高考文科数学函数专题讲解与高考真题精选含答案资料全

合集下载

2011-2019高考文科数学全国卷真题分类汇编(含详细答案)专题:第5章 三角函数与解三角形

2011-2019高考文科数学全国卷真题分类汇编(含详细答案)专题:第5章 三角函数与解三角形

第5章 三角函数与解三角形1.(2014全国I 文2)若,则()A. B. C. D.2.(2011全国文11)设函数,则().A.在单调递增,其图象关于直线对称B.在单调递增,其图象关于直线对称C.在单调递减,其图象关于直线对称D.在单调递减,其图象关于直线对称3. .在函数①,②,③,④中,最小正周期为的所有函数为()A.①②③B. ①③④C. ②④D. ①③4.(2014新课标Ⅱ文14)函数的最大值为5.(2012全国文9)已知,直线和是函数图像的两条相邻的对称轴,则(). A.B. C. D.6.(2015全国I 文8) 函数的部分图像如图所示,则的单调递减区间为().A. B.C. D.tan 0α>sin 0α>cos 0α>sin 20α>cos20α>ππ()sin 2cos 244f x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭()f x π0,2⎛⎫⎪⎝⎭π4x =()f x π0,2⎛⎫⎪⎝⎭π2x =()f x π0,2⎛⎫⎪⎝⎭π4x =()f x π0,2⎛⎫⎪⎝⎭π2x =cos 2y x =cos y x =cos 26y x π⎛⎫=+ ⎪⎝⎭tan 24y x π⎛⎫=- ⎪⎝⎭π()sin()2sin cos f x x x ϕϕ=+-0ω>0ϕ<<π4x π=4x 5π=()()sin f x x ωϕ=+ϕ=4π3π2π43π()cos()f x x ωϕ=+()f x ()13π,π44k k k ⎛⎫-+∈ ⎪⎝⎭Z ()132π,2π44k k k ⎛⎫-+∈ ⎪⎝⎭Z ()13,44k k k ⎛⎫-+∈ ⎪⎝⎭Z ()132,244k k k ⎛⎫-+∈ ⎪⎝⎭Z7.(2013全国II 文16)函数的图象向右平移个单位后,与函数的图象重合,则_________.8.(2011全国1文7)已知角的顶点与原点重合,始边与轴的正半轴重合,终边在直线上,则().A. B. C. D.9.(2013全国II 文6)已知,则().A.B.C. D.10.(2013全国I 文9)函数在的图象大致为().11.(2013全国I 文16)设当时,函数取得最大值,则.12.(2015全国II 文11)如图所示,长方形的边,,是的中点,点沿着,与运动,记.将动点到,两点距离之和表示为的函数,则的图像大致为().cos(2)(ππ)y x ϕϕ=+-剟π2πsin 23y x ⎛⎫=+ ⎪⎝⎭ϕ=θx 2y x =cos2θ=45-35-35452sin 23α=2πcos 4α⎛⎫+= ⎪⎝⎭16131223()()1cos sin f x x x =-[]ππ-,D.C.B.A.x θ=()sin 2cos f x x x =-cos θ=ABCD 2AB =1=BC O AB PBC CD DA BOP x ∠=P A B x ()f x ()y f x =A. B. C. D.13.(2013全国II 文4)的内角的对边分别为,已知,,,则的面积为().A. B.C. D.14.(2015全国II 文17)中,是上的点,平分,.,求.15.(2011全国文15)中,,,,则的面积为.16.(2013全国I 文10)已知锐角的内角的对边分别为,,,,则().A. B. C. D.17.(2014新课标Ⅱ文17)(本小题满分12分)四边形的内角与互补,,,.(1)求和;(2)求四边形的面积.18.(2012全国文17)已知分别为△三个内角的对边,(1)求;(2)若,△.424424424424ABC △,,A B C ,,a b c 2b =π6B =π4C =ABC △2121ABC △D BC AD BAC ∠2BD DC =60BAC =B ∠ABC △120B =7AC =5AB =ABC △ABC △A B C ,,a b c ,,223cos cos20A A +=7a =6c =b =10985ABCD A C 1AB =3BC =2CD DA ==C BD ABCD ,,a b c ABC ,,A B C sin cos c C c A =-A 2a =ABC ,b c19.(2014新课标Ⅰ文16)如图所示,为测量山高,选择和另一座山的山顶为测量观测点.从点测得点的仰角,点的仰角以及;从点测得.已知山高,则山高20. (2015全国I 文17)已知分别为内角的对边,.(1)若,求; (2)设,且的面积.21. (2015全国I 文4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知,,,则b=( )22. (2016全国I 文6)若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为23. (2016全国I 文14)已知θ是第四象限角,且sin (θ+)=,则tan (θ–)= 24 (2017全国I 文8).函数sin21cosxy x=-的部分图像大致为A .B .C .D .MN A C A M 60MAN ∠=︒C 45CAB ∠=︒75MAC ∠=︒C 60MCA ∠=︒100m BC =MN =,,a b c ABC △,,A B C 2sin 2sin sin B A C =a b =cos B 90B ∠=a =ABC △a =2c =2cos 3A =π435π4AB C .2D .3A . y =2sin(2x +π4)B . y =2sin(2x +π3)C . y =2sin(2x –π4)D . y =2sin(2x –π3)25. (2017全国I 文15).已知π(0)2α∈,,tan α=2,则πcos ()4α-=__________.26.(2018全国I 文8).已知函数()222cos sin 2f x x x =-+,则 ( )A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为427.(2018全国I 文11).已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 23α=,则a b -= ( ) A .15B.CD .128.(2018全国I 文16).△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为________.29.【2019年高考全国Ⅰ卷文数】函数f (x )=在[,]-ππ的图像大致为A .B .C .D .30.【2019年高考全国Ⅰ卷文数】tan255°=A .−2B .−C .2D .31.【2019年高考全国Ⅰ卷文数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A −b sin B =4c sin C ,cos A =−14,则bc=A .6B .5C .4D .332.【2019年高考全国Ⅱ卷文数】若x 1=4π,x 2=43π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω=A .2B .32C .1D .122sin cos ++x xx x33.【2019年高考全国Ⅱ卷文数】已知a ∈(0,π2),2sin2α=cos2α+1,则sin α=A .15BCD34.【2019年高考全国Ⅲ卷文数】函数()2sin sin2f x x x =-在[0,2π]的零点个数为A .2B .3C .4D .535.【2019年高考全国Ⅰ卷文数】函数3π()sin(2)3cos 2f x x x =+-的最小值为___________. 36.【2019年高考全国Ⅱ卷文数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________.37.【2019年高考全国Ⅲ卷文数】ABC △的内角A 、B 、C 的对边分别为a 、b 、c .已知sinsin 2A Ca b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.高考真题试题详解1.解析由得是第一.三象限角,若是第三象限角,则A ,B 错; 由知,C 正确;取时,,D 错.故选C. 评注本题考查三角函数值的符号,判定时可运用基本知识.恒等变形及特殊值等多种方法,具有一定的灵活性.2.解析因为,当时,,故在单调递减.又当时,是的一条对称轴.故选D.3.解析①,最小正周期为;tan 0α>ααsin 22sin cos ααα=sin 20α>απ32211cos 22cos 121022αα⎛⎫=-=⨯-=-< ⎪⎝⎭ππππ()sin 2cos 2224444f x x x x x ⎛⎫⎛⎫⎛⎫=+++=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭π02x <<02πx <<()f x x =π0,2⎛⎫⎪⎝⎭π2x =π22⎛⎫⨯= ⎪⎝⎭π2x =()y f x =cos 2cos2y x x ==π②由图像知的最小正周期为;③的最小正周期;④的最小正周期.因此选A.评注本题考查三角函数的周期性,含有绝对值的函数可先变形再判断,或运用图像判断其最小正周期.4.解析,所以.5.分析利用三解函数的对称轴求得周期.解析由题意得周期,所以,即,所以,所以,.因为,所以. 所以,所以.故选A. 6.解析由图可知,得,.画出图中函数的一条对称轴,如图所示. 由图可知,则,可得,则,得.由,得的单调递减区间为. 故选D.7.分析先进行平移,得出的三角函数与所给的三角函数进行比较,求出的值.cos y x =ππcos 26y x ⎛⎫=+ ⎪⎝⎭2ππ2T ==πtan 24y x ⎛⎫=- ⎪⎝⎭π2T =()()sin 2sin cos sin cos cos sin 2sin cos f x x x x x x ϕϕϕϕϕ=+-=+-=()sin cos cos sin sin 1x x x ϕϕϕ-=-…()max 1f x =512ππ2π44T ⎛⎫=-=⎪⎝⎭2π2πω=1ω=()sin()f x x ϕ=+ππsin 144f ϕ⎛⎫⎛⎫=+=± ⎪ ⎪⎝⎭⎝⎭5π5πsin 144f ϕ⎛⎫⎛⎫=+=± ⎪ ⎪⎝⎭⎝⎭0πϕ<<ππ5π444ϕ<+<ππ42ϕ+=π4ϕ=511244T =-=2T =2ππTω==()f x 0x x =034x =3πcos 14ϕ⎛⎫+=- ⎪⎝⎭3π2ππ4k ϕ+=+()π2π4k k ϕ=+∈Z ()πcos π4f x x ⎛⎫=+ ⎪⎝⎭π2ππ2ππ4k x k ++剟()f x 132244k xk -+剟ϕ解析:的图象向右平移个单位得到的图象,整理得.因为其图象与的图象重合,所以,所以,即.又因为,所以. 8.解析设为角终边上任意一点,则. 当时,;当时,.因此.故选B.9.分析结合二倍角公式进行求解.解析:因为,所以故选A. 10.分析先利用函数的奇偶性排除B ,再利用特殊的函数值的符号排除A ,而最后答案的选择则利用了特定区间上的极值点.解析:在上,因为,所以是奇函数,所以的图象关于原点对称,排除B. 取,则,排除A.因为,所以令,则或. 结合,求得在上的极大值点为,靠近,故选C.11.分析先利用三角恒等变换求得函数的最大值,再利用方程思想求解.解析:, 则所以,所以,()cos 2y x ϕ=+2πcos 22y x ϕ⎡π⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦()cos 2y x ϕ=-π+sin 23y x π⎛⎫=+ ⎪⎝⎭2k ϕππ-π=-+π322k ϕππ=+π-+π322k ϕ5π=+π6ϕ-ππ≤<5ϕπ=6(,2)(0)P t t t ≠θcos θ=0t >cos 5θ=0t <cos 5θ=-223cos 22cos 1155θθ=-=-=-2sin 23α=221cos 211sin 213cos .42226αααπ⎛⎫++- ⎪π-2⎛⎫⎝⎭+==== ⎪⎝⎭[],-ππ()()()()()1cos sin 1cos sin f x x x x x -=---=--=⎡⎤⎣⎦()()1cos sin x x f x --=-()f x ()f x 2x π=1cos 10f ππ⎛⎫⎛⎫=-= ⎪ ⎪22⎝⎭⎝⎭>()()1cos sin f x x x =-()()sin sin 1cos cos f x x x x x '=⋅+-2221cos cos cos 2cos cos 1.x x x x x =-+-=-++()0f x '=cos 1x =1cos 2x =[],x ∈-ππ()f x (]0,π23ππsin 2cos y x x x x ⎫=-=⎪⎭cos sin αα=)()sin cos cossin .y x x ααα=-=-x ∈R x α-∈R所以又因为时,取得取大值,所以.又,所以即.12.解析由已知可得,当点在边上运动时,即时,; 当点在边上运动时,即,时,时,当点在边上运动时,即时,.从点的运动过程可以看出,轨迹关于直线对称,,且轨迹非直线型.故选B.评注本题以几何图形为背景考查了函数图像的识别与作法,特别是体现了分类讨论和数形结合的思想.13.分析先由正弦定理解出的值,再运用面积公左求解.解析:因为,,所以 由正弦定理,得,即所以.故选B. 14.分析 (1)根据题意,由正弦定理可得.(2)由诱导公式可得,由(1)可知,所以,. max y =x θ=()f x ()sin 2cos f θθθ=-=22sin cos 1θθ+=sin cos θθ⎧=⎪⎪⎨⎪=⎪⎩cos θ=P BC π04x剟PA PB +=tan x P CD π3π44x 剎?π2x ≠PA PB +=π2x =PA PB +=P AD 3ππ4x 剎?tan PA PB x +=P π2x =ππ42f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭c 6B π=4C π=7.A B C πππ=π--=π--=6412sin sin b c B C =2sin sin c =ππ64212=c =117sin 212212ABC S bc A π==⨯⨯=△sin 1sin 2B DC CBD∠==∠()1sin sin cos sin 22C BAC B B B ∠=∠+∠=∠+∠2sin B ∠=sin C ∠tan 3B ∠=30B ∠=解析 (1)由正弦定理得,,.因为平分,,所以. (2)因为,, 所以.由(1)知,所以,即. 评注三角是高中数学的重点内容,在高考中主要利用三角函数,三角恒等变换及解三角形的正弦定理及余弦定理,在求解时,注意角的转化及定理的使用. 15.解析由余弦定理知, 即,解得. 故. 16.分析先求出角的余弦值,再利用余弦定理求解.解析:由得,解得.因为是锐角,所以.又,所以,所以或.又因为,所以.故选D. 17.解析(1)由题设及余弦定理得,①. ②由①,②得,故,(2)四边形的面积sin sin AD BD B BAD =∠∠sin sin AD DCC CAD =∠∠AD BAC ∠2BD DC =sin 1sin 2B DC C BD ∠==∠()180C BAC B ∠=-∠+∠60BAC ∠=()1sin sin cos sin 22C BAC B B B ∠=∠+∠=∠+∠2sin sin B C ∠=∠tan 3B ∠=30B ∠=2222cos120AC AB BC AB BC =+-⋅249255BC BC =++3BC =11sin1205322ABC S AB BC =⋅=⨯⨯=△A 223cos cos 20A A +=2223cos 2cos 10A A +-=1cos 5A =±A 1cos 5A =2222cos a b c bc A =+-214936265b b =+-⨯⨯⨯5b =135b =-0b >5b >2222cos 1312cos BD BC CD BC CD C C =+-⋅=-2222cos 54cos BD AB DA AB DA A C =+-⋅=+1cos 2C =60C =BD =ABCD 1111sin sin 1232sin 60232222S AB DA A BC CD C ⎛⎫=⋅+⋅=⨯⨯+⨯⨯= ⎪⎝⎭评注本题考查余弦定理的应用和四边形面积的计算,考查运算求解能力和转化的思想,把四边形分割成两个三角形是求面积的常用方法.18.解析(1)由.由于,所以. 又,故.(2)的面积,故.而,故. 解得.19.解析在中,,,所以.在中,,,从而,由正弦定理得,,因此.在中,,,由得,故填. 20. 解析(1)由正弦定理得,.又,所以,即.则. (2)解法一:因为,所以, 即,亦即.又因为在中,,所以,则,得.所以为等腰直角三角形,得.解法二:由(1)可知,①因为,所以,②将代入得,则.sin cosc C c A=-sin A C -cos sin sin 0A C C -=sin 0C ≠π1sin 62A ⎛⎫-= ⎪⎝⎭0πA <<π3A =ABC △1sin 2S bc A ==4bc =2222cos a b c bc A =+-228b c +=2b c ==Rt ABC △45CAB ∠=100BC =m AC =m AMC △75MAC ∠=60MCA ∠=45AMC ∠=sin 45sin 60AC AM=AM =m Rt MNA △AM =m 60MAN ∠=sin 60MNAM=150MN ==m 15022b ac =a b =22a ac =2a c =22222212cos 2422a a a a cb B a ac a ⎛⎫+- ⎪+-⎝⎭===⋅90B ∠=()2sin 12sin sin 2sin sin 90B A C A A ===-2sin cos 1A A =sin 21A =ABC △90B ∠=090A <∠<290A ∠=45A ∠=ABC △a c ==112ABC S ==△22b ac =90B ∠=222a c b +=②①()20a c -=a c ==112ABC S ==△21. (2015全国I 文4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知,,,则b=答案:D解析:本题考察余弦定理,根据题目条件画出图形可以列出等式,带入已知条件化简可得,解得.22. (2016全国I 文6)若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为答案:D解析:该函数的周期为,所以函数向右平移,得,化简可得y =2sin(2x –π3).23. (2016全国I 文14)已知θ是第四象限角,且sin (θ+)=,则tan (θ–)=.答案: 解析:本题考察同角的三角函数关系,三角函数的符号判断以及诱导公式的运用:,因为θ是第四象限角,且,所以也在第四象限,即,所以24 (2017全国I 文8).函数sin21cos xy x=-的部分图像大致为a =2c =2cos 3A =2222cos a b c bc A =+-23830b b --=3b =2T ππω==4π2sin(2())46y x ππ=-+π435π443-cos()4πθ-=3cos()sin()4245πππθθ+-=+=cos()4πθ-=354πθ-4sin()45πθ-=-sin()44tan()43cos()4πθπθπθ--=--ABC .2D .3A . y =2sin(2x +π4)B . y =2sin(2x +π3)C . y =2sin(2x –π4)D . y =2sin(2x –π3)A .B .C .D .【答案】C【解析】由题意知,函数sin 21cos xy x=-为奇函数,故排除B ;当πx =时,0y =,故排除D ;当1x =时,sin 201cos 2y =>-,故排除A .故选C .25. (2017全国I 文15).已知π(0)2α∈,,tan α=2,则πcos ()4α-=__________.【答案】26.(2018全国I 文8).已知函数()222cos sin 2f x x x =-+,则 BA .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为427.(2018全国I 文11).已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 23α=,则a b -= BA .15B.CD .128.(2018全国I 文16).△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为.29.【2019年高考全国Ⅰ卷文数】函数f (x )=在[,]-ππ的图像大致为A .B .C .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x-+----===--+-+,得()f x 是奇函数,其图象关于原点对称,排除A .又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,排除B ,C ,故选D . 【名师点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养,采取性质法或赋值法,利用数形结合思想解题.解答本题时,先判断函数的奇偶性,得()f x 是奇函数,排除A ,再注意到选项的区别,利用特殊值得正确答案.30.【2019年高考全国Ⅰ卷文数】tan255°=A .−2B .−C .2D .2+【答案】D【解析】tan 255tan(18075)tan 75tan(4530)︒=︒+︒=︒=︒+︒=tan 45tan 301tan 45tan 30︒+︒-︒︒12+==+故选D. 【名师点睛】本题主要考查三角函数的诱导公式、两角和与差的三角函数、特殊角的三角函数值、运算求解能力.首先应用诱导公式,将问题转化成锐角三角函数的计算,进一步应用两角和的正切公式计算求解.题目较易,注重了基础知识、基本计算能力的考查.2sin cos ++x xx x31.【2019年高考全国Ⅰ卷文数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A −b sin B =4c sin C ,cos A =−14,则bc=A .6B .5C .4D .3【答案】A【解析】由已知及正弦定理可得2224a b c -=,由余弦定理推论可得2222214131cos ,,,422424b c a c c c A bc bc b +---==∴=-∴=3462b c ∴=⨯=,故选A . 【名师点睛】本题考查正弦定理及余弦定理推论的应用.先利用余弦定理推论得出a ,b ,c 关系,再结合正弦定理边角互换列出方程,解出结果.32.【2019年高考全国Ⅱ卷文数】若x 1=4π,x 2=43π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω=A .2B .32 C .1D .12【答案】A【解析】由题意知,()sin f x x ω=的周期232()44T ωπππ==-=π,解得2ω=.故选A . 【名师点睛】本题考查三角函数的极值和周期,渗透了直观想象、逻辑推理和数学运算素养.利用周期公式,通过方程思想解题.33.【2019年高考全国Ⅱ卷文数】已知a ∈(0,π2),2sin2α=cos2α+1,则sin α=A .15BCD 【答案】B 【解析】2sin 2cos21αα=+,24sin cos 2cos .0,,cos 02αααααπ⎛⎫∴⋅=∈∴> ⎪⎝⎭,sin 0,α>2sin cos αα∴=,又22sin cos 1αα+=,2215sin 1,sin 5αα∴==,又sin 0α>,sin 5α∴=,故选B .【名师点睛】本题是对三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦的正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负很关键,切记不能凭感觉.解答本题时,先利用二倍角公式得到正余弦关系,再利用角范围及正余弦平方和为1关系得出答案.34.【2019年高考全国Ⅲ卷文数】函数()2sin sin2f x x x =-在[0,2π]的零点个数为 A .2 B .3 C .4D .5【答案】B【解析】由()2sin sin 22sin 2sin cos 2sin (1cos )0f x x x x x x x x =-=-=-=, 得sin 0x =或cos 1x =,[]0,2πx ∈,0π2πx ∴=、或.()f x ∴在[]0,2π的零点个数是3,故选B .【名师点睛】本题考查在一定范围内的函数的零点个数,渗透了直观想象和数学运算素养.令()0f x =,得sin 0x =或cos 1x =,再根据x 的取值范围可求得零点.35.【2019年高考全国Ⅰ卷文数】函数3π()sin(2)3cos 2f x x x =+-的最小值为___________. 【答案】4-【解析】23π()sin(2)3cos cos 23cos 2cos 3cos 12f x x x x x x x =+-=--=--+ 23172(cos )48x =-++,1cos 1x -≤≤,∴当cos 1x =时,min ()4f x =-,故函数()f x 的最小值为4-.【名师点睛】本题首先应用诱导公式,转化得到二倍角的余弦,进一步应用二倍角的余弦公式,得到关于cos x 的二次函数,从而得解.注意解答本题的过程中,部分考生易忽视1cos 1x -≤≤的限制,而简单应用二次函数的性质,出现运算错误.36.【2019年高考全国Ⅱ卷文数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________.【答案】3π4【解析】由正弦定理,得sin sin sin cos 0B A A B +=.(0,),(0,)A B ∈π∈π,sin 0,A ∴≠∴sin cos 0B B +=,即tan 1B =-,3.4B π∴=【名师点睛】本题考查利用正弦定理转化三角恒等式,渗透了逻辑推理和数学运算素养.采取定理法,利用转化与化归思想解题.本题容易忽视三角形内角的范围致误,三角形内角均在(0,π)范围内,化边为角,结合三角函数的恒等变化求角.37.【2019年高考全国Ⅲ卷文数】ABC △的内角A 、B 、C 的对边分别为a 、b 、c .已知sinsin 2A Ca b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.【答案】(1)B =60°;(2)(82. 【解析】(1)由题设及正弦定理得sin sinsin sin 2A CA B A +=. 因为sin A ≠0,所以sinsin 2A CB +=. 由180A BC ︒++=,可得sincos 22A C B +=,故cos 2sin cos 222B B B=. 因为cos02B ≠,故1sin 22B =,因此B =60°. (2)由题设及(1)知△ABC的面积4ABC S a =△. 由正弦定理得()sin 120sin 1sin sin 2C c A a C C ︒-===+.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°,由(1)知A +C =120°,所以30°<C <90°,故122a <<,从而ABC S <<△. 因此,△ABC面积的取值范围是⎝⎭.【名师点睛】这道题考查了三角函数的基础知识,以及正弦定理的使用(此题也可以用余弦定理求解),最后考查V ABC是锐角三角形这个条件的利用,考查的很全面,是一道很好的考题.。

