第2课时:二次函数y=a(x+h)2的图象和性质
二次函数Y=a(x+h)2的图像和性质

●
1 1 ( x 1) 2 y y ( x 1) 2 2 2
y
1
●
● ● ● o● ● ● ● ●
x
●
(-1,0) (1,0) 是__________。
●
●
●
1 2 1 1 2 2与抛物线 (2)抛物线 y ( x 1) , y ( x 1) y x 2 2 有什么位置关系? 2
2、当a>0时,开口向上,y有最小值0; 当a<0时,开口向下,y有最大0;
3、|a|越大开口越小,反之开口越大。 问题: 抛物线y=a(x-h)2 中的a决定什么?h决定什么?
做一做:
抛物线
y =2(x+3)2
开口方向 向上 向下 向下
对称轴 直线x=-3 直线x=1 直线x=3
y = -3(x-1)2 y = -4(x-3)2
二次函数y=ax2+k的性质
y=ax2+k 图象 开口向上 开口向下 a>0 a<0
开口
对称性 顶点 增减性
a的绝对值越大,开口越小 关于y轴对称
顶点是最高点 在对称轴左侧递减 在对称轴左侧递增 在对称轴右侧递增 在对称轴右侧递减 (0,k) 顶点是最低点
1 在同一平面直角坐标系中,画出二次函数 y ( x 1) 2 2 1 y ( x 1) 2 的图象,并考虑它们的开口方向、对称轴 和 2
Y=a(x+h)2
的图象
a>0时,开口________, 最 ____ 点是顶点; a<0时,开口________, 最 ____ 点是顶点;
直线x=h 对称轴是 _____________, (h,0) 顶点坐标是 __________。
二次函数左右平移

2
y 1 x 12
2
向下 向下 向下
对称轴 顶点坐标
直线x=-1 ( -1 , 0 )
直线x=0 直线x=1
(0,0) ( 1, 0)
二 二次函数y=ax2与y=a(x-h)2的关系
想一想
抛物线
y 1 x 12 ,y 1 x 12
4
∴平移后二次函数关系式为y= 1 (x-3)2.
4
方法总结:根据抛物线左右平移的规律,向右平移3 个单位后,a不变,括号内应“减去3”;若向左平移 3个单位,括号内应“加上3”,即“左加右减”.
练一练
将二次函数y=-2x2的图象平移后,可得到二次函 数y=-2(x+1)2的图象,平移的方法是( C )
1.把抛物线y=-x2沿着x轴方向平移3个单位长度,那么
平移后抛物线的解析式是 y=-(x+3)2或y=-(x-3)2 .
2.二次函数y=2(x-
3 2
)2图象的对称轴是直线___x__32__,
顶点是__(_32_, 0_)___.
3
.若(-
143,y1)(-
5 4
,y2)(
1 4
,y3)为二次函数
y
1
2
x 2 平移得到?
2
讲授新课
一 二次函数y=a(x-h)2的图象和性质
互动探究
引例:在如图所示的坐标系中,画出二次函数 y 1 x2
2
与 y 1 (x 2)2 的图象.
2
解:先列表:
x
·· ·
-3
-2
-1
0
y 1 x2 2
·· 9
2
22.1.2第4节二次函数y=a(x-h)2的图象与性质(教案)

一、教学内容
22.1.2第4节二次函数y=a(x-h)^2的图象与性质
1.二次函数y=a(x-h)^2的图象特点
- a>0时,抛物线开口向上;a<0时,抛物线开口向下
- h为抛物线的对称轴,即x=h
-抛物线顶点为(h, 0)
2.二次函数y=a(x-h)^2的性质
(2)强调对称轴(x=h)和顶点((h, k))的概念,解释它们与函数最值、单调性的关系,并通过具体例子进行说明。
(3)详细讲解图象的平移变换,使学生掌握左加右减、上加下减的变换规律,并能运用到具体问题中。
(4)结合实际情境,如物体抛掷、经济模型等,展示二次函数的应用,强调数学知识在实际问题中的运用。
1.提供更多具有代表性的案例,让学生在实际问题中运用所学知识。
2.加强对学生的引导和启发,提高他们在解决问题时的独立思考能力。
3.优化问题设计,使学生在讨论过程中能够更加聚焦主题。
4.针对不同学生的掌握程度,进行有针对性的辅导和答疑。
2.掌握二次函数图象变换方法,提高学生数学建模、数学运算的能力。
-通过图象变换,培养学生建立数学模型,解决实际问题的能力。
-在变换过程中,锻炼学生准确进行数学运算,提高解题效率。
3.培养学生运用二次函数知识解决实际问题的意识,提升数学应用、数据分析的核心素养。
-结合实例分析,引导学生运用所学知识解决生活中与二次函数相关的问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2014最新版2.2二次函数图像2

问题2: 你能在同一直角坐标系中画出函数y=2(x+1)2与函数y=2x2 的图象,并比较它们的联系和区别吗?
