2018名校高考数学模拟试题及答案5
山西省太原市2018届高考模拟理科数学试题Word版含答案

山西省太原市2018届高考模拟试卷(理科数学)一、选择题(5×12=60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项用2B 铅笔涂黑答题纸上对应题目的答案标号)1.设全集U=R ,集合A={x|0<x <2},B={x|x <1},则集合(∁U A )∩B=( ) A .(﹣∞,0) B .(﹣∞,0] C .(2,+∞) D .[2,+∞)2.已知复数Z 的共轭复数=,则复数Z 的虚部是( )A .B . iC .﹣D .﹣ i3.命题“∃x 0≤0,使得x 02≥0”的否定是( )A .∀x ≤0,x 2<0B .∀x ≤0,x 2≥0C .∃x 0>0,x 02>0D .∃x 0<0,x 02≤04.已知直线l 经过圆C :x 2+y 2﹣2x ﹣4y=0的圆心,且坐标原点到直线l 的距离为,则直线l 的方程为( ) A .x+2y+5=0B .2x+y ﹣5=0C .x+2y ﹣5=0D .x ﹣2y+3=05.五个人坐成一排,甲要和乙坐在一起,乙不和丙坐在一起,则不同排法数为( ) A .12 B .24 C .36 D .486.一个多面体的三视图如图所示,则该多面体的体积为( )A .B .C .6D .77.已知公差不为0的等差数列{a n },它的前n 项和是S n ,,a 3=5,则取最小值时n=( ) A .6 B .7C .8D .98.已知,则y=f (x )的对称轴为( )A .B .C .D .9.算法如图,若输入m=210,n=119,则输出的n 为( )A .2B .3C .7D .1110.设实数x ,y 满足约束条件,若目标函数z=ax+by (a >0,b >0)的x ≥0,y≥0最大值为12,则的最小值为( )A .B .C .D .411.已知双曲线(a >0,b >0)的左右焦点分别为F 1,F 2,过右焦点F 2的直线交双曲线右支于A 、B 两点,连结AF 1、BF 1,若|AB|=|BF 1|且,则双曲线的离心率为( )A .B .C .D .12.已知定义在R 上的函数f (x ),其导函数为f'(x ),若f'(x )﹣f (x )<﹣2,f (0)=3,则不等式f (x )>e x +2的解集是( )A .(﹣∞,1)B .(1,+∞)C .(0,+∞)D .(﹣∞,0)二、填空题(本大题共4小题,每小题5分,共20分)13.已知,是夹角为的两个单位向量, =﹣2, =k+,若•=0,则实数k 的值为 .14.已知的展开式中,x 3项的系数是a,则= .15.函数f (x )=,若方程f (x )=mx﹣恰有四个不相等的实数根,则实数m的取值范围是 .16.已知等边三角形ABC的边长为,M ,N 分别为AB ,AC 的中点,沿MN 将△ABC 折成直二面角,则四棱锥A ﹣MNCB 的外接球的表面积为 .三、解答题(本大题共5小题,满分60分.解答须写出文字说明、证明过程和演算步骤) 17.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知,.(1)求证:;(2)若a=2,求△ABC 的面积.18.康杰中学高三数学学习小组开展“学生语文成绩与外语成绩的关系”的课题研究,在全市高三年级学生中随机抽取100名同学的上学期期末语文和外语成绩,按优秀和不优秀分类得结果:语文和外语都优秀的有16人,语文成绩优秀但外语不优秀的有14人,外语成绩优秀但语文不优秀的有10人.(1)根据以上信息,完成下面2×2列联表:(2)能否判定在犯错误概率不超过0.001的前提下认为全市高三年级学生的“语文成绩与外语成绩有关系”?(3)将上述调查所得到的频率视为概率,从全市高三年级学生成绩中,随机抽取3名学生的成绩,记抽取的3名学生成绩中语文、外语两科成绩至少有一科优秀的个数为X ,求X 的分布列和期望E (X ).附:其中:n=a+b+c+d.19.如图所示,该几何体是由一个直三棱柱ADE﹣BCF和一个正四棱锥P﹣ABCD组合而成,AD ⊥AF,AE=AD=2.(1)证明:平面PAD⊥平面ABFE;(2)求正四棱锥P﹣ABCD的高h,使得二面角C﹣AF﹣P的余弦值是.20.已知椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线x+y+1=0与以椭圆C的上焦点为圆心,以椭圆的长半轴长为半径的圆相切.(1)求椭圆C的方程;(2)设P为椭圆C上一点,若过点M(0,2)的直线l与椭圆C相交于不同的两点S和T,满足(O为坐标原点),求实数t的取值范围.21.已知函数f(x)=x2﹣ax(a≠0),g(x)=lnx,f(x)的图象在它与x轴异于原点的交点M处的切线为l1,g(x﹣1)的图象在它与x轴的交点N处的切线为l2,且l1与l2平行.(1)求a的值;(2)已知t∈R,求函数y=f(xg(x)+t)在x∈[1,e]上的最小值h(t);(3)令F(x)=g(x)+g′(x),给定x1,x2∈(1,+∞),x1<x2,对于两个大于1的正数α,β,存在实数m满足:α=mx1+(1﹣m)x2,β=(1﹣m)x1+mx2,并且使得不等式|F(α)﹣F(β)|<|F(x1)﹣F(x2)|恒成立,求实数m的取值范围..[选修4-4坐标系与参数方程]22.在直角坐标系中,曲线C的参数方程为,(ϕ为参数),直线l的参数方程为(t为参数).以原点为极点,x轴的正半轴为极轴建立极坐标系,点P的极坐标为.(Ⅰ)求点P的直角坐标,并求曲线C的普通方程;(Ⅱ)设直线l与曲线C的两个交点为A,B,求|PA|+|PB|的值.[选修4-5:不等式选讲]23.设函数f(x)=|x﹣a|(1)当a=2时,解不等式f(x)≥4﹣|x﹣1|;(2)若f(x)≤1的解集为[0,2], +=a(m>0,n>0)求证:m+2n≥4.山西省太原市2018届高考模拟试卷(理科数学)参考答案与试题解析一、选择题(5×12=60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项用2B铅笔涂黑答题纸上对应题目的答案标号)1.设全集U=R,集合A={x|0<x<2},B={x|x<1},则集合(∁UA)∩B=()A.(﹣∞,0) B.(﹣∞,0] C.(2,+∞)D.[2,+∞)【考点】1H:交、并、补集的混合运算.【分析】根据全集U=R求出A的补集,再求A的补集与B的交集即可.【解答】解:∵全集U=R,集合A={x|0<x<2}=(0,2),B={x|x<1}=(﹣∞,1),∴∁UA=(﹣∞,0]∪[2,+∞);∴(∁UA)∩B=(﹣∞,0].故选:B.2.已知复数Z的共轭复数=,则复数Z的虚部是()A.B. i C.﹣D.﹣ i【考点】A5:复数代数形式的乘除运算;A2:复数的基本概念.【分析】利用复数代数形式的乘除运算化简,求得Z后得答案.【解答】解:由==,得,∴复数Z的虚部是.故选:A.3.命题“∃x0≤0,使得x2≥0”的否定是()A.∀x≤0,x2<0 B.∀x≤0,x2≥0 C.∃x0>0,x2>0 D.∃x<0,x2≤0【考点】2J:命题的否定.【分析】直接利用特称命题的否定是全称命题,写出结果即可.【解答】解:因为特称命题的否定是全称命题,所以,命题“∃x0≤0,使得x2≥0”的否定是∀x≤0,x2<0.故选:A.4.已知直线l经过圆C:x2+y2﹣2x﹣4y=0的圆心,且坐标原点到直线l的距离为,则直线l的方程为()A.x+2y+5=0 B.2x+y﹣5=0 C.x+2y﹣5=0 D.x﹣2y+3=0【考点】J9:直线与圆的位置关系.【分析】求出圆C的圆心C(1,2),设直线l的方程为y=k(x﹣1)+2,由坐标原点到直线l的距离为,求出直线的斜率,由此能求出直线l的方程.【解答】解:圆C:x2+y2﹣2x﹣4y=0的圆心C(1,2),∵直线l经过圆C:x2+y2﹣2x﹣4y=0的圆心,且坐标原点到直线l的距离为,∴当直线l的斜率不存在时,直线l的方程为x=1,此时坐标原点到直线l的距离为1,不成立;当直线l的斜率存在时,直线l的方程为y=k(x﹣1)+2,且=,解得k=﹣,∴直线l的方程为y=﹣(x﹣1)+2,即x+2y﹣5=0.故选:C.5.五个人坐成一排,甲要和乙坐在一起,乙不和丙坐在一起,则不同排法数为()A.12 B.24 C.36 D.48【考点】D8:排列、组合的实际应用.【分析】根据题意,用间接法分析:首先计算甲和乙坐在一起排法数目,再计算其中甲乙相邻且乙和丙坐在一起的排法数目,结合题意,用“甲和乙坐在一起排法数目”减去“甲乙相邻且乙和丙坐在一起”的排法数目即可得答案.【解答】解:根据题意,甲乙必须相邻,将甲乙看成一个元素,考虑其顺序,有A22=2种情况,将甲乙与剩余的3个人进行全排列,有A44=24种情况,则甲和乙坐在一起有2×24=48种不同的排法,其中,如果乙和丙坐在一起,则必须是乙在中间,甲和丙在乙的两边, 将3个人看成一个元素,考虑其顺序,有A 22=2种情况, 将甲乙丙与剩余的2个人进行全排列,有A 33=6种情况, 则甲乙相邻且乙和丙坐在一起的排法有2×6=12种;故甲要和乙坐在一起,乙不和丙坐在一起排法有48﹣12=36种; 故选C .6.一个多面体的三视图如图所示,则该多面体的体积为( )A .B .C .6D .7【考点】L!:由三视图求面积、体积.【分析】判断几何体的形状,结合三视图的数据,求出几何体的体积.【解答】解:由三视图可知,该多面体是由正方体截去两个正三棱锥所成的几何体,如图, 正方体棱长为2,正三棱锥侧棱互相垂直,侧棱长为1,故几何体的体积为:V 正方体﹣2V 棱锥侧=.故选:A .7.已知公差不为0的等差数列{a n },它的前n 项和是S n ,,a 3=5,则取最小值时n=( ) A .6B .7C .8D .9【考点】85:等差数列的前n 项和.【分析】利用等差数列通项公式列出方程组,求出首项和公差,从而求出a n ,S n ,利用基本不等式能求出取最小值时n 的值.【解答】解:∵公差不为0的等差数列{a n },它的前n 项和是S n ,,a 3=5,∴a 3=a 1+2d=5,且(a 1+d )2=a 1(a 1+4d ), 由d ≠0,解得a 1=1,d=2,∴a n =2n ﹣1,∴,∴,∴当n=7的取等号, 故选:B .8.已知,则y=f (x )的对称轴为( )A .B .C .D .【考点】GL :三角函数中的恒等变换应用;H2:正弦函数的图象. 【分析】化简函数f (x )的解析式,求出函数的对称轴即可.【解答】解:,∴对称轴方程为,∴x=﹣,令k=1,得x=,故选:B .9.算法如图,若输入m=210,n=119,则输出的n 为( )A.2 B.3 C.7 D.11【考点】EF:程序框图.【分析】算法的功能辗转相除法求m、n的最大公约数,利用辗转相除法求出m、n的最大公约数可得答案.【解答】解:由程序框图知:算法的功能利用辗转相除法求m、n的最大公约数,当输入m=210,n=119,则210=119+91;119=91+28;91=3×28+7,;28=4×7+0.∴输出n=7.故选:C.10.设实数x,y满足约束条件,若目标函数z=ax+by(a>0,b>0)的x≥0,y≥0最大值为12,则的最小值为()A.B.C.D.4【考点】7C:简单线性规划.【分析】利用线性规划的知识求出则Z在点D处取得最大值,由此得出a、b的关系式,max再利用基本不等式求的最小值.【解答】解:约束条件表示的平面区域如图所示;由,解得D (4,6),目标函数z=ax+by (a >0,b >0)的最大值为12, 则Z max 在点D 处取得最大值; 即4a+6b=12, 所以2a+3b=6,所以,当且仅当a=b=时取“=”. 故选:A .11.已知双曲线(a >0,b >0)的左右焦点分别为F 1,F 2,过右焦点F 2的直线交双曲线右支于A 、B 两点,连结AF 1、BF 1,若|AB|=|BF 1|且,则双曲线的离心率为( )A .B .C .D .【考点】KC :双曲线的简单性质.【分析】运用双曲线的定义可得|AF 1|﹣|AF 2|=2a ,|BF 1|﹣|BF 2|=2a ,结合等腰直角三角形可得|AF 1|=4a ,设|BF 1|=x ,运用勾股定理,可得a ,c 的关系,由离心率公式即可得到所求. 【解答】解:由双曲线的定义可得|AF 1|﹣|AF 2|=2a ,|BF 1|﹣|BF 2|=2a , 相加可得|AF 1|+|BF 1|﹣|AB|=4a ,|AB|=|BF 1|且,∴|AF1|=4a,设|BF1|=x,则,,又∵,即有8a2+(2a﹣2a)2=4c2,化简可得(5﹣2)a2=c2,即有e==.故选:B.12.已知定义在R上的函数f(x),其导函数为f'(x),若f'(x)﹣f(x)<﹣2,f(0)=3,则不等式f(x)>e x+2的解集是()A.(﹣∞,1) B.(1,+∞)C.(0,+∞)D.(﹣∞,0)【考点】6B:利用导数研究函数的单调性.【分析】问题转化为,令,根据函数的单调性求出不等式的解集即可.【解答】解:f(x)>e x+2转化为:,令,则,∴g(x)在R上单调递减,又∵∴g(x)>0的解集为(﹣∞,0),故选:D .二、填空题(本大题共4小题,每小题5分,共20分)13.已知,是夹角为的两个单位向量, =﹣2, =k+,若•=0,则实数k 的值为.【考点】9R :平面向量数量积的运算.【分析】利用向量的数量积公式求出;利用向量的运算律求出,列出方程求出k .【解答】解:∵是夹角为的两个单位向量∴∴==∵∴解得故答案为:14.已知的展开式中,x 3项的系数是a ,则=.【考点】67:定积分;DB :二项式系数的性质.【分析】先求出二项式展开式的通项公式,再令x 的幂指数等于3,求得r 的值,即可求得展开式中的含x 3项的系数a 的值,再求定积分,可得要求式子的值.【解答】解:的展开式的通项公式为T r+1=C 5r ()r x 5﹣2r ,令5﹣2r=3则r=1∴x 3的系数为,∴dx=lnx|=ln,故答案为:ln15.函数f(x)=,若方程f(x)=mx﹣恰有四个不相等的实数根,则实数m的取值范围是(,).【考点】53:函数的零点与方程根的关系.【分析】方程f(x)=mx﹣恰有四个不相等的实数根可化为函数f(x)=与函数y=mx﹣有四个不同的交点,作函数f(x)=与函数y=mx﹣的图象,由数形结合求解.【解答】解:方程f(x)=mx﹣恰有四个不相等的实数根可化为函数f(x)=与函数y=mx﹣有四个不同的交点,作函数f(x)=与函数y=mx﹣的图象如下,由题意,C(0,﹣),B(1,0);故kBC=,当x>1时,f(x)=lnx,f′(x)=;设切点A的坐标为(x1,lnx1),则=;解得,x1=;故kAC=;结合图象可得,实数m的取值范围是(,).故答案为:(,).16.已知等边三角形ABC的边长为,M,N分别为AB,AC的中点,沿MN将△ABC折成直二面角,则四棱锥A﹣MNCB的外接球的表面积为52π.【考点】LG:球的体积和表面积.【分析】折叠为空间立体图形,得出四棱锥A﹣MNCB的外接球的球心,利用平面问题求解得出四棱锥A﹣MNCB的外接球半径R,则R2=AF2+OF2=13,求解即可.【解答】解:由,取BC的中点E,则E是等腰梯形MNCB外接圆圆心.F是△AMN外心,作OE⊥平面MNCB,OF⊥平面AMN,则O是四棱锥A﹣MNCB的外接球的球心,且OF=DE=3,AF=2.设四棱锥A﹣MNCB的外接球半径R,则R2=AF2+OF2=13,所以表面积是52π.故答案为:52π.三、解答题(本大题共5小题,满分60分.解答须写出文字说明、证明过程和演算步骤)17.在△ABC中,角A,B,C的对边分别为a,b,c.已知,.(1)求证:;(2)若a=2,求△ABC的面积.【考点】HT:三角形中的几何计算.【分析】(1)由正弦定理得:sinBcosC﹣sinCsinB=1,从而sin(B﹣C)=1,由此能证明.(2)由,得,,由,a=2,利用正弦定理求出b,c,由此能求出三角形△ABC的面积.【解答】证明:(1)由及正弦定理得:…整理得:sinBcosC﹣sinCsinB=1,所以sin(B﹣C)=1,又…所以…解:(2)由(1)及,得,,又因为,a=2…所以,,…所以三角形△ABC的面积…18.康杰中学高三数学学习小组开展“学生语文成绩与外语成绩的关系”的课题研究,在全市高三年级学生中随机抽取100名同学的上学期期末语文和外语成绩,按优秀和不优秀分类得结果:语文和外语都优秀的有16人,语文成绩优秀但外语不优秀的有14人,外语成绩优秀但语文不优秀的有10人.(1)根据以上信息,完成下面2×2列联表:(2)能否判定在犯错误概率不超过0.001的前提下认为全市高三年级学生的“语文成绩与外语成绩有关系”?(3)将上述调查所得到的频率视为概率,从全市高三年级学生成绩中,随机抽取3名学生的成绩,记抽取的3名学生成绩中语文、外语两科成绩至少有一科优秀的个数为X ,求X 的分布列和期望E (X ).附:其中:n=a+b+c+d .【考点】BO :独立性检验的应用;CH :离散型随机变量的期望与方差. 【分析】(1)由题意填写列联表即可; (2)计算观测值,对照临界值即可得出结论;(3)根据题意知随机变量X ~B (3,),计算对应的概率,写出X 的分布列,求出数学期望值. 【解答】解:(1)由题意得列联表:… (2)因为,所以能在犯错概率不超过0.001的前提下,认为全市高三年级学生“语文成绩与外语成绩有关系”; …(3)由已知数据,语文、外语两科成绩至少一科为优秀的概率是,… 则X ~B (3,),;…X 的分布列为…数学期望为.…19.如图所示,该几何体是由一个直三棱柱ADE ﹣BCF 和一个正四棱锥P ﹣ABCD 组合而成,AD ⊥AF ,AE=AD=2.(1)证明:平面PAD ⊥平面ABFE ;(2)求正四棱锥P ﹣ABCD 的高h ,使得二面角C ﹣AF ﹣P 的余弦值是.【考点】MT:二面角的平面角及求法;LY:平面与平面垂直的判定.【分析】(Ⅰ)证明:AD⊥平面ABFE,即可证明平面PAD⊥平面ABFE;(Ⅱ)建立空间坐标系,求出平面的法向量,利用向量法建立方程关系即可求正四棱锥P﹣ABCD 的高.【解答】(Ⅰ)证明:直三棱柱ADE﹣BCF中,AB⊥平面ADE,所以:AB⊥AD,又AD⊥AF,所以:AD⊥平面ABFE,AD⊂平面PAD,所以:平面PAD⊥平面ABFE….(Ⅱ)∵AD⊥平面ABFE,∴建立以A为坐标原点,AB,AE,AD分别为x,y,z轴的空间直角坐标系如图:设正四棱锥P﹣ABCD的高为h,AE=AD=2,则A(0,0,0),F(2,2,0),C(2,0,2),=(2,2,0),=(2,0,2),=(1,﹣h,1),=(x,y,z)是平面AFC的法向量,则,令x=1,则y=z=﹣1,即=(1,﹣1,﹣1),设=(x,y,z)是平面ACP的法向量,则,令x=1,则y=﹣1,z=﹣1﹣h,即=(1,﹣1,﹣1﹣h),∵二面角C﹣AF﹣P的余弦值是.∴cos<,>===.得h=1或h=﹣(舍)则正四棱锥P﹣ABCD的高h=1.20.已知椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线x+y+1=0与以椭圆C的上焦点为圆心,以椭圆的长半轴长为半径的圆相切.(1)求椭圆C的方程;(2)设P为椭圆C上一点,若过点M(0,2)的直线l与椭圆C相交于不同的两点S和T,满足(O为坐标原点),求实数t的取值范围.【考点】KL:直线与椭圆的位置关系.【分析】(1)圆心到直线x+y+1=0的距离,由椭圆C的两焦点与短轴的一个端点的连线构成等腰直角三角形,知b=c,由此能求出椭圆方程.(2)当直线l的斜率不存在时,可得t=0;当直线l的斜率存在时,t≠0,设直线l方程为y=kx+2,设P(x0,y),将直线方程代入椭圆方程得:(k2+2)x2+4kx+2=0,由此利用根的判别式、韦达定理、向量知识,结合已知条件能求出实数t的取值范围.【解答】解:(1)由题意,以椭圆C的上焦点为圆心,以椭圆的长半轴长为半径的圆的方程为x2+(y﹣c)2=a2,∴圆心到直线x+y+1=0的距离∵椭圆C的两焦点与短轴的一个端点的连线构成等腰直角三角形,∴b=c,,代入得b=c=1,∴,故所求椭圆方程为…(2)当直线l的斜率不存在时,可得t=0,适合题意.…当直线l 的斜率存在时,t ≠0,设直线l 方程为y=kx+2,设P (x 0,y 0), 将直线方程代入椭圆方程得:(k 2+2)x 2+4kx+2=0,… ∴△=16k 2﹣8(k 2+2)=8k 2﹣16>0,∴k 2>2.设S (x 1,y 1),T (x 2,y 2),则,…由,当t ≠0,得…整理得:,由k 2>2知,0<t 2<4,…所以t ∈(﹣2,0)∪(0,2),… 综上可得t ∈(﹣2,2).…21.