高考数学真题专题分类汇编专题三 函数(学生版)

高考数学真题专题分类汇编专题三 函数(学生版)

专题三 函数真题卷题号 考点 考向2023新课标1卷4函数的基本性质 复合函数的单调性、已知函数单调性求参10 对数运算、对数函数 对数运算、对数函数解决实际问题 11函数的基本性质、函数的极值 抽象函数的奇偶性、求抽象函数的函数值、极值点定义2023新课标2卷 4 函数的基本性质 利用奇偶性求参 2022新高考1卷 12 函数的基本性质 对称性、周期性的综合应用 2022新高考2卷 8 函数的基本性质 奇偶性、周期性的综合应用2021新高考1卷13 函数的基本性质 利用奇偶性求参2021新高考2卷7比较大小 利用对数函数的单调性比较大小 8 函数的基本性质 奇偶性、周期性的综合应用 14 函数的基本性质 基本初等函数的性质 2020新高考1卷6指数运算、对数运算指数、对数运算解决实际问题8 函数的基本性质 单调性、奇偶性的综合应用 2020新高考2卷7函数的单调性与最值 利用单调性求参数的取值范围 8 函数的基本性质 单调性、奇偶性的综合应用 12对数函数新定义问题、对数运算、对数函数的性质、不等式的性质【2023年真题】1.(2023·新课标I 卷 第4题) 设函数()()2x x a f x −=在区间(0,1)单调递减,则a 的取值范围是( )A. (,2]−∞−B. [2,0)−C. (0,2]D. [2,)+∞2.(2023·新课标II 卷 第4题)若21()()ln 21x f x x a x −=++为偶函数,则a =( ) A. 1−B. 0C.12D. 13.(2023·新课标I 卷 第10题)(多选) 噪声污染问题越来越受到重视,用声压级来度量声音的强弱,定义声压级020lg ppL p =×,其中常数00(0)p p >是听觉下限阈值,p 是实际声压.下表为不同声源的声压级: 声源与声源的距离/m声压级/dB燃油汽车 10 60~90混合动力汽车 10 50~60电动汽车1040已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为1p ,2p ,3p ,则( )A. 12p p …B. 2310p p >C. 30100p p =D. 12100p p …4. (2023·新课标I 卷 第11题)(多选)已知函数()f x 的定义域为R ,22()()()f xy y f x x f y =+,则( ) A. (0)0f = B. (1)0f =C. ()f x 是偶函数D. 0x =为()f x 的极小值点【2022年真题】5.(2022·新高考I 卷 第12题)(多选)已知函数()f x 及其导函数()f x ′的定义域为R ,记()().g x f x =′若3(2)2f x −,(2)g x +均为偶函数,则( )A. (0)0f =B. 1()02g −=C. (1)(4)f f −=D. (1)(2)g g −=6.(2022·新高考II 卷 第8题)若函数()f x 的定义域为R ,且()()()()f x y f x y f x f y ++−=,(1)1f =,则221()k f k ==∑( )A. 3−B. 2−C. 0D. 1【2021年真题】7.(2021·新高考I 卷 第13题)已知函数3()(22)x x f x x a −=⋅−是偶函数,则a =__________. 8.(2021·新高考II 卷 第7题)已知5log 2a =,8log 3b =,12c =,则下列判断正确的是( ) A. c b a <<B. b a c <<C. a c b <<D. a b c <<9.(2021·新高考II 卷 第8题)设函数()f x 的定义域为R ,且(2)f x +为偶函数,(21)f x +为奇函数,则 ( ) A. 102f−=B. (1)0f −=C. (2)0f =D. (4)0f =10.(2021·新高考II 卷 第14题)写出一个同时具有下列性质①②③的函数()f x :_________. ①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x ′>;③()f x ′是奇函数.【2020年真题】11.(2020·新高考I 卷 第6题)基本再生数0R 与世代间隔T 是新冠肺炎流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:()rt I t e =描述累计感染病例数()I t 随时间(t 单位:天)的变化规律,指数增长率 r 与0R ,T 近似满足01.R rT =+有学者基于已有数据估计出0 3.28R =, 6.T =据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln 20.69)≈( ) A. 1.2天B. 1.8天C. 2.5天D. 3.5天12.(2020·新高考I 卷、II 卷 第8题)若定义在R 上的奇函数()f x 在(,0)−∞单调递减,且(2)0f =,则满足(1)0xf x −…的x 的取值范围是( ) A. [1,1][3,)−∪+∞ B. [3,1][0,1]−−∪ C. [1,0][1,)−∪+∞D. [1,0][1,3]−∪13.(2020·新高考II 卷 第7题)已知函数2()lg(45)f x x x =−−在(,)a +∞上单调递增,则a 的取值范围是( ) A. (2,)+∞ B. [2,)+∞ C. (5,)+∞ D . [5,)+∞14.(2020·新高考I 卷 第12题)(多选)信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2, ,n ,且()0(1,2,,)i P X i p i n ==>= ,11ni i p ==∑,定义X 的信息熵21()logniii H X p p ==−∑( )A. 若1n =,则()0H x =B. 若2n =,则()H x 随着1p 的增大而增大C. 若i p =1n(1,2,i =,)n ,则()H x 随着n 的增大而增大 D. 若2n m =,随机变量Y 的所有可能取值为1,2, ,m ,且()P Y j ==j p +21j m p +−(1,2,j = ,)m ,则()H X ()H Y【答案解析】1.(2023·新课标I 卷 第4题)解:结合复合函数单调性的性质,易得12a…,所以a 的取值范围是[2,);+∞故选.D 2.(2023·新课标II 卷 第4题)解:()f x 为偶函数,(1)(1)f f =−,1(1)ln (1)ln 33a a ∴+=−+,0a ∴=,故选.B3.(2023·新课标I 卷 第10题)(多选)解:1211200220lg 20lg 20lg 0p p p L L p p p −=×−×=×> ,121pp ∴>,12p p ∴>,所以A 正确; 223320lg 10p L L p −=× …,231lg 2p p ∴…,1223p e p ∴…,所以B 错误;33020lg40p L p =×= ,30100p p ∴=,所以C 正确; 112220lg 905040p L L p −=×−= ...,12lg 2p p ∴ (12100)p ∴…,所以D 正确.故选ACD4. (2023·新课标I 卷 第11题)(多选)解:选项A ,令0xy ==,则(0)0(0)0(0)f f f =×+×,则(0)0f =,故A 正确; 选项B ,令1xy ==,则(1)1(1)1(1)f f f =×+×,则(1)0f =,故B 正确; 选项C ,令1x y ==−,则22(1)(1)(1)(1)(1)f f f =−×−+−×−,则(1)0f −=, 再令1y =−,则22()(1)()(1)f x f x x f −=−+−,即()()f x f x −=,故C 正确; 选项D ,不妨设()0f x =为常函数,且满足原题22()()()f xy y f x x f y =+,而常函数没有极值点,故D 错误. 故选:.ABC5.(2022·新高考I 卷 第12题)(多选)解:由3(2)2f x −为偶函数可知()f x 关于直线32x =对称,由(2)g x +为偶函数可知()g x 关于直线2x =对称, 结合()()g x f x =′,根据()g x 关于直线2x =对称可知()f x 关于点(2,)t 对称,根据()f x 关于直线32x =对称可知:()g x 关于点3(,0)2对称, 综上,函数()f x 与()g x 均是周期为2的周期函数,所以有(0)(2)f f t ==,所以A 不正确;(1)(1)f f −=,(4)(2)f f =,(1)(2)f f =,故(1)(4)f f −=,所以C 正确.13()()022g g −==,(1)(1)g g −=,所以B 正确; 又(1)(2)0g g +=,所以(1)(2)0g g −+=,所以D 不正确. 6.(2022·新高考II 卷 第8题)解:令1y =得(1)(1)()(1)()(1)()(1)f x f x f x f f x f x f x f x ++−=⋅=⇒+=−−故(2)(1)()f x f x f x +=+−,(3)(2)(1)f x f x f x +=+−+,消去(2)f x +和(1)f x +得到(3)()f x f x +=−,故()f x 周期为6; 令1x =,0y =得(1)(1)(1)(0)(0)2f f f f f +=⋅⇒=,(2)(1)(0)121f f f =−=−=−, (3)(2)(1)112f f f =−=−−=−, (4)(3)(2)2(1)1f f f =−=−−−=−, (5)(4)(3)1(2)1f f f =−=−−−=, (6)(5)(4)1(1)2f f f =−=−−=,故221()3[(1)(2)(6)](19)(20)(21)(22)k f k f f f f f f f ==+++++++∑(1)(2)(3)(4)1(1)(2)(1)3f f f f =+++=+−+−+−=−即7.(2021·新高考I 卷 第13题)解: 函数3()(22)x x f x x a −=⋅−是偶函数;33()(22)=()()(22)x x x x f x x a f x x a −−∴=⋅−−=−⋅−, 化简可得3(2222)0x x x x x a a −−⋅−+⋅−=, 解得1a =,故答案为1.8.(2021·新高考II 卷 第7题)解:55881log 2log log log 32a b =<==<=, 即.a c b << 故选.C9.(2021·新高考II 卷 第8题)解:因为函数为偶函数,则()()22f x f x +=−,可得()()31f x f x +=−,因为函数为奇函数,则()()1221f x f x −=−+,所以()()11f x f x −=−+, 所以,(3)(1)f x f x +=−+,即(4)(2)()f x f x f x +=−+=, 故函数是以4为周期的周期函数,因为函数()()21F x f x =+为奇函数,则()()010F f ==,故()()110f f −=−=,其它三个选项未知. 故选.B10.(2021·新高考II 卷 第14题)解:取2()f x x =,则22212121212()()()()f x x x x x x f x f x ===,满足①, ()2f x x ′=,0x >时有,满足②, ()2f x x ′=的定义域为R ,又()2()f x x f x ′′−=−=−,故是奇函数,满足③.故答案为:2()(f x x =答案不唯一,()()2*nf x xn N =∈均满足)11.(2020·新高考I 卷 第6题)解:将0 3.28R =,6T =代入01R rT =+, 得01 3.2810.386R rT −−==, 由()0.38tI t e=得()()ln 0.38I t t =,当增加1倍时,,所需时间为(2)f x +(21)f x +()f x ()0f x ′>故选.B12.(2020·新高考I 卷、II 卷 第8题)解:根据题意,不等式(1)0xf x −…可化为()010x f x ≥ −≥ 或()010x f x ≤ −≤, 由奇函数性质得(2)-(2)0f f −==,()f x 在(0,)+∞上单调递减, 所以或,解得13x 剟或10.x −剟 满足(1)0xf x −…的x 的取值范围是[1,0][1,3].x ∈−∪ 故选.D13.(2020·新高考II 卷 第7题) 解:由2450x x −−>,得1x <−或 5.x > 令245t x x =−−,外层函数lg y t =是其定义域内的增函数,∴要使函数2()lg(45)f x x x =−−在(,)a +∞上单调递增,则需内层函数245t x x =−−在(,)a +∞上单调递增且恒大于0,则(,)(5,)a +∞⊆+∞,即 5.a …a ∴的取值范围是[5,).+∞故选:.D14.(2020·新高考I 卷 第12题)(多选)解:A 选项中,由题意知11p =,此时2()1log 10H X =−×=,故A 正确;B 选项中,由题意知121p p +=,且1(0,1)p ∈, 121222121121()log log log (1)log (1)H X p p p p p p p p =−−=−−−−,设22()log (1)log (1)f x x x x x =−−−−,(0,1)x ∈ , 则222111()log log (1)log (1)ln 2ln 2f x x x x′=−−+−+=−,当1(,1)2x ∈时,()0f x ′<,当1(0,)2x ∈时,()0f x ′>,故当11(0,)2p ∈ 时,()H X 随着1p 的增大而增大,当11(,1)2p ∈ 时,()H X 随着1p 的增大而减小,故B 错误;C 选项中,由题意知2211()()log H X n log n n n=×−=, 故()H X 随着n 的增大而增大,故C 正确;D 选项中,由题意知j 21j 2j 21j j 1()()log ()mm m H Y p p p p +−+−==−++∑, 2j 2j j 2j 21j 221j j 1j 1()log (log log )m mm m H X p p p p p p +−+−===−=−+∑∑,j 21jj 21j2j 21j2j 221jj 1j 1()()log()(log log )m m mmp p pp m m H X H Y p p p p +−+−++−+−==−=+−+∑∑j 21jj 21jj 21jj21jj 21j j 21j j 21j 22j 1j 1j 21jj 21j()()()=log log m m m m p p pp mmm m m p p p p m m p p p p p p p pp p +−+−+−+−++−+−+−=+−+−+++=∑∑j 21j21j j 2j 1j21j=log (1)(1)0,m mpp m m p p p p +−+−=+−++>∑故D 错误. 故答案为: .AC。