你能在同一直角坐标系中画出函数y=2(x+1)2与函数y=2x2 y 的图象,并比较它们的联系和区别吗 ?
5
y=2x2
y=2(x+1)2
4. 3.
y=2(x-1)2
2.
1.
-3.
-2
-1
例1. 填空题 (1)二次函数y=2(x+5)2的图像是 ,开 口 ,对称轴是 ,当x= 时,y有最 值,是 . (2)二次函数y=-3(x-4)2的图像是由抛物线y= -3x2 向 平移 个单位得到的;开口 ,对称轴 是 ,当x= 时,y有最 值,是 . (3)将二次函数y=2x2的图像向右平移3个单位后得到 函数 的图像,其对称轴是 , 顶点是 ,当x 时,y随x的增大而 增大;当x 时,y随x的增大而减小. (4)将二次函数y= -3(x-2)2的图像向左平移3个单位 后得到函数 的图像,其顶点坐标 是 ,对称轴是 ,当x= 时,y有 最 值,是 .
画出二次函数y=2(x-1)2和二次函数y=2x2的图象,并加以观察
问题1: 在同一直角坐标系中,画出二次函数y=2x2与 y=2(x-1)2的图象 .观察两个图象的开口方向、 对称轴以及顶点坐标相同吗?这两个函数的图 象之间有什么关系?
x
y=2x2 y=2(x-1)2
…
- 3 -2 -1 18 32 8 18 2 8
<3 3.函数y= 时,y随x的增大而增大; 当x >3 时,y 随x的增大而减小。
4 y=4(x+1)2的图象是由 抛物线__________
2 y=4x
2 –5(x–3) ,当x
人教版数学九年级上册22 第2课时 二次函数y=a(x-h)2的图象和性质导学案

第二十二章二次函数知人者智,自知者明。
《老子》 原创不容易,【关注】,不迷路!22.1.3二次函数y =a (x -h )2+k 的图象和性质 第2课时二次函数y =a (x -h )2的图象和性质 学习目标:1.会画二次函数y =a (x -h )2的图象. 2.掌握二次函数y =a (x -h )2的性质. 3.比较函数y =ax 2与y =a (x -h )2的联系. 重点:会画二次函数y =a (x -h )2的图象.难点:掌握二次函数y =a (x -h )2的性质并会应用其解决问题.一、知识链接1.说说二次函数y =ax 2+c (a ≠0)的图象的特征.2.二次函数y =ax 2+k (a ≠0)与y =ax 2(a ≠0)的图象有何关系?3.函数21(2)2yx 的图象,能否也可以由函数212y x 平移得到? 二、要点探究探究点1:二次函数y =a (x -h )2的图象和性质 引例在同一直角坐标系中,画出二次函数212y x 与21(2)2y x 的图象. 根据所画图象,填写下表:试一试画出二次函数2112yx ,()2112y x =--的图象,并分别指出它们的开口方向、对称轴和顶点坐标.想一想通过上述例子,函数y =a (x -h )2的性质是什么? 要点归纳:二次函数y =a (x -h )2(a ≠0)的性质当a >0时,抛物线开口方向向上,对称轴为直线x =h ,顶点坐标为(h ,0),当x =h 时,y 有最小值为0.当x <h 时,y 随x 的增大而减小;x >h 时,y 随x 的增大而增大. 当a >0时,抛物线开口方向向下,对称轴为直线x =h ,顶点坐标为(h ,0),当x =h 时,y 有最大值为0.当x <h 时,y 随x 的增大而增大;x >h 时,y 随x 的增大而减小. 典例精析例1已知二次函数y =(x -1)2 (1)完成下表;x … … y……(2)在如图坐标系中描点,画出该二次函数的图象.(3)写出该二次函数的图象的对称轴和顶点坐标; (4)当x 取何值时,y 随x 的增大而增大. (5)若3≤x ≤5,求y 的取值范围; 想一想:若-1≤x ≤5,求y 的取值范围;(6)若抛物线上有两点A (x 1,y 1),B (x 2,y 2),如果x 1<x 2<1,试比较y 1与y 2的大小.