已知函数f (x )=x 2﹣ax (a ≠0),g (x )=lnx ,f (x )的图象在它与x 轴异于原点的交点M 处的切线为l 1,g (x ﹣1)的图象在它与x 轴的交点N 处的切线为l 2,且l 1与l 2平行. (1)求a 的值;(2)已知t ∈R ,求函数y=f (xg (x )+t )在x ∈[1,e]上的最小值h (t );(3)令F (x )=g (x )+g′(x ),给定x 1,x 2∈(1,+∞),x 1<x 2,对于两个大于1的正数α,β,存在实数m 满足:α=mx 1+(1﹣m )x 2,β=(1﹣m )x 1+mx 2,并且使得不等式|F (α)﹣F (β)|<|F (x 1)﹣F (x 2)|恒成立,求实数m 的取值范围..【考点】6E :利用导数求闭区间上函数的最值;6H :利用导数研究曲线上某点切线方程. 【分析】(1)利用导数的几何意义,分别求两函数在与两坐标轴的交点处的切线斜率,令其相等解方程即可得a 值;(2)令u=xlnx ,再研究二次函数u 2+(2t ﹣1)u+t 2﹣t 图象是对称轴u=,开口向上的抛物线,结合其性质求出最值;(3)先由题意得到F (x )=g (x )+g′(x )=lnx+,再利用导数工具研究所以F (x )在区间(1,+∞)上单调递增,得到当x ≥1时,F (x )≥F (1)>0,下面对m 进行分类讨论:①当m ∈(0,1)时,②当m ≤0时,③当m ≥1时,结合不等式的性质即可求出a 的取值范围. 【解答】解:(1)y=f (x )图象与x 轴异于原点的交点M (a ,0),f′(x )=2x ﹣a ,y=g(x﹣1)=ln(x﹣1)图象与x轴的交点N(2,0),g′(x﹣1)=由题意可得k l1=k l2,即a=1;(2)y=f[xg(x)+t]=[xlnx+t]2﹣(xlnx+t)=(xlnx)2+(2t﹣1)(xlnx)+t2﹣t,令u=xlnx,在 x∈[1,e]时,u′=lnx+1>0,∴u=xlnx在[1,e]单调递增,0≤u≤e,u2+(2t﹣1)u+t2﹣t图象的对称轴u=,抛物线开口向上,①当u=≤0,即t≥时,y最小=t2﹣t,②当u=≥e,即t≤时,y最小=e2+(2t﹣1)e+t2﹣t,③当0<<e,即<t<时,y最小=y|u==﹣;(3)F(x)=g(x)+g′(x)=lnx+,F′(x)=≥0,所以F(x)在区间(1,+∞)上单调递增,∴当x≥1时,F(x)≥F(1)>0,①当m∈(0,1)时,有,α=mx1+(1﹣m)x2>mx1+(1﹣m)x1=x1,α=mx1+(1﹣m)x2<mx2+(1﹣m)x2=x2,得α∈(x1,x2),同理β∈(x1,x2),∴由f(x)的单调性知 0<F(x1)<F(α)、f(β)<f(x2),从而有|F(α)﹣F(β)|<|F(x1)﹣F(x2)|,符合题设.②当m≤0时,α=mx1+(1﹣m)x2≥mx2+(1﹣m)x2=x2,β=mx2+(1﹣m)x1≤mx1+(1﹣m)x1=x1,由f(x)的单调性知,F(β)≤F(x1)<f(x2)≤F(α),∴|F(α)﹣F(β)|≥|F(x1)﹣F(x2)|,与题设不符,③当m ≥1时,同理可得α≤x 1,β≥x 2,得|F (α)﹣F (β)|≥|F (x 1)﹣F (x 2)|,与题设不符, ∴综合①、②、③得 m ∈(0,1).[选修4-4坐标系与参数方程]22.在直角坐标系中,曲线C 的参数方程为,(ϕ为参数),直线l 的参数方程为(t 为参数).以原点为极点,x 轴的正半轴为极轴建立极坐标系,点P 的极坐标为.(Ⅰ)求点P 的直角坐标,并求曲线C 的普通方程;(Ⅱ)设直线l 与曲线C 的两个交点为A ,B ,求|PA|+|PB|的值. 【考点】QH :参数方程化成普通方程;Q4:简单曲线的极坐标方程.【分析】(I )消参数即可得到普通方程,根据极坐标的几何意义即可得出P 的直角坐标; (II )将l 的参数方程代入曲线C 的普通方程得出A ,B 对应的参数,利用参数得几何意义得出|PA|+|PB|.【解答】解:(Ⅰ),y=sin=,∴P 的直角坐标为;由得cos φ=,sin φ=.∴曲线C 的普通方程为.(Ⅱ)将代入得t 2+2t ﹣8=0,设A ,B 对应的参数分别为t 1,t 2,则t 1+t 2=﹣2,t 1t 2=﹣8, ∵P 点在直线l 上,∴|PA|+|PB|=|t 1|+|t 2|=|t 1﹣t 2|==6.[选修4-5:不等式选讲] 23.设函数f (x )=|x ﹣a|(1)当a=2时,解不等式f(x)≥4﹣|x﹣1|;(2)若f(x)≤1的解集为[0,2], +=a(m>0,n>0)求证:m+2n≥4.【考点】R6:不等式的证明;R5:绝对值不等式的解法.【分析】对第(1)问,将a=2代入函数的解析式中,利用分段讨论法解绝对值不等式即可;对第(2)问,先由已知解集{x|0≤x≤2}确定a值,再将“m+2n”改写为“(m+2n)(+)”,展开后利用基本不等式可完成证明.【解答】解:(1)当a=2时,不等式f(x)≥4﹣|x﹣1|即为|x﹣2|≥4﹣|x﹣1|,①当x≤1时,原不等式化为2﹣x≥4+(x﹣1),得x≤﹣,故x≤﹣;②当1<x<2时,原不等式化为2﹣x≥4﹣(x﹣1),得2≥5,故1<x<2不是原不等式的解;③当x≥2时,原不等式化为x﹣2≥4﹣(x﹣1),得x≥,故x≥.综合①、②、③知,原不等式的解集为(﹣∞,﹣)∪[,+∞).(2)证明:由f(x)≤1得|x﹣a|≤1,从而﹣1+a≤x≤1+a,∵f(x)≤1的解集为{x|0≤x≤2},∴∴得a=1,∴ +=a=1.又m>0,n>0,∴m+2n=(m+2n)(+)=2+(+)≥2+2=4,当且仅当=即m=2n时及m=2,n=1时,等号成立,m+2n=4,故m+2n≥4,得证.。
2018年全国普通高等学校高考高三数学模拟试卷及解析高三理科数学(一)

2018年全国普通高等学校高考数学模拟理科数学试题及解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|﹣x2+4x≥0},,C={x|x=2n,n∈N},则(A∪B)∩C=()A.{2,4}B.{0,2}C.{0,2,4}D.{x|x=2n,n∈N}2.(5分)设i是虚数单位,若,x,y∈R,则复数x+yi的共轭复数是()A.2﹣iB.﹣2﹣iC.2+iD.﹣2+i3.(5分)已知等差数列{a n}的前n项和是S n,且a4+a5+a6+a7=18,则下列命题正确的是()A.a5是常数B.S5是常数C.a10是常数D.S10是常数4.(5分)七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形中任取一点,则此点取自黑色部分的概率是()A. B. C. D.5.(5分)已知点F为双曲线C:(a>0,b>0)的右焦点,直线x=a与双曲线的渐近线在第一象限的交点为A,若AF的中点在双曲线上,则双曲线的离心率为()A. B. C. D.6.(5分)已知函数则()A.2+πB.C.D.7.(5分)执行如图所示的程序框图,则输出的S的值为()A. B. C. D.8.(5分)已知函数(ω>0)的相邻两个零点差的绝对值为,则函数f(x)的图象()A.可由函数g(x)=cos4x的图象向左平移个单位而得B.可由函数g(x)=cos4x的图象向右平移个单位而得C.可由函数g(x)=cos4x的图象向右平移个单位而得D.可由函数g(x)=cos4x的图象向右平移个单位而得9.(5分)的展开式中剔除常数项后的各项系数和为()A.﹣73B.﹣61C.﹣55D.﹣6310.(5分)某几何体的三视图如图所示,其中俯视图中六边形ABCDEF是边长为1的正六边形,点G为AF的中点,则该几何体的外接球的表面积是()A. B. C. D.11.(5分)已知抛物线C:y2=4x的焦点为F,过点F分别作两条直线l1,l2,直线l1与抛物线C交于A、B两点,直线l2与抛物线C交于D、E两点,若l1与l2的斜率的平方和为1,则|AB|+|DE|的最小值为()A.16B.20C.24D.3212.(5分)若函数y=f(x),x∈M,对于给定的非零实数a,总存在非零常数T,使得定义域M内的任意实数x,都有af(x)=f(x+T)恒成立,此时T为f(x)的类周期,函数y=f(x)是M上的a级类周期函数.若函数y=f(x)是定义在区间[0,+∞)内的2级类周期函数,且T=2,当x∈[0,2)时,函数.若∃x1∈[6,8],∃x2∈(0,+∞),使g(x2)﹣f(x1)≤0成立,则实数m的取值范围是()A. B. C. D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知向量,,且,则=.14.(5分)已知x,y满足约束条件则目标函数的最小值为.15.(5分)在等比数列{a n}中,a2•a3=2a1,且a4与2a7的等差中项为17,设b n=a2n﹣1﹣a2n,n∈N*,则数列{b n}的前2n项和为.16.(5分)如图,在直角梯形ABCD中,AB⊥BC,AD∥BC,,点E是线段CD 上异于点C,D的动点,EF⊥AD于点F,将△DEF沿EF折起到△PEF的位置,并使PF ⊥AF,则五棱锥P﹣ABCEF的体积的取值范围为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC的内角A,B,C的对边a,b,c分别满足c=2b=2,2bcosA+acosC +ccosA=0,又点D满足.(1)求a及角A的大小;(2)求的值.B1C1D1中,底面ABCD是正方形,且,∠18.(12分)在四棱柱ABCD﹣AA1AB=∠A1AD=60°.(1)求证:BD⊥CC1;(2)若动点E在棱C1D1上,试确定点E的位置,使得直线DE与平面BDB1所成角的正弦值为.19.(12分)“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,A 市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值Z服从正态分布N(μ,σ2),利用该正态分布,求Z落在(14.55,38.45)内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于(10,30)内的包数为X,求X的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为;②若,则P(μ﹣σ<Z≤μ+σ)=0.6826,P(μ﹣2σ<Z≤μ+2σ)=0.9544.20.(12分)已知椭圆C:的离心率为,且以两焦点为直径的圆的内接正方形面积为2.(1)求椭圆C的标准方程;(2)若直线l:y=kx+2与椭圆C相交于A,B两点,在y轴上是否存在点D,使直线AD与BD的斜率之和k AD+k BD为定值?若存在,求出点D坐标及该定值,若不存在,试说明理由.21.(12分)已知函数f(x)=e x﹣2(a﹣1)x﹣b,其中e为自然对数的底数.(1)若函数f(x)在区间[0,1]上是单调函数,试求实数a的取值范围;(2)已知函数g(x)=e x﹣(a﹣1)x2﹣bx﹣1,且g(1)=0,若函数g(x)在区间[0,1]上恰有3个零点,求实数a的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,圆C1的参数方程为(θ为参数,a 是大于0的常数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C2的极坐标方程为.(1)求圆C1的极坐标方程和圆C2的直角坐标方程;(2)分别记直线l:,ρ∈R与圆C1、圆C2的异于原点的焦点为A,B,若圆C1与圆C2外切,试求实数a的值及线段AB的长.[选修4-5:不等式选讲]23.已知函数f(x)=|2x+1|.(1)求不等式f(x)≤10﹣|x﹣3|的解集;(2)若正数m,n满足m+2n=mn,求证:f(m)+f(﹣2n)≥16.2018年全国普通高等学校高考数学模拟理科数学试题及解析(一)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|﹣x2+4x≥0},,C={x|x=2n,n∈N},则(A∪B)∩C=()A.{2,4}B.{0,2}C.{0,2,4}D.{x|x=2n,n∈N}【试题解答】解:A={x|﹣x2+4x≥0}={x|0≤x≤4},={x|3﹣4<3x<33}={x|﹣4<x<3},则A∪B={x|﹣4<x≤4},C={x|x=2n,n∈N},可得(A∪B)∩C={0,2,4},故选C.2.(5分)设i是虚数单位,若,x,y∈R,则复数x+yi的共轭复数是()A.2﹣iB.﹣2﹣iC.2+iD.﹣2+i【试题解答】解:由,得x+yi==2+i,∴复数x+yi的共轭复数是2﹣i.故选:A.3.(5分)已知等差数列{a n}的前n项和是S n,且a4+a5+a6+a7=18,则下列命题正确的是()A.a5是常数B.S5是常数C.a10是常数D.S10是常数【试题解答】解:∵等差数列{a n}的前n项和是S n,且a4+a5+a6+a7=18,∴a4+a5+a6+a7=2(a1+a10)=18,∴a1+a10=9,∴=45.故选:D.4.(5分)七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形中任取一点,则此点取自黑色部分的概率是()A. B. C. D.【试题解答】解:设AB=2,则BC=CD=DE=EF=1,∴S=××=,△BCIS平行四边形EFGH=2S△BCI=2×=,∴所求的概率为P===.故选:A.5.(5分)已知点F为双曲线C:(a>0,b>0)的右焦点,直线x=a与双曲线的渐近线在第一象限的交点为A,若AF的中点在双曲线上,则双曲线的离心率为()A. B. C. D.【试题解答】解:设双曲线C:的右焦点F(c,0),双曲线的渐近线方程为y=x,由x=a代入渐近线方程可得y=b,则A(a,b),可得AF的中点为(,b),代入双曲线的方程可得﹣=1,可得4a2﹣2ac﹣c2=0,由e=,可得e2+2e﹣4=0,解得e=﹣1(﹣1﹣舍去),故选:D.6.(5分)已知函数则()A.2+πB.C.D.【试题解答】解:∵,=∫cos2tdt===,∴=()+(﹣cosx)=﹣2.故选:D.7.(5分)执行如图所示的程序框图,则输出的S的值为()A. B. C. D.【试题解答】解:第1次循环后,S=,不满足退出循环的条件,k=2;第2次循环后,S=,不满足退出循环的条件,k=3;第3次循环后,S==2,不满足退出循环的条件,k=4;…第n次循环后,S=,不满足退出循环的条件,k=n+1;…第2018次循环后,S=,不满足退出循环的条件,k=2019第2019次循环后,S==2,满足退出循环的条件,故输出的S值为2,故选:C8.(5分)已知函数(ω>0)的相邻两个零点差的绝对值为,则函数f(x)的图象()A.可由函数g(x)=cos4x的图象向左平移个单位而得B.可由函数g(x)=cos4x的图象向右平移个单位而得C.可由函数g(x)=cos4x的图象向右平移个单位而得D.可由函数g(x)=cos4x的图象向右平移个单位而得【试题解答】解:函数=sin(2ωx)﹣•+=sin(2ωx﹣)(ω>0)的相邻两个零点差的绝对值为,∴•=,∴ω=2,f(x)=sin(4x﹣)=cos[(4x﹣)﹣]=cos(4x﹣).故把函数g(x)=cos4x的图象向右平移个单位,可得f(x)的图象,故选:B.9.(5分)的展开式中剔除常数项后的各项系数和为()A.﹣73B.﹣61C.﹣55D.﹣63【试题解答】解:展开式中所有各项系数和为(2﹣3)(1+1)6=﹣64;=(2x﹣3)(1+++…),其展开式中的常数项为﹣3+12=9,∴所求展开式中剔除常数项后的各项系数和为﹣64﹣9=﹣73.故选:A.10.(5分)某几何体的三视图如图所示,其中俯视图中六边形ABCDEF是边长为1的正六边形,点G为AF的中点,则该几何体的外接球的表面积是()A. B. C. D.【试题解答】解:如图,可得该几何体是六棱锥P﹣ABCDEF,底面是正六边形,有一PAF侧面垂直底面,且P在底面的投影为AF中点,过底面中心N作底面垂线,过侧面PAF的外心M作面PAF的垂线,两垂线的交点即为球心O,设△PAF的外接圆半径为r,,解得r=,∴,则该几何体的外接球的半径R=,∴表面积是则该几何体的外接球的表面积是S=4πR2=.故选:C.11.(5分)已知抛物线C:y2=4x的焦点为F,过点F分别作两条直线l1,l2,直线l1与抛物线C交于A、B两点,直线l2与抛物线C交于D、E两点,若l1与l2的斜率的平方和为1,则|AB|+|DE|的最小值为()A.16B.20C.24D.32【试题解答】解:抛物线C:y2=4x的焦点F(1,0),设直线l1:y=k1(x﹣1),直线l2:y=k2(x﹣1),由题意可知,则,联立,整理得:k12x2﹣(2k12+4)x+k12=0,设A(x1,y1),B(x2,y2),则x1+x2=,设D(x3,y3),E(x4,y4),同理可得:x3+x4=2+,由抛物线的性质可得:丨AB丨=x1+x2+p=4+,丨DE丨=x3+x4+p=4+,∴|AB|+|DE|=8+==,当且仅当=时,上式“=”成立.∴|AB|+|DE|的最小值24,故选:C.12.(5分)若函数y=f(x),x∈M,对于给定的非零实数a,总存在非零常数T,使得定义域M内的任意实数x,都有af(x)=f(x+T)恒成立,此时T为f(x)的类周期,函数y=f(x)是M上的a级类周期函数.若函数y=f(x)是定义在区间[0,+∞)内的2级类周期函数,且T=2,当x∈[0,2)时,函数.若∃x1∈[6,8],∃x2∈(0,+∞),使g(x2)﹣f(x1)≤0成立,则实数m的取值范围是()A. B. C. D.【试题解答】解:根据题意,对于函数f(x),当x∈[0,2)时,,分析可得:当0≤x≤1时,f(x)=﹣2x2,有最大值f(0)=,最小值f(1)=﹣,当1<x<2时,f(x)=f(2﹣x),函数f(x)的图象关于直线x=1对称,则此时有﹣<f(x)<,又由函数y=f(x)是定义在区间[0,+∞)内的2级类周期函数,且T=2;则在∈[6,8)上,f(x)=23•f(x﹣6),则有﹣12≤f(x)≤4,则f(8)=2f(6)=4f(4)=8f(2)=16f(0)=8,则函数f(x)在区间[6,8]上的最大值为8,最小值为﹣12;对于函数,有g′(x)=﹣+x+1==,分析可得:在(0,1)上,g′(x)<0,函数g(x)为减函数,在(1,+∞)上,g′(x)>0,函数g(x)为增函数,则函数g(x)在(0,+∞)上,由最小值f(1)=+m,若∃x1∈[6,8],∃x2∈(0,+∞),使g(x2)﹣f(x1)≤0成立,必有g(x)min≤f(x)max,即+m≤8,解可得m≤,即m的取值范围为(﹣∞,];故选:B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知向量,,且,则=.【试题解答】解:根据题意,向量,,若,则•=2sinα﹣cosα=0,则有tanα=,又由sin2α+cos2α=1,则有或,则=(,)或(﹣,﹣),则||=,则=2+2﹣2•=;故答案为:14.(5分)已知x,y满足约束条件则目标函数的最小值为.【试题解答】解:由约束条件作出可行域如图,联立,解得A(2,4),=,令t=5x﹣3y,化为y=,由图可知,当直线y=过A时,直线在y轴上的截距最大,t有最小值为﹣2.∴目标函数的最小值为.故答案为:.15.(5分)在等比数列{a n}中,a2•a3=2a1,且a4与2a7的等差中项为17,设b n=a2n﹣1﹣a2n,n∈N*,则数列{b n}的前2n项和为.【试题解答】解:等比数列{a n}中,a2•a3=2a1,且a4与2a7的等差中项为17,设首项为a1,公比为q,则:,整理得:,解得:.则:,﹣a2n==﹣22n﹣4,所以:b n=a2n﹣1则:T 2n ==.故答案为:.16.(5分)如图,在直角梯形ABCD 中,AB ⊥BC,AD ∥BC,,点E 是线段CD上异于点C,D 的动点,EF ⊥AD 于点F,将△DEF 沿EF 折起到△PEF 的位置,并使PF ⊥AF,则五棱锥P ﹣ABCEF 的体积的取值范围为 (0,) .【试题解答】解:∵PF ⊥AF,PF ⊥EF,AF ∩EF =F, ∴PF ⊥平面ABCD.设PF =x,则0<x <1,且EF =DF =x.∴五边形ABCEF 的面积为S =S 梯形ABCD ﹣S △DEF =×(1+2)×1﹣x 2=(3﹣x 2).∴五棱锥P ﹣ABCEF 的体积V =(3﹣x 2)x =(3x ﹣x 3),设f(x)=(3x ﹣x 3),则f′(x)=(3﹣3x 2)=(1﹣x 2), ∴当0<x <1时,f′(x)>0,∴f(x)在(0,1)上单调递增,又f(0)=0,f(1)=. ∴五棱锥P ﹣ABCEF 的体积的范围是(0,). 故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC 的内角A,B,C 的对边a,b,c 分别满足c =2b =2,2bcosA +acosC+ccosA=0,又点D满足.(1)求a及角A的大小;(2)求的值.【试题解答】解:(1)由2bcosA+acosC+ccosA=0及正弦定理得﹣2sinBcosA=sinAcosC+cosAsinC,即﹣2sinBcosA=sin(A+C)=sinB,在△ABC中,sinB>0,所以.