2023年高考数学(全国甲卷)文科数学(含答案及详细解析)

2023年高考数学(全国甲卷)文科数学(含答案及详细解析)

2023年高考数学真题试卷(全国甲卷)文科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集,集合,则()A.B.C.D.2.()A.B.1C.D.3.已知向量,则()A.B.C.D.4.某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.B.C.D.5.记为等差数列的前项和.若,则()A.25B.22C.20D.156.执行下边的程序框图,则输出的()A.21B.34C.55D.897.设为椭圆的两个焦点,点在上,若,则()A.1B.2C.4D.58.曲线在点处的切线方程为()A.B.C.D.9.已知双曲线的离心率为,其中一条渐近线与圆交于A,B两点,则()A.B.C.D.10.在三棱锥中,是边长为2的等边三角形,,则该棱锥的体积为()A.1B.C.2D.311.已知函数.记,则()A.B.C.D.12.函数的图象由的图象向左平移个单位长度得到,则的图象与直线的交点个数为()A.1B.2C.3D.4二、填空题:本大题共4小题,每小题5分,共20分.13.记为等比数列的前项和.若,则的公比为.14.若为偶函数,则.15.若x,y满足约束条件,则的最大值为.16.在正方体中,为的中点,若该正方体的棱与球的球面有公共点,则球的半径的取值范围是.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.记的内角的对边分别为,已知.(1)求;(2)若,求面积.18.如图,在三棱柱中,平面.(1)证明:平面平面;(2)设,求四棱锥的高.19.一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g).试验结果如下:对照组的小白鼠体重的增加量从小到大排序为15.218.820.221.322.523.225.826.527.530.132.634.334.835.635.635.836.237.340.543.2试验组的小白鼠体重的增加量从小到大排序为7.89.211.412.413.215.516.518.018.819.219.820.221.622.823.623.925.128.232.336.5(1)计算试验组的样本平均数;(2)(ⅰ)求40只小白鼠体重的增加量的中位数m,再分别统计两样本中小于m与不小于m的数据的个数,完成如下列联表对照组试验组(ⅱ)根据(i)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:,0.1000.0500.0102.7063.841 6.63520.已知函数.(1)当时,讨论的单调性;(2)若,求的取值范围.21.已知直线与抛物线交于两点,.(1)求;(2)设为的焦点,为上两点,且,求面积的最小值.22.已知点,直线(为参数),为的倾斜角,与轴正半轴、轴正半轴分别交于,且.(1)求;(2)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求的极坐标方程.23.已知.(1)求不等式的解集;(2)若曲线与轴所围成的图形的面积为2,求.答案解析部分1.【答案】A【解析】【解答】,故选:A【分析】先计算补集,再求并集即得答案.2.【答案】C【解析】【解答】,故选:C【分析】利用复数乘法运算计算由得出答案。

2021高考文科数学专题复习历年真题专题04 三角函数与解三角形第十一讲 解三角形(原卷版)

2021高考文科数学专题复习历年真题专题04  三角函数与解三角形第十一讲 解三角形(原卷版)

