究等工作,进而体现出其强大的生命力与重要性。

软件系统开发技术模拟题参考答案1-3

软件系统开发技术试题(一)答案 一、单项选择题(本大题共10小题,每小题1分,共10分) 1. 设计软件结构一般不.确定( D ) A.模块之间的接口 B.模块间的调用关系 C.模块的功能 D.模块的局部数据 2. 软件结构化设计中,好的软件结构应该力求做到( B ) A.顶层扇出较少,中间扇出较高,底层模块低扇入 B.顶层扇出较高,中间扇出较少,底层模块高扇入 C.顶层扇入较少,中间扇出较高,底层模块高扇入 D.顶层扇入较少,中间扇入较高,底层模块低扇入 3. 两个模块都使用同一数据表,模块间的这种耦合称为( A ) A.公共耦合 B.容耦合 C.数据耦合 D.控制耦合 4. 划分模块时,下列说确的是( A ) A.作用围应在其控制围之 B.控制围应在其作用围之 C.作用围与控制围互不包含 D.作用围与控制围不受限制 5. 重用率高的模块在软件结构图中的特征是( B ) A.扇出数大 B.扇入数大 C.扇出数小 D.聚性高 6. 面向对象建模得到的三个模型,其中核心的模型是( A ) A.对象模型 B.功能模型 C.逻辑模型 D.动态模型 7. 从结构化的瀑布模型看,在软件生存周期的几个阶段中,对软件的影响最大是( C ) A.详细设计阶段 B.概要设计阶段 C.需求分析阶段 D.测试和运行阶段 8.对UML的叙述不正确 ...的是( D ) A.UML统一了Booch方法、OMT方法、OOSE方法的表示方法。 B.UML是一种定义良好、易于表达、功能强大且普遍适用的建模语言。 C.UML融入了软件工程领域的新思想、新方法和新技术。 D.UML仅限于支持面向对象的分析与设计,不支持其它的软件开发过程。 9.以下哪个软件生存周期模型是一种风险驱动的模型( C ) A.瀑布模型B.增量模型 C.螺旋模型D.喷泉模型 10.以下哪一项对模块耦合性没有 ..影响( D ) A.模块间接口的复杂程度 B.调用模块的方式 C.通过接口的信息 D.模块部各个元素彼此之间的紧密结合程度 二、填空题(本大题共10小题,每空2分,共20分) 页脚

计算机技能高考模拟试题一

计算机技能高考模拟试题(2016年湖北) 《组装与维护模块》 本套试卷选取 3 套高考模拟卷,自制而成,请同学们45 分钟完成全部答题(2018-06-12)(标准:总分80 分,48 分及格,64 分良好,64 以上优秀) Ⅲ、计算机组装与维修(60 分) 46、第一台现代电子计算机于()年在美国宾夕法尼亚大学制成。 A、1945 B、1946 C、1947 D、1948 47、中小规模集成电路计算机属于()代计算机。 A、1 B、2 C、3 D、4 48、能发出各种控制信号,使计算机各部件协调工作的部件是()。 A、运算器 B、控制器 C、存储器 D、输入设备 49、计算机中最核心的部件是()。 A、主板 B、内存 C、硬盘 D、中央处理器 50、键盘有多种接口类型,下列不属于键盘接口类型的是()。 A、PCI B、AT C、PS/2 D、USB 51、CPU乃至整个计算机系统的基准频率称之为()。 A、外频 B、主频 C、倍频 D、基频 52、将数据和指令从一个或多个源部件传送到一个或多个目的部件的一组传输线称之为 ()。 A、数据线 B、控制线 C、指令线 D、总线 53、计算机的中枢系统,起着协调各设备纽带作用的部件是() A、CPU B、内存 C、DMI D、电源 54、协调数据吞吐量最大的CPU、内存、显示系统接口之间数据交换的芯片称为() A、CPU芯片 B、内存芯片 C、南桥芯片 D、北桥芯片 55、SATA3.0实现的最高传输速率是() A、150MB/S B、300 MB/S C、600 MB/S D、1000 MB/S 56、通用串行总线的英文缩写是()A、SATA B、USB C、IDE D、PCI 57、保存着计算机最重要的基本输入/输出程序、系统设置信息、开机后自自检程序和系统自启动程序的系统称之为() A、BIOS B、CMOS C、UEFI D、ROM 58、USB3.0实现的最高数据传输率是() A、12Mbps B、480Mbps C、1Gbps D、5 Gbps 59、计算机主内存采用的存储器形式是() A、ERPROM B、EERPROM C、DRAM D、SRAM 60、DDR内存的位宽为()A、8 B、16 C、32 D、64 61、数据带宽=有效数据传输频率x 位宽,主流的DDR3-1600 的数据带宽是() A、12.8GB/S B、16 GB/S C、25.6 GB/S D、32 GB/S 62、二进制数10110 转换为十进制数是() A、20 B、22 C、24 D、26 63、十进制数25 转换为八进制数是()。 A、19 B、25 C、31 D 、37

相关文档
最新文档