又A∈(0,π),所以.在△ABC中,c=2b=2,由余弦定理得a2=b2+c2﹣2bccosA=b2+c2+bc=7,所以.(2)由,得=,所以.18.(12分)在四棱柱ABCD﹣AB1C1D1中,底面ABCD是正方形,且,∠A1AB=∠A1AD=60°.(1)求证:BD⊥CC1;(2)若动点E在棱C1D1上,试确定点E的位置,使得直线DE与平面BDB1所成角的正弦值为.【试题解答】解:(1)连接A1B,A1D,AC,因为AB=AA1=AD,∠A1AB=∠A1AD=60°,所以△A1AB和△A1AD均为正三角形,于是A1B=A1D.设AC与BD的交点为O,连接A1O,则A1O⊥BD,又四边形ABCD是正方形,所以AC⊥BD,而A1O∩AC=O,所以BD⊥平面A1AC.又AA1⊂平面A1AC,所以BD⊥AA1,又CC1∥AA1,所以BD⊥CC1.(2)由,及,知A 1B⊥A1D,于是,从而A1O⊥AO,结合A1O⊥BD,AO∩AC=O,得A1O⊥底面ABCD,所以OA、OB、OA1两两垂直.如图,以点O为坐标原点,的方向为x轴的正方向,建立空间直角坐标系O﹣xyz,则A(1,0,0),B(0,1,0),D(0,﹣1,0),A1(0,0,1),C(﹣1,0,0),,,,由,得D1(﹣1,﹣1,1).设(λ∈[0,1]),则(x E+1,y E+1,z E﹣1)=λ(﹣1,1,0),即E(﹣λ﹣1,λ﹣1,1),所以.设平面B 1BD的一个法向量为,由得令x=1,得,设直线DE与平面BDB1所成角为θ,则,解得或(舍去),所以当E为D1C1的中点时,直线DE与平面BDB1所成角的正弦值为.19.(12分)“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,A 市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值Z服从正态分布N(μ,σ2),利用该正态分布,求Z落在(14.55,38.45)内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于(10,30)内的包数为X,求X的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为;②若,则P(μ﹣σ<Z≤μ+σ)=0.6826,P(μ﹣2σ<Z≤μ+2σ)=0.9544.【试题解答】解:(1)所抽取的100包速冻水饺该项质量指标值的样本平均数为.(2)①∵Z 服从正态分布N(μ,σ2),且μ=26.5,σ≈11.95,∴P(14.55<Z <38.45)=P(26.5﹣11.95<Z <26.5+11.95)=0.6826, ∴Z 落在(14.55,38.45)内的概率是0.6826.②根据题意得X ~B(4,),;;;;.∴X 的分布列为∴.20.(12分)已知椭圆C :的离心率为,且以两焦点为直径的圆的内接正方形面积为2. (1)求椭圆C 的标准方程;(2)若直线l :y =kx +2与椭圆C 相交于A,B 两点,在y 轴上是否存在点D,使直线AD 与BD 的斜率之和k AD +k BD 为定值?若存在,求出点D 坐标及该定值,若不存在,试说明理由.【试题解答】解:(1)由已知可得解得a2=2,b2=c2=1,所求椭圆方程为.(2)由得(1+2k2)x2+8kx+6=0,则△=64k2﹣24(1+2k2)=16k2﹣24>0,解得或.设A(x1,y1),B(x2,y2),则,,设存在点D(0,m),则,,所以==.要使k AD+k BD为定值,只需6k﹣4k(2﹣m)=6k﹣8k+4mk=2(2m﹣1),k与参数k无关,故2m﹣1=0,解得,当时,k AD+k BD=0.综上所述,存在点,使得k AD+k BD为定值,且定值为0.21.(12分)已知函数f(x)=e x﹣2(a﹣1)x﹣b,其中e为自然对数的底数.(1)若函数f(x)在区间[0,1]上是单调函数,试求实数a的取值范围;(2)已知函数g(x)=e x﹣(a﹣1)x2﹣bx﹣1,且g(1)=0,若函数g(x)在区间[0,1]上恰有3个零点,求实数a的取值范围.【试题解答】解:(1)根据题意,函数f(x)=e2﹣2(a﹣1)x﹣b,其导数为f'(x)=e x﹣2(a﹣1),当函数f(x)在区间[0,1]上单调递增时,f'(x)=e x﹣2(a﹣1)≥0在区间[0,1]上恒成立,∴2(a﹣1)≤(e x)min=1(其中x∈[0,1]),解得;当函数f(x)在区间[0,1]单调递减时,f'(x)=e x﹣2(a﹣1)≤0在区间[0,1]上恒成立,∴2(a﹣1)≥(e x)max=e(其中x∈[0,1]),解得.综上所述,实数a的取值范围是.(2)函数g(x)=e x﹣(a﹣1)x2﹣bx﹣1,则g'(x)=e x﹣2(a﹣1)x﹣b,分析可得f(x)=g'(x).由g(0)=g(1)=0,知g(x)在区间(0,1)内恰有一个零点,设该零点为x0,则g(x)在区间(0,x0)内不单调,所以f(x)在区间(0,x0)内存在零点x1,同理,f(x)在区间(x0,1)内存在零点x2,所以f(x)在区间(0,1)内恰有两个零点.由(1)知,当时,f(x)在区间[0,1]上单调递增,故f(x)在区间(0,1)内至多有一个零点,不合题意.当时,f(x)在区间[0,1]上单调递减,故f(x)在(0,1)内至多有一个零点,不合题意;所以.令f'(x)=0,得x=ln(2a﹣2)∈(0,1),所以函数f(x)在区间[0,ln(2a﹣2)]上单调递减,在区间(ln(2a﹣2),1]上单调递增.记f(x)的两个零点为x1,x2(x1<x2),因此x1∈(0,ln(2a﹣2)],x2∈(ln(2a﹣2),1),必有f(0)=1﹣b>0,f(1)=e﹣2a+2﹣b>0.由g(1)=0,得a+b=e,所以,又f(0)=a﹣e+1>0,f(1)=2﹣a>0,所以e﹣1<a<2.综上所述,实数a的取值范围为(e﹣1,2).请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,圆C1的参数方程为(θ为参数,a 是大于0的常数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C2的极坐标方程为.(1)求圆C1的极坐标方程和圆C2的直角坐标方程;(2)分别记直线l:,ρ∈R与圆C1、圆C2的异于原点的焦点为A,B,若圆C1与圆C2外切,试求实数a的值及线段AB的长.【试题解答】解:(1)圆C1:(θ是参数)消去参数θ,得其普通方程为(x+1)2+(y+1)2=a2,将x=ρcosθ,y=ρsinθ代入上式并化简,得圆C1的极坐标方程,由圆C2的极坐标方程,得ρ2=2ρcosθ+2ρsinθ.将x=ρcosθ,y=ρsinθ,x2+y2=ρ2代入上式,得圆C2的直角坐标方程为(x﹣1)2+(y﹣1)2=2.(2)由(1)知圆C1的圆心C1(﹣1,﹣1),半径r1=a;圆C 2的圆心C2(1,1),半径,,∵圆C1与圆C2外切,∴,解得,即圆C1的极坐标方程为.将代入C1,得,得;将代入C2,得,得;故.[选修4-5:不等式选讲]23.已知函数f(x)=|2x+1|.(1)求不等式f(x)≤10﹣|x﹣3|的解集;(2)若正数m,n满足m+2n=mn,求证:f(m)+f(﹣2n)≥16.【试题解答】解:(1)此不等式等价于或或解得或或3<x≤4.即不等式的解集为.(2)证明:∵m>0,n>0,m+2n=mn,,即m+2n≥8,当且仅当即时取等号.∴f(m)+f(﹣2n)=|2m+1|+|﹣4n+1|≥|(2m+1)﹣(﹣4n+1)|=|2m+4n|=2(m+2n)≥16,当且仅当﹣4n+1≤0,即时,取等号.∴f(m)+f(﹣2n)≥16.。
(11套)2018年广东省全境 所有市 高考数学模拟试题汇总(打包下载)

(11套)2018年广东省所有市高考数学模拟试题汇总2018年广东省东莞市高考数学二调试卷(文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知A={1,2,4,8,16},B={y|y=log2x,x∈A},则A∩B=()A.{1,2}B.{2,4,8}C.{1,2,4}D.{1,2,4,8}2.(5分)若复数z满足(1+2i)z=(1﹣i),则|z|=()A.B.C.D.3.(5分)已知sinα﹣cosα=,则sin2α=()A.﹣ B.﹣ C.D.4.(5分)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A.B.C.D.5.(5分)在△ABC中,B=,BC边上的高等于BC,则sinA=()A.B.C.D.6.(5分)已知,则z=22x+y的最小值是()A.1 B.16 C.8 D.47.(5分)执行如图所示的程序框图,则输出的结果为()A.7 B.9 C.10 D.118.(5分)设函数f(x)=x3+ax2,若曲线y=f(x)在点P(x0,f(x0))处的切线方程为x+y=0,则点P的坐标为()A.(0,0) B.(1,﹣1)C.(﹣1,1)D.(1,﹣1)或(﹣1,1)9.(5分)在正四棱锥P﹣ABCD中,PA=2,直线PA与平面ABCD所成角为60°,E为PC的中点,则异面直线PA与BE所成角为()A.90°B.60°C.45°D.30°10.(5分)已知函数f(x)=sinx+λcosx(λ∈R)的图象关于x=﹣对称,则把函数f(x)的图象上每个点的横坐标扩大到原来的2倍,再向右平移,得到函数g(x)的图象,则函数g(x)的一条对称轴方程为()A.x=B.x=C.x=D.x=11.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.12.(5分)已知函数f(x)=xsinx+cosx+x2,则不等式的解集为()A.(e,+∞)B.(0,e) C.D.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)设向量=(x,x+1),=(1,2),且⊥,则x=.14.(5分)在各项都为正数的等比数列{a n}中,已知a1=2,,则数列{a n}的通项公式a n=.15.(5分)已知|x|≤2,|y|≤2,点P的坐标为(x,y),当x,y∈R时,点P 满足(x﹣2)2+(y﹣2)2≤4的概率为.16.(5分)已知函数,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的零点,则m的取值范围是.三.解答题:共70分,解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知数列{a n}的前n项和为S n,且S n=2a n﹣2(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{S n}的前n项和T n.18.(12分)某城市随机抽取一年(365天)内100天的空气质量指数API的监测数据,结果统计如下:记某企业每天由空气污染造成的经济损失S(单位:元),空气质量指数API为ω.在区间[0,100]对企业没有造成经济损失;在区间(100,300]对企业造成经济损失成直线模型(当API为150时造成的经济损失为500元,当API为200时,造成的经济损失为700元);当API大于300时造成的经济损失为2000元;(1)试写出是S(ω)的表达式:(2)试估计在本年内随机抽取一天,该天经济损失S大于200元且不超过600元的概率;(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面2×2列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关?附:K2=19.(12分)如图1,矩形ABCD中,AB=12,AD=6,E、F分别为CD、AB边上的点,且DE=3,BF=4,将△BCE沿BE折起至△PBE位置(如图2所示),连结AP、PF,其中PF=2.(1)求证:PF⊥平面ABED;(2)求点A到平面PBE的距离.20.(12分)已知椭圆C:的离心率为,且过点A(2,1).(Ⅰ)求椭圆C的方程;(Ⅱ)若P,Q是椭圆C上的两个动点,且使∠PAQ的角平分线总垂直于x轴,试判断直线PQ的斜率是否为定值?若是,求出该值;若不是,说明理由.21.(12分)已知函数f(x)=x2﹣(a﹣2)x﹣alnx(a∈R).(Ⅰ)求函数y=f(x)的单调区间;(Ⅱ)当a=1时,证明:对任意的x>0,f(x)+e x>x2+x+2.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.答题时请写清题号并将相应信息点涂黑.[选修4-4参数方程与极坐标系]22.(10分)在直角坐标系中,直线的参数方程为(t为参数)在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C:ρ=2.(Ⅰ)求直线的普通方程和曲线的直角坐标方程;(Ⅱ)求曲线上的点到直线的距离的最大值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a﹣1|+|x﹣2a|.(1)若f(1)<3,求实数a的取值范围;(2)若a≥1,x∈R,求证:f(x)≥2.2018年广东省东莞市高考数学二调试卷(文科)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知A={1,2,4,8,16},B={y|y=log2x,x∈A},则A∩B=()A.{1,2}B.{2,4,8}C.{1,2,4}D.{1,2,4,8}【解答】解:∵A={1,2,4,8,16},∴B={y|y=log2x,x∈A}={0,1,2,3,4},∴A∩B={1,2,4}.故选:C.2.(5分)若复数z满足(1+2i)z=(1﹣i),则|z|=()A.B.C.D.【解答】解:由(1+2i)z=(1﹣i),得=,则|z|=.故选:C.3.(5分)已知sinα﹣cosα=,则sin2α=()A.﹣ B.﹣ C.D.【解答】解:∵sinα﹣cosα=,∴(sinα﹣cosα)2=1﹣2sinαcosα=1﹣sin2α=,∴sin2α=﹣,故选:A.4.(5分)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A.B.C.D.【解答】解:设椭圆的方程为:,直线l经过椭圆的一个顶点和一个焦点,则直线方程为:,椭圆中心到l的距离为其短轴长的,可得:,4=b2(),∴,=3,∴e==.故选:B.5.(5分)在△ABC中,B=,BC边上的高等于BC,则sinA=()A.B.C.D.【解答】解:∵在△ABC中,B=,BC边上的高等于BC,∴AB=BC,由余弦定理得:AC===BC,故BC•BC=AB•AC•sinA=•BC•BC•sinA,∴sinA=,故选:D6.(5分)已知,则z=22x+y的最小值是()A.1 B.16 C.8 D.4【解答】解:作出不等式组对应的平面区域如图,设m=2x+y,则得y=﹣2x+m,平移直线y=﹣2x+m,由图象可知当直线y=﹣2x+m经过点A时,直线的截距最小,此时m最小,z也最小,由,解得,得A(1,1)此时m=2×1+1=3,z=22x+y=z=23=8,故选:C.7.(5分)执行如图所示的程序框图,则输出的结果为()A.7 B.9 C.10 D.11【解答】解:模拟程序的运行,可得:,否;,否;,否;,否;,是,输出i=9,故选:B.8.(5分)设函数f(x)=x3+ax2,若曲线y=f(x)在点P(x0,f(x0))处的切线方程为x+y=0,则点P的坐标为()A.(0,0) B.(1,﹣1)C.(﹣1,1)D.(1,﹣1)或(﹣1,1)【解答】解:∵f(x)=x3+ax2,∴f′(x)=3x2+2ax,∵函数在点(x0,f(x0))处的切线方程为x+y=0,∴3x02+2ax0=﹣1,∵x0+x03+ax02=0,解得x0=±1.当x0=1时,f(x0)=﹣1,当x0=﹣1时,f(x0)=1.故选:D.9.(5分)在正四棱锥P﹣ABCD中,PA=2,直线PA与平面ABCD所成角为60°,E为PC的中点,则异面直线PA与BE所成角为()A.90°B.60°C.45°D.30°【解答】解:连接AC,BD交于点O,连接OE,OP因为E为PC中点,所以OE∥PA,所以∠OEB即为异面直线PA与BE所成的角.因为四棱锥P﹣ABCD为正四棱锥,所以PO⊥平面ABCD,所以AO为PA在面ABCD内的射影,所以∠PAO即为PA与面ABCD所成的角,即∠PAO=60°,因为PA=2,所以OA=OB=1,OE=1.所以在直角三角形EOB中∠OEB=45°,即面直线PA与BE所成的角为45°.故选:C.10.(5分)已知函数f(x)=sinx+λcosx(λ∈R)的图象关于x=﹣对称,则把函数f(x)的图象上每个点的横坐标扩大到原来的2倍,再向右平移,得到函数g(x)的图象,则函数g(x)的一条对称轴方程为()A.x=B.x=C.x=D.x=【解答】解:根据函数f(x)=sinx+λcosx(λ∈R)的图象关于x=﹣对称,可得,可得λ=﹣1,所以.把f(x)的图象横坐标扩大到原来的2倍,可得y=sin(x﹣)的图象,再向右平移,得到函数g(x)=sin[(x﹣)﹣]=sin(x﹣)的图象,即g(x)=sin(﹣),令=kπ+,求得x=2kπ+,k∈Z,故函数g(x)的图象的对称轴方程为x=2kπ+,k∈Z.当k=0时,对称轴的方程为,故选:D.11.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D12.(5分)已知函数f(x)=xsinx+cosx+x2,则不等式的解集为()A.(e,+∞)B.(0,e) C.D.【解答】解:函数f(x)=xsinx+cosx+x2的导数为:f′(x)=sinx+xcosx﹣sinx+2x=x(2+cosx),则x>0时,f′(x)>0,f(x)递增,且f(﹣x)=xsinx+cos(﹣x)+(﹣x)2=f(x),则为偶函数,即有f(x)=f(|x|),则不等式,即为f(lnx)<f(1)即为f(|lnx|)<f(1),则|lnx|<1,即﹣1<lnx<1,解得,<x<e.故选:D.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)设向量=(x,x+1),=(1,2),且⊥,则x=.【解答】解:∵;∴;即x+2(x+1)=0;∴.故答案为:.14.(5分)在各项都为正数的等比数列{a n}中,已知a1=2,,则数列{a n}的通项公式a n=.【解答】解:设等比数列{a n}的公比为q>0,∵a1=2,,∴+=4,化为:q4﹣4q2+4=0,解得q2=2,q>0,解得q=.则数列{a n}的通项公式a n==.故答案为:.15.(5分)已知|x|≤2,|y|≤2,点P的坐标为(x,y),当x,y∈R时,点P满足(x﹣2)2+(y﹣2)2≤4的概率为.【解答】解:如图,点P所在的区域为正方形ABCD及其内部满足(x﹣2)2+(y﹣2)2≤4的点位于的区域是以C(2,2)为圆心,半径等于2的圆及其内部∴P满足(x﹣2)2+(y﹣2)2≤4的概率为P1===.故答案为:16.(5分)已知函数,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的零点,则m的取值范围是(3,+∞).【解答】解:当m>0时,函数的图象如下:∵x>m时,f(x)=x2﹣2mx+4m=(x﹣m)2+4m﹣m2>4m﹣m2,∴y要使得关于x的方程f(x)=b有三个不同的根,必须4m﹣m2<m(m>0),即m2>3m(m>0),解得m>3,∴m的取值范围是(3,+∞),故答案为:(3,+∞).三.解答题:共70分,解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知数列{a n}的前n项和为S n,且S n=2a n﹣2(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{S n}的前n项和T n.【解答】解:(Ⅰ)列{a n}的前n项和为S n,且S n=2a n﹣2①.=2a n+1﹣2②,则:S n+1=2a n,②﹣①得:a n+1即:(常数),当n=1时,a1=S1=2a1﹣2,解得:a1=2,所以数列的通项公式为:,(Ⅱ)由于:,则:,=,=2n +1﹣2.﹣2﹣2﹣ (2)=2n +2﹣4﹣2n .18.(12分)某城市随机抽取一年(365天)内100天的空气质量指数API 的监测数据,结果统计如下:记某企业每天由空气污染造成的经济损失S (单位:元),空气质量指数API 为ω.