专题04 三角函数与解三角形第十一讲 解三角形2019年1. (全国Ⅱ文15)ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________.2.(2019全国Ⅰ文11)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .3(Ⅰ)求b ,c 的值; (Ⅱ)求sin (B +C )的值.4.(2019全国三文18)ABC △的内角A 、B 、C 的对边分别为a 、b 、c ,已知sinsin 2A Ca b A +=. (1)求B ;(2)若ABC △为锐角三角形,且c =1,求ABC △面积的取值范围.5.(2019天津文16)在ABC 中,内角A B C ,,所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(Ⅰ)求cosB 的值; (Ⅱ)求sin 26B π⎛⎫+⎪⎝⎭的值. 6.(2019江苏15)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b ,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值. 7.(2019浙江14)在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上, 若45BDC ∠=︒,则BD =____,cos ABD ∠=________.2015-2018年一、选择题1.(2018全国卷Ⅱ)在△ABC 中,cos25=C ,1=BC ,5=AC ,则=ABA .BCD .2.(2018全国卷Ⅲ)ABC △的内角A ,B ,C 的对边分别为a ,b ,c .若ABC ∆的面积为2224a b c +-,则C =A .2π B .3π C .4π D .6π 3.(2017新课标Ⅰ)ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )B A C C +- 0=,2a =,c =C =A .12π B .6π C .4π D .3π4.(2016全国I )△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知a =2c =,2cos 3A =,则b =A B C .2 D .3 5.(2016全国III )在ΔABC 中,4B π=,BC 边上的高等于13BC ,则sin A =A .310B C D6.(2016山东)ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,已知22,2(1sin )bc a b A ,则A = A .3π4 B .π3 C .π4 D .π67.(2015广东)设ΑΒC ∆的内角,,A B C 的对边分别为a ,b ,c .若2a =,c =,cos 2A =,且b c <,则b =A .3B .C .2D 二、填空题8.(2018全国卷Ⅰ)△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为__.9.(2018浙江)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2b =,60A =,则sin B =___________,c =___________.10.(2018北京)若ABC △222)a c b +-,且C ∠为钝角,则B ∠= ;c a的取值范围是 .11.(2018江苏)在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 .12.(2017新课标Ⅱ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos cos cos b B a C c A =+,则B =13.(2017新课标Ⅲ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .已知60C =,b =3c =,则A =_______.14.(2017浙江)已知ABC ∆,4AB AC ==,2BC =. 点D 为AB 延长线上一点,2BD =,连结CD ,则BDC ∆的面积是_______,cos BDC ∠=_______. 15.(2016全国Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =, 5cos 13C =,1a =,则b =_____.16.(2015北京)在△ABC 中,23,3a b A π==∠=,则B ∠= _________. 17.(2015重庆)设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且2a =,1cos 4C =-,3sin 2sin A B =,则c =________.18.(2015安徽)在ABC ∆中,6=AB , 75=∠A , 45=∠B ,则=AC .19.(2015福建)若锐角ABC ∆的面积为5AB =,8AC =,则BC 等于 . 20.(2015新课标1)在平面四边形ABCD 中,75A B C ∠=∠=∠=,2BC =,则AB 的取值范围是_______.21.(2015天津)在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为2b c -=,1cos 4A =-,则a 的值为 .22.(2015湖北)如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD = m .三、解答题23.(2018天津)在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c .已知sin cos()6b A a B π=-.(1)求角B 的大小;(2)设2a =,3c =,求b 和sin(2)A B -的值.24.(2017天津)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知sin 4sin a A b B =,2225()ac a b c =--.(Ⅰ)求cos A 的值; (Ⅱ)求sin(2)B A -的值.25.(2017山东)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知3b =,6AB AC ⋅=-,3ABC S ∆=,求A 和a .26.(2015新课标2)ABC ∆中,D 是BC 上的点,AD 平分∠BAC ,∆ABD 面积是∆ADC 面积的2倍. (Ⅰ)求sin sin BC; (Ⅱ) 若AD =1,DC =22,求BD 和AC 的长. 27.(2015新课标1)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =.(Ⅰ)若a b =,求cos ;B(Ⅱ)若90B =,且a =ABC ∆的面积.专题04 三角函数与解三角形 第十一讲 解三角形答案部分2019年1.34π【解析】 因为b sin A +a cos B =0,所以由正弦定理,可得:sin sin sin cos 0A B A B +=, 因为(0,π)A ∈,sin 0A >,所以可得sin cos 0B B +=,可得tan 1B =-,因为(0,π)B ∈,所以3π4B =. 2.A 【解析】因为ABC △的内角,,A B C 的对边分别为,,a b c . 利用正弦定理将角化为边可得2224a b c -= ①由余弦定理可得2221cos 24b c a A bc +-==- ②由①②消去a 得()22224cos 2b c b c A bc+-+==化简得6b c =,即6bc=. 故选A . 3.【解析】(Ⅰ)由余弦定理2222cos b a c ac B =+-,得2221323()2b c c =+-⨯⨯⨯-.因为2b c =+,所以2221(2)323()2c c c +=+-⨯⨯⨯-. 解得5c =.则7b =.(Ⅱ)由1cos 2B =-,得sin 2B =.由正弦定理得,sin sin 14a A Bb ==.在ABC △中,B C A +=π-, 所以()sin()sin sin B C A A +=π-==4.【解析】(1)由题设及正弦定理得sin sinsin sin 2A CA B A +=. 因为sin 0A ≠,所以sinsin 2A CB +=. 由180A BC ︒++=,可得sincos 22A C B +=,故cos 2sin cos 222B B B=. 因为cos02B ≠,故1sin 22B =,因此60B =︒. (2)由题设及(1)知△ABC的面积ABC S =△. 由正弦定理得()sin 120sin 1sin sin 2tan 2C c A a C C C ︒-===+.由于ABC △为锐角三角形,故090A ︒<<︒,090C ︒<<︒,由(1)知120A C +=︒,所以3090C ︒<<︒,故122a <<,从而82ABC S <<△. 因此,ABC △面积的取值范围是⎝⎭.5.【解析】(Ⅰ)在ABC △中,由正弦定理sin sin b cB C=,得sin sin b C c B =,又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得到43b a =,23c a =.由余弦定理可得222222416199cos 22423a a a a cb B a a +-+-===-⋅⋅.(Ⅱ)由(Ⅰ)可得sin B ==,从而sin 22sin cos B B B ==227cos 2cos sin 8B B B =-=-,故πππ717sin 2sin 2cos cos 2sin 666828216B B B ⎛⎫+=+=--⨯=- ⎪⎝⎭.6.【解析】(1)由余弦定理222cos 2a c b B ac +-=,得2222(3)323c c c c +-=⨯⨯,即213c =.所以c =(2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而cos 5B =.因此πsin cos 25B B ⎛⎫+== ⎪⎝⎭.【解析】在直角三角形ABC 中,4AB =,3BC =,5AC =,4sin 5C =,在BCD △中,sin sin BD BC C BDC =∠,可得5BD = 135CBD C ∠=-,43sin sin(135)(cos sin )225510CBD C C C ⎛⎫∠=-=+=+=⎪⎝⎭,所以()cos cos 90sin 10ABD CBD CBD ∠=-∠=∠=.2015-2018年1.A 【解析】因为213cos 2cos121255=-=⨯-=-C C ,所以由余弦定理, 得22232cos 251251()325=+-⋅=+-⨯⨯⨯-=AB AC BC AC BC C ,所以=AB A .2.C 【解析】根据题意及三角形的面积公式知2221sin 24a b c ab C +-=,所以222sin cos 2a b c C C ab +-==,所以在ABC ∆中,4C π=.故选C . 3.B 【解析】由sin sin (sin cos )B A C C +-0=,得sin()sin (sin cos )0A C A C C ++-=,即sin cos cos sin sin sin sin cos 0A C A C A C A C ++-=,所以sin (sin cos )0C A A +=,因为C 为三角形的内角,所以sin 0C ≠, 故sin cos 0A A +=,即tan 1A =-,所以34A π=. 由正弦定理sin sin a c A C =得,1sin 2C =,由C 为锐角,所以6C π=,选B . 4.D 【解析】由余弦定理,得2422cos 5b b A +-⨯=,整理得23830b b --=,解得3b =或13b =- (舍去),故选D .5.D 【解析】设BC 边上的高为AD ,则3BC AD =,2DC AD =,所以AC ==.由正弦定理,知sin sin AC BCB A=,3sin 2ADA =,解得sin A =,故选D . 6.C 【解析】由余弦定理得222222cos 22cos a b c bc A b b A =+-=-,所以222(1sin )2(1cos )b A b A -=-,所以sin cos A A =,即tan 1A =,又0A π<<,所以4A π=.7.C 【解析】由余弦定理得:2222cos a b c bc A =+-,所以(22222b b =+-⨯⨯, 即2680b b -+=,解得:2b =或4b =,因为b c <,所以2b =,故选B .8【解析】由sin sin 4sin sin b C c B a B C +=得, sin sin sin sin 4sin sin sin B C C B A B C +=,因为sin sin 0B C ≠,所以1sin 2A =, 因为2228b c a +-=,222cos 02b c a A bc +-=>,所以cos A =所以3bc =,所以111sin 22323ABC S bc A ∆==⨯=. 9;3【解析】因为a =2b =,60A =,所以由正弦定理得2sin sin b AB a===2222cos a b c bc A =+-可得2230c c --=,所以3c =.10.60(2,)︒+∞【解析】ABC △的面积2221sin )2cos 244S ac B a c b ac B ==+-=,所以tan B =0180A <∠<,所以60B ∠=.因为C ∠为钝角,所以030A <∠<,所以0tan 3A <<,所以222sin()sin cos cos sin sin 13332sin sin sin 2tan 2A A Ac C a AA A A πππ--====+>,故ca的取值范围为(2,)+∞. 11.9【解析】因为120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,所以60ABD CBD ∠=∠=,由三角形的面积公式可得111sin120sin 60sin 60222ac a c =+, 化简得ac a c =+,又0a >,0c >,所以111a c+=,则1144(4)()559c a a c a c a c a c +=++=+++=≥, 当且仅当2c a =时取等号,故4a c +的最小值为9. 12.3π【解析】由正弦定理得2sin cos sin cos sin cos B B A C C A =+ 即2sin cos sin()B B A C =+, 所以1cos 2B =,又B 为三角形内角,所以π3B =. 13.75°【解析】由正弦定理sin sin b cB C=,即sin 2sin 3b C B c === , 结合b c < 可得45B = ,则18075A BC =--=.142222224241cos 22424AB BC AC ABC AB BC +-+-∠===⨯⨯⨯⨯,由22sin cos 1ABC ABC∠+∠=所以sin ABC ∠===, 1sin 2BDC S BD BC DBC ∆=⨯⨯∠ 11sin()sin 22BD BC ABC BD BC ABC π=⨯⨯-∠=⨯⨯∠ 1222=⨯⨯=.CAD因为BD BC =,所以D BCD ∠=∠,所以2ABC D BCD D ∠=∠+∠=∠,cos cos2ABC BDC ∠∠==== 15.2113【解析】∵4cos 5A =,5cos 13C =,所以3sin 5A =,12sin 13C =, 所以()63sin sin sin cos cos sin 65B AC A C A C =+=+=, 由正弦定理得:sin sin b aB A=解得2113b =. 16.4π【解析】由正弦定理,得sin sin a b A B =sin 2B=,所以sin 2B =, 所以4B π∠=.17.4【解析】由3sin 2sin AB 及正弦定理知:32a b ,又因为2a ,所以3b ;由余弦定理得:22212cos 49223()164c a b ab C =+-=+-⨯⨯⨯-=,所以4c .18.2【解析】由正弦定理可知:45sin )]4575(180sin[ACAB =+-245sin 60sin 6=⇒=⇒AC AC . 19.7【解析】由已知得ABC ∆的面积为1sin 20sin 2AB AC A A ⋅==sin 2A =,(0,)2A π∈,所以3A π=.由余弦定理得 2222cos BC AB AC AB AC A =+-⋅=49,7BC =.20.【解析】如图作PBC ∆,使75B C ∠=∠=,2BC,作出直线AD 分别交线段PB 、PC 于A 、D 两点(不与端点重合),且使75BAD ∠=,则四边形ABCD 就是符合题意的四边形,过C 作AD 的平行线交PB 于点Q ,在PBC ∆中,可求得BP =,在QBC ∆中,可求得BQ =,所以AB 的取值范围为.21.8 【解析】因为0A π<<,所以sin 4A ==,又1sin 28ABC S bc A ∆===24bc ∴=, 解方程组224b c bc -=⎧⎨=⎩,得6b =,4c =,由余弦定理得2222212cos 64264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,所以8a=.22. 30=∠BAC ,105=∠ABC ,在ABC ∆中,由180=∠+∠+∠ACB BAC ABC ,所以45=∠ACB ,因为600=AB ,由正弦定理可得30sin 45sin 600BC=, 即2300=BC m ,在BCD Rt ∆中,因为30=∠CBD ,2300=BC ,所以230030tan CDBC CD ==,所以6100=CD m . 23.【解析】(1)在ABC △中,由正弦定理sin sin a bA B=,可得sin sin b A a B =, 又由πsin cos()6b A a B =-,得πsin cos()6a B a B =-,即πsin cos()6B B =-,可得tan B =又因为(0π)B ∈,,可得3B π=.(2)在ABC △中,由余弦定理及2a =,3c =,3B π=,有2222cos 7b a c ac B =+-=,故b =.由πsin cos()6b A a B =-,可得sin A =a c <,故cos A =.因此sin 22sin cos A A A ==21cos 22cos 17A A =-=. 所以,sin(2)sin 2cos cos 2sin AB A B A B -=-=11727214-⨯= 24.【解析】(Ⅰ)由sin 4sin a A b B =,及sin sin a bA B=,得2a b =.由222)ac a b c =--,及余弦定理,得2225cos 25b c aA bcac +-===-(Ⅱ)由(Ⅰ),可得sin 5A =,代入sin 4sin a A b B =,得sin sin 4a A B b == 由(Ⅰ)知,A为钝角,所以cos B ==. 于是4sin 22sin cos 5B B B ==,23cos 212sin 5B B =-=,故43sin(2)sin 2cos cos 2sin (55B A B A B A -=-=⨯-=.25.【解析】因为6AB AC ⋅=-,所以cos 6bc A =-, 又 3ABC S ∆=, 所以sin 6bc A =,因此tan 1A =-,又0A π<<, 所以34A π=,又3b =,所以c =由余弦定理2222cos a b c bc A =+-,得29823(292a =+-⋅⋅-=,所以a =26.【解析】(Ⅰ)1sin 2ABD S AB AD BAD ∆=⋅∠ 1sin 2ADC S AC AD CAD ∆=⋅∠ 因为2ABD ADC S S ∆∆=,BAD CAD ∠=∠,所以2AB AC =. 由正弦定理可得sin 1sin 2B AC C AB ∠==∠.(Ⅱ)因为::ABD ADC S S BD DC ∆∆=,所以BD =ABD ∆和ADC ∆中,由余弦定理得2222cos AB AD BD AD BD ADB =+-⋅∠,2222cos AC AD DC AD DC ADC =+-⋅∠.222222326AB AC AD BD DC +=++=.由(Ⅰ)知2AB AC =,所以1AC =.27.【解析】(Ⅰ)由题设及正弦定理可得22b ac =.又a b =,可得2b c =,2a c =,由余弦定理可得2221cos 24a cb B ac +-==. (Ⅱ)由(Ⅰ)知22b ac =.因为90B =,由勾股定理得222a cb +=.故222a c ac +=,得c a ==.所以ABC ∆的面积为1.。

2011-2019高考文科数学全国卷真题分类汇编(含详细答案)专题:第10章 函数

2011-2019高考文科数学全国卷真题分类汇编(含详细答案)专题:第10章 函数

第10章 函数1.(2015全国II 文13)已知函数()32f x ax x =-的图像过点()14,-,则a =.2.(2012全国文16)设函数()221sin ()1x xf x x ++=+的最大值为M ,最小值为m ,则M m +=________.3.(2014新课标Ⅰ文5)设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论中正确的是()A.()()f x g x 是偶函数B.()()f x g x 是奇函数C.()()f x g x 是奇函数D.()()f x g x 是奇函数4.(2014新课标Ⅱ文15)已知偶函数()f x 的图像关于直线2x =对称,(3)3f =,则(1)f -=.5.(2015全国II 文12)设函数()()21ln 11f x x x=+-+,则使得()()21f x f x >-成立的x 的取值范围是().A. 113,⎛⎫ ⎪⎝⎭B. ()113,,⎛⎫-∞+∞ ⎪⎝⎭UC. 1133,⎛⎫- ⎪⎝⎭D. 1133,,⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭U 6.(2011全国1文3)下列函数中,既是偶函数又在()0,+∞单调递增的函数是(). A.3y x = B.||1y x =+ C.21y x =-+ D.||2x y -=7. (2015全国I 文12)设函数()y f x =的图像与2x a y +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =().A.1-B. 1C. 2D. 4 8.(2012全国文11).当102x <…时,4log x a x <,则a 的取值范围是().A.0,2⎛ ⎝⎭B.2⎛⎫⎪ ⎪⎝⎭C.(D. )29.(2013全国II 文8)设3log 2a =,5log 2b =,2log 3c =,则().A.a c b >>B.b c a >>C.c b a >>D.c a b >>10.(2014新课标Ⅰ文15)设函数113e ,1(),1x x f x x x -⎧<⎪=⎨⎪⎩≥,则使得()2f x ≤成立的x 的取值范围是.11. (2015全国I 文10)已知函数1222,1()log (1),1x x f x x x -⎧-=⎨-+>⎩…,且()3f a =-,则(6)f a -=( ).A. 74-B. 54-C. 34-D. 14-12.(2013全国I 文12)已知函数()()220ln 1>0x x x f x x x ⎧-+⎪=⎨+⎪⎩≤,,,若()f x ax ≥,则a 的取值范围是( ).A. (]0-∞,B. (]1-∞,C. []21-,D. []20-, 13.(2016全国I 文8)(8)若0a b >>,01c <<,则(A )log a c <log b c (B )log c a <log c b (C )a c <b c (D )c a >c b 14.(2016全国I 文9)(9)函数22x y x e =-在[]2,2-的图像大致为(A )(B )(C )(D )15.(2018全国I 文13)13.已知函数()()22log f x x a =+,若()31f =,则a =______. 16.【2019年高考全国Ⅰ卷文数】已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .17.【2019年高考全国Ⅱ卷文数】设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )=A .e 1x --B .e 1x -+C .e 1x ---D .e 1x --+18.【2019年高考全国Ⅲ卷文数】函数()2sin sin2f x x x =-在[0,2π]的零点个数为 A .2 B .3 C .4 D . 5a b c <<a c b <<c a b <<b c a <<19.【2019年高考全国Ⅰ卷文数】函数f (x )=在[,]-ππ的图像大致为A .B .C .D .20.【2019年高考全国Ⅲ卷文数】设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-) B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314) D .f (232-)>f (322-)>f (log 314)高考真题试题详解1.解析由题意知()124f a -=-+=,故2a =-.2.分析将函数化简,利用函数的奇偶性求解.解析()2221sin 2sin ()111x x x x f x x x +++==+++,设22s i n ()1x xg x x +=+,则()()g x g x -=-,所以()g x 是奇函数.由奇函数图像的对称性知max min ()()0g x g x +=, 所以[][]max min ()1()1M m g x g x +=+++max min 2()()2g x g x =++=. 3.解析依题意得任意x ∈R ,都有()()f x f x -=-,()()g x g x -=,因此,()()()()()()f x g x f x g x f x g x --=-=-⎡⎤⎣⎦,()()f x g x 是奇函数,A 错;()()()()()()f x g x f x g x f x g x --=-=,()()f x g x 是偶函数,B 错; ()()()()()()f x g x f x g x f x g x ⎡⎤--=-=-⎣⎦,()()f x g x 是奇函数,C 正确;2sin cos ++x xx x()()()()()()f x g x f x g x f x g x -⋅-=-=,()()f x g x 是偶函数,D 错.故选C.4.解析因为函数()y f x =的图像关于直线2x =对称,所以()()22f x f x +=-对任意x 恒成立,令1x =,得()()133f f ==,所以()()113f f -==.5.解析由题意知()()f x f x -=,即()f x 为偶函数.因为()()221211xf x x x '=+++,所以()f x 在[)0+∞,上是增函数,所以使()()21f x f x >-成立的条件是()f x >()21f x - .所以21x x >-,解之得113x << .故选A. 6.解析四个选项中的偶函数只有B ,C ,D ,故排除,当x ∈(0,)+∞时,三个函数分别为1y x =+单调递增,21y x =-+单调递减,12()2x x y -==单调递减.故选B.7.解析设(),x y 为()f x 图像上一点,则(),x y 关于y x =-的对称点为(),y x --, 代入2x a y +=,得2y a x -+-=,①对①两边取以2为底的对数,得()2log x y a -=-+,即()2log y x a =---⎡⎤⎣⎦. 又()()241f f -+-=,即()()22log 2log 41a a ----=, 得()121a a ---=,得2a =.故选C. 8.分析利用指数函数和对数的性质求解. 解析因为102x <…,所以142x 剟,所以log 41x a x >>,所以01a <<,排除答案C,D.取12a =,12x =,则有1242=,121log 12=,显然4log x a x <不成立,排除答案A.故选B.9.分析利用对数函数的性质求解.解析:33log 2log 31a ==<;22log 3log 21c ==>,由对数函数的性质可知53log 2log 2<,所以b a c <<,故选D.10.解析()11,2e 2x x f x -<⎧⇒⎨⎩……或131,1,ln 212x x x x ⎧<⎧⎪⇒⎨⎨+⎩⎪⎩?……或1,18x x x ⎧⇒<⎨⎩?…或188x x ⇒剟?,故填(],8-∞.11.解析当1a …时,()1223a f a -=-=-,即121a -=-,无解;当1a >时,()()2log 13f a a =-+=-,即()322log 13log 2a +==, 得18a +=,所以7a =,符合1a >.综上可知,7a =.则()()()1176671224f a f f ---=-=-=-=-.故选A.12.分析先画出函数的图像,数形结合求解.解析:作出函数()y f x =的图象,如图,当()f x ax ≥时,必有0,k a ≤≤其中k 是()220y x x x =-≤在原点处的切线斜率,显然, 2.k =-所以a 的取值范围是[]2,0.-故选D.13.(2016全国I 文8)(8)若0a b >>,01c <<,则(A )log a c <log b c (B )log c a <log c b (C )a c <b c (D )c a >c b 【答案】B 【解析】试题分析:由01c <<可知log c y x =是减函数,又0a b >>,所以log log c c a b <.故选B.本题也可以用特殊值代入验证.考点:指数函数与对数函数的性质14.(2016全国I 文9)(9)函数22x y x e =-在[]2,2-的图像大致为(A )(B )(C )(D )【答案】D 考点:函数图像与性质15.(2018全国I 文13)13.已知函数()()22log f x x a =+,若()31f =,则a =____-7____. 16.【2019年高考全国Ⅰ卷文数】已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .【答案】B【解析】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,c <=<=即01,c <<a b c <<a c b <<c a b <<b c a <<则a c b <<.故选B .17.【2019年高考全国Ⅱ卷文数】设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )=A .e 1x --B .e 1x -+C .e 1x ---D .e 1x --+【答案】D【解析】由题意知()f x 是奇函数,且当x ≥0时,f (x )=e 1x -, 则当0x <时,0x ->,则()e 1()xf x f x --=-=-,得()e 1x f x -=-+.故选D .18.【2019年高考全国Ⅲ卷文数】函数()2sin sin2f x x x =-在[0,2π]的零点个数为 A .2 B .3 C .4D .5【答案】B【解析】由()2sin sin 22sin 2sin cos 2sin (1cos )0f x x x x x x x x =-=-=-=, 得sin 0x =或cos 1x =,[]0,2πx ∈,0πx ∴=、或2π.()f x ∴在[]0,2π的零点个数是3.故选B .19.【2019年高考全国Ⅰ卷文数】函数f (x )=在[,]-ππ的图像大致为 A . B .C .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x-+----===--+-+,得()f x 是奇函数,其图象关于原点对称. 2sin cos ++x xx x又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,可知应为D 选项中的图象. 故选D .20.【2019年高考全国Ⅲ卷文数】设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-) B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314) D .f (232-)>f (322-)>f (log 314)【答案】C 【解析】()f x 是定义域为R 的偶函数,331(log )(log 4)4f f ∴=.223303322333log 4log 31,1222,log 422---->==>>∴>>,又()f x 在(0,+∞)上单调递减,∴23323(log 4)22f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,即23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选C .。