变式:若点A (m ,y 1),B (m +1,y 2)在抛物线的图象上,且m >1,试比较y 1,y 2的大小,并说明理由.探究点2:二次函数y =ax 2与y =a (x -h )2的关系 想一想抛物线2112yx ,2112y x 与抛物线212y x 有什么关系? 要点归纳:二次函数y =a (x -h )2与y =ax 2的图象的关系y =ax 2向右平移︱h ︱得到y =a (x -h )2; y =ax 2向左平移︱h ︱得到y =a (x +h )2.左右平移规律:括号内左加右减,括号外不变.例2抛物线y =a 2向右平移3个单位后经过点(-1,4),求a 的值和平移后的函数关系式.方法总结:根据抛物线左右平移的规律,向右平3个单位后,a 不变,括号内应“减去3”;若向左平移3个单位,括号内应“加上3”,即“左加右减”.练一练将二次函数y =-2x 2的图象平移后,可得到二次函数y =-2(x +1)2的图象,平移的方法是( )A .向上平移1个单位B .向下平移1个单位C .向左平移1个位D .向右平移1单位 三、课堂小结1.指出下列函数图象的开口方向,对称轴和顶点坐标. 22(3)x 22(2)x23(1)4x 2.如果二次函数y =a (x -1)2(a ≠0)的图象在它的对称轴右侧部分是上升的,那么a 的取值范围是_____.3.把抛物线y=-x2沿着x轴方向平移3个单位长度,那么平移后抛物线的解析式是.4.若(-134,y1)(-54,y2)(14,y3)为二次函数y=(x-2)2图象上的三点,则y1,y2,y3的大小关系为___________.5.在同一坐标系中,画出函数y=2x2与y=2(x-2)2的图象,分别指出两个图象之间的相互关系.能力提升已知二次函数y=(x-h)2(h为常数),当自变量x的值满足-1≤x≤3时,与其对应的函数值y的最小值为4,求h的值.参考答案自主学习知识链接1.二次函数y=ax2+c(a≠0)的图象,对称轴为y轴,顶点坐标为(0,c),当a>0时,图象的开口向上,有最低点(即最小值c),当x0时,y随x增大而增大.当a<0时,图象的开口向下,有最高点(即最大值c),当x0时,y随x 增大而减小.2.答:二次函数y=ax2+k(a≠0)的图象可以由y=ax2(a≠0)的图象平移得到:当k>0时,向上平移k个单位长度得到.当k<0时,向下平移-k个单位长度得到.3.能课堂探究二、要点探究探究点1:二次函数y=a(x-h)2的图象和性质引例列表如下:描点、连线,画出这两个函数的图象如图①所示.图①图② 填表如下:试一试 填表如下:1212-292-892-21212-2描点、连线,画出这两个函数的图象如图②所示. 例1解:(1)填表如下:x…-10 1 2 3 …y… 2 120 122 …(2)解:描点,画出该二次函数图象如下:(3)对称轴为直线x=1.顶点坐标为(1,0).(4)当x>1时,y随x的增大而增大.(5)∵当x>1时,y随x的增大而增大,当x=3时,y=2;当x=5时,y=8,∴当3≤x≤5时,y的取值范围为2≤y≤8.想一想∵当-1≤x≤5时,y的最小值为0,∵当-1≤x≤5时,y的取值范围是0≤y≤8.(6)∵当x<1时,y随x的增大而减小,∴当x1<x2<1时,y1>y2.变式∵m>1,∴1<m<m+1,∵当x>1时,y随x的增大而增大,∴y1<y2.探究点2:二次函数y=ax2与y=a(x-h)2的关系想一想抛物线向左平移1个单位得到抛物线,抛物线向右平移1个单位得到抛物线.例2解:二次函数y=ax2的图象向右平移3个单位后的二次函数关系式可表示为y=a(x-3)2,把x=-1,y=4代入,得4=a(-1-3)2,a=14,∴平移后二次函数关系式为y=14(x-3)2.