在区间[0,100]对企业没有造成经济损失;在区间(100,300]对企业造成经济损失成直线模型(当API 为150时造成的 经济损失为500元,当API 为200时,造成的经济损失为700元);当API 大于300时造成的 经济损失为2000元; (1)试写出是S (ω)的表达式:(2)试估计在本年内随机抽取一天,该天经济损失S 大于200元且不超过600元的概率;(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面2×2列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关? 附: K 2=【解答】解:(1)根据在区间[0,100]对企业没有造成经济损失;在区间(100,300]对企业造成经济损失成直线模型(当API为150时造成的经济损失为500元,当API为200时,造成的经济损失为700元);当API大于300时造成的经济损失为2000元,可得S(ω)=;(2)设“在本年内随机抽取一天,该天经济损失S大于200元且不超过600元”为事件A;由200<S≤600,得100<ω≤175,频数为33,∴P(A)=;(2)根据以上数据得到如表:K2的观测值K2=≈4.575>3.841所以有95%的把握认为空气重度污染与供暖有关.19.(12分)如图1,矩形ABCD中,AB=12,AD=6,E、F分别为CD、AB边上的点,且DE=3,BF=4,将△BCE沿BE折起至△PBE位置(如图2所示),连结AP、PF,其中PF=2.(1)求证:PF⊥平面ABED;(2)求点A到平面PBE的距离.【解答】解:(1)连结EF,由翻折不变性可知,PB=BC=6,PE=CE=9,在△PBF中,PF2+BF2=20+16=36=PB2,所以PF⊥BF…(2分)在图1中,利用勾股定理,得EF==,在△PEF中,EF2+PF2=61+20=81=PE2,∴PF⊥EF…(4分)又∵BF∩EF=F,BF⊂平面ABED,EF⊂平面ABED,∴PF⊥平面ABED.…(6分)(2)解:由(1)知PF⊥平面ABED,∴PF为三棱锥P﹣ABE的高.…(8分)设点A到平面PBE的距离为h,由等体积法得V A=V P﹣ABE,…(10分)﹣PBE即∴h=,即点A到平面PBE的距离为.…(14分)20.(12分)已知椭圆C:的离心率为,且过点A(2,1).(Ⅰ)求椭圆C的方程;(Ⅱ)若P,Q是椭圆C上的两个动点,且使∠PAQ的角平分线总垂直于x轴,试判断直线PQ的斜率是否为定值?若是,求出该值;若不是,说明理由.【解答】解:(Ⅰ)因为椭圆C的离心率为,且过点A(2,1),所以,.…(2分)因为a2=b2+c2,解得a2=8,b2=2,…(3分)所以椭圆C的方程为.…(4分)(Ⅱ)解法一:因为∠PAQ的角平分线总垂直于x轴,所以PA与AQ所在直线关于直线x=2对称.设直线PA的斜率为k,则直线AQ的斜率为﹣k.…(5分)所以直线PA的方程为y﹣1=k(x﹣2),直线AQ的方程为y﹣1=﹣k(x﹣2).设点P(x P,y P),Q(x Q,y Q),由,消去y,得(1+4k2)x2﹣(16k2﹣8k)x+16k2﹣16k﹣4=0.①因为点A(2,1)在椭圆C上,所以x=2是方程①的一个根,则,…(6分)所以.…(7分)同理.…(8分)所以.…(9分)又.…(10分)所以直线PQ的斜率为.…(11分)所以直线PQ的斜率为定值,该值为.…(12分)解法二:设点P(x1,y1),Q(x2,y2),则直线PA的斜率,直线QA的斜率.因为∠PAQ的角平分线总垂直于x轴,所以PA与AQ所在直线关于直线x=2对称.所以k PA=﹣k QA,即,①…(5分)因为点P(x1,y1),Q(x2,y2)在椭圆C上,所以,②.③由②得,得,④…(6分)同理由③得,⑤…(7分)由①④⑤得,化简得x1y2+x2y1+(x1+x2)+2(y1+y2)+4=0,⑥…(8分)由①得x1y2+x2y1﹣(x1+x2)﹣2(y1+y2)+4=0,⑦…(9分)⑥﹣⑦得x1+x2=﹣2(y1+y2).…(10分)②﹣③得,得.…(11分)所以直线PQ的斜率为为定值.…(12分)解法三:设直线PQ的方程为y=kx+b,点P(x1,y1),Q(x2,y2),则y1=kx1+b,y2=kx2+b,直线PA的斜率,直线QA的斜率.…(5分)因为∠PAQ的角平分线总垂直于x轴,所以PA与AQ所在直线关于直线x=2对称.所以k PA=﹣k QA,即=,…(6分)化简得x1y2+x2y1﹣(x1+x2)﹣2(y1+y2)+4=0.把y1=kx1+b,y2=kx2+b代入上式,并化简得2kx1x2+(b﹣1﹣2k)(x1+x2)﹣4b+4=0.(*)…(7分)由,消去y得(4k2+1)x2+8kbx+4b2﹣8=0,(**)则,…(8分)代入(*)得,…(9分)整理得(2k﹣1)(b+2k﹣1)=0,所以或b=1﹣2k.…(10分)若b=1﹣2k,可得方程(**)的一个根为2,不合题意.…(11分)若时,合题意.所以直线PQ的斜率为定值,该值为.…(12分)21.(12分)已知函数f(x)=x2﹣(a﹣2)x﹣alnx(a∈R).(Ⅰ)求函数y=f(x)的单调区间;(Ⅱ)当a=1时,证明:对任意的x>0,f(x)+e x>x2+x+2.【解答】解:(Ⅰ)函数f(x)的定义域是(0,+∞),f′(x)=2x﹣(a﹣2)﹣=…(2分)当a≤0时,f′(x)>0对任意x∈(0,+∞)恒成立,所以,函数f(x)在区间(0,+∞)单调递增;…(4分)当a>0时,由f′(x)>0得x>,由f′(x)<0,得0<x<,所以,函数在区间(,+∞)上单调递增,在区间(0,)上单调递减;(Ⅱ)当a=1时,f(x)=x2+x﹣lnx,要证明f(x)+e x>x2+x+2,只需证明e x﹣lnx﹣2>0,设g(x)=e x﹣lnx﹣2,则问题转化为证明对任意的x>0,g(x)>0,令g′(x)=e x﹣=0,得e x=,容易知道该方程有唯一解,不妨设为x0,则x0满足e x0=,当x变化时,g′(x)和g(x)变化情况如下表g(x)min=g(x0)=e x0﹣lnx0﹣2=+x0﹣2,因为x0>0,且x0≠1,所以g(x)min>2﹣2=0,因此不等式得证.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.答题时请写清题号并将相应信息点涂黑.[选修4-4参数方程与极坐标系]22.(10分)在直角坐标系中,直线的参数方程为(t为参数)在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C:ρ=2.(Ⅰ)求直线的普通方程和曲线的直角坐标方程;(Ⅱ)求曲线上的点到直线的距离的最大值.【解答】解:(Ⅰ)直线的参数方程为(t为参数),转化为:x+y﹣4=0.曲线C:ρ=2.转化为:x2+y2=2x+2y,即:x2+y2﹣2x﹣2y=0.(Ⅱ)圆的方程x2+y2﹣2x﹣2y=0,转化为标准式为:(x﹣1)2+(y﹣1)2=2,则:圆心(1,1)到直线的距离d=,所以:曲线上的点到直线的最大距离为:.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a﹣1|+|x﹣2a|.(1)若f(1)<3,求实数a的取值范围;(2)若a≥1,x∈R,求证:f(x)≥2.【解答】解:(1)因为f(1)<3,所以|a|+|1﹣2a|<3.①当a≤0时,得﹣a+(1﹣2a)<3,解得a>﹣,所以﹣<a≤0;②当0<a<时,得a+(1﹣2a)<3,解得a>﹣2,所以0<a<;③当a≥时,得a﹣(1﹣2a)<3,解得a<,所以≤a<;综上所述,实数a的取值范围是(﹣,).(2)因为a≥1,x∈R,所以f(x)=|x+a﹣1|+|x﹣2a|≥|(x+a﹣1)﹣(x﹣2a)|=|3a﹣1|=3a﹣1≥2.2018年安徽省淮北市高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分1.(5分)设复数Z满足(1+i)Z=i,则|Z|=()A.B.C.D.22.(5分)已知A={x|x2﹣2x﹣3≤0},B={y|y=x2+1},则A∩B=()A.[﹣1,3]B.[﹣3,2]C.[2,3]D.[1,3]3.(5分)函数f(x)=+ln|x|的图象大致为()A.B.C.D.4.(5分)《九章算术》是我国古代第一部数字专著,是《算经十书》中最重要的一种,成于公元一世纪左右,它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,“更相减损术”便是《九章算术》中记录的一种求最大公约数的算法,按其算理流程有如图所示程序框图,若输入的a、b分别为96、42,则输出的i为()A.4 B.5 C.6 D.75.(5分)如果实数x,y满足关系,又≥λ恒成立,则λ的取值范围为()A.(﹣∞,]B.(﹣∞,3]C.[,+∞)D.(3,+∞)6.(5分)某空间几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.7.(5分)已知等比数列{a n}中,a5=3,a4a7=45,则的值为()A.3 B.5 C.9 D.258.(5分)已知F是双曲线﹣=1(a>0,b>0)的右焦点,若点F关于双曲线的一条渐近线对称的点恰好落在双曲线的左支上,则双曲线的离心率为()A.B.C.D.9.(5分)函数f(x)在定义域R内可导,若f(1+x)=f(3﹣x),且当x∈(﹣∞,2)时,(x﹣2)f(x)<0,设a=f(0),b=f(),c=f(3),则a,b,c的大小关系是()A.a>b>c B.c>a>b C.c>b>a D.b>c>a10.(5分)已知函数f(x)=asinx﹣2cosx的一条对称轴为x=﹣,且f(x1)•f(x2)=﹣16,则|x1+x2|的最小值为()A.B.C. D.11.(5分)对于向量a,b,定义a×b为向量a,b的向量积,其运算结果为一个向量,且规定a×b的模|a×b|=|a||b|sinθ(其中θ为向量a与b的夹角),a ×b的方向与向量a,b的方向都垂直,且使得a,b,a×b依次构成右手系.如图,在平行六面体ABCD﹣EFGH中,∠EAB=∠EAD=∠BAD=60°,AB=AD=AE=2,则=()A.4 B.8 C.D.12.(5分)若存在实数x使得关于x的不等式(e x﹣a)2+x2﹣2ax+a2≤成立,则实数a的取值范围是()A.{} B.{} C.[,+∞)D.[,+∞)二、填空题:本大题共4小题,每小题5分13.(5分)已知等差数列{a n}前15项的和S15=30,则a2+a9+a13=.14.(5分)若的二项展开式中的所有二项式系数之和等于256,则该展开式中常数项的值为.15.(5分)已知函数f(x)的定义域为R,其导函数f′(x)的图象如图所示,则对于任意x1,x2∈R(x1≠x2),下列结论正确的序号是①f(x)<0恒成立;②(x1﹣x2)[f(x1)﹣f(x2)]<0;③(x1﹣x2)[f(x1)﹣f(x2)]>0;④f()>f()⑤f()<f()16.(5分)在△ABC中,D、E分别是AB、AC的中点,M是直线DE上的动点.若△ABC的面积为2,则•+2的最小值为.三、解答题17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且acosB=(3c ﹣b)cosA.(1)求cosA的值;(2)若b=3,点M在线段BC上,=2,||=3,求△ABC的面积.18.(12分)在如图所示的圆台中,AB,CD分别是下底面圆O,上底面圆O′的直径,满足AB⊥CD,又DE为圆台的一条母线,且与底面ABE成角.(Ⅰ)若面BCD与面ABE的交线为l,证明:l∥面CDE;(Ⅱ)若AB=2CD,求平面BCD的与平面ABE所成锐二面角的余弦值.19.(12分)如图为2017届淮北师范大学数学与应用数学专业N名毕业生的综合测评成绩(百分制)分布直方图,已知80~90分数段的学员数为21人.(Ⅰ)求该专业毕业总人数N和90~95分数段内的人数n;(Ⅱ)现欲将90~95分数段内的n名毕业生随机的分配往A、B、C三所学校,若每所学校至少分配两名毕业生,且甲乙两人必须进同一所学校,共有多少种不同的分配方法?(Ⅲ)若90~95分数段内的这n名毕业生中恰有两女生,设随机变量ξ表示n 名毕业生中分配往乙学校的两名学生中女生的人数,求ξ的分布列和数学期望.20.(12分)已知椭圆C:+=1(a>b>0),其左右焦点为F1,F2,过F1直线l:x+my+=0与椭圆C交于A,B两点,且椭圆离心率e=;(Ⅰ)求椭圆C的方程;(Ⅱ)若椭圆存在点M,使得2=+,求直线l的方程.21.(12分)设函数f(x)=x2﹣alnx,其中a∈R.(1)若函数f(x)在[,+∞)上单调递增,求实数a的取值范围;(2)设正实数m1,m2满足m1+m2=1,当a>0时,求证:对任意的两个正实数x1,x2,总有f(m1x1+m2x2)≤m1f(x1)+m2f(x2)成立;(3)当a=2时,若正实数x1,x2,x3满足x1+x2+x3=3,求f(x1)+f(x2)+f(x3)的最小值.[选修4-4:坐标系与参数方程选讲]22.(10分)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2sin(θ﹣),直线l的参数方程为t为参数,直线l和圆C交于A,B两点.(Ⅰ)求圆C的直角坐标方程;(Ⅱ)设l上一定点M(0,1),求|MA|•|MB|的值.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣m|﹣3,且f(x)≥0的解集为(﹣∞,﹣2]∪[4,+∞).(Ⅰ)求m的值;(Ⅱ)若∃x∈R,使得f(x)≥t+|2﹣x|成立,求实数t的取值范围.2018年安徽省淮北市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分1.(5分)设复数Z满足(1+i)Z=i,则|Z|=()A.B.C.D.2【解答】解:由(1+i)Z=i,得Z=,∴|Z|=.故选:A.2.(5分)已知A={x|x2﹣2x﹣3≤0},B={y|y=x2+1},则A∩B=()A.[﹣1,3]B.[﹣3,2]C.[2,3]D.[1,3]【解答】解:A={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3},B={y|y=x2+1}={y|y≥1},则A∩B={x|1≤x≤3}=[1,3],故选:D3.(5分)函数f(x)=+ln|x|的图象大致为()A.B.C.D.【解答】解:当x<0时,函数f(x)=,由函数y=、y=ln(﹣x)递减知函数f(x)=递减,排除CD;当x>0时,函数f(x)=,此时,f(1)==1,而选项A的最小值为2,故可排除A,只有B正确,故选:B.4.(5分)《九章算术》是我国古代第一部数字专著,是《算经十书》中最重要的一种,成于公元一世纪左右,它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,“更相减损术”便是《九章算术》中记录的一种求最大公约数的算法,按其算理流程有如图所示程序框图,若输入的a、b分别为96、42,则输出的i为()A.4 B.5 C.6 D.7【解答】解:由程序框图可知:当a=96,b=42时,满足a>b,则a=96﹣42=54,i=1由a>b,则a=54﹣42=12,i=2由a<b,则b=42﹣12=30,i=3由a<b,则b=30﹣12=18,i=4由a<b,则b=18﹣12=6,i=5由a>b,则a=12﹣6=6,i=6由a=b=6,输出i=6.故选:C.5.(5分)如果实数x,y满足关系,又≥λ恒成立,则λ的取值范围为()A.(﹣∞,]B.(﹣∞,3]C.[,+∞)D.(3,+∞)【解答】解:设z==2+,z的几何意义是区域内的点到D(3,1)的斜率加2,作出实数x,y满足关系对应的平面区域如图:由图形,可得C(,),由图象可知,直线CD的斜率最小值为=,∴z的最小值为,∴λ的取值范围是(﹣∞,].故选:A.6.(5分)某空间几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【解答】解:由三视图得该几何体是从四棱锥P﹣ABCD中挖去一个半圆锥,四棱锥的底面是以2为边长的正方形、高是2,圆锥的底面半径是1、高是2,∴所求的体积V==,故选:B.7.(5分)已知等比数列{a n}中,a5=3,a4a7=45,则的值为()A.3 B.5 C.9 D.25【解答】解:根据题意,等比数列{a n}中,a5=3,a4a7=45,则有a6==15,则q==5,则==q2=25;故选:D.8.(5分)已知F是双曲线﹣=1(a>0,b>0)的右焦点,若点F关于双曲线的一条渐近线对称的点恰好落在双曲线的左支上,则双曲线的离心率为()A.B.C.D.【解答】解:设F(c,0),渐近线方程为y=x,对称点为F'(m,n),即有=﹣,且•n=•,解得m=,n=﹣,将F'(,﹣),即(,﹣),代入双曲线的方程可得﹣=1,化简可得﹣4=1,即有e2=5,解得e=.故选:C.9.(5分)函数f(x)在定义域R内可导,若f(1+x)=f(3﹣x),且当x∈(﹣∞,2)时,(x﹣2)f(x)<0,设a=f(0),b=f(),c=f(3),则a,b,c的大小关系是()A.a>b>c B.c>a>b C.c>b>a D.b>c>a【解答】解:∵f(1+x)=f(3﹣x),∴函数f(x)的图象关于直线x=2对称,∴f(3)=f(1).当x∈(﹣∞,2)时,(x﹣2)f′(x)<0,∴f′(x)>0,即f(x)单调递增,∵0<<1,∴f(0)<f()<f(2),即a<b<c,故选:D.10.(5分)已知函数f(x)=asinx﹣2cosx的一条对称轴为x=﹣,且f(x1)•f(x2)=﹣16,则|x1+x2|的最小值为()A.B.C. D.【解答】解:f(x)=asinx﹣2cosx=sin(x+θ),由于函数f(x)的对称轴为:x=﹣,所以f(﹣)=﹣a﹣3,则|﹣a﹣3|=,解得:a=2;所以:f(x)=4sin(x﹣),由于:f(x1)•f(x2)=﹣16,所以函数f(x)必须取得最大值和最小值,所以:x1=2kπ+或x2=2kπ﹣,k∈Z;所以:|x1+x2|的最小值为.故选:C.11.(5分)对于向量a,b,定义a×b为向量a,b的向量积,其运算结果为一个向量,且规定a×b的模|a×b|=|a||b|sinθ(其中θ为向量a与b的夹角),a ×b的方向与向量a,b的方向都垂直,且使得a,b,a×b依次构成右手系.如图,在平行六面体ABCD﹣EFGH中,∠EAB=∠EAD=∠BAD=60°,AB=AD=AE=2,则=()A.4 B.8 C.D.【解答】解:据向量积定义知,向量垂直平面ABCD,且方向向上,设与所成角为θ.∵∠EAB=∠EAD=∠BAD=60°,∴点E在底面ABCD上的射影在直线AC上.作EI⊥AC于I,则EI⊥面ABCD,∴θ+∠EAI=.过I作IJ⊥AD于J,连EJ,由三垂线逆定理可得EJ⊥AD.∵AE=2,∠EAD=60°,∴AJ=1,EJ=.又∵∠CAD=30°,IJ⊥AD,∴AI=.∵AE=2,EI⊥AC,∴cos∠EAI==.∴sinθ==cos∠EAI=,cosθ=.故=||||sin∠BAD||cosθ=8××=,故选D.12.(5分)若存在实数x使得关于x的不等式(e x﹣a)2+x2﹣2ax+a2≤成立,则实数a的取值范围是()A.{} B.{} C.[,+∞)D.[,+∞)【解答】解:不等式(e x﹣a)2+x2﹣2ax+a2≤成立,即为(e x﹣a)2+(x﹣a)2≤,表示点(x,e x)与(a,a)的距离的平方不超过,即最大值为.由(a,a)在直线l:y=x上,设与直线l平行且与y=e x相切的直线的切点为(m,n),可得切线的斜率为e m=1,解得m=0,n=1,切点为(0,1),由切点到直线l的距离为直线l上的点与曲线y=e x的距离的最小值,可得(0﹣a)2+(1+a)2=,解得a=,则a的取值集合为{}.故选:A.二、填空题:本大题共4小题,每小题5分13.(5分)已知等差数列{a n}前15项的和S15=30,则a2+a9+a13=6.【解答】解:∵设等差数列的等差为d,{a n}前15项的和S15=30,∴=30,即a1+7d=2,则a2+a9+a13=(a1+d)+(a1+8d)+(a1+12d)=3(a1+7d)=6.故答案为:6.14.(5分)若的二项展开式中的所有二项式系数之和等于256,则该展开式中常数项的值为1120.【解答】解:由题意可知,2n=256,解得n=8.∴=,其展开式的通项=,令8﹣2r=0,得r=4.∴该展开式中常数项的值为.故答案为:1120.15.(5分)已知函数f(x)的定义域为R,其导函数f′(x)的图象如图所示,则对于任意x1,x2∈R(x1≠x2),下列结论正确的序号是②⑤①f(x)<0恒成立;②(x1﹣x2)[f(x1)﹣f(x2)]<0;③(x1﹣x2)[f(x1)﹣f(x2)]>0;④f()>f()⑤f()<f()【解答】解:由导函数的图象可知,导函数f′(x)的图象在x轴下方,即f′(x)<0,故原函数为减函数,并且是,递减的速度是先快后慢.所以f(x)的图象如图所示:f(x)<0恒成立,没有依据,故①不正确;②表示(x1﹣x2)与[f(x1)﹣f(x2)]异号,即f(x)为减函数.