文科数学2010-2019高考真题分类训练专题四三角函数与解三角形第十一讲三角函数的综合应用答案

文科数学2010-2019高考真题分类训练专题四三角函数与解三角形第十一讲三角函数的综合应用答案

专题四 三角函数与解三角形 第十一讲 三角函数的综合应用答案部分1.D 【解析】11111()(1cos )sin sin cos )2222224f x x x x x x πωωωωω=-+-=-=-,当12ω=时,1())24f x x π=-,(,2)x ππ∈时,1()(2f x ∈,无零点,排除A,B ;当316ω=时,3())164f x x π=-,(,2)x ππ∈时,0()f x ∈,有零点,排除C .故选D .2.B 【解析】22311()12sin 6sin 2(sin )22f x x x x =-+=--+,因为sin [1,1]x ∈-,所以当sin 1x = 时,()f x 取得最大值为max ()5f x =,故选B .3.C 【解析】由图象知:min 2y =,因为min 3y k =-+,所以32k -+=,解得:5k =,所以这段时间水深的最大值是max 3358y k =+=+=,故选C . 4.D 【解析】对于A ,当4x π=或54π时,sin 2x 均为1,而sin x 与2x x +此时均有两个值,故A 、B 错误;对于C ,当1x =或1x =-时,212x +=,而|1|x +由两个值,故C 错误,选D .5.B 【解析】由于(0)2,()1()()424f f f f πππ==+=<,故排除选项C 、D ;当点P 在BC 上时,()tan )4f x BP AP x x π=+=+≤≤.不难发现()f x 的图象是非线性,排除A .6.C 【解析】由题意知,()|cos |sin f x x x =⋅,当[0,]2x π∈时,()sin cos f x x x ==1sin 22x ;当(,]2x ππ∈时,1()cos sin sin 22f x x x x =-=-,故选C .7.2【解析】单位圆内接正六边形是由6个边长为1的正三角形组成,所以61611sin 6022S =⨯⨯⨯⨯=o .8.4,,a b r r的夹角为θ,由余弦定理有:a b -==r ra b +==r r则:a b a b ++-=r r r r,令y =[]21016,20y =+,据此可得:()()maxmin4a b a ba b a b++-==++-==r r r rr r r r,即a b a b ++-r r r r的最小值是4,最大值是9;1【解析】22cos sin 21cos2sin 2)14x x x x x π+=++++,所以 1.A b = 10.12【解析】∵∥a b ,∴2sin 2cos θθ=,∴22sin cos cos θθθ=,∵(0,)2πθ∈,∴1tan 2θ=.11.【解析】(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10.θHE KGNM PO ABC D过O 作OE ⊥BC 于E ,则OE ∥MN ,所以COE θ∠=, 故40cos OE θ=,40sin EC θ=,则矩形ABCD 的面积为240cos (40sin 10)800(4sin cos cos )θθθθθ⨯+=+,CDP ∆的面积为1240cos (4040sin )1600(cos sin cos )2θθθθθ⨯⨯-=-.过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则10GK KN ==. 令0GOK θ∠=,则01sin 4θ=,0(0,)6πθ∈.当0[,)2πθθ∈时,才能作出满足条件的矩形ABCD ,所以sin θ的取值范围是1[,1)4.答:矩形ABCD 的面积为800(4sin cos cos )θθθ+平方米,CDP ∆的面积为1600(cos sin cos )θθθ-,sin θ的取值范围是1[,1)4.(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (0)k >, 则年总产值为4800(4sin cos cos )31600(cos sin cos )k k θθθθθθ⨯++⨯-8000(sin cos cos )k θθθ=+,0[,)2πθθ∈.设()sin cos cos f θθθθ=+,0[,)2πθθ∈,则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f θθθθθθθθ'=--=-+-=--+. 令()0f θ'=,得π6θ=, 当0(,)6πθθ∈时,()>0f θ′,所以()f θ为增函数; 当(,)62ππθ∈时,()<0f θ′,所以()f θ为减函数, 因此,当π6θ=时,()f θ取到最大值.答:当π6θ=时,能使甲、乙两种蔬菜的年总产值最大.12.【解析】(1)由正棱柱的定义,1CC ⊥平面ABCD ,所以平面11A ACC ⊥平面ABCD ,1CC AC ⊥. 记玻璃棒的另一端落在1CC 上点M 处.因为AC =40AM =.所以30MN ==,从而3sin 4MAC ∠=. 记AM 与水平的交点为1P ,过1P 作11PQ AC ⊥,1Q 为垂足, 则11PQ ⊥平面ABCD ,故1112PQ =,从而11116sin PQ AP MAC==∠.答:玻璃棒l 没入水中部分的长度为16cm.( 如果将“没入水中部分”理解为“水面以上部分”,则结果为24cm)(2)如图,O ,1O 是正棱台的两底面中心. 由正棱台的定义,1OO ⊥平面 EFGH , 所以平面11E EGG ⊥平面EFGH ,1OO ⊥EG . 同理,平面11E EGG ⊥平面1111E F G H ,1OO ⊥11E G . 记玻璃棒的另一端落在1GG 上点N 处.过G 作GK ⊥11E G ,K 为垂足, 则GK =1OO =32. 因为EG = 14,11E G = 62,所以1KG =6214242-=,从而222211 243240GG KG GK =+=+=. 设1,,EGG ENG αβ==∠∠则114sin sin()cos 25KGG KGG απ=+==∠∠.因为2απ<<π,所以3cos 5α=-.在ENG △中,由正弦定理可得4014sin sin αβ=,解得7sin 25β=.因为02βπ<<,所以24cos 25β=. 于是sin sin()sin()sin cos cos sin NEG αβαβαβαβ=π--=+=+∠42473(35)525255=⨯+-⨯=. 记EN 与水面的交点为2P ,过2P 作22P Q EG ⊥,2Q 为垂足,则 22P Q ⊥平面EFGH ,故22P Q =12,从而 2EP =2220sin P NEGQ =∠.答玻璃棒l 没入水中部分的长度为20cm.(如果将“没入水中部分”理解为“水面以上部分”,则结果为20cm)13.【解析】(Ⅰ)由题意1cos(2)12()sin 222x f x x π++=-x x 2sin 21212sin 21+-= 212sin -=x .由ππππk x k 22222+≤≤+-()k Z ∈,可得ππππk x k +≤≤+-44()k Z ∈;由ππππk x k 223222+≤≤+()k Z ∈,得ππππk x k +≤≤+434()k Z ∈; 所以)(x f 的单调递增区间是]4,4[ππππk k ++-()k Z ∈;单调递减区间是]43,4[ππππk k ++()k Z ∈. (Ⅱ)1()sin 022A f A =-=Q ,1sin 2A ∴=,由题意A是锐角,所以cos 2A =. 由余弦定理:A bc c b a cos 2222-+=,2212b c bc+=+≥可得32321+=-≤∴bc ,且当c b =时成立.2sin 4bc A +∴≤.ABC ∆∴面积最大值为432+. 14.【解析】(Ⅰ)因为1()102(sin )102sin()212212123f t t t t ππππ--+--+,又240<≤t ,所以373123ππππ<+≤t ,1)312sin(1≤+≤-ππt , 当2=t 时,1)312sin(=+ππt ;当14=t 时,1)312sin(-=+ππt ;于是)(t f 在)24,0[上取得最大值12,取得最小值8.故实验室这一天最高温度为12C ︒,最低温度为8C ︒,最大温差为4C ︒ (Ⅱ)依题意,当11)(>t f 时实验室需要降温. 由(1)得)312sin(210)(ππ+-=t t f ,所以11)312sin(210>+-ππt ,即1sin()1232t ππ+<-, 又240<≤t ,因此61131267ππππ<+<t ,即1810<<t , 故在10时至18时实验室需要降温.15.【解析】:(1)Q c b a ,,成等差数列,2a c b ∴+=由正弦定理得sin sin 2sin A C B +=sin sin[()]sin()B A C A C π=-+=+Q()sin sin 2sin A C A C ∴+=+(2)Q c b a ,,成等比数列,22b ac ∴= 由余弦定理得2222221cos 2222a cb ac ac ac ac B ac ac ac +-+--==== 222a c ac +≥Q (当且仅当a c =时等号成立) 2212a c ac+∴≥(当且仅当a c =时等号成立)2211112222a c ac +∴-≥-=(当且仅当a c =时等号成立)即1cos 2B ≥,所以B cos 的最小值为1216.【解析】(Ⅰ)由函数()sin()f x x ωϕ=+的周期为π,0ω>,得2ω=又曲线()y f x =的一个对称中心为(,0)4π,(0,)ϕπ∈故()sin(2)044f ππϕ=⨯+=,得2πϕ=,所以()cos 2f x x =将函数()f x 图象上所有点的横坐标伸长到原的2倍(纵坐标不变)后可得cos y x =的图象,再将cos y x =的图象向右平移2π个单位长度后得到函数()sin g x x =(Ⅱ)当(,)64x ππ∈时,1sin 22x <<,10cos 22x << 所以sin cos2sin cos2x x x x >>问题转化为方程2cos2sin sin cos2x x x x =+在(,)64ππ内是否有解设()sin sin cos 22cos 2G x x x x x =+-,(,)64x ππ∈ 则()cos cos cos 22sin 2(2sin )G x x x x x x '=++- 因为(,)64x ππ∈,所以()0G x '>,()G x 在(,)64ππ内单调递增又1()064G π=-<,()04G π=> 且函数()G x 的图象连续不断,故可知函数()G x 在(,)64ππ内存在唯一零点0x ,即存在唯一的0(,)64x ππ∈满足题意 (Ⅲ)依题意,()sin cos 2F x a x x =+,令()sin cos 20F x a x x =+=当sin 0x =,即()x k k Z π=∈时,cos21x =,从而()x k k Z π=∈不是方程()0F x =的解,所以方程()0F x =等价于关于x 的方程cos 2sin xa x=-,()x k k Z π≠∈ 现研究(0,)(,2)x πππ∈U 时方程解的情况 令cos 2()sin xh x x=-,(0,)(,2)x πππ∈U 则问题转化为研究直线y a =与曲线()y h x =在(0,)(,2)x πππ∈U 的交点情况22cos (2sin 1)()sin x x h x x +'=,令()0h x '=,得2x π=或32x π= 当x 变化时,()h x 和()h x '变化情况如下表当0x >且x 趋近于0时,()h x 趋向于 当x π<且x 趋近于π时,()h x 趋向于 当x π>且x 趋近于π时,()h x 趋向于+∞ 当2x π<且x 趋近于2π时,()h x 趋向于+∞故当1a >时,直线y a =与曲线()y h x =在(0,)π内有无交点,在(,2)ππ内有2个交点;当1a <-时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内无交点;当11a -<<时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内有2个交点由函数()h x 的周期性,可知当1a ≠±时,直线y a =与曲线()y h x =在(0,)n π内总有偶数个交点,从而不存在正整数n ,使得直线y a =与曲线()y h x =在(0,)n π内恰有2013个交点;当1a =±时,直线y a =与曲线()y h x =在(0,)(,2)πππU 内有3个交点,由周期性,20133671=⨯,所以67121342n =⨯=综上,当1a =±,1342n =时,函数()()()F x f x ag x =+在(0,)n π内恰有2013个零点.。

高考文科数学三角函数的图象和性质考点讲解


返回目录
返回目录
高考复习讲义
考点全通关 4
三角函数的图象和性质 考点二 y=Asin(ω x+φ )的图象与性质
1.五点法作y=Asin(ω x+φ )(A>0,ω >0)的简图
X=ωx+φ
0
π

所有理想化模型均忽略对所研究 x 问题无影响的因素,是研究问题的 一种理想方法.在高中学习的理想 模型还有:点电荷、理想气体、弹 y=Asin(ωx+φ) 0 A 0 簧振子、点光源等.
继续学习
高考复习讲义
考点全通关 8
三角函数的图象和性质 考点二 y=Asin(ω x+φ )的图象与性质
2.变换作图法作y=Asin(ω x+φ )(A>0,ω >0)的图象
由上可知函数y=sin x到y=Asin(ω x+φ )的图象的变换途径为:相位变换→周期变化
→振幅变换,或周期变换→相位变化→振幅变换.
继续学习
高考复习讲义
考点全通关 11
三角函数的图象和性质
通关秘籍
2.速率是瞬时速度的大小,但平均速率不是平均速度 的大小,因为平均速率是路程与时间的比值,它与平 均速度的大小没有对应关系.
Your text
STEP 02
Click here to add your text or Copy Your text and paste it here
-A
0
继续学习
高考复习讲义
考点全通关 5
三角函数的图象和性质 考点二 y=Asin(ω x+φ )的图象与性质
1.五点法作y=Asin(ω x+φ )(A>0,ω >0)的简图

2024年高考全国甲卷数学(文)真题卷(含答案与解析)