练一练C当堂检测 1.填表如下: 22(3)x 22(2)x23(1)4x2.a >03.y =-(x +3)2或y =-(x -3)24.y 1>y 2>y 35. 解:图象如图.函数y =2(x -2)2的图象由函数y =2x 2的图象向右平移2个单位得到. 能力提升解:∵当x >h 时,y 随x 的增大而增大,当x <h 时,y 随x 的增大而减小,∴①若h <-1≤x ≤3,x =-1时,y 取得最小值4,可得(-1-h )2=4,解得h =-3或h =1(舍);②若-1≤x ≤3<h ,当x =3时,y 取得最小值4,可得:(3-h )2=4,解得:h =5或h =1(舍);③若-1<h <3时,当x =h 时,y 取得最小值为0,不是4,∴此种情况不符合题意,舍去.综上,h 的值为-3或5.【素材积累】阿达尔切夫说过:“生活如同一根燃烧的火柴,当你四处巡视以确定自己的位置时,它已经燃完了。
二次函数y=a(x-h)^2的图像与性质

解析式
对称轴
顶点坐标 (1,1) (-1,1) (2,1) (-2,1) (3,-2) (-3,2)
最值
X=1 解析式 X=-1
1
1
X=2
1
X=-2
1
X=3
-2
X=-3
2
X=h
(h,k)
k
抛物线y=a(x-h)2+k有如下特点:
(1)当a>0时, 开口向上;
当a<0时,开口向上; (2)对称轴是直线x=h; (3)顶点是(h,k).
向上 向下 向下 向上
x=3 x=-3 x=2 x=-1
(3,3) (-3,-2) (2,-1) (-1,1)
3 -2 -1 1
结论: 一般地,抛物线 y = a(xh)2+k
与y = ax2形状相同,位置不同。
一般地,抛物线y=a(x-h)2+k 与y=ax2形状相同,位置不同.把抛物线 y=ax2向上(下)向右(左)平移,可以得到 抛物线y=a(x -h)2+k.平移的方向、距 离要根据h、k的值来决定.
y= 2(x-3)2+3 y= −2(x+3)2-2 y= −2(x-2)2-1
y= 3(x+1)2+1
函数 y= 2(x-3)2+3 y= −2(x+3)2-2 y= −2(x-2)2-1 y= 3(x+1)2+1
开口方向对称轴顶点 Nhomakorabea最值
增减性 x<3,递减;x>3,递增 x>-3,递减;x<-3,递增 x>-2,递减;x<-2,递增 x<-1,递减;x>-1,递增
向上平移7个单位,向右平移3个单位
二次函数的图像和性质 优秀教学设计(教案)
26.2 二次函数y=a(x-h)2的图象和性质
一、教学目标:
知识与技能
使学生能利用描点法画出二次函数y=a(x—h)2的图象,通过
“探究----感悟----总结——练习”,采用探究、讨论等方法进行归
纳总结得出函数性质。
过程与方法
通过类比二次函数y=ax2、y=ax2+k的图像,让学生经历探究函
数y=a(x-h)2的性质的过程,体现类比的数学思想方法。
情感态度与价值观
在证明过程中培养学生良好的学习、思维习惯,以及不畏困难的
钻研精神
二、教学重难点:
重点:会用描点法画出二次函数y=a(x-h)2的图象,理解二次
函数y=a(x-h)2的性质,理解二次函数y=a(x-h)2的图象与二次
函数y=ax2的图象的关系是教学的重点。
难点:理解二次函数y=a(x-h)2的性质,理解二次函数y=a(x
-h)2的图象与二次函数y=ax2的图象的相互关系也是教学的难点。
三、教学过程:
(一)、复习导入
1、二次函数y=ax
2、y=ax2+k图象是什么?(1)分别说出它们的
对称轴、开口方向和顶点坐标以及增减性。
(2)说出它们所具有的公
共性质。
的图象有什么联系和区别?
2.你能说出函数y=a(x-h)2图象的性质吗?