故②正确;③表示(x1﹣x2)与[f(x1)﹣f(x2)]同号,即f(x)为增函数.故③不正确,④⑤左边边的式子意义为x1,x2中点对应的函数值,即图中点B的纵坐标值,右边式子代表的是函数值得平均值,即图中点A的纵坐标值,显然有左边小于右边,故④不正确,⑤正确,综上,正确的结论为②⑤.故答案为:②⑤.16.(5分)在△ABC中,D、E分别是AB、AC的中点,M是直线DE上的动点.若△ABC的面积为2,则•+2的最小值为2.【解答】解:∵D、E是AB、AC的中点,∴M到BC的距离等于点A到BC的距离的一半,=2S△MBC,而△ABC的面积2,则△MBC的面积S△MBC=1,∴S△ABCS△MBC=丨MB丨•丨MC丨sin∠BMC=1,∴丨MB丨•丨MC丨=.∴•=丨MB丨•丨MC丨cos∠BMC=.由余弦定理,丨BC丨2=丨BM丨2+丨CM丨2﹣2丨BM丨•丨CM丨cos∠BMC,显然,BM、CM都是正数,∴丨BM丨2+丨CM丨2≥2丨BM丨•丨CM丨,∴丨BC丨2=丨BM丨2+丨CM丨2﹣2丨BM丨×丨CM丨cos∠BMC=2×﹣2×.∴•+2≥+2×﹣2×=2•,方法一:令y=,则y′=,令y′=0,则cos∠BMC=,此时函数在(0,)上单调减,在(,1)上单调增,∴cos∠BMC=时,取得最小值为,•+2的最小值为2;方法二:令y=,则ysin∠BMC+cos∠BMC=2,则sin(∠BMC+α)=2,tanα=,则sin(∠BMC+α)=≤1,解得:y≥,则•+2的最小值为2;故答案为:2.三、解答题17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且acosB=(3c ﹣b)cosA.(1)求cosA的值;(2)若b=3,点M在线段BC上,=2,||=3,求△ABC的面积.【解答】(本题满分为12分)解:(1)因为acosB=(3c﹣b)cosA,由正弦定理得:sinAcosB=(3sinC﹣sinB)cosA,即sinAcosB+sinBcosA=3sinCcosA,可得:sinC=3sinCcosA,在△ABC中,sinC≠0,所以.…(5分)(2)∵=2,两边平方得:=4,由b=3,||=3,,可得:,解得:c=7或c=﹣9(舍),所以△ABC的面积.…(12分)18.(12分)在如图所示的圆台中,AB,CD分别是下底面圆O,上底面圆O′的直径,满足AB⊥CD,又DE为圆台的一条母线,且与底面ABE成角.(Ⅰ)若面BCD与面ABE的交线为l,证明:l∥面CDE;(Ⅱ)若AB=2CD,求平面BCD的与平面ABE所成锐二面角的余弦值.【解答】(Ⅰ)证明:如图,在圆台OO′中,∵CD⊂圆O′,∴CD∥平面ABE,∵面BCD∩面ABE=l,∴l∥CD,∵CD⊂平面CDE,l⊄平面CDE,∴l∥面CDE;(Ⅱ)解:连接OO′、BO′、OE,则CD∥OE,由AB⊥CD,得AB⊥OE,又O′B在底面的射影为OB,由三垂线定理知:O′B⊥OE,∴O′B⊥CD,∴∠O′BO就是求面BCD与底面ABE所成二面角的平面角.设AB=4,由母线与底面成角,可得OE=2O′D=2,DE=2,OB=2,OO′=,∴cos∠O′BO=.19.(12分)如图为2017届淮北师范大学数学与应用数学专业N名毕业生的综合测评成绩(百分制)分布直方图,已知80~90分数段的学员数为21人.(Ⅰ)求该专业毕业总人数N和90~95分数段内的人数n;(Ⅱ)现欲将90~95分数段内的n名毕业生随机的分配往A、B、C三所学校,若每所学校至少分配两名毕业生,且甲乙两人必须进同一所学校,共有多少种不同的分配方法?(Ⅲ)若90~95分数段内的这n名毕业生中恰有两女生,设随机变量ξ表示n 名毕业生中分配往乙学校的两名学生中女生的人数,求ξ的分布列和数学期望.【解答】解:(Ⅰ)80~90分数段的毕业生的频率为:p1=(0.04+0.03)×5=0.35,此分数段的学员总数为21人,∴毕业生的总人数N为N==60,90~95分数段内的人数频率为:p2=1﹣(0.01+0.04+0.05+0.04+0.03+0.01)×5=0.1,∴90~95分数段内的人数n=60×0.1=6.(Ⅱ)将90~95分数段内的6名毕业生随机的分配往A、B、C三所学校,每所学校至少分配两名毕业生,且甲乙两人必须进同一所学校,共有:=18不同的分配方法.(Ⅲ)ξ所有可能取值为0,1,2,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,所以ξ的分布列为:所以随机变量ξ数学期望为E(ξ)==.20.(12分)已知椭圆C:+=1(a>b>0),其左右焦点为F1,F2,过F1直线l:x+my+=0与椭圆C交于A,B两点,且椭圆离心率e=;(Ⅰ)求椭圆C的方程;(Ⅱ)若椭圆存在点M,使得2=+,求直线l的方程.【解答】解:(Ⅰ)过F1直线l:x+my+=0,令y=0,解得x=﹣,∴c=,∵e==,∴a=2,∴b2=a2﹣c2=4﹣3=1,∴椭圆C的方程为+y2=1;(Ⅱ)设A(x1,y1),B(x2,y2),M(x3,y3),由2=+,得:x3=x1+x2,y3=y1+y2代入椭圆方程可得:(x1+x2)2+(y1+y2)2﹣1=0,∴(x12+y12)+(x22+y22)+(x1x2+4y1y2)=1,∴x1x2+4y1y2=0联立方程消x可得(m2+4)y2+2my﹣1=0,∴y1+y2=,y1y2=,∴x1x2+4y1y2=(my1+)(my2+)+4y1y2=(m2+4)4y1y2+m(y1+y2)+3=0,即m2=2,解得m=±所求直线l的方程:x±y+=0.21.(12分)设函数f(x)=x2﹣alnx,其中a∈R.(1)若函数f(x)在[,+∞)上单调递增,求实数a的取值范围;(2)设正实数m1,m2满足m1+m2=1,当a>0时,求证:对任意的两个正实数x1,x2,总有f(m1x1+m2x2)≤m1f(x1)+m2f(x2)成立;(3)当a=2时,若正实数x1,x2,x3满足x1+x2+x3=3,求f(x1)+f(x2)+f(x3)的最小值.【解答】解:(1)函数f(x)=x2﹣alnx,导数为f′(x)=x﹣,函数f(x)在[,+∞)上单调递增,可得f′(x)=x﹣≥0在[,+∞)恒成立,即为a≤x2的最小值,由x2在[,+∞)的最小值为,可得a≤;(2)证明:由f(x)=x2﹣alnx,a>0,可得f′(x)=x﹣,f″(x)=1+>0,即有f(x)为凹函数,由m1+m2=1,可得对任意的两个正实数x1,x2,总有f(m1x1+m2x2)≤m1f(x1)+m2f(x2)成立;(3)由f(x)=x2﹣2lnx,可得导数为f′(x)=x﹣,f″(x)=1+>0,则f(x)为凹函数,有f()≤[f(x1)+f(x2)+f(x3)],即为f(x1)+f(x2)+f(x3)≥3f()=3f(1)=3×=,则f(x1)+f(x2)+f(x3)的最小值为.[选修4-4:坐标系与参数方程选讲]22.(10分)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2sin(θ﹣),直线l的参数方程为t为参数,直线l和圆C交于A,B两点.(Ⅰ)求圆C的直角坐标方程;(Ⅱ)设l上一定点M(0,1),求|MA|•|MB|的值.【解答】(本小题满分10分)解:(Ⅰ)∵圆C的极坐标方程为:ρ=2sin(θ﹣)=2(sinθcos﹣cosθsin)=2sinθ﹣2cosθ,∴ρ2=2ρsinθ﹣2ρcosθ,∴圆C的直角坐标方程x2+y2=2y﹣2x,即(x+1)2+(y﹣1)2=2.(Ⅱ)直线l的参数方程为,t为参数,直线l的参数方程可化为,t′为参数,代入(x+1)2+(y﹣1)2=2,得(﹣+1)2+()2=2,化简得:t'2﹣﹣1=0,∴=﹣1,∴|MA|•|MB|=||=1.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣m|﹣3,且f(x)≥0的解集为(﹣∞,﹣2]∪[4,+∞).(Ⅰ)求m的值;(Ⅱ)若∃x∈R,使得f(x)≥t+|2﹣x|成立,求实数t的取值范围.【解答】(本小题满分10分)选修4﹣5:不等式选讲解:(Ⅰ)∵函数f(x)=|x﹣m|﹣3,且f(x)≥0的解集为(﹣∞,﹣2]∪[4,+∞).即|x﹣m|﹣3≥0的解集为(﹣∞,﹣2]∪[4,+∞).∴m+3=4,m﹣3=﹣2,解得m=1.(Ⅱ)∵∃x∈R,使得f(x)≥t+|2﹣x|成立,即|x﹣1|﹣3≥t+|2﹣x|,∴∃x∈R,|x﹣1|﹣|2﹣x|≥t+3,令g(t)=|x﹣1|﹣|x﹣2|=,∴∃x∈R,|x﹣1|﹣|2﹣x|≥t+3成立,∴t+3≤g(x)max=1,∴t≤﹣2.2018年广东省佛山市高考数学一模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={﹣1,0,1},B={x|x﹣x2=0},则A∩B=()A.{0}B.{1}C.(0,1) D.{0,1}2.(5分)设复数z 1=2+i,z2=1+ai,若,则实数a=()A.﹣2 B.C.D.23.(5分)若变量x,y满足约束条件,则z=3x﹣2y的最小值为()A.﹣1 B.0 C.3 D.94.(5分)袋中有5个球,其中红色球3个,标号分别为1,2,3;篮色球2个,标号分别为1,2;从袋中任取两个球,则这两个球颜色不同且标号之和不小于4的概率为()A.B.C.D.5.(5分)已知命题p:∀x>1,log2x+4log x2>4,则¬p为()。
2018年北京专家高考模拟试卷(三)文科数学参考答案

n( 3)n 4
( 3)n 4
3n 4
∴ n 3 时, cn1 cn ; n 4 时, cn1 cn
∴ c1 c2 c3 c4 c5 c6
∴
n(
3 4
)n
max
c3
c4
81 64
∴ k 27 ∴实数 k 的取值范围为 (, 27) ,故选 D .
64
64
11. B【解析】法 1:以 A 为坐标原点, AB 为 x 轴正方向建系,则有
a4
30,
解得:
a2
3, a4
27
或
a2
27, a4
3 ,故 q2
1 9
或 q2
9,
q 0,q 3 或 q 1 . 3
14. 3 【解析】执行循环体,依次得到 S 的值为 2 , 4 , 3 , 1 , 2 , 4 , 3 ,可得,S 是以 4 为周期的循环,故可
IA
IA
7
.故
最大值为
7
.
IA
IA
IA
4
4
12. D【解析】 f x 1 x2 mx m n ln x (x 0) , f (x) x m m n
2
2
2x
2x2
2mx 2x
m
n
,由
f
(x)
的两个极值点
x1 ,
x2
满足 0
x1
1
x2
,得函数
g(x)
2x2
2mx
m
n
的两个零点
x1 ,
2
13
13
sin( ) sin[2 ( )] sin 2 cos( ) cos 2 sin( ) 16 .故选 A. 65
2018届赣州市高考理科数学模拟试卷及答案

2018 届赣州市高考理科数学模拟试卷及答案理科考生要想考好理科数学,就需要多做一些理科数学模拟试卷,对自己复习后的知识进行查漏补缺,这样将对你高考很有帮助,下面是为大家精心推荐的2018 届赣州市高考理科数学模拟试卷,希望能够对您有所帮助。
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A.B.C.D.2. 已知为虚数单位,,则复数的共轭复数为()A.B.C.D.3. 总体由编号为01, 02, 03,…,49, 50的50个个体组成,利用随机数表(以下选取了随机数表中的第1 行和第2行)选取5个个体,选取方法是从随机数表第1 行的第9 列和第10 列数字开始由左向右读取,则选出来的4 个个体的编号为()A.05B.09C.11D.204. 已知双曲线的一条渐近线方程为,则的离心率为()A.B. 或C.2D.5. 执行下图程序框图,若输出,则输入的为()A. 或或1B.C. 或1D.16. 数列是首项,对于任意,有,则前5 项和()A.121B.25C.31D.357. 某三棱锥的三视图如图所示,则其体积为()A.4B.8C.D.8. 函数(其中为自然对数的底数)的图象大致为()ABCD9. 若,则()A.1B.513C.512D.51110. 函数() 在内的值域为,则的取值范围是()A.B.C.D.11. 抛物线的焦点为,为准线上一点,为轴上一点,为直角,若线段的中点在抛物线上,则的面积为()A.B.C.D.12. 已知函数有两个极值点,且,若,函数,则()A. 恰有一个零点B. 恰有两个零点C. 恰有三个零点D. 至多两个零点第H卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知向量,,则在方向上的投影为.14. 直线的三个顶点都在球的球面上,,若三棱锥的体积为 2 ,则该球的表面积为.15. 已知变量满足约束条件,目标函数的最小值为,则实数.16. 数列的前项和为,若,则.三、解答题(本大题共6 小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在中,角,,所对应的边分别为,,,.(1) 求证:;(2) 若,为锐角,求的取值范围.18. 某学校用简单随机抽样方法抽取了100 名同学,对其日均课外阅读时间(单位:分钟) 进行调查,结果如下:男同学人数711151221女同学人数89171332若将日均课外阅读时间不低于60 分钟的学生称为“读书迷” .(1) 将频率视为概率,估计该校4000 名学生中“读书迷”有多少人?(2) 从已抽取的8 名“读书迷” 中随机抽取4 位同学参加读书日宣传活动.(i) 求抽取的4 位同学中既有男同学又有女同学的概率;(ii) 记抽取的“读书迷”中男生人数为,求的分布列和数学期望.19. 如图,平行四边形中,,,,,分别为,的中点,平面.(1) 求证:平面;(2) 求直线与平面所成角的正弦值.20. 已知椭圆经过点,且离心率为.(1)求椭圆的方程;直线与圆相切于点,且与椭圆相交于不同的两点,,求的最(2)大值.21.已知函数,.(1)讨论函数的单调性;(2)若函数在区间有唯一零点,证明:.22.点是曲线上的动点,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,以极点为中心,将点逆时针旋转得到点,设点的轨迹方程为曲线.(1) 求曲线,的极坐标方程;(2) 射线与曲线,分别交于,两点,定点,求的面积23. 已知函数.(1) 若,解不等式;(2) 当时,,求满足的的取值范围.一.选择题:BACCDDBDACBA二.填空题:(13)(14)(15)(16)三.解答题:(17) 解:(I)由根据正弦定理得,即,得.(n)由余弦定理得,由知,由为锐角,得,所以.从而有.所以的取值范围是.(18) 解:(I )设该校4000名学生中“读书迷”有人,贝几解得. 所以该校4000名学生中“读书迷”约有320人.(n)(i)抽取的4名同学既有男同学,又有女同学的概率:(ii)可取0, 1, 2, 3.的分布列为:0123(19) 解:(1) 连接,因为平面,平面,所以,在平行四边形中,,,所以,,从而有,所以,又因为,所以平面,平面,从而有,又因为,,所以平面.(2) 以为坐标原点,建立如图所示的空间直角坐标系,则,,,因为平面,所以,又因为为中点,所以,所以,,> > >设平面的法向量为,由,得,,令,得.设直线与平面所成的角为,则:即直线与平面所成角的正弦值为.(20) 解:(I)由已知可得,,解得,,所以椭圆r的方程为(n)当直线垂直于轴时,由直线与圆:相切,可知直线的方程为,易求. 当直线不垂直于轴时,设直线的方程为,由直线与圆相切,得,即,将代入,得,设,,则,,又因为,所以,当且仅当,即时等号成立,综上所述,的最大值为2.(21) 解:(I),,令,,若,即,则,当时,,单调递增,若,即,则,仅当时,等号成立,当时,,单调递增. 若,即,则有两个零点,,由,得,当时,,,单调递增;当时,,,单调递减;当时,,,单调递增.综上所述,当时,在上单调递增;当时,在和上单调递增,在上单调递减.(n)由(1)及可知:仅当极大值等于零,即时,符合要求此时,就是函数在区间的唯一零点.所以,从而有,又因为,所以,令,则,设,则,再由(1) 知:,,单调递减,又因为,,所以,即.(22) 解:(I)曲线的极坐标方程为.设,则,则有.所以,曲线的极坐标方程为.( n ) 到射线的距离为,则.(23) 解:(I),所以表示数轴上的点到和1 的距离之和,因为或2 时,依据绝对值的几何意义可得的解集为.(n),当时,,等号当且仅当时成立,所以无解当时,,由得,解得,又因为,所以; 当时,,解得,综上,的取值范围是.。
2018年全国一般高等学校招生高考数学模拟试卷理科一及答案

2018年全国一般高等学校招生高考数学模拟试卷(理科)(一)一、选择题:本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.(5分)已知集合A={x|2﹣x>0},B={x|()x<1},那么()A.A∩B={x|0<x≤2} B.A∩B={x|x<0} C.A∪B={x|x<2} D.A∪B=R2.(5分)已知i为虚数单位,a为实数,复数z知足z+3i=a+ai,假设复数z 是纯虚数,那么()A.a=3 B.a=0 C.a≠0 D.a<03.(5分)我国数学家邹元治利用如图证明勾股定理,该图顶用勾(a)和股(b)别离表示直角三角形的两条直角边,用弦(c)表示斜边,现已知该图中勾为3,股为4,假设从图中随机取一点,那么此点不落在中间小正方形中的概率是()A. B.C.D.4.(5分)已知等差数列{a n}的前n项和为S n,且S9=6π,那么tan a5=()A. B.C.﹣D.﹣5.(5分)已知函数f(x)=x+(a∈R),那么以下结论正确的选项是()A.∀a∈R,f(x)在区间(0,+∞)内单调递增B.∃a∈R,f(x)在区间(0,+∞)内单调递减C.∃a∈R,f(x)是偶函数D.∃a∈R,f(x)是奇函数,且f(x)在区间(0,+∞)内单调递增6.(5分)(1+x)(2﹣x)4的展开式中x项的系数为()A.﹣16 B.16 C.48 D.﹣487.(5分)如图是某个几何体的三视图,那么那个几何体的表面积是()A.π+4+4 B.2π+4+4 C.2π+4+2 D.2π+2+4 8.(5分)假设a>1,0<c<b<1,那么以下不等式不正确的选项是()A.log2018a>log2018b B.log b a<log c aC.(a﹣c)a c>(a﹣c)a b D.(c﹣b)a c>(c﹣b)a b9.(5分)执行如下图的程序框图,假设输出的n值为11,那么判定框中的条件能够是()A.S<1022?B.S<2018?C.S<4095?D.S>4095?10.(5分)已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|≤)的部份图象如下图,将函数f(x)的图象向左平移个单位长度后,所得图象与函数y=g (x)的图象重合,那么()A.g(x)=2sin(2x+)B.g(x)=2sin(2x+)C.g(x)=2sin2x D.g(x)=2sin(2x﹣)11.(5分)已知抛物线C:y2=4x的核心为F,过点F作斜率为1的直线l交抛物线C与P、Q两点,那么+的值为()A.B.C.1 D.212.(5分)已知数列{an }中,a1=2,n(an+1﹣an)=an+1,n∈N*,假设关于任意的a∈[﹣2,2],n∈N*,不等式<2t2+at﹣1恒成立,那么实数t的取值范围为()A.(﹣∞,﹣2]∪[2,+∞)B.(﹣∞,﹣2]∪[1,+∞)C.(﹣∞,﹣1]∪[2,+∞)D.[﹣2,2]二、填空题(每题5分,总分值20分,将答案填在答题纸上)13.(5分)已知向量=(1,λ),=(3,1),假设向量2﹣与=(1,2)共线,那么向量在向量方向上的投影为.14.(5分)假设实数x,y知足,那么z=x﹣3y+1的最大值是.15.(5分)过双曲线﹣=1(a>0,b>0)的下核心F1作y轴的垂线,交双曲线于A,B两点,假设以AB为直径的圆恰好于其上核心F2,那么双曲线的离心率为.16.(5分)一底面为正方形的长方体各棱长之和为24,那么当该长方体体积最大时,其外接球的体积为.三、解答题(本大题共5小题,共70分.解许诺写出文字说明、证明进程或演算步骤.)17.(12分)如图,在△ABC中,角A,B,C所对的边别离为a,b,c,假设2acosA=bcosC+ccosB.(1)求角A的大小;(2)假设点D在边AC上,且BD是∠ABC的平分线,AB=2,BC=4,求AD的长.18.(12分)如图,在三棱柱ABC﹣A1B1C1中,侧棱CC1⊥地面ABC,且CC1=2AC=2BC,AC⊥BC,D是AB的中点,点M在侧棱CC1上运动.(1)当M是棱CC1的中点时,求证:CD∥平面MAB1;(2)当直线AM与平面ABC所成的角的正切值为时,求二面角A﹣MB1﹣C1的余弦值.19.(12分)第一届“一带一路”国际合作顶峰论坛于2017年5月14日至15日在北京举行,这是2017年我国重要的主场外交活动,对推动国际和地域合作具有重要意义.