绝密★启用前2024年普通高等学校招生全国统一考试文科数学使用范围:陕西、宁夏、青海、内蒙古、四川注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上. 4.所有题目必须在答题卡上作答,在试题卷上答题无效. 5.考试结束后,只将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B =I ( )A. {}1,2,3,4B. {}1,2,3C. {}3,4D. {}1,2,92.设z =,则z z ⋅=( )A. -iB. 1C. -1D. 23. 若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为( )A. 5B.12C. 2-D. 72-4. 等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( ) A. 2-B.73C. 1D.295. 甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( ) A.14B.13C.12D.236. 已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为( )A. 4B. 3C. 2D.7. 曲线()631f x x x =+-在()0,1-处的切线与坐标轴围成的面积为( ) A.16B.C.12D. 8. 函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-大致图像为()A. B.C. D.9.已知cos cos sin ααα=-,则πtan 4α⎛⎫+= ⎪⎝⎭( )A. 1+B. 1-C.D. 1原10题略10. 设αβ、是两个平面,m n 、是两条直线,且m αβ=I .下列四个命题: ①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成角相等,则m n ⊥其中所有真命题的编号是( ) A. ①③B. ②④C. ①②③D. ①③④11. 在ABC V 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( ) A.32B.C.D.二、填空题:本题共4小题,每小题5分,共20分.原13题略的的12. 函数()sin f x x x =在[]0,π上的最大值是______. 13. 已知1a >,8115log log 42a a -=-,则=a ______. 14. 曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,则a 的取值范围为______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.15. 已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-. (1)求{}n a 的通项公式; (2)求数列{}n S 的通项公式.16. 如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ; (2)求点M 到ABF 的距离.17. 已知函数()()1ln 1f x a x x =--+. (1)求()f x 单调区间;(2)若2a ≤时,证明:当1x >时,()1e xf x -<恒成立.18. 设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.的的(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.19. 在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+. (1)写出C 直角坐标方程; (2)设直线l :x ty t a =⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.20. 实数,a b 满足3a b +≥. (1)证明:2222a b a b +>+; (2)证明:22226a b b a -+-≥.参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B =I ( )A. {}1,2,3,4B. {}1,2,3C. {}3,4D. {}1,2,9【答案】A 【解析】【分析】根据集合B 的定义先算出具体含有的元素,然后根据交集的定义计算. 【详解】依题意得,对于集合B 中元素x ,满足11,2,3,4,5,9x +=, 则x 可能的取值为0,1,2,3,4,8,即{0,1,2,3,4,8}B =, 于是{1,2,3,4}A B ⋂=. 故选:A 2.设z =,则z z ⋅=( )A. -iB. 1C. -1D. 2【答案】D 【解析】的的【分析】先根据共轭复数的定义写出z ,然后根据复数的乘法计算.【详解】依题意得,z =,故22i 2zz =-=. 故选:D3. 若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为( )A. 5B.12C. 2-D. 72-【答案】D 【解析】【分析】画出可行域后,利用z 的几何意义计算即可得.【详解】实数,x y 满足43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,作出可行域如图:由5z x y =-可得1155y x z =-, 即z 的几何意义为1155y x z =-的截距的15-,则该直线截距取最大值时,z 有最小值, 此时直线1155y x z =-过点A , 联立43302690x y x y --=⎧⎨+-=⎩,解得321x y ⎧=⎪⎨⎪=⎩,即3,12A ⎛⎫⎪⎝⎭,则min 375122z =-⨯=-. 故选:D.4. 等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( ) A. 2- B.73C. 1D.29【答案】D【解析】【分析】可以根据等差数列基本量,即将题目条件全转化成1a 和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【详解】方法一:利用等差数列的基本量由91S =,根据等差数列的求和公式,911989193612S a d a d ⨯=+=⇔+=, 又371111222628(936)99a a a d a d a d a d +=+++=+=+=.故选:D方法二:利用等差数列的性质 根据等差数列的性质,1937a a a a +=+,由91S =,根据等差数列的求和公式,193799()9()122a a a a S ++===,故3729a a +=. 故选:D方法三:特殊值法不妨取等差数列公差0d =,则9111199S a a ==⇒=,则371229a a a +==. 故选:D5. 甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( ) A.14B.13C.12D.23【答案】B 【解析】【分析】分类讨论甲乙的位置,得到符合条件的情况,然后根据古典概型计算公式进行求解. 【详解】当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种; 当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意; 基本事件总数显然是44A 24=,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243=. 故选:B6. 已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为( )的A. 4B. 3C. 2D.【答案】C 【解析】【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率. 【详解】设()10,4F -、()20,4F 、()6,4-P ,则1228F F c ==,110PF ==,26PF ==,则1221064a PF PF =-=-=,则28224c e a ===. 故选:C.7. 曲线()631f x x x =+-在()0,1-处的切线与坐标轴围成的面积为( )A.16B.C.12D. 【答案】A 【解析】【分析】先求出切线方程,再求出切线的截距,从而可求面积.【详解】()563f x x ='+,所以()03f '=,故切线方程为3(0)131y x x =--=-,故切线的横截距为13,纵截距为1-,故切线与坐标轴围成的面积为1111236⨯⨯= 故选:A.8. 函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A. B.C. D.【答案】B 【解析】【分析】利用函数的奇偶性可排除A 、C ,代入1x =可得()10f >,可排除D. 【详解】()()()()()22ee sin e e sin xx x x f x x x x x f x ---=-+--=-+-=,又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C , 又()11πe 11111e sin11e sin 10e e 622e 42ef ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭, 故可排除D. 故选:B. 9.已知cos cos sin ααα=-,则πtan 4α⎛⎫+= ⎪⎝⎭( )A. 1+B. 1-C.D. 1【答案】B 【解析】 【分析】先将cos cos sin αα-α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos cos sin ααα=-,所以11tan =-α,tan 1⇒α=-,所以tan 1tan 11tan 4α+π⎛⎫==-α+ ⎪-α⎝⎭, 故选:B . 原10题略10. 设αβ、是两个平面,m n 、是两条直线,且m αβ=I .下列四个命题: ①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n ⊥其中所有真命题编号是( ) A. ①③ B. ②④C. ①②③D. ①③④【答案】A的【解析】【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③. 【详解】对①,当n ⊂α,因为//m n ,m β⊂,则//n β, 当n β⊂,因为//m n ,m α⊂,则//n α,当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,故①正确; 对②,若m n ⊥,则n 与,αβ不一定垂直,故②错误;对③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s , 同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β, 因为s ⊂平面α,m αβ=I ,则//s m ,又因为//n s ,则//m n ,故③正确;对④,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,故④错误; 综上只有①③正确, 故选:A.11. 在ABC V 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( )A.32B.C.D.【答案】C 【解析】【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac +=,再利用正弦定理得到22sin sin A C +的值,最后代入计算即可.【详解】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==. 由余弦定理可得:22294b ac ac ac =+-=, 即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==, 所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=, 因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin A C +=. 故选:C.二、填空题:本题共4小题,每小题5分,共20分.原13题略12. 函数()sin f x x x =在[]0,π上的最大值是______. 【答案】2 【解析】【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可. 【详解】()πsin 2sin 3f x x x x ⎛⎫==-⎪⎝⎭,当[]0,πx ∈时,ππ2π,333x ⎡⎤-∈-⎢⎥⎣⎦, 当ππ32x -=时,即5π6x =时,()max 2f x =.故答案为:213. 已知1a >,8115log log 42a a -=-,则=a ______. 【答案】64 【解析】【分析】将8log ,log 4a a 利用换底公式转化成2log a 来表示即可求解.【详解】由题28211315log log log 4log 22a a a a -=-=-,整理得()2225log 60log a a --=, 2log 1a ⇒=-或2log 6a =,又1a >,所以622log 6log 2a ==,故6264a ==故答案为:64.14. 曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,则a 的取值范围为______. 【答案】()2,1-【解析】【分析】将函数转化为方程,令()2331x x x a -=--+,分离参数a ,构造新函数()3251,g x x x x =+-+结合导数求得()g x 单调区间,画出大致图形数形结合即可求解.【详解】令()2331x x x a -=--+,即3251a x x x =+-+,令()()32510,g x x x x x =+-+> 则()()()2325351g x x x x x =+-=+-',令()()00g x x '=>得1x =, 当()0,1x ∈时,()0g x '<,()g x 单调递减,当()1,x ∞∈+时,()0g x '>,()g x 单调递增,()()01,12g g ==-,因为曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点, 所以等价于y a =与()g x 有两个交点,所以()2,1a ∈-.故答案为:()2,1-三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.15. 已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 的通项公式.【答案】(1)153n n a -⎛⎫= ⎪⎝⎭(2)353232n ⎛⎫- ⎪⎝⎭ 【解析】 【分析】(1)利用退位法可求公比,再求出首项后可求通项;(2)利用等比数列的求和公式可求n S .【小问1详解】因为1233n n S a +=-,故1233n n S a -=-,所以()12332n n n a a a n +=-≥即153n n a a +=故等比数列的公比为53q =, 故1211523333533a a a a =-=⨯-=-,故11a =,故153n n a -⎛⎫= ⎪⎝⎭.【小问2详解】 由等比数列求和公式得5113353523213n n n S ⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==- ⎪⎝⎭-. 16. 如图,在以A ,B ,C ,D ,E ,F 为顶点五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ;(2)求点M 到ABF 的距离.【答案】(1)证明见详解;(2【解析】的【分析】(1)结合已知易证四边形BCDM 为平行四边形,可证//BM CD ,进而得证;(2)作FO AD ⊥,连接OB ,易证,,OB OD OF 三垂直,结合等体积法M ABF F ABM V V --=即可求解.【小问1详解】因为//,2,4,BC AD BC AD M ==为AD 的中点,所以//,BC MD BC MD =,四边形BCDM 为平行四边形,所以//BM CD ,又因为BM ⊄平面CDE ,CD ⊂平面CDE ,所以//BM 平面CDE ;【小问2详解】如图所示,作BO AD ⊥交AD 于O ,连接OF ,因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =,结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =,所以ABM V 为等边三角形,O 为AM中点,所以OB =又因为四边形ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =,四边形EFMD 为平行四边形,FM ED AF ==,所以AFM △为等腰三角形,ABM V 与AFM △底边上中点O 重合,OF AM ⊥,3OF ==,因为222OB OF BF +=,所以OB OF ⊥,所以,,OB OD OF 互相垂直,由等体积法可得M ABF F ABM V V --=,2112333F ABM ABM V S FO -=⋅=⋅=△,222cos 2FA AB FB FAB FAB FA AB +-∠===∠=⋅11sin 222FAB S FA AB FAB =⋅⋅∠==△,设点M 到FAB的距离为d ,则1133M FAB F ABM FAB V V S d d --==⋅⋅==△, 解得d =,即点M 到ABF . 的17. 已知函数()()1ln 1f x a x x =--+.(1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,()1e x f x -<恒成立.【答案】(1)见解析(2)见解析【解析】 【分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性;(2)先根据题设条件将问题可转化成证明当1x >时,1e 21ln 0x x x --++>即可.【小问1详解】()f x 定义域为(0,)+∞,11()ax f x a x x'-=-= 当0a ≤时,1()0ax f x x -'=<,故()f x 在(0,)+∞上单调递减; 当0a >时,1,x a ∞⎛⎫∈+ ⎪⎝⎭时,()0f x '>,()f x 单调递增, 当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 单调递减. 综上所述,当0a ≤时,()f x 在(0,)+∞上单调递减;0a >时,()f x 在1,a ∞⎛⎫+ ⎪⎝⎭上单调递增,在10,a ⎛⎫ ⎪⎝⎭上单调递减. 【小问2详解】2a ≤,且1x >时,111e ()e (1)ln 1e 21ln x x x f x a x x x x ----=--+-≥-++,令1()e 21ln (1)x g x x x x -=-++>,下证()0g x >即可.11()e 2x g x x -'=-+,再令()()h x g x '=,则121()e x h x x-'=-, 显然()h x '在(1,)+∞上递增,则0()(1)e 10h x h ''>=-=,即()()g x h x ='在(1,)+∞上递增,故0()(1)e 210g x g ''>=-+=,即()g x 在(1,)+∞上单调递增,故0()(1)e 21ln10g x g >=-++=,问题得证18. 设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴. (1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.【答案】(1)22143x y += (2)证明见解析【解析】【分析】(1)设(),0F c ,根据M 的坐标及MF ⊥x 轴可求基本量,故可求椭圆方程.(2)设:(4)AB y k x =-,()11,A x y ,()22,B x y ,联立直线方程和椭圆方程,用,A B 的坐标表示1Q y y -,结合韦达定理化简前者可得10Q y y -=,故可证AQ y ⊥轴.【小问1详解】设(),0F c ,由题设有1c =且232b a =,故2132a a -=,故2a =,故b = 故椭圆方程为22143x y +=. 【小问2详解】直线AB 的斜率必定存在,设:(4)AB y k x =-,()11,A x y ,()22,B x y ,由223412(4)x y y k x ⎧+=⎨=-⎩可得()2222343264120k x k x k +-+-=,故()()422Δ102443464120k k k =-+->,故1122k -<<, 又22121222326412,3434k k x x x x k k-+==++, 而5,02N ⎛⎫ ⎪⎝⎭,故直线225:522y BN y x x ⎛⎫=- ⎪⎝⎭-,故22223325252Q y y y x x --==--, 所以()1222112225332525Q y x y y y y y x x ⨯-+-=+=-- ()()()12224253425k x x k x x -⨯-+-=- ()222212122264123225825834342525k k x x x x k k k k x x -⨯-⨯+-++++==-- 2222212824160243234025k k k k k x --+++==-,故1Q y y =,即AQ y ⊥轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.19. 在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x t y t a=⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值. 【答案】(1)221y x =+(2)34a =【解析】 【分析】(1)根据cos xρρθ⎧⎪=⎨=⎪⎩可得C 的直角方程. (2)将直线的新的参数方程代入C 的直角方程,法1:结合参数s 的几何意义可得关于a 的方程,从而可求参数a 的值;法2:将直线的直角方程与曲线的直角方程联立,结合弦长公式可求a 的值.【小问1详解】由cos 1ρρθ=+,将cos xρρθ⎧⎪=⎨=⎪⎩cos 1ρρθ=+,1x =+,两边平方后可得曲线的直角坐标方程为221y x =+.【小问2详解】对于直线l 的参数方程消去参数t ,得直线的普通方程为y x a =+.法1:直线l 的斜率为1,故倾斜角为π4,故直线的参数方程可设为x y a s ⎧=⎪⎪⎨⎪=+⎪⎩,s ∈R .将其代入221y x =+中得()221)210s a s a +-+-=设,A B 两点对应的参数分别为12,s s,则)()212121,21s s a s s a +=--=-, 且()()22Δ818116160a a a =---=->,故1a <,12AB s s ∴=-=2==,解得34a =. 法2:联立221y x a y x =+⎧⎨=+⎩,得22(22)10x a x a +-+-=, ()22Δ(22)41880a a a =---=-+>,解得1a <,设()()1122,,,A x y B x y ,2121222,1x x a x x a ∴+=-=-,则AB ==2=, 解得34a = 20. 实数,ab 满足3a b +≥.(1)证明:2222a b a b +>+; (2)证明:22226a b b a -+-≥.【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)直接利用22222()a b a b +≥+即可证明.(2)根据绝对值不等式并结合(1)中结论即可证明.【小问1详解】因为()()2222222022a b a ab b a b b a -+=--++=≥,当a b =时等号成立,则22222()a b a b +≥+,因为3a b +≥,所以22222()a b a b a b +≥+>+; 【小问2详解】 222222222222()a b b a a b b a a b a b -+-≥-+-=+-+22222()()()()(1)326a b a b a b a b a b a b =+-+≥+-+=++-≥⨯=。

历年(2019-2024)全国高考数学真题分类(函数及其基本性质)汇编(附答案)