3.谈谈本节课的收获和体会。
七:板书:
函数y=a(x-h)2的图象和性质
1、复习引入
2、探究新知(得出函数的图像和性质)
3、例题讲解(1)、(2)
4、课堂练习
5、小结(1)(2)(3)
八、作业
1、教科书17页第5、7、8题
2、三导81页。
22.1.3-二次函数y=a(x-h)2的图象和性质教案
y
1 2
(x
1)2,
习。
学
2
解: 先列表:
x
… -4 -3 -2 -1 0
y 1 (x 1)2 2
…
步
y 1 (x 1)2 2
…
学生展示自学完 成的练习。
1
学生质疑学习内 容。
描点、连线
骤
y 1
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x
y 1 (x 1)2
第
周
授课时间:
授课:
教材
九 年级
上下册
课题
22.1.3 二次函数 y=a (x-h)2 的图象和性质
(2)
课型
1.能画出二次函数 y=a(x-h)2 的图像.
知识 目
标
2.掌握抛物线 y ax2 与抛物线 y=a(x-h)2 之间的联系,
学
3.掌握二次函数 y=a(x-h)2 图像特征及其性质.
习
2.掌握二次函数 y=a(x-h)2 图像及其性质.
学习难点
使用二次函数 y=a(x-h)2 的性质解决实际问题.
教学模式 六环五式教学法
教具 或器材
教学方法 启发自学、体验过程、学习互助、精讲达标。
教学思路
目标导入→自学引导→小组合作→成果展示→质疑精讲 →培养能力→增强信心。
教师活动
学生活动
旧知回顾】
可以看作由 y 1 x2 2
向
平移
三、知识梳理 X|k | B| 1 . c|O |m
(一)抛物线 y a(x h)2 特点:
1. 当 a 0 时 , 开 口 向
口
;
二次函数的图像与性质知识点及练习
第二节二次函数的图像与性质1.能够利用描点法做出函数y =ax 2,y=a(x-h)2,y =a(x-h)2+k 和c bx ax y ++=2图象,能根据图象认识和理解二次函数的性质;2.理解二次函数c bx ax y ++=2中a 、b 、c 对函数图象的影响。
一、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x例1. 在同一平面坐标系中分别画出二次函数y =x 2 2,y=2(x-1)2 的图像。
一、二次函数的基本形式1. y =ax 2的性质:2. y =ax 2+k 的性质: (k 上加下减)3. y =a (x -h )2的性质:(h 左加右减)4. y =a (x -h)2+k 的性质:5. y =ax2+bx+c 的性质:二、二次函数图象的平移1.平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿x 轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a -=-=,. 六、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变. 例1、例2、已知直线y=-2x +3与抛物线y=ax 相交于A 、B 两点,且A 点坐标为(-3,m ).(1)求a 、m 的值;(2)求抛物线的表达式及其对称轴和顶点坐标;(3)x 取何值时,二次函数y=ax 2中的y 随x 的增大而减小; (4)求A 、B 两点及二次函数y=ax 2的顶点构成的三角形的面积. 例3、求符合下列条件的抛物线y=ax 2的表达式:(1)y=ax 2经过(1,2);(2)y=ax 2与y=21x 2的开口大小相等,开口方向相反;(3)y=ax 2与直线y=21x +3交于点(2,m ).例4、试写出抛物线y=3x 2经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标。
2二次函数的图像及其性质(二)教案
B、②
C、③
D、④
3.在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10m.拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2).
①如图1,若BC=4m,则S=________m.
②如图2,现考虑在(1)中的矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的小屋,其它条件不变.则在BC的变化过程中,当S取得最小值时,边BC的长为________m.
教学重点
1.函数形如y=a(x-h)2+k图象的性质。
2.用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标。
3.会通过配方求出二次函数 的最大或最小值
教学难点
1.识图能力的培养
2.学生能通过图象的观察,对比分析发现规律,从而归纳性质
理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=- 、(- , )
当k<0时,函数y=kx2开口向下,而y=kx﹣2的图象过二、三、四象限,
分析选项可得,只有B符合,
故选B.
5.【答案】﹣3
【解析】已知了抛物线的顶点横坐标为2,即抛物线的对称轴方程为x=﹣ =2,可据此求出m的值.
解:∵抛物线y=x2+(m﹣1)x﹣ 的顶点的横坐标是2,
∴ =2;
解得m=﹣3,
故答案为:﹣3.
答案与解析
1.【答案】A
【解析】∵抛物线的解析式为:y=x2+5x+6,
设原抛物线上有点(x,y),绕原点旋转180∘后,变为(−x,−y),点(−x,−y)在抛物线y=x2+5x+6上,