某高中政教处为了调查学生对“一带一路”的关注情形,在全校组织了“一带一路知多少”的知识问卷测试,并从中随机抽取了12份问卷,取得其测试成绩(百分制),如茎叶图所示.(1)写出该样本的众数、中位数,假设该校共有3000名学生,试估量该校测试成绩在70分以上的人数;(2)从所抽取的70分以上的学生中再随机选取1人.①记X表示选取4人的成绩的平均数,求P(X≥87);②记ξ表示测试成绩在80分以上的人数,求ξ的散布和数学期望.20.(12分)已知椭圆C:+=1(a>b>0)的左、右核心为F1,F2,离心率为,点P在椭圆C上,且△PF1F2的面积的最大值为2.(1)求椭圆C的方程;(2)已知直线l:y=kx+2(k≠0)与椭圆C交于不同的两点M,N,假设在x轴上存在点G,使得|GM|=|GN|,求点G的横坐标的取值范围.21.(12分)设函数f(x)=e x﹣2a﹣ln(x+a),a∈R,e为自然对数的底数.(1)假设a>0,且函数f(x)在区间[0,+∞)内单调递增,求实数a的取值范围;(2)假设0<a<,试判定函数f(x)的零点个数.请考生在2二、23两题中任选一题作答,若是多做,那么按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)已知在平面直角坐标系xOy中,椭圆C的方程为+=1,以O 为极点,x轴的非负半轴为极轴,取相同的长度单位成立极坐标系,直线l的极坐标方程为ρsin(θ+)=3.(1)求直线l的直角坐标方程和椭圆C的参数方程;(2)设M(x,y)为椭圆C上任意一点,求|2x+y﹣1|的最大值.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣2|.(1)求不等式f(x)+f(2+x)≤4的解集;(2)假设g(x)=f(x)﹣f(2﹣x)的最大值为m,对任意不相等的正实数a,b,证明:af(b)+bf(a)≥m|a﹣b|.2018年全国一般高等学校招生高考数学模拟试卷(理科)(一)参考答案与试题解析一、选择题:本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.(5分)已知集合A={x|2﹣x>0},B={x|()x<1},那么()A.A∩B={x|0<x≤2} B.A∩B={x|x<0} C.A∪B={x|x<2} D.A∪B=R【解答】解:集合A={x|2﹣x>0}={x|x<2},B={x|()x<1}={x|x>0},那么A∩B={x|0<x<2},A∪B=R.应选:D.2.(5分)已知i为虚数单位,a为实数,复数z知足z+3i=a+ai,假设复数z 是纯虚数,那么()A.a=3 B.a=0 C.a≠0 D.a<0【解答】解:由z+3i=a+ai,得z=a+(a﹣3)i,又∵复数z是纯虚数,∴,解得a=0.应选:B.3.(5分)我国数学家邹元治利用如图证明勾股定理,该图顶用勾(a)和股(b)别离表示直角三角形的两条直角边,用弦(c)表示斜边,现已知该图中勾为3,股为4,假设从图中随机取一点,那么此点不落在中间小正方形中的概率是()A. B. C.D.【解答】解:设直角三角形的长直角边为a=4,短直角边为b=3,由题意c=5,∵大方形的边长为a+b=3+4=7,小方形的边长为c=5,那么大正方形的面积为49,小正方形的面积为25,∴知足题意的概率值为:1﹣=.应选:B.4.(5分)已知等差数列{an }的前n项和为Sn,且S9=6π,那么tan a5=()A. B.C.﹣D.﹣【解答】解:由等差数列的性质可得:S9=6π==9a5,∴a=.5=tan=﹣.那么tan a5应选:C.5.(5分)已知函数f(x)=x+(a∈R),那么以下结论正确的选项是()A.∀a∈R,f(x)在区间(0,+∞)内单调递增B.∃a∈R,f(x)在区间(0,+∞)内单调递减C.∃a∈R,f(x)是偶函数D.∃a∈R,f(x)是奇函数,且f(x)在区间(0,+∞)内单调递增【解答】解:当a≤0时,函数f(x)=x+在区间(0,+∞)内单调递增,当a>0时,函数f(x)=x+在区间(0,]上单调递减,在[,+∞)内单调递增,故A,B均错误,∀a∈R,f(﹣x)=﹣f(x)均成立,故f(x)是奇函数,故C错误,应选:D.6.(5分)(1+x)(2﹣x)4的展开式中x项的系数为()A.﹣16 B.16 C.48 D.﹣48【解答】解:∵(2﹣x)4展开式的通项公式为 T=•24﹣r(﹣x)r,r+1∴(1+x)(2﹣x)4的展开式中x项的系数为﹣•23+24=﹣16,应选:A.7.(5分)如图是某个几何体的三视图,那么那个几何体的表面积是()A.π+4+4 B.2π+4+4 C.2π+4+2 D.2π+2+4【解答】解:由三视图可知:该几何体由一个半圆柱与三棱柱组成的几何体.其直观图如下所示:其表面积S=2×π•12+2××2×1++﹣2×1=2π+4+4,应选:B8.(5分)假设a>1,0<c<b<1,那么以下不等式不正确的选项是()A.log2018a>log2018b B.logba<logcaC.(a﹣c)a c>(a﹣c)a b D.(c﹣b)a c>(c﹣b)a b【解答】解:依照对数函数的单调性可得log2018a>log2018b正确,logba<logca正确,∵a>1,0<c<b<1,∴a c<a b,a﹣c>0,∴(a﹣c)a c<(a﹣c)a b,故C不正确,∵c﹣b<0,∴(c﹣b)a c>(c﹣b)a b正确,应选:C.9.(5分)执行如下图的程序框图,假设输出的n值为11,那么判定框中的条件能够是()A.S<1022?B.S<2018?C.S<4095?D.S>4095?【解答】解:第1次执行循环体,S=3,应不知足输出的条件,n=2,第2次执行循环体,S=7,应不知足输出的条件,n=3,第3次执行循环体,S=15,应不知足输出的条件,n=4,第4次执行循环体,S=31,应不知足输出的条件,n=5,第5次执行循环体,S=63,应不知足输出的条件,n=6,第6次执行循环体,S=127,应不知足输出的条件,n=7,第7次执行循环体,S=255,应不知足输出的条件,n=8,第8次执行循环体,S=511,应不知足输出的条件,n=9,第9次执行循环体,S=1023,应不知足输出的条件,n=10,第10次执行循环体,S=2047,应不知足输出的条件,n=11第11次执行循环体,S=4095,应知足输出的条件,故判定框中的条件能够是S<4095?,应选:C.10.(5分)已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|≤)的部份图象如下图,将函数f(x)的图象向左平移个单位长度后,所得图象与函数y=g (x)的图象重合,那么()A.g(x)=2sin(2x+)B.g(x)=2sin(2x+)C.g(x)=2sin2x D.g(x)=2sin(2x﹣)【解答】解:依照函数f(x)=2sin(ωx+φ)(ω>0,|φ|≤)的部份图象,可得==+,∴ω=2,依照+φ=2•(﹣)+φ=0,∴φ=,故f(x)=2sin(2x+).将函数f(x)的图象向左平移个单位长度后,所得图象与函数y=g(x)的图象重合,故g(x)=2sin(2x++)=2sin(2x+).应选:A.11.(5分)已知抛物线C:y2=4x的核心为F,过点F作斜率为1的直线l交抛物线C与P、Q两点,那么+的值为()A.B.C.1 D.2【解答】解:抛物线C:y2=4x的核心为F(1,0),过点F作斜率为1的直线l:y=x﹣1,可得,消去y可得:x2﹣6x+1=0,可得xP +xQ=6,xPxQ=1,|PF|=xP +1,|QF|=xQ+1,|PF||QF|=xQ +xP+xPxQ+1=6+1+1=8,则+===1.应选:C.12.(5分)已知数列{an }中,a1=2,n(an+1﹣an)=an+1,n∈N*,假设关于任意的a∈[﹣2,2],n∈N*,不等式<2t2+at﹣1恒成立,那么实数t的取值范围为()A.(﹣∞,﹣2]∪[2,+∞)B.(﹣∞,﹣2]∪[1,+∞)C.(﹣∞,﹣1]∪[2,+∞)D.[﹣2,2]【解答】解:依照题意,数列{a n }中,n (a n+1﹣a n )=a n +1, 即na n+1﹣(n+1)a n =1,那么有﹣==﹣,那么有=(﹣)+(﹣)+(﹣)+…+(a 2﹣a 1)+a 1=(﹣)+(﹣)+(﹣)+…+(1﹣)+2=3﹣<3,<2t 2+at ﹣1即3﹣<2t 2+at ﹣1,∵关于任意的a ∈[﹣2,2],n ∈N *,不等式<2t 2+at ﹣1恒成立,∴2t 2+at ﹣1≥3, 化为:2t 2+at ﹣4≥0,设f (a )=2t 2+at ﹣4,a ∈[﹣2,2], 可得f (2)≥0且f (﹣2)≥0,即有即,可得t ≥2或t ≤﹣2,那么实数t 的取值范围是(﹣∞,﹣2]∪[2,+∞). 应选:A .二、填空题(每题5分,总分值20分,将答案填在答题纸上)13.(5分)已知向量=(1,λ),=(3,1),假设向量2﹣与=(1,2)共线,那么向量在向量方向上的投影为0 .【解答】解:向量=(1,λ),=(3,1),向量2﹣=(﹣1,2λ﹣1),∵向量2﹣与=(1,2)共线,∴2λ﹣1=﹣2,即λ=.∴向量=(1,﹣),∴向量在向量方向上的投影为||•cos<,>===0.故答案为:0.14.(5分)假设实数x,y知足,那么z=x﹣3y+1的最大值是.【解答】解:实数x,y知足,对应的可行域如图:线段AB,z=x﹣3y+1化为:y=,若是z最大,那么直线y=在y轴上的截距最小,作直线l:y=,平移直线y=至B点时,z=x﹣3y+1取得最大值,联立,解得B(,).因此z=x﹣3y+1的最大值是:.故答案为:﹣.15.(5分)过双曲线﹣=1(a>0,b>0)的下核心F作y轴的垂线,交1,那么双曲线的双曲线于A,B两点,假设以AB为直径的圆恰好于其上核心F2离心率为.作y轴的垂线,【解答】解:过双曲线﹣=1(a>0,b>0)的下核心F1交双曲线于A,B两点,那么|AB|=,,以AB为直径的圆恰好于其上核心F2可得:,∴c2﹣a2﹣2ac=0,可得e2﹣2e﹣1=0,解得e=1+,e=1﹣舍去.故答案为:1+.16.(5分)一底面为正方形的长方体各棱长之和为24,那么当该长方体体积最大时,其外接球的体积为4.【解答】解:设该项长方体底面边长为x米,由题意知其高是:=6﹣2x,(0<x<3)那么长方体的体积V(x)=x2(6﹣2x),(0<x<3),V′(x)=12x﹣6x2=6x(2﹣x),由V′(x)=0,得x=2,且当0<x<2时,V′(x)>0,V(x)单调递增;当2<x<3时,V′(x)<0,V(x)单调递减.∴体积函数V(x)在x=2处取得唯一的极大值,即为最大值,现在长方体的高为6﹣2x=2,∴其外接球的直径2R==2,∴R=,∴其外接球的体积V==4.故答案为:4.三、解答题(本大题共5小题,共70分.解许诺写出文字说明、证明进程或演算步骤.)17.(12分)如图,在△ABC中,角A,B,C所对的边别离为a,b,c,假设2acosA=bcosC+ccosB.(1)求角A的大小;(2)假设点D在边AC上,且BD是∠ABC的平分线,AB=2,BC=4,求AD的长.【解答】解:(1)∵2acosA=bcosC+ccosB,∴2sinAcosA=sinBcosC+sinCcosB=sin(B+C)=sinA,∵sinA≠0,∴cosA=,∴A=.(2)在△ABC中,由余弦定理的cosA==,解得AC=1+或AC=1﹣(舍).∵BD是∠ABC的平分线,∴=,∴AD=AC=.18.(12分)如图,在三棱柱ABC﹣A1B1C1中,侧棱CC1⊥地面ABC,且CC1=2AC=2BC,AC⊥BC,D是AB的中点,点M在侧棱CC1上运动.(1)当M是棱CC1的中点时,求证:CD∥平面MAB1;(2)当直线AM与平面ABC所成的角的正切值为时,求二面角A﹣MB1﹣C1的余弦值.【解答】证明:(1)取线段AB的中点E,连接DE,EM.∵AD=DB,AE=EB,∴DE∥BB1,ED=,又M为CC1的中点,∴.∴四边形CDEM是平行四边形.∴CD∥EM,又EM⊂MAB1,CD⊄MAB1∴CD∥平面MAB1;解(2)∵CA,CB,CC1两两垂直,∴以C为原点,CA,CB,CC1所在直线别离为x、y、z轴成立空间直角坐标系.∵在三棱柱ABC﹣A1B1C1中,侧棱CC1⊥地面ABC,可得∠MAC为直线AM与平面ABC所成的角,设AC=1,tan,得CM=∴C(0,0,0),A(1,0,0),B(0,1,0),B1(0,1,2),M(0,0,)设AMB1的法向量为,可取又平面B1C1CB的法向量为.cos==.∵二面角A﹣MB1﹣C1为钝角,∴二面角A﹣MB1﹣C1的余弦值为﹣.19.(12分)第一届“一带一路”国际合作顶峰论坛于2017年5月14日至15日在北京举行,这是2017年我国重要的主场外交活动,对推动国际和地域合作具有重要意义.某高中政教处为了调查学生对“一带一路”的关注情形,在全校组织了“一带一路知多少”的知识问卷测试,并从中随机抽取了12份问卷,取得其测试成绩(百分制),如茎叶图所示.(1)写出该样本的众数、中位数,假设该校共有3000名学生,试估量该校测试成绩在70分以上的人数;(2)从所抽取的70分以上的学生中再随机选取1人.①记X表示选取4人的成绩的平均数,求P(X≥87);②记ξ表示测试成绩在80分以上的人数,求ξ的散布和数学期望.【解答】解:(1)众数为76,中位数为76,抽取的12人中,70分以下的有4人,不低于70分的有8人,故从该校学生中任选1人,那个人测试成绩在70分以上的概率为=,∴该校这次测试成绩在70分以上的约有:3000×=2000人.(2)①由题意知70分以上的有72,76,76,76,82,88,93,94,当所选取的四个人的成绩的平均分大于87分时,有两类:一类是:82,88,93,94,共1种;另一类是:76,88,93,94,共3种.∴P(X≥87)==.②由题意得ξ的可能取值为0,1,2,3,4,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,P(ξ=4)==,∴ξ的散布列为:ξ 0 1 2 3 4P∴E(ξ)==2.20.(12分)已知椭圆C:+=1(a>b>0)的左、右核心为F1,F2,离心率为,点P在椭圆C上,且△PF1F2的面积的最大值为2.(1)求椭圆C的方程;(2)已知直线l:y=kx+2(k≠0)与椭圆C交于不同的两点M,N,假设在x轴上存在点G,使得|GM|=|GN|,求点G的横坐标的取值范围.【解答】解:(1)显然当点P位于短轴端点时,△PF1F2的面积取得最大值,∴,解得,∴椭圆的方程为=1.(2)联立方程组,消元得(8+9k2)x2+36kx﹣36=0,∵直线l恒过点(0,2),∴直线l与椭圆始终有两个交点,设M(x1,y1),N(x2,y2),那么x1+x2=,设MN的中点为E(x0,y),那么x=,y=kx+2=.∵|GM|=|GN|,∴GE⊥MN,设G(m,0),那么kGE==﹣,∴m==,当k>0时,9k+≥2=12.当且仅当9k=,即k=时取等号;∴﹣≤m<0,当k<0时,9k+≤﹣2=﹣12,当且仅当9k=,即k=﹣时取等号;∴0<m≤.∴点G的横坐标的取值范围是[﹣,0)∪(0,].21.(12分)设函数f(x)=e x﹣2a﹣ln(x+a),a∈R,e为自然对数的底数.(1)假设a>0,且函数f(x)在区间[0,+∞)内单调递增,求实数a的取值范围;(2)假设0<a<,试判定函数f(x)的零点个数.【解答】解:(1)∵函数f(x)在区间[0,+∞)内单调递增,∴f′(x)=e x﹣≥0在区间[0,+∞)恒成立,即a≥e﹣x﹣x在[0,+∞)恒成立,记g(x)=e﹣x﹣x,那么g′(x)=﹣e﹣x﹣1<0恒成立,故g(x)在[0,+∞)递减,故g(x)≤g(0)=1,a≥1,故实数a的范围是[1,+∞);(2)∵0<a<,f′(x)=e x﹣,记h(x)=f′(x),那么h′(x)=e x+>0,知f′(x)在区间(﹣a,+∞)递增,又∵f′(0)=1﹣<0,f′(1)=e﹣>0,,∴f′(x)在区间(﹣a,+∞)内存在唯一的零点x即f′(x)=﹣=0,于是x0=﹣ln(x+a),当﹣a<x<x时,f′(x)<0,f(x)递减,当x>x时,f′(x)>0,f(x)递增,故f(x)min =f(x)=﹣2a﹣ln(x+a)=x+a+﹣3a≥2﹣3a,当且仅当x+a=1时取“=”,由0<a<得2﹣3a>0,∴f(x)min =f(x)>0,即函数f(x)无零点.请考生在2二、23两题中任选一题作答,若是多做,那么按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)已知在平面直角坐标系xOy中,椭圆C的方程为+=1,以O 为极点,x轴的非负半轴为极轴,取相同的长度单位成立极坐标系,直线l的极坐标方程为ρsin(θ+)=3.(1)求直线l的直角坐标方程和椭圆C的参数方程;(2)设M(x,y)为椭圆C上任意一点,求|2x+y﹣1|的最大值.【解答】解:(1)依照题意,椭圆C的方程为+=1,那么其参数方程为,(α为参数);直线l的极坐标方程为ρsin(θ+)=3,变形可得ρsinθcos+ρcosθsin =3,即ρsinθ+ρcosθ=3,将x=ρcosθ,y=ρsinθ代入可得x+y﹣6=0,即直线l的一般方程为x+y﹣6=0;(2)依照题意,M(x,y)为椭圆一点,那么设M(2cosθ,4sinθ),|2x+y﹣1|=|4cosθ+4sinθ﹣1|=|8sin(θ+)﹣1|,分析可得,当sin(θ+)=﹣1时,|2x+y﹣1|取得最大值9.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣2|.(1)求不等式f(x)+f(2+x)≤4的解集;(2)假设g(x)=f(x)﹣f(2﹣x)的最大值为m,对任意不相等的正实数a,b,证明:af(b)+bf(a)≥m|a﹣b|.【解答】(1)解:不等式f(x)+f(2+x)≤4,即为|x﹣2|+|x|≤4,当x≥2时,2x﹣2≤4,即x≤3,那么2≤x≤3;当0<x<2时,2﹣x+x≤4,即2≤4,那么0<x<2;当x≤0时,2﹣x﹣x≤4,即x≥﹣1,那么﹣1≤x≤0.综上可得,不等式的解集为{x|﹣1≤x≤3};(2)证明:g(x)=f(x)﹣f(2﹣x)=|x﹣2|﹣|x|,由|x﹣2|﹣|x|≤|x﹣2﹣x|=2,当且仅当x≤0时,取得等号,即g(x)≤2,那么m=2,任意不相等的正实数a,b,可得af(b)+bf(a)=a|b﹣2|+b|a﹣2|=|ab﹣2a|+|ab﹣2b|≥|ab﹣2a﹣ab+2b|=|2a﹣2b|=2|a﹣b|=m|a﹣b|,当且仅当(a﹣2)(b﹣2)≤0时,取得等号,即af(b)+bf(a)≥m|a﹣b|.。
东莞市达标名校2018年高考一月仿真备考数学试题含解析
东莞市达标名校2018年高考一月仿真备考数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数3()1f x x ax =--,以下结论正确的个数为( ) ①当0a =时,函数()f x 的图象的对称中心为(0,1)-; ②当3a ≥时,函数()f x 在(–1,1)上为单调递减函数; ③若函数()f x 在(–1,1)上不单调,则0<<3a ; ④当12a =时,()f x 在[–4,5]上的最大值为1. A .1B .2C .3D .42.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积( )A .623+B .622+C .442+D .443+3.设()'f x 函数()()0f x x >的导函数,且满足()()2'f x f x x>,若在ABC ∆中,34A π∠=,则( )A .()()22sin sin sin sin f A B f B A <B .()()22sinC sin sin sin f B f B C< C .()()22cos sin sin cos f A B f B A >D .()()22cosC sin sin cos f B f B C >4.已知m ,n 是两条不重合的直线,α,β是两个不重合的平面,则下列命题中错误的是( ) A .若m //α,α//β,则m //β或m β⊂B .若m //n ,m //α,n α⊄,则n //αC .若m n ⊥,m α⊥,n β⊥,则αβ⊥D .若m n ⊥,m α⊥,则n //α5.已知函数()2121f x ax x ax =+++-(a R ∈)的最小值为0,则a =( )A .12B .1-C .±1D .12±6.已知实数x,y满足约束条件202201x yx yx+-≤⎧⎪--≤⎨⎪≥⎩,则目标函数21yzx-=+的最小值为A.23-B.54-C.43-D.12-7.某学校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30],样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56 B.60 C.140 D .1208.港珠澳大桥于2018年10月2刻日正式通车,它是中国境内一座连接香港、珠海和澳门的桥隧工程,桥隧全长55千米.桥面为双向六车道高速公路,大桥通行限速100km/h,现对大桥某路段上1000辆汽车的行驶速度进行抽样调查.画出频率分布直方图(如图),根据直方图估计在此路段上汽车行驶速度在区间[85,90)的车辆数和行驶速度超过90km/h的频率分别为()A.300,0.25B.300,0.35C.60,0.25D.60,0.359.下列与的终边相同的角的表达式中正确的是()A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)10.设集合{}2320M x x x=++>,集合1{|()4}2xN x=≤,则M N⋃=()A.{}2x x≥-B.{}1x x>-C.{}2x x≤-D.R11.如图,在ABC ∆中,点Q 为线段AC 上靠近点A 的三等分点,点P 为线段BQ 上靠近点B 的三等分点,则PA PC +=( )A .1233BA BC + B .5799BA BC + C .11099BA BC + D .2799BA BC + 12.已知角α的顶点与坐标原点O 重合,始边与x 轴的非负半轴重合,它的终边过点(3,4)P --,则tan 24πα⎛⎫+ ⎪⎝⎭的值为( )A .247-B .1731-C .247D .1731二、填空题:本题共4小题,每小题5分,共20分。