历年(2019-2024)全国高考数学真题分类(函数及其基本性质)汇编考点01 直接求函数值1.(2024∙全国新Ⅰ卷∙高考真题)已知函数()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是( ) A .(10)100f > B .(20)1000f > C .(10)1000f <D .(20)10000f <2.(2024∙上海∙高考真题)已知()0,1,0x f x x >=≤⎪⎩则()3f = . 3.(2023∙北京∙高考真题)已知函数2()4log xf x x =+,则12f ⎛⎫= ⎪⎝⎭.4.(2021∙全国甲卷∙高考真题)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( )A .53-B .13-C .13D .535.(2021∙浙江∙高考真题)已知R a ∈,函数24,2()3,2,x x f x x a x ⎧->⎪=⎨-+≤⎪⎩若3f f ⎡⎤=⎣⎦,则=a .考点02 函数的定义域与值域1.(2022∙北京∙高考真题)函数1()f x x=的定义域是 . 2.(2020∙山东∙高考真题)函数()1lg f x x=的定义域是( ) A .()0,∞+B .()()0,11,+∞C .[)()0,11,+∞UD .()1,+∞3.(2019∙江苏∙高考真题)函数y =的定义域是 .考点03 函数单调性的判断及其应用1.(2024∙全国新Ⅰ卷∙高考真题)已知函数22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩在R 上单调递增,则a 的取值范围是( ) A .(,0]-∞B .[1,0]-C .[1,1]-D .[0,)+∞2.(2023∙北京∙高考真题)下列函数中,在区间(0,)+∞上单调递增的是( ) A .()ln f x x =-B .1()2xf x =C .1()f x x=-D .|1|()3x f x -=3.(2023∙全国甲卷∙高考真题)已知函数()2(1)e x f x --=.记,,a f b f c f ===⎝⎭⎝⎭⎝⎭,则( )A .b c a >>B .b a c >>C .c b a >>D .c a b >>4.(2023∙全国新Ⅰ卷∙高考真题)设函数()()2x x a f x -=在区间()0,1上单调递减,则a 的取值范围是( )A .(],2-∞-B .[)2,0-C .(]0,2D .[)2,+∞5.(2021∙全国甲卷∙高考真题)下列函数中是增函数的为( )A .()f x x =-B .()23xf x ⎛⎫= ⎪⎝⎭C .()2f x x = D .()f x 6.(2020∙山东∙高考真题)已知函数()f x 的定义域是R ,若对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,则函数()f x 一定是( )A .奇函数B .偶函数C .增函数D .减函数7.(2020∙全国∙高考真题)设函数331()f x x x=-,则()f x ( ) A .是奇函数,且在(0,+∞)单调递增 B .是奇函数,且在(0,+∞)单调递减 C .是偶函数,且在(0,+∞)单调递增D .是偶函数,且在(0,+∞)单调递减8.(2019∙北京∙高考真题)下列函数中,在区间(0,+∞)上单调递增的是 A .12y x =B .y =2x -C .12log y x =D .1y x=9.(2019∙全国∙高考真题)设()f x 是定义域为R 的偶函数,且在()0,∞+单调递减,则A .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ B .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .23332122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭考点04 函数的奇偶性及其应用1.(2024∙天津∙高考真题)下列函数是偶函数的是( )A .22e 1x x y x -=+B .22cos 1x x y x +=+C .e 1x xy x -=+D .||sin 4e x x xy +=2.(2024∙上海∙高考真题)已知()3f x x a =+,x ∈R ,且()f x 是奇函数,则=a .3.(2023∙全国甲卷∙高考真题)若()()2π1sin 2f x x ax x ⎛⎫=-+++ ⎪⎝⎭为偶函数,则=a .4.(2023∙全国乙卷∙高考真题)已知e ()e 1xax x f x =-是偶函数,则=a ( )A .2-B .1-C .1D .25.(2023∙全国新Ⅱ卷∙高考真题)若()()21ln 21x f x x a x -=++为偶函数,则=a ( ). A .1-B .0C .12D .16.(2022∙全国乙卷∙高考真题)若()1ln 1f x a b x++-=是奇函数,则=a ,b = . 7.(2021∙全国甲卷∙高考真题)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( )A .53-B .13-C .13D .538.(2021∙全国新Ⅱ卷∙高考真题)写出一个同时具有下列性质①②③的函数():f x . ①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()f x '是奇函数.9.(2021∙全国新Ⅰ卷∙高考真题)已知函数()()322x x x a f x -=⋅-是偶函数,则=a .10.(2021∙全国乙卷∙高考真题)设函数1()1xf x x-=+,则下列函数中为奇函数的是( ) A .()11f x --B .()11f x -+C .()11f x +-D .()11f x ++11.(2020∙山东∙高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃12.(2020∙全国∙高考真题)设函数()ln |21|ln |21|f x x x =+--,则f (x )( )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,2-∞-单调递减13.(2019∙北京∙高考真题)设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的 A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件14.(2019∙全国∙高考真题)设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )=A .e 1x --B .e 1x -+C .e 1x ---D .e 1x --+考点05 函数的周期性及其应用1.(2022∙全国新Ⅱ卷∙高考真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑( )A .3-B .2-C .0D .12.(2021∙全国新Ⅱ卷∙高考真题)已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则( ) A .102f ⎛⎫-= ⎪⎝⎭B .()10f -=C .()20f =D .()40f =3.(2021∙全国甲卷∙高考真题)设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫= ⎪⎝⎭( )A .94-B .32-C .74D .52考点06 函数的对称性及其应用1.(2024∙全国新Ⅱ卷∙高考真题)(多选)设函数32()231f x x ax =-+,则( ) A .当1a >时,()f x 有三个零点 B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心2.(2022∙全国新Ⅰ卷∙高考真题)(多选)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则( )A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=3.(2022∙全国乙卷∙高考真题)已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则()221k f k ==∑( )A .21-B .22-C .23-D .24-4.(2020∙全国∙高考真题)已知函数f (x )=sin x +1sin x,则() A .f (x )的最小值为2B .f (x )的图象关于y 轴对称C .f (x )的图象关于直线x π=对称D .f (x )的图象关于直线2x π=对称参考答案考点01 直接求函数值1.(2024∙全国新Ⅰ卷∙高考真题)已知函数()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是( ) A .(10)100f > B .(20)1000f > C .(10)1000f < D .(20)10000f <【答案】B【详细分析】代入得到(1)1,(2)2==f f ,再利用函数性质和不等式的性质,逐渐递推即可判断. 【答案详解】因为当3x <时()f x x =,所以(1)1,(2)2==f f , 又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>, (8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>, (11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+> (14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确. 故选:B.【名师点评】关键点名师点评:本题的关键是利用(1)1,(2)2==f f ,再利用题目所给的函数性质()(1)(2)f x f x f x >-+-,代入函数值再结合不等式同向可加性,不断递推即可.2.(2024∙上海∙高考真题)已知()0,1,0x f x x >=≤⎪⎩则()3f = .【详细分析】利用分段函数的形式可求()3f .【答案详解】因为()0,1,0x f x x >=≤⎪⎩故()3f =3.(2023∙北京∙高考真题)已知函数2()4log xf x x =+,则12f ⎛⎫= ⎪⎝⎭ .【答案】1【详细分析】根据给定条件,把12x =代入,利用指数、对数运算计算作答.【答案详解】函数2()4log xf x x =+,所以12211()4log 21122f =+=-=.故答案为:14.(2021∙全国甲卷∙高考真题)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( )A .53-B .13-C .13D .53【答案】C【详细分析】由题意利用函数的奇偶性和函数的递推关系即可求得53f ⎛⎫⎪⎝⎭的值.【答案详解】由题意可得:522213333f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,而21111133333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=-==--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故5133f ⎛⎫= ⎪⎝⎭.故选:C.【名师点评】关键点名师点评:本题主要考查了函数的奇偶性和函数的递推关系式,灵活利用所给的条件进行转化是解决本题的关键.5.(2021∙浙江∙高考真题)已知R a ∈,函数24,2()3,2,x x f x x a x ⎧->⎪=⎨-+≤⎪⎩若3f f ⎡⎤=⎣⎦,则=a . 【答案】2【详细分析】由题意结合函数的解析式得到关于a 的方程,解方程可得a 的值.【答案详解】()()642233f f f f a ⎡⎤=-==-+=⎣⎦,故2a =, 故答案为:2.考点02 函数的定义域与值域1.(2022∙北京∙高考真题)函数1()f x x=的定义域是 . 【答案】()(],00,1-∞⋃【详细分析】根据偶次方根的被开方数非负、分母不为零得到方程组,解得即可;【答案详解】解:因为()1f x x =100x x -≥⎧⎨≠⎩,解得1x ≤且0x ≠,故函数的定义域为()(],00,1-∞⋃;故答案为:()(],00,1-∞⋃2.(2020∙山东∙高考真题)函数()1lg f x x=的定义域是( ) A .()0,∞+ B .()()0,11,+∞C .[)()0,11,+∞UD .()1,+∞【答案】B【详细分析】根据题意得到0lg 0x x >⎧⎨≠⎩,再解不等式组即可. 【答案详解】由题知:0lg 0x x >⎧⎨≠⎩,解得0x >且1x ≠. 所以函数定义域为()()0,11,+∞ . 故选:B3.(2019∙江苏∙高考真题)函数y =的定义域是 . 【答案】[1,7]-.【详细分析】由题意得到关于x 的不等式,解不等式可得函数的定义域. 【答案详解】由已知得2760x x +-≥, 即2670x x --≤ 解得17x -≤≤, 故函数的定义域为[1,7]-.【名师点评】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.考点03 函数单调性的判断及其应用1.(2024∙全国新Ⅰ卷∙高考真题)已知函数22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩在R 上单调递增,则a 的取值范围是( ) A .(,0]-∞ B .[1,0]- C .[1,1]- D .[0,)+∞【答案】B【详细分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【答案详解】因为()f x 在R 上单调递增,且0x ≥时,()()e ln 1xf x x =++单调递增,则需满足()02021e ln1aa -⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a -≤≤, 即a 的范围是[1,0]-.故选:B.2.(2023∙北京∙高考真题)下列函数中,在区间(0,)+∞上单调递增的是( ) A .()ln f x x =- B .1()2xf x =C .1()f x x=-D .|1|()3x f x -=【答案】C【详细分析】利用基本初等函数的单调性,结合复合函数的单调性判断ABC ,举反例排除D 即可. 【答案详解】对于A ,因为ln y x =在()0,∞+上单调递增,y x =-在()0,∞+上单调递减, 所以()ln f x x =-在()0,∞+上单调递减,故A 错误;对于B ,因为2x y =在()0,∞+上单调递增,1y x=在()0,∞+上单调递减, 所以()12xf x =在()0,∞+上单调递减,故B 错误; 对于C ,因为1y x=在()0,∞+上单调递减,y x =-在()0,∞+上单调递减, 所以()1f x x=-在()0,∞+上单调递增,故C 正确;对于D ,因为111221332f -⎛⎫=== ⎪⎝⎭()()112101331,233f f --=====,显然()13x f x -=在()0,∞+上不单调,D 错误.故选:C.3.(2023∙全国甲卷∙高考真题)已知函数()2(1)e x f x --=.记,,222a f b f c f ⎛⎫=== ⎪⎝⎭⎝⎭⎝⎭,则( )A .b c a >>B .b a c >>C .c b a >>D .c a b >>【答案】A【详细分析】利用作差法比较自变量的大小,再根据指数函数的单调性及二次函数的性质判断即可. 【答案详解】令2()(1)g x x =--,则()g x 开口向下,对称轴为1x =,4112⎛-= ⎝⎭,而22491670-=+=>,所以41102222⎛⎫---=-> ⎪ ⎪⎝⎭,即1122->-由二次函数性质知g g <,因为4112222⎛⎫---=- ⎪ ⎪⎝⎭,而22481682)0-=+-=-=-<,即1122-<-,所以()(22g g >,综上,(((222g g g <<, 又e x y =为增函数,故a c b <<,即b c a >>. 故选:A.4.(2023∙全国新Ⅰ卷∙高考真题)设函数()()2x x a f x -=在区间()0,1上单调递减,则a 的取值范围是( )A .(],2-∞-B .[)2,0-C .(]0,2D .[)2,+∞【答案】D【详细分析】利用指数型复合函数单调性,判断列式计算作答. 【答案详解】函数2x y =在R 上单调递增,而函数()()2x x a f x -=在区间()0,1上单调递减,则有函数22()()24a a y x x a x =-=--在区间()0,1上单调递减,因此12a ≥,解得2a ≥,所以a 的取值范围是[)2,+∞. 故选:D5.(2021∙全国甲卷∙高考真题)下列函数中是增函数的为( )A .()f x x =-B .()23xf x ⎛⎫= ⎪⎝⎭C .()2f x x = D .()f x 【答案】D【详细分析】根据基本初等函数的性质逐项判断后可得正确的选项. 【答案详解】对于A ,()f x x =-为R 上的减函数,不合题意,舍. 对于B ,()23xf x ⎛⎫= ⎪⎝⎭为R 上的减函数,不合题意,舍.对于C ,()2f x x =在(),0∞-为减函数,不合题意,舍.对于D ,()f x =R 上的增函数,符合题意, 故选:D.6.(2020∙山东∙高考真题)已知函数()f x 的定义域是R ,若对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,则函数()f x 一定是( )A .奇函数B .偶函数C .增函数D .减函数【答案】C【详细分析】利用函数单调性定义即可得到答案.【答案详解】对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,等价于对于任意两个不相等的实数12x x <,总有()()12f x f x <. 所以函数()f x 一定是增函数. 故选:C7.(2020∙全国∙高考真题)设函数331()f x x x=-,则()f x ( ) A .是奇函数,且在(0,+∞)单调递增 B .是奇函数,且在(0,+∞)单调递减 C .是偶函数,且在(0,+∞)单调递增 D .是偶函数,且在(0,+∞)单调递减【答案】A【详细分析】根据函数的解析式可知函数的定义域为{}0x x ≠,利用定义可得出函数()f x 为奇函数, 再根据函数的单调性法则,即可解出.【答案详解】因为函数()331f x x x =-定义域为{}0x x ≠,其关于原点对称,而()()f x f x -=-, 所以函数()f x 为奇函数. 又因为函数3y x =在()0,+?上单调递增,在(),0-?上单调递增,而331y x x-==在()0,+?上单调递减,在(),0-?上单调递减,所以函数()331f x x x =-在()0,+?上单调递增,在(),0-?上单调递增.故选:A .【名师点评】本题主要考查利用函数的解析式研究函数的性质,属于基础题. 8.(2019∙北京∙高考真题)下列函数中,在区间(0,+∞)上单调递增的是 A .12y x = B .y =2x -C .12log y x =D .1y x=【答案】A【详细分析】由题意结合函数的解析式考查函数的单调性即可.【答案详解】函数122,log xy y x -==, 1y x=在区间(0,)+∞ 上单调递减, 函数12y x = 在区间(0,)+∞上单调递增,故选A .【名师点评】本题考查简单的指数函数、对数函数、幂函数的单调性,注重对重要知识、基础知识的考查,蕴含数形结合思想,属于容易题.9.(2019∙全国∙高考真题)设()f x 是定义域为R 的偶函数,且在()0,∞+单调递减,则A .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .23332122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】C【解析】由已知函数为偶函数,把233231log ,2,24f f f --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,转化为同一个单调区间上,再比较大小.【答案详解】()f x 是R 的偶函数,()331log log 44f f ⎛⎫∴= ⎪⎝⎭.223303322333log 4log 31,1222,log 422---->==>>∴>> ,又()f x 在(0,+∞)单调递减,∴()23323log 422f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,23323122log 4f f f --⎛⎫⎛⎫⎛⎫∴>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C .【名师点评】本题主要考查函数的奇偶性、单调性,解题关键在于利用中间量大小比较同一区间的取值.考点04 函数的奇偶性及其应用1.(2024∙天津∙高考真题)下列函数是偶函数的是( )A .22e 1x x y x -=+ B .22cos 1x x y x +=+ C .e 1x xy x -=+D .||sin 4e x x xy +=【答案】B【详细分析】根据偶函数的判定方法一一判断即可.