2018年高三数学模拟卷及答案
高级中学高三数学〔理科〕试题一、选择题:〔每题5分,共60分〕1、集合{x∈≤2},{x∈2≤1},那么A∩〔〕A、[﹣1,1]B、[﹣2,2]C、{﹣1,0,1}D、{﹣2,﹣1,0,1,2}【答案】C解:根据题意,≤2⇒﹣2≤x≤2,那么{x∈≤2}={﹣2≤x≤2},x2≤1⇒﹣1≤x≤1,那么{x∈2≤1}={﹣1,0,1},那么A∩{﹣1,0,1};应选:C.2、假设复数〔a∈R,i为虚数单位〕是纯虚数,那么实数a的值为〔〕A、3B、﹣3C、0D、【答案】A解:∵ = 是纯虚数,那么,解得:3.应选A.3、命题“∃x 0∈R,〞的否认是〔〕A、∀x∈R,x2﹣x﹣1≤0B、∀x∈R,x2﹣x﹣1>0C、∃ x0∈R,D、∃ x0∈R,【答案】A 解:因为特称命题的否认是全称命题,所以命题“∃x0∈R,〞的否认为:∀x∈R,x2﹣x﹣1≤0.应选:A4、?张丘建算经?卷上第22题为:“今有女善织,日益功疾,且从第2天起,每天比前一天多织一样量的布,假设第一天织5尺布,现有一月〔按30天计〕,共织390尺布〞,那么该女最终一天织多少尺布?〔〕A、18B、20C、21D、25 【答案】C解:设公差为d,由题意可得:前30项和S30=390=30×5+ d,解得.∴最终一天织的布的尺数等于5+295+29× =21.应选:C.5、二项式的绽开式中常数项为32,那么〔〕A、8B、﹣8C、2D、﹣2【答案】D解:二项式〔x﹣〕4的绽开式的通项为1=〔﹣a〕44﹣r,令4﹣=0,解得3,∴〔﹣a〕3C43=32,∴﹣2,应选:D6、函数〔﹣<x<〕的大致图象是〔〕A、 B、 C、 D、【答案】A 解:在〔0,〕上,是减函数,是减函数,且函数值y<0,故解除B、C;在〔﹣,0〕上,是增函数,是增函数,且函数值y<0,故解除D,应选:A.7、假设数列满意,且及的等差中项是5,等于( B )〔A〕〔B〕〔C〕〔D〕8、如图是某几何体的三视图,那么该几何体的体积为〔〕A、1B、C、D、【答案】B解:由三视图知几何体是一个四棱锥,四棱锥的底面是一个平行四边形,有两个等腰直角三角形,直角边长为1组成的平行四边形,四棱锥的一条侧棱及底面垂直,且侧棱长为1,∴四棱锥的体积是.应选B.9、设a>0,b>0,假设2是2a及2b的等比中项,那么的最小值为〔〕A、8B、4C、2D、1 【答案】C解:∵2是2a及2b的等比中项,∴2a•24,∴2,〔〕=1,而a>0,b>0,∴ =〔〕〔+ 〕=1+ + ≥1+2 =2,当且仅当1时取等号.应选:C.10、假设函数f〔x〕=2〔〕〔﹣2<x<10〕的图象及x轴交于点A,过点A的直线l及函数的图象交于B、C两点,那么〔+ 〕• =〔〕A、﹣32B、﹣16C、16D、32 【答案】D 解:由f〔x〕=2〔〕=0可得∴6k﹣2,k∈Z,∵﹣2<x<10∴4即A〔4,0〕设B〔x1, y1〕,C〔x2, y2〕∵过点A的直线l及函数的图象交于B、C两点∴B,C 两点关于A对称即x12=8,y12=0那么〔+ 〕• =〔x12, y12〕•〔4,0〕=4〔x12〕=32应选D11、双曲线﹣=1〔a>0,b>0〕的右顶点为A,假设双曲线右支上存在两点B,C使得△为等腰直角三角形,那么该双曲线的离心率e的取值范围是〔〕A、〔1,2〕B、〔2,+∞〕C、〔1,〕D、〔,+∞〕【答案】C【解析】【解答】解:如图,由△为等腰直角三角形,所以∠45°,设其中一条渐近线及x轴的夹角为θ,那么θ<45°,即θ<1,又上述渐近线的方程为x,那么<1,又,∴1<e<,双曲线的离心率e的取值范围〔1,〕,应选C.12、函数f〔x〕,假设k∈Z,且k〔x﹣1〕<f〔x〕对随意的x>1恒成立,那么k的最大值为〔〕A、2B、3C、4D、5【答案】B解:由k〔x﹣1〕<f〔x〕对随意的x>1恒成立,得:k<,〔x>1〕,令h〔x〕= ,〔x>1〕,那么h′〔x〕= ,令g〔x〕﹣﹣2=0,得:x﹣2,画出函数﹣2,的图象,如图示:∴g〔x〕存在唯一的零点,又g〔3〕=1﹣3<0,g〔4〕=2﹣4=2〔1﹣2〕>0,∴零点属于〔3,4〕;∴h〔x〕在〔1,x0〕递减,在〔x0,+∞〕递增,而3<h〔3〕= <4,<h〔4〕= <4,∴h〔x0〕<4,k∈Z,∴k的最大值是3.二、填空题:〔每题5分,共20分〕13、假设x,y满意那么2y的最大值为.【答案】2 解:由足约束条件作出可行域如图,由2y,得﹣+ .要使z最大,那么直线﹣+ 的截距最大,由图可知,当直线﹣+ .过点A时截距最大.联立,解得,∴A〔0,1〕,∴2y的最大值为0+2×1=2.故答案为:2.14、向量=〔1,2〕,⊥〔+ 〕,那么向量在向量方向上的投影为.【答案】﹣解:由⊥〔+ 〕,那么•〔+ 〕=0,即2+ • =0,那么• =﹣丨丨2,向量在向量方向上的投影为=﹣丨丨=﹣=﹣,故答案为:﹣.15、斜率为k〔k>0〕的直线l经过点F〔1,0〕交抛物线y2=4x于A,B 两点,假设△的面积是△面积的2倍,那么.【答案】2【解析】【解答】解:∵S△2S△,∴﹣2 ,①∴设的方程为1〔m>0〕,及y2=4x联立消去x得y2﹣4﹣4=0,∴4m②,﹣4③由①②③可得,∴2 。
2018年河南省郑州市高考数学一模试卷(文科)
2018年河南省郑州市高考数学一模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数(i为虚数单位)等于()A.﹣1﹣3i B.﹣1+3i C.1﹣3i D.1+3i2.(5分)设集合A={x|1<x<2},B={x|x<a},若A∩B=A,则a的取值范围是()A.{a|a≤2}B.{a|a≤1}C.{a|a≥1}D.{a|a≥2}3.(5分)设向量=(1,m),=(m﹣1,2),且≠,若(﹣)⊥,则实数m=()A.2 B.1 C.D.4.(5分)下列说法正确的是()A.“若a>1,则a2>1”的否命题是“若a>1,则a2≤1”B.“若am2<bm2,则a<b”的逆命题为真命题C.∃x0∈(0,+∞),使成立D.“若,则”是真命题5.(5分)我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n=()A.4 B.5 C.2 D.36.(5分)若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于()A.10cm3B.20cm3C.30cm3D.40cm37.(5分)若将函数f(x)=sin(2x+)图象上的每一个点都向左平移个单位,得到g(x)的图象,则函数g(x)的单调递增区间为()A.[kπ﹣,kπ+](k∈Z)B.[kπ+,kπ+](k∈Z)C.[kπ﹣,kπ﹣](k∈Z)D.[kπ﹣,kπ+](k∈Z)8.(5分)已知数列{a n}的前n项和为S n,a1=1,a2=2,且a n+2﹣2a n+1+a n=0(n∈N*),记T n=,则T2018=()A.B.C.D.9.(5分)已知函数,若函数f(x)在R上有两个零点,则实数a的取值范围是()A.(0,1]B.[1,+∞)C.(0,1) D.(﹣∞,1]10.(5分)已知椭圆的左顶点和上顶点分别为A,B,左、右焦点分别是F1,F2,在线段AB上有且只有一个点P满足PF1⊥PF2,则椭圆的离心率的平方为()A.B.C.D.11.(5分)我市某高中从高三年级甲、乙两个班中各选出7名学生参加2018年全国高中数学联赛(河南初赛),他们取得的成绩(满分140分)的茎叶图如图所示,其中甲班学生成绩的中位数是81,乙班学生成绩的平均数是86,若正实数a,b满足a,G,b成等差数列且x,G,y成等比数列,则的最小值为()A.B.2 C.D.912.(5分)若对于任意的正实数x,y都有成立,则实数m的取值范围为()A. B.C.D.二、填空题(本题共4小题,每题5分,共20分)13.(5分)设变量x,y满足约束条件则目标函数z=4x﹣y的最小值为.14.(5分)如果直线ax+2y+3a=0与直线3x+(a﹣1)y=a﹣7平行,则a=.15.(5分)已知数列{a n}满足,且a1+a2+a3+…+a10=1,则log2(a101+a102+…+a110)=.16.(5分)已知双曲线的右焦点为F,过点F向双曲线的一条渐近线引垂线,垂足为M,交另一条渐近线于N,若,则双曲线的渐近线方程为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且2ccosB=2a+b.(1)求角C;(2)若△ABC的面积为,求ab的最小值.18.(12分)2017年10月份郑州市进行了高三学生的体育学业水平测试,为了考察高中学生的身体素质比情况,现抽取了某校1000名(男生800名,女生200名)学生的测试成绩,根据性别按分层抽样的方法抽取100名进行分析,得到如下统计图表:男生测试情况:抽样情况病残免试不合格合格良好优秀人数5101547x女生测试情况抽样情况病残免试不合格合格良好优秀人数2310y2(1)现从抽取的1000名且测试等级为“优秀”的学生中随机选出两名学生,求选出的这两名学生恰好是一男一女的概率;(2)若测试等级为“良好”或“优秀”的学生为“体育达人”,其它等级的学生(含病残免试)为“非体育达人”,根据以上统计数据填写下面列联表,并回答能否在犯错误的概率不超过0.010的前提下认为“是否为体育达人”与性别有关?男性女性总计体育达人非体育达人总计临界值表:P(K2≥k0)0.100.050.0250.0100.005 k0 2.706 3.841 5.024 6.6357.879附:(,其中n=a+b+c+d)19.(12分)如图,在三棱锥P﹣ABC中,平面PAB⊥平面ABC,AB=6,,,D,E为线段AB上的点,且AD=2DB,PD⊥AC.(1)求证:PD⊥平面ABC;(2)若,求点B到平面PAC的距离.20.(12分)已知圆C:x2+y2+2x﹣2y+1=0和抛物线E:y2=2px(p>0),圆心C到抛物线焦点F的距离为.(1)求抛物线E的方程;(2)不过原点的动直线l交抛物线于A,B两点,且满足OA⊥OB.设点M为圆C上任意一动点,求当动点M到直线l的距离最大时的直线l方程.21.(12分)已知函数f(x)=lnx﹣a(x+1),a∈R在(1,f(1))处的切线与x轴平行.(1)求f(x)的单调区间;(2)若存在x0>1,当x∈(1,x0)时,恒有成立,求k的取值范围.22.(10分)在平面直角坐标系xOy中,直线l过点(1,0),倾斜角为α,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程是.(1)写出直线l的参数方程和曲线C的直角坐标方程;(2)若,设直线l与曲线C交于A,B两点,求△AOB的面积.23.设函数f(x)=|x+3|,g(x)=|2x﹣1|.(1)解不等式f(x)<g(x);(2)若2f(x)+g(x)>ax+4对任意的实数x恒成立,求a的取值范围.2018年河南省郑州市高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数(i为虚数单位)等于()A.﹣1﹣3i B.﹣1+3i C.1﹣3i D.1+3i【解答】解:==﹣1﹣3i故选A2.(5分)设集合A={x|1<x<2},B={x|x<a},若A∩B=A,则a的取值范围是()A.{a|a≤2}B.{a|a≤1}C.{a|a≥1}D.{a|a≥2}【解答】解:∵A∩B=A,∴A⊆B.∵集合A={x|1<x<2},B={x|x<a},∴a≥2故选:D.3.(5分)设向量=(1,m),=(m﹣1,2),且≠,若(﹣)⊥,则实数m=()A.2 B.1 C.D.【解答】解:∵(﹣)⊥,∴(﹣)•=0,即2﹣•=0,即1+m2﹣(m﹣1+2m)=0,即m2﹣3m+2=0,得m=1或m=2,当m=1时,量=(1,1),=(0,2),满足≠,当m=2时,量=(1,2),=(1,2),不满足≠,综上m=1,故选:B.4.(5分)下列说法正确的是()A.“若a>1,则a2>1”的否命题是“若a>1,则a2≤1”B.“若am2<bm2,则a<b”的逆命题为真命题C.∃x0∈(0,+∞),使成立D.“若,则”是真命题【解答】解:“若a>1,则a2>1”的否命题是“若a≤1,则a2≤1”,故A错;“若am2<bm2,则a<b”的逆命题为假命题,比如m=0,若a<b,则am2=bm2,故B错;对任意x>0,均有3x<4x成立,故C错;对若,则”的逆否命题是“若α=,则sinα=”为真命题,则D正确.故选D.5.(5分)我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n=()A.4 B.5 C.2 D.3【解答】解:模拟执行程序,可得a=1,A=1,S=0,n=1S=2不满足条件S≥10,执行循环体,n=2,a=,A=2,S=不满足条件S≥10,执行循环体,n=3,a=,A=4,S=不满足条件S≥10,执行循环体,n=4,a=,A=8,S=满足条件S≥10,退出循环,输出n的值为4.故选:A.6.(5分)若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于()A.10cm3B.20cm3C.30cm3D.40cm3【解答】解:由三视图知几何体为三棱柱削去一个三棱锥如图:棱柱的高为5;底面为直角三角形,直角三角形的直角边长分别为3、4,∴几何体的体积V=×3×4×5﹣××3×4×5=20(cm3).故选B.7.(5分)若将函数f(x)=sin(2x+)图象上的每一个点都向左平移个单位,得到g(x)的图象,则函数g(x)的单调递增区间为()A.[kπ﹣,kπ+](k∈Z)B.[kπ+,kπ+](k∈Z)C.[kπ﹣,kπ﹣](k∈Z)D.[kπ﹣,kπ+](k∈Z)【解答】解:将函数f(x)=sin(2x+)图象上的每一个点都向左平移个单位,得到g(x)=sin[2(x+)+]=﹣sin2x的图象,故本题即求y=sin2x的减区间,令2kπ+≤2x≤2kπ+,求得kπ+≤x≤kπ+,故函数g(x)的单调递增区间为[kπ+,kπ+],k∈Z,故选:B.8.(5分)已知数列{a n}的前n项和为S n,a1=1,a2=2,且a n+2﹣2a n+1+a n=0(n∈N*),记T n=,则T2018=()A.B.C.D.【解答】解:数列{a n}的前n项和为S n,a1=1,a2=2,且a n+2﹣2a n+1+a n=0(n∈N*),则:数列为等差数列.设公差为d,则:d=a2﹣a1=2﹣1=1,则:a n=1+n﹣1=n.故:,则:,所以:,=,=,=.所以:.故选:C9.(5分)已知函数,若函数f(x)在R上有两个零点,则实数a的取值范围是()A.(0,1]B.[1,+∞)C.(0,1) D.(﹣∞,1]【解答】解:当x≤0时,f(x)单调递增,∴f(x)≤f(0)=1﹣a,当x>0时,f(x)单调递增,且f(x)>﹣a.∵f(x)在R上有两个零点,∴,解得0<a≤1.故选A.10.(5分)已知椭圆的左顶点和上顶点分别为A,B,左、右焦点分别是F1,F2,在线段AB上有且只有一个点P满足PF1⊥PF2,则椭圆的离心率的平方为()A.B.C.D.【解答】解:方法一:依题意,作图如下:A(﹣a,0),B(0,b),F1(﹣c,0),F2(c,0),∴直线AB的方程为,整理得:bx﹣ay+ab=0,设直线AB上的点P(x,y),则bx=ay﹣ab,x=y﹣a,∵PF1⊥PF2,则•=(﹣c﹣x,﹣y)•(c﹣x,﹣y)=x2+y2﹣c2=()2+y2﹣c2,令f(y)=()2+y2﹣c2,则f′(y)=2(y﹣a)×+2y,∴由f′(y)=0得:y=,于是x=﹣,∴•=(﹣)2+()2﹣c2=0,整理得:=c2,又b2=a2﹣c2,整理得:c4+3c2c2﹣a4=0,两边同时除以a4,由e2=,∴e4﹣3e2+1=0,∴e2=,又椭圆的离心率e∈(0,1),∴e2=.椭圆的离心率的平方,故选B.方法二:由直线AB的方程为,整理得:bx﹣ay+ab=0,由题意可知:直线AB与圆O:x2+y2=c2相切,可得d==c,两边平方,整理得:c4+3c2c2﹣a4=0,两边同时除以a4,由e2=,e4﹣3e2+1=0,∴e2=,又椭圆的离心率e∈(0,1),∴e2=.椭圆的离心率的平方,故选B.11.(5分)我市某高中从高三年级甲、乙两个班中各选出7名学生参加2018年全国高中数学联赛(河南初赛),他们取得的成绩(满分140分)的茎叶图如图所示,其中甲班学生成绩的中位数是81,乙班学生成绩的平均数是86,若正实数a,b满足a,G,b成等差数列且x,G,y成等比数列,则的最小值为()A.B.2 C.D.9【解答】解:甲班学生成绩的中位数是80+x=81,得x=1;由茎叶图可知乙班学生的总分为76+80×3+90×3+(0+2+y+1+3+6)=598+y,乙班学生的平均分是86,且总分为86×7=602,所以y=4,若正实数a、b满足:a,G,b成等差数列且x,G,y成等比数列,则xy=G2,2G=a+b,即有a+b=4,a>0,b>0,则+=(a+b)(+)=(1+4++)≥(5+2)=×9=,当且仅当b=2a=时,的最小值为.12.(5分)若对于任意的正实数x,y都有成立,则实数m的取值范围为()A. B.C.D.【解答】解:根据题意,对于(2x﹣)•ln≤,变形可得(2x﹣)ln≤,即(2e﹣)ln≤,设t=,则(2e﹣t)lnt≤,t>0,设f(t)=(2e﹣t)lnt,(t>0)则其导数f′(t)=﹣lnt+﹣1,又由t>0,则f′(t)为减函数,且f′(e)=﹣lne+﹣1=0,则当t∈(0,e)时,f′(t)>0,f(t)为增函数,当t∈(e,+∞)时,f′(t)<0,f(t)为减函数,则f(t)的最大值为f(e),且f(e)=e,若f(t)=(2e﹣t)lnt≤恒成立,必有e≤,解可得0<m≤,即m的取值范围为(0,];故选:D.二、填空题(本题共4小题,每题5分,共20分)13.(5分)设变量x,y满足约束条件则目标函数z=4x﹣y的最小值为1.【解答】解:设变量x,y满足约束条件在坐标系中画出可行域三角形,平移直线4x﹣y=0经过点A(1,3)时,4x﹣y最小,最小值为:1,则目标函数z=4x﹣y的最小值:1.故答案为:1.14.(5分)如果直线ax+2y+3a=0与直线3x+(a﹣1)y=a﹣7平行,则a=3.【解答】解:∵直线ax+2y+3a=0与直线3x+(a﹣1)y=a﹣7平行,∴,解得a=3.故答案为:3.15.(5分)已知数列{a n}满足,且a1+a2+a3+…+a10=1,则log2(a101+a102+…+a110)=100.【解答】解:∵,∴log2a n+1﹣log2a n=1,即,∴.∴数列{a n}是公比q=2的等比数列.则a101+a102+…+a110=(a1+a2+a3+…+a10)q100=2100,∴log2(a101+a102+…+a110)=.故答案为:100.16.(5分)已知双曲线的右焦点为F,过点F向双曲线的一条渐近线引垂线,垂足为M,交另一条渐近线于N,若,则双曲线的渐近线方程为y=±x.【解答】解:由题意得右焦点F(c,0),设一渐近线OM的方程为y=x,则另一渐近线ON的方程为y=﹣x,由FM的方程为y=﹣(x﹣c),联立方程y=x,可得M的横坐标为,由FM的方程为y=﹣(x﹣c),联立方程y=﹣x,可得N的横坐标为.由2=,可得2(﹣c)=﹣c,即为﹣c=,由e=,可得﹣1=,即有e4﹣5e2+4=0,解得e2=4或1(舍去),即为e=2,即c=2a,b=a,可得渐近线方程为y=±x,故答案为:y=±x.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且2ccosB=2a+b.(1)求角C;(2)若△ABC的面积为,求ab的最小值.【解答】解:(1)由正弦定理可知:===2R,a=2RsinA,b=2RsinB,c=2RsinC,由2ccosB=2a+b,则2sinCcosB=2sin(B+C)+sinB,∴2sinBcosC+sinB=0,由0<B<π,sinB≠0,cosC=﹣,0<C<π,则C=;(2)由S=absinC=c,则c=ab,由c2=a2+b2﹣2abcosC=a2+b2+ab,∴=a2+b2+ab≥3ab,当且仅当a=b时取等号,∴ab≥12,故ab的最小值为12.18.(12分)2017年10月份郑州市进行了高三学生的体育学业水平测试,为了考察高中学生的身体素质比情况,现抽取了某校1000名(男生800名,女生200名)学生的测试成绩,根据性别按分层抽样的方法抽取100名进行分析,得到如下统计图表:男生测试情况:抽样情况病残免试不合格合格良好优秀人数5101547x女生测试情况抽样情况病残免试不合格合格良好优秀人数2310y2(1)现从抽取的1000名且测试等级为“优秀”的学生中随机选出两名学生,求选出的这两名学生恰好是一男一女的概率;(2)若测试等级为“良好”或“优秀”的学生为“体育达人”,其它等级的学生(含病残免试)为“非体育达人”,根据以上统计数据填写下面列联表,并回答能否在犯错误的概率不超过0.010的前提下认为“是否为体育达人”与性别有关?男性女性总计体育达人非体育达人总计临界值表:P(K2≥k0)0.100.050.0250.0100.005 k0 2.706 3.841 5.024 6.6357.879附:(,其中n=a+b+c+d)【解答】解:(1)按分层抽样男生应抽取80名,女生应抽取20名;∴x=80﹣(5+10+15+47)=3,y=20﹣(2+3+10+2)=3;抽取的100名且测试等级为优秀的学生中有三位男生,设为A,B,C;两位女生设为a,b;从5名任意选2名,总的基本事件有AB,AC,Aa,Ab,BC,Ba,Bb,Ca,Cb,ab,共10个;设“选出的两名学生恰好是一男一女为事件A”;则事件包含的基本事件有Aa,Ab,Ba,Bb,Ca,Cb共6个;∴P(A)==;(2)填写2×2列联表如下:男生女生总计体育达人50555非体育达人301545总计8020100则K2=≈9.091;∵9.091>6.635且P(K2≥6.635)=0.010,∴在犯错误的概率不超过0.010的前提下认为“是否为‘体育达人’与性别有关”.19.(12分)如图,在三棱锥P﹣ABC中,平面PAB⊥平面ABC,AB=6,,,D,E为线段AB上的点,且AD=2DB,PD⊥AC.(1)求证:PD⊥平面ABC;(2)若,求点B到平面PAC的距离.【解答】证明:(1)连接CD,据题知AD=4,BD=2,∵AC2+BC2=AB2,∴∠ACB=90°,∴cos,∴=8,∴CD=2,∴CD2+AD2=AC2,∴CD⊥AB,又∵平面PAB⊥平面ABC,∴CD⊥平面PAB,∴CD⊥PD,∵PD⊥AC,CD∩AC=C,∴PD⊥平面ABC.解:(2)∵,∴PD=AD=4,∴PA=4,在Rt△PCD中,PC==2,∴△PAC是等腰三角形,∴,设点B到平面PAC的距离为d,由V E=V P﹣AEC,得,﹣PAC∴d==3,故点B到平面PAC的距离为3.20.(12分)已知圆C:x2+y2+2x﹣2y+1=0和抛物线E:y2=2px(p>0),圆心C到抛物线焦点F的距离为.(1)求抛物线E的方程;(2)不过原点的动直线l交抛物线于A,B两点,且满足OA⊥OB.设点M为圆C上任意一动点,求当动点M到直线l的距离最大时的直线l方程.【解答】解:(1)圆C:x2+y2+2x﹣2y+1=0可化为(x+1)2+(y﹣1)2=1,则圆心为(﹣1,1).抛物线E:y2=2px(p>0),焦点坐标F(),由于:圆心C到抛物线焦点F的距离为.则:,解得:p=6.故抛物线的方程为:y2=12x(2)设直线的方程为x=my+t,A(x1,y1),B(x2,y2),则:,整理得:y2﹣12my﹣12t=0,所以:y1+y2=12m,y1y2=﹣12t.由于:OA⊥OB.则:x1x2+y1y2=0.即:(m2+1)y1y2+mt(y1+y2)+t2=0.整理得:t2﹣12t=0,由于t≠0,解得t=12.故直线的方程为x=my+12,直线经过定点(12,0).当CN⊥l时,即动点M经过圆心C(﹣1,1)时到直线的距离取最大值.当CP⊥l时,即动点M经过圆心C(﹣1,1)时到动直线L的距离取得最大值.k MP=k CP=﹣,则:m=.此时直线的方程为:x=,即:13x﹣y﹣156=0.21.(12分)已知函数f(x)=lnx﹣a(x+1),a∈R在(1,f(1))处的切线与x轴平行.(1)求f(x)的单调区间;(2)若存在x0>1,当x∈(1,x0)时,恒有成立,求k的取值范围.【解答】解:(1)由已知可得f(x)的定义域为(0,+∞),∵f′(x)=﹣a,∴f′(1)=1﹣a=0,解得:a=1,∴f′(x)=,令f′(x)>0,解得:0<x<1,令f′(x)<0,解得:x>1,故f(x)在(0,1)递增,在(1,+∞)递减;(1)不等式f(x)﹣+2x+>k(x﹣1)可化为lnx﹣+x﹣>k(x﹣1),令g(x)=lnx﹣+x﹣﹣k(x﹣1),(x>1),g′(x)=,∵x>1,令h(x)=﹣x2+(1﹣k)x+1,h(x)的对称轴是x=,①当≤1时,即k≥﹣1,易知h(x)在(1,x0)上递减,∴h(x)<h(1)=1﹣k,若k≥1,则h(x)≤0,∴g′(x)≤0,∴g(x)在(1,x0)递减,∴g(x)<g(1)=0,不适合题意.若﹣1≤k<1,则h(1)>0,∴必存在x0使得x∈(1,x0)时,g′(x)>0,∴g(x)在(1,x0)递增,∴g(x)>g(1)=0恒成立,适合题意.②当>1时,即k<﹣1,易知必存在x0使得h(x)在(1,x0)递增,∴h(x)>h(1)=1﹣k>0,∴g′(x)>0,∴g(x)在(1,x0)递增,∴g(x)>g(1)=0恒成立,适合题意.综上,k的取值范围是(﹣∞,1).22.(10分)在平面直角坐标系xOy中,直线l过点(1,0),倾斜角为α,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程是.(1)写出直线l的参数方程和曲线C的直角坐标方程;(2)若,设直线l与曲线C交于A,B两点,求△AOB的面积.【解答】(1)直线L的参数方程为:(α为参数).曲线C的极坐标方程是,转化为直角坐标方程为:y2=8x(2)当时,直线l的参数方程为:(t为参数),代入y2=8x得到:.(t1和t2为A和B的参数),所以:,t1t2=﹣16.所以:.O到AB的距离为:d=.则:=.23.设函数f(x)=|x+3|,g(x)=|2x﹣1|.(1)解不等式f(x)<g(x);(2)若2f(x)+g(x)>ax+4对任意的实数x恒成立,求a的取值范围.【解答】解:(1)由已知得|x+3|<|2x﹣1|,即|x+3|2<|2x﹣1|2,则有3x2﹣10x﹣8>0,∴x<﹣或x>4,故不等式的解集是(﹣∞,﹣)∪(4,+∞);(2)由已知,设h(x)=2f(x)+g(x)=2|x+3|+|2x﹣1|=,当x≤﹣3时,只需﹣4x﹣5>ax+4恒成立,即ax<﹣4x﹣9,∵x≤﹣3<0,∴a>=﹣4﹣恒成立,∴a>,∴a>﹣1,当﹣3<x<时,只需7>ax+4恒成立,即ax﹣3<0恒成立,只需,∴,∴﹣1≤a≤6,当x≥时,只需4x+5>ax+4恒成立,即ax<4x+1,∵x≥>0,∴a<=4+恒成立,∵4+>4,且无限趋近于4,∴a≤4,综上,a的取值范围是(﹣1,4].。
高考最新-2018届全国20180所名校示范卷高考模拟卷 精品
2018届全国100所名校示范卷 高考模拟卷 数 学 卷 (三)第Ⅰ卷(选择题共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的1.与tang2oo8º的值最接近的数是 ( )(A (B (C ) (D )2.已知()lg(f x x =,若f (a )=b ,则f (-a )= ( )(A )b (B )-b (C )1b (D )-1b3.某机床在生产中所需垫片可以外购,也可自己生产,其中外购的单价是每个1.10元,若自己生产,则每月需投资固定成本800元,并且每生产一个垫片还需材料费和劳务费共0.60元,设该厂每月所需垫片x 个,则自己生产垫片比外购垫片较合算的条件是( ) (A )x>1800 (B )x>1600 (C )x>500 (D )x>1400 4.已知等差数列{}n a 中,它的前n 项和n s 为,若点(n,ns n)恒在直线上,则该数列的通项公式n a 为( )(A )4n+1 (B )2n+1 (C )4n-1 (D )2n-15.双曲线虚轴的一个端点为M ,两个焦点为1212,,120F F FMF ∠=︒,则双曲线的离心率为( )(A (B (C (D 6.有下面四个命题,其中正确命题的序号是①“直线a 、b 为异面直线”的充分而不必要条件是“直线a 、b 不相交”; ②“直线l ⊥平面α内所有直线”的充要条件是“l ⊥平面α”; ③“直线a ∥直线b ”的充要条件是“a 平行于b 所在的平面”;④“直线a ∥平面α”的必要而不充分条件是“直线a 平行于α内的一条直线.” A.①③ B.②③ C.②④ D.③④7.如果a 1、a 2、a 3、a 4、a 5、a 6的平均数(期望)为3,那么2(a 1-3)、2(a 2-3)、2(a 3-3)、2(a 4-3)、2(a 5-3)、2(a 6-3)的平均数(期望)是A.0B.3C.6D.12 8.如果函数y =log 2|ax -1|(a ≠0)的图象的对称轴方程是x =-2,那么a 等于A.21 B.-21 C.2 D.-29.若f (x )=ax 3+3x 2+2,且f ′(-1)=4,则a 等于A.319 B.316 C.313 D.310 10.已知抛物线y =ax 2的焦点为F ,准线l 与对称轴交于点R ,过抛物线上一点P (1,2)作PQ ⊥l ,垂足为Q ,则梯形PQRF 的面积为A.47 B.811 C.1619 D.165 11.在某市举行的“市长杯”足球比赛中,由全市的6支中学足球队参加.比赛组委会规定:比赛采取单循环赛制进行,每个队胜一场得3分,平一场得1分,负一场得0分.在今年即将举行的“市长杯”足球比赛中,参加比赛的市第一中学足球队的可能的积分值有A.13种B.14种C.15种D.16种 12.给出四个命题,则其中正确命题的序号为 ①存在一个△ABC ,使得sin A +cos A =-1; ②△ABC 中,A >B 的充要条件为sin A >sin B ;③直线x =8π是函数y =sin(2x +45π)图象的一条对称轴; ④△ABC 中,若sin2A =sin2B ,则△ABC 一定是等腰三角形. A.①② B.②③ C.③④D.①④二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.已知5lg ()x x x +展开式的第四项的值等于118,则x =14.过抛物线x y 42=焦点的直线交抛物线于A 、B 两点,已知|AB|=8,O 为坐标原点,则△OAB 的重心的横坐标为 15.)321132112111(lim nn +++++++++++∞→ 的值为 16.对于函数x x x f sin cos )(+=,给出下列四个命题: ①存在34)(),2,0(=∈απαf 使; ②存在)3()(),2,0(ααπα+=+∈x f x f 使恒成立;③存在R ∈ϕ,使函数)(ϕ+x f 的图像关于y 轴对称;④函数)(x f 的图象关于点)0,43(π对称; 其中正确命题的序号是第Ⅱ卷(非选择题,共90分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确的选项填在下面的答案栏中.)(本题共4小题,每小题4分,共16分. 把答案填在题中横线上)13. 14.15. 16.三、解答题(本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤) 17. (本小题满分12分)设a =(1+sin2x ,sinx ),b =(tan (4π-x ),9),0≤x ≤2π,求函数f (x )=a ∙b 的最大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考模拟试卷数学卷 (本卷满分150分 考试时间120分钟 ) 参考公式: 球的表面积公式 柱体的体积公式 S=4πR2 V=Sh 球的体积公式 其中S表示柱体的底面积,h表示柱体的高
V=34πR3 台体的体积公式
其中R表示球的半径 V=31h(S1+21SS+S2) 锥体的体积公式 其中S1, S2分别表示台体的上、下底面积, V=31Sh h表示台体的高
其中S表示锥体的底面积,h表示锥体的高
选择题部分 (共40分) 一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有 一项是符合题目要求的.
1.已知全集UR,|21xAyy,|ln0Bxx,则UABð
A. B.|01xx C.1|12xx D. |1xx
2.已知0.32a,20.3b,0.3log2c,则 A.bca B.bac C.cab D.cba 3.一个几何体的三视图如图所示,则该几何体的体积是 A.64 B.72 C.80 D.112 4.在ABC中,内角,,ABC所对的边分别为,,abc,已知23a,3A,ABC的面积为23,则bc A.4 B.6 C.8 D.10
5.设实数,xy满足20,240,20,xyxyy1yzx,则 A.z有最大值,有最小值 B.z有最大值,无最小值 C.z无最大值,有最小值 D.z无最大值,无最小值
6.在二项式5212xx的展开式中,含2x的项的系数是 A.80 B.40 C.5 D. 10 7.从1,2,3,4,5,6,7,8,9,10这10个数中任取3个不同的数,若每个数被取到的可能性相同,则这3个数的和恰好能被3整除概率是
A.120 B.110 C.310 D.720
8.已知F为抛物线2:4Cyx的焦点,,,ABC为抛物线C上三点,当0FAFBFC时,称ABC
为“和谐三角形”,则“和谐三角形”有 A.0个 B.1个 C.3个 D.无数个 9.已知向量3,1a,向量1cos,sin055tttb,则向量,ab的夹角可能是
A.218 B.518 C.718 D.1118 10.已知函数2()fxxaxb,,mn满足mn且fmn,fnm,则当mxn时, A.fxxmn B.fxxmn C.0fxx D.0fxx
非选择题部分 (共110分) 二、填空题:本大题共6小题,多空题每题6分,单空题每题4分,共36分。
11.已知复数12iz,其中i为虚数单位,则z___________,zz___________.
12.设等比数列na的首项11a,且1234,2,aaa成等差数列,则公比q___________;数列na的前n项和nS___________.
13.已知圆C的方程为22680xyxy,则圆C的坐标是___________,半径是___________;圆C
关于直线:10lxy对称的圆的方程是___________.
14.已知函数211,0,22ln,0,xxfxxxx则1ff___________;若函数yfxa有一个零点,则a的取值范围是___________. 15.将3个1,11个0排成一列,使得每两个1之间至少隔着两个0,则共有___________种不同的排法.
16.设,ab为正实数,则2ababab的最小值是___________.
17.如图,ABC平面,且ABCBC平面,1AB,3BC,56ABC,平面内一动点P满足6PAB,则PC的最小值是___________.
三、 解答题:本大题共5小题,共74分。解答应写出文字说明、证明过程或演算步骤。 18.(本题满分14分)已知函数()sin()(0,0)fxx的最小正周期是,将函数()fx图象向左平移3个单位长度后所得的函数图象过点(0,1)P.
(Ⅰ)求fx; (Ⅱ)若0,2x,求函数fx的值域. 19.(本题满分15分)如图,在三棱柱111CBAABC中,ACCABAAA111,90ABC,45BAC,NM,分
别是BACC11,的中点.
(Ⅰ)求证:MN∥平面ABC; (Ⅱ)求直线NC1与平面ABC所成的角的余弦值.
20.(本题满分15分)已知函数21504afxxxx,ln4gxx,曲线ygx在点14,
处的切线与曲线yfx相切. (Ⅰ)求实数a的值; (Ⅱ)证明:当0x时,fxgx. 21.(本题满分15分)已知椭圆222210xyabab的离心率为63,以椭圆的2 个焦点与1个 短轴端点为顶点的三角形的面积为22. (Ⅰ)求椭圆的方程; (Ⅱ)如图,斜率为k的直线l过椭圆的右焦点F,且与椭圆交与,AB两点,以线段AB为直径的圆截直线1x所得的弦的长度为5,求直线l的方程. 22.(本题满分15分)设数列na满足113a,212nnnaaan,*nN.证明: (Ⅰ)求23,aa; (Ⅱ)数列na为递增数列; (Ⅲ)212121nnnann,*nN. 2018年高考(或中考)模拟试卷数学参考答案与评分标准 1.(原创)答案:B. 解析:因为|1Axx,所以|1UAxxð,又因为|01Bxx,所以|01UABxxð.
2.(原创)答案:D. 解析:因为0.321a,20.30,1b,0.3log20c,所以cba. 3.(原创)答案:C. 解析:该几何体为一个正方体与一个四棱锥的组合体,故体积为321443803. 4.(原创)答案:B. 解析:由1sin232SbcA得8bc.由2222cosbcbcAa得2212bcbc,所以6bc. 5.(原创)答案:C.
解析:不等式组20,240,20,xyxyy表示的平面区域为如图的阴影部分,目标函数1yzx表示阴影部分中的点与点0,1的连线的斜率,故z有最小值,无最大值. 6.(原创)答案:A. 解析:二项式5212xx的展开式的通项为555315521221rrrrrrrrTCxCxx,由532r得1r,所以含2x的项的系数是11452180C. 7.(原创)答案:D. 解析:从10个数中任取3个共有310120C种取法,若所取的3个数的和恰能被3整除,则第一类:这3个数从1,4,7,10中取,共有344C种取法;第二类:这3个数从2,5,8中取,共有331C种取法; 第三类:这3个数从3,6,9中取,共有331C种取法;第四类:这从1,4,7,10
中取1个数,从2,5,8中取1个数,从3,6,9中取1个数,共有43336种取法,所以所取的3个数的和恰好能被3整除概率是41136712020.
8.(原创)答案:D. 解析:如图,由0FAFBFC得F为ABC的重心,设点A坐标为00,xy,3AMMF,则点M坐标为003,22xy,只要满足点M在抛物线内部,即2003422yx,
002x时,直线00034:22xylyxy与抛物线2:4Cyx的交点,BC关于点M对称,此时ABC为“和谐三角形”,因此有无数个“和谐三角形”. 9.(原创)答案:B. 解析:如图,若向量1cos,sin055tttb的起点为原点,则其终点在射线tan115yxx上,故向量,ab的夹角的取值范围为11630,. 10.(原创)答案:A. 解析:因为函数2()fxxaxb是上凹函数,所以1fxfmfnfmxmnm,因此fxxmn.
11.(原创)答案:12i;1. 解析:12iz,1zzzz. 12.(原创)答案:2;21n. 解析:由1234,2,aaa成等差数列得21344aaa,即244qq,解得2q,1212112nnnS. 13.(原创)答案:34,,5;225225xy. 解析:由圆C的方程为223425xy得圆心坐标为34,,半径为5,圆心34,关于直线:10lxy的对称点的坐标为52,,所以圆C关于直线:10lxy对称的圆的方程是225225xy.
14.(原创)答案:2;10,ln22. 解析:112fff;由22lnfxxx得21414xfxxxx
,因此yfx在区间10,2上
单调递减,在区间12,上单调递增,故11ln222ff
极小
,函数yfx的图象如图所示,
所以当10,ln22a时,函数yfxa有一个零点. 15.(原创)答案:120. 解析:符合条件的排列中,3个1将11个0分成四段,设每一段分别有1234,,,xxxx个0,则10x,22x,32x,40x且123411xxxx,令222xx,332xx,则12347xxxx.因此原问题等价于求方程12347xxxx的自然数解的组数,将7个1与3块隔板进行排列,其排列数即对应方程自然数解的组数,所以方程共有310120C组自然数解,故共有120种不同的排法.
16.(原创)答案:222. 解析:令2abxaby,显然,0xy,则2ayxbxy,所以 2222222abyxxyyxababxyxy
,当2xy,即2ab时,等号成立.
17.(原创)答案:52.