【答案详解】对A ,设()22e 1x xf x x -=+,函数定义域为R ,但()112e 1f ---=,()112e f -=,则()()11f f -≠,故A 错误;对B ,设()22cos 1x x g x x +=+,函数定义域为R , 且()()()()()2222cos cos 11x x x x g x g x x x -+-+-===+-+,则()g x 为偶函数,故B 正确;对C ,设()e 1x xh x x -=+,函数定义域为{}|1x x ≠-,不关于原点对称, 则()h x 不是偶函数,故C 错误;对D ,设()||sin 4e x x x x ϕ+=,函数定义域为R,因为()sin141eϕ+=,()sin141e ϕ---=, 则()()11ϕϕ≠-,则()x ϕ不是偶函数,故D 错误. 故选:B.2.(2024∙上海∙高考真题)已知()3f x x a =+,x ∈R ,且()f x 是奇函数,则=a .【答案】0【详细分析】根据奇函数的性质可求参数a .【答案详解】因为()f x 是奇函数,故()()0f x f x -+=即()330x a x a ++-+=,故0a =, 故答案为:0.3.(2023∙全国甲卷∙高考真题)若()()2π1sin 2f x x ax x ⎛⎫=-+++ ⎪⎝⎭为偶函数,则=a .【答案】2【详细分析】利用偶函数的性质得到ππ22f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,从而求得2a =,再检验即可得解.【答案详解】因为()()()22π1sin 1cos 2y f x x ax x x ax x ⎛⎫==-+++=-++ ⎪⎝⎭为偶函数,定义域为R ,所以ππ22f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,即22ππππππ222222s 1co 1cos a a ⎛⎫⎛⎫⎛⎫-+=-+ ⎪ -⎪ ⎪⎝⎭⎝⎭--⎝+⎭,则22πππ2π1212a -⎛⎫⎛⎫=+- ⎪⎪⎭⎝⎭= ⎝,故2a =,此时()()2212cos 1cos f x x x x x x =-++=++, 所以()()()()221cos s 1co f x x x x x f x -=-++++-==, 又定义域为R ,故()f x 为偶函数, 所以2a =. 故答案为:2.4.(2023∙全国乙卷∙高考真题)已知e ()e 1xax x f x =-是偶函数,则=a ( )A .2-B .1-C .1D .2【答案】D【详细分析】根据偶函数的定义运算求解.【答案详解】因为()e e 1x ax x f x =-为偶函数,则()()()()1e e e e 0e 1e 1e 1a x x x x ax ax axx x x f x f x ---⎡⎤--⎣⎦--=-==---, 又因为x 不恒为0,可得()1e e 0a x x --=,即()1e e a x x -=, 则()1x a x =-,即11a =-,解得2a =. 故选:D.5.(2023∙全国新Ⅱ卷∙高考真题)若()()21ln 21x f x x a x -=++为偶函数,则=a ( ). A .1- B .0C .12D .1【答案】B【详细分析】根据偶函数性质,利用特殊值法求出a 值,再检验即可. 【答案详解】因为()f x 为偶函数,则 1(1)(1)(1)ln (1)ln 33f f a a =-∴+=-+,,解得0a =, 当0a =时,()21ln21x x x f x -=+,()()21210x x -+>,解得12x >或12x <-,则其定义域为12x x ⎧⎨⎩或12x ⎫<-⎬⎭,关于原点对称.()()()()()()()121212121ln ln ln ln21212121f x x x x x x x x x f x x x x x ---+⎫-=---⎛==== ⎪-+-++⎝-⎭-, 故此时()f x 为偶函数. 故选:B.6.(2022∙全国乙卷∙高考真题)若()1ln 1f x a b x++-=是奇函数,则=a ,b = . 【答案】 12-; ln 2.【详细分析】根据奇函数的定义即可求出. 【答案详解】[方法一]:奇函数定义域的对称性 若0a =,则()f x 的定义域为{|1}x x ≠,不关于原点对称0a ∴≠若奇函数的1()||1f x ln a b x =++-有意义,则1x ≠且101a x+≠- 1x ∴≠且11x a≠+,函数()f x 为奇函数,定义域关于原点对称,111a ∴+=-,解得12a =-, 由(0)0f =得,102ln b +=,2b ln ∴=,故答案为:12-;2ln .[方法二]:函数的奇偶性求参 111()111a ax ax a f x ln a b ln b ln b x x x-+--=++=+=+--- 1()1ax a f x lnb x++-=++函数()f x 为奇函数11()()2011ax a ax a f x f x lnln b x x--++∴+-=++=-+2222(1)201a x a lnb x -+∴+=- 22(1)1210112a a a a +∴=⇒+=⇒=- 1222241,22b ln b ln a b ln ln -==-⇒=∴=-=[方法三]:因为函数()1ln 1f x a b x++-=为奇函数,所以其定义域关于原点对称. 由101a x+≠-可得,()()110x a ax -+-≠,所以11a x a +==-,解得:12a =-,即函数的定义域为()()(),11,11,-∞-⋃-⋃+∞,再由()00f =可得,ln 2b =.即()111ln ln 2ln 211x f x x x+=-++=--,在定义域内满足()()f x f x -=-,符合题意. 故答案为:12-;ln 2.7.(2021∙全国甲卷∙高考真题)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( )A .53-B .13-C .13D .53【答案】C【详细分析】由题意利用函数的奇偶性和函数的递推关系即可求得53f ⎛⎫⎪⎝⎭的值.【答案详解】由题意可得:522213333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,而21111133333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=-==--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 故5133f ⎛⎫= ⎪⎝⎭.故选:C.【名师点评】关键点名师点评:本题主要考查了函数的奇偶性和函数的递推关系式,灵活利用所给的条件进行转化是解决本题的关键.8.(2021∙全国新Ⅱ卷∙高考真题)写出一个同时具有下列性质①②③的函数():f x . ①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()f x '是奇函数.【答案】()4f x x =(答案不唯一,()()2*n x N f n x =∈均满足)【详细分析】根据幂函数的性质可得所求的()f x .【答案详解】取()4f x x =,则()()()()44421121122x f x f x x x x f x x ===,满足①, ()34f x x '=,0x >时有()0f x ¢>,满足②, ()34f x x '=的定义域为R ,又()()34f x x f x ''-=-=-,故()f x '是奇函数,满足③.故答案为:()4f x x =(答案不唯一,()()2*n x N f n x =∈均满足)9.(2021∙全国新Ⅰ卷∙高考真题)已知函数()()322x xx a f x -=⋅-是偶函数,则=a .【答案】1【详细分析】利用偶函数的定义可求参数a 的值.【答案详解】因为()()322x x x a f x -=⋅-,故()()322x xf x x a --=-⋅-,因为()f x 为偶函数,故()()f x f x -=,时()()332222x x x x x a x a --⋅-=-⋅-,整理得到()()12+2=0x xa --,故1a =, 故答案为:110.(2021∙全国乙卷∙高考真题)设函数1()1xf x x-=+,则下列函数中为奇函数的是( ) A .()11f x -- B .()11f x -+C .()11f x +-D .()11f x ++【答案】B【详细分析】分别求出选项的函数解析式,再利用奇函数的定义即可. 【答案详解】由题意可得12()111x f x x x-==-+++,对于A ,()2112f x x--=-不是奇函数; 对于B ,()211f x x-=+是奇函数; 对于C ,()21122f x x +-=-+,定义域不关于原点对称,不是奇函数; 对于D ,()2112f x x ++=+,定义域不关于原点对称,不是奇函数. 故选:B【名师点评】本题主要考查奇函数定义,考查学生对概念的理解,是一道容易题.11.(2020∙山东∙高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【答案】D【详细分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【答案详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =, 所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <, 所以由(10)xf x -≥可得:0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x = 解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃, 故选:D.【名师点评】本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题. 12.(2020∙全国∙高考真题)设函数()ln |21|ln |21|f x x x =+--,则f (x )( )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,2-∞-单调递减【答案】D【详细分析】根据奇偶性的定义可判断出()f x 为奇函数,排除AC ;当11,22x ⎛⎫∈- ⎪⎝⎭时,利用函数单调性的性质可判断出()f x 单调递增,排除B ;当1,2x ⎛⎫∈-∞- ⎪⎝⎭时,利用复合函数单调性可判断出()f x 单调递减,从而得到结果.【答案详解】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-, ()f x \为定义域上的奇函数,可排除AC ;当11,22x ⎛⎫∈- ⎪⎝⎭时,()()()ln 21ln 12f x x x =+--,()ln 21y x =+Q 在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x \在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ;当1,2x ⎛⎫∈-∞- ⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+- 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,D 正确.故选:D.【名师点评】本题考查函数奇偶性和单调性的判断;判断奇偶性的方法是在定义域关于原点对称的前提下,根据()f x -与()f x 的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.13.(2019∙北京∙高考真题)设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【详细分析】根据定义域为R 的函数()f x 为偶函数等价于()=()f x f x -进行判断. 【答案详解】0b = 时,()cos sin cos f x x b x x =+=, ()f x 为偶函数;()f x 为偶函数时,()=()f x f x -对任意的x 恒成立,()cos()sin()cos sin f x x b x x b x -=-+-=-cos sin cos sin x b x x b x +=- ,得0bsinx =对任意的x 恒成立,从而0b =.从而“0b =”是“()f x 为偶函数”的充分必要条件,故选C.【名师点评】本题较易,注重重要知识、基础知识、逻辑推理能力的考查.14.(2019∙全国∙高考真题)设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )=A .e 1x --B .e 1x -+C .e 1x ---D .e 1x --+【答案】D【详细分析】先把x <0,转化为‐x>0,代入可得()f x -,结合奇偶性可得()f x . 【答案详解】()f x 是奇函数, 0x ≥时,()1x f x e =-.当0x <时,0x ->,()()1x f x f x e -=--=-+,得()e 1x f x -=-+.故选D .【名师点评】本题考查分段函数的奇偶性和解析式,渗透了数学抽象和数学运算素养.采取代换法,利用转化与化归的思想解题.考点05 函数的周期性及其应用1.(2022∙全国新Ⅱ卷∙高考真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑( )A .3-B .2-C .0D .1【答案】A【详细分析】法一:根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f 的值,即可解出.【答案详解】[方法一]:赋值加性质因为()()()()f x y f x y f x f y ++-=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-,所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++-==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=--,()()14f x f x -=--,故()()24f x f x +=-,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =-=-=-,()()()321112f f f =-=--=-,()()()4221f f f =-==-,()()()5111f f f =-==,()()602f f ==,所以一个周期内的()()()1260f f f +++= .由于22除以6余4, 所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .[方法二]:【最优解】构造特殊函数由()()()()f x y f x y f x f y ++-=,联想到余弦函数和差化积公式()()cos cos 2cos cos x y x y x y ++-=,可设()cos f x a x ω=,则由方法一中()()02,11f f ==知2,cos 1a a ω==,解得1cos 2ω=,取3πω=,所以()2cos3f x x π=,则()()()()2cos 2cos 4cos cos 333333f x y f x y x y x y x y f x f y ππππππ⎛⎫⎛⎫++-=++-== ⎪ ⎪⎝⎭⎝⎭,所以()2cos 3f x xπ=符合条件,因此()f x 的周期263T ππ==,()()02,11f f ==,且()()()()()21,32,41,51,62f f f f f =-=-=-==,所以(1)(2)(3)(4)(5)(6)0f f f f f f +++++=, 由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .【整体点评】法一:利用赋值法求出函数的周期,即可解出,是该题的通性通法;法二:作为选择题,利用熟悉的函数使抽象问题具体化,简化推理过程,直接使用具体函数的性质解题,简单明了,是该题的最优解.2.(2021∙全国新Ⅱ卷∙高考真题)已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则( ) A .102f ⎛⎫-= ⎪⎝⎭B .()10f -=C .()20f =D .()40f =【答案】B【详细分析】推导出函数()f x 是以4为周期的周期函数,由已知条件得出()10f =,结合已知条件可得出结论.【答案详解】因为函数()2f x +为偶函数,则()()22f x f x +=-,可得()()31f x f x +=-, 因为函数()21f x +为奇函数,则()()1221f x f x -=-+,所以,()()11f x f x -=-+, 所以,()()()311f x f x f x +=-+=-,即()()4f x f x =+, 故函数()f x 是以4为周期的周期函数,因为函数()()21F x f x =+为奇函数,则()()010F f ==, 故()()110f f -=-=,其它三个选项未知. 故选:B.3.(2021∙全国甲卷∙高考真题)设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫= ⎪⎝⎭( )A .94-B .32-C .74D .52【答案】D【详细分析】通过()1f x +是奇函数和()2f x +是偶函数条件,可以确定出函数解析式()222f x x =-+,进而利用定义或周期性结论,即可得到答案.【答案详解】[方法一]:因为()1f x +是奇函数,所以()()11f x f x -+=-+①; 因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+, 因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路一:从定义入手.9551222222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1335112222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 511322=2222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以935222f f⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭. [方法二]:因为()1f x +是奇函数,所以()()11f x f x -+=-+①; 因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+, 因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路二:从周期性入手由两个对称性可知,函数()f x 的周期4T =. 所以91352222f f f⎛⎫⎛⎫⎛⎫==-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:D .【名师点评】在解决函数性质类问题的时候,我们通常可以借助一些二级结论,求出其周期性进而达到简便计算的效果.考点06 函数的对称性及其应用1.(2024∙全国新Ⅱ卷∙高考真题)(多选)设函数32()231f x x ax =-+,则( ) A .当1a >时,()f x 有三个零点 B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心【答案】AD【详细分析】A 选项,先详细分析出函数的极值点为0,x x a ==,根据零点存在定理和极值的符号判断出()f x 在(1,0),(0,),(,2)a a a -上各有一个零点;B 选项,根据极值和导函数符号的关系进行详细分析;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,则()(2)f x f b x =-为恒等式,据此计算判断;D 选项,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,据此进行计算判断,亦可利用拐点结论直接求解.【答案详解】A 选项,2()666()f x x ax x x a '=-=-,由于1a >,故()(),0,x a ∞∞∈-⋃+时()0f x '>,故()f x 在()(),0,,a ∞∞-+上单调递增, (0,)x a ∈时,()0f x '<,()f x 单调递减,则()f x 在0x =处取到极大值,在x a =处取到极小值, 由(0)10=>f ,3()10f a a =-<,则(0)()0f f a <, 根据零点存在定理()f x 在(0,)a 上有一个零点,又(1)130f a -=--<,3(2)410f a a =+>,则(1)(0)0,()(2)0f f f a f a -<<,则()f x 在(1,0),(,2)a a -上各有一个零点,于是1a >时,()f x 有三个零点,A 选项正确; B 选项,()6()f x x x a '=-,a<0时,(,0),()0x a f x '∈<,()f x 单调递减, ,()0x ∈+∞时()0f x '>,()f x 单调递增,此时()f x 在0x =处取到极小值,B 选项错误;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,即存在这样的,a b 使得()(2)f x f b x =-, 即32322312(2)3(2)1x ax b x a b x -+=---+,根据二项式定理,等式右边3(2)b x -展开式含有3x 的项为303332C (2)()2b x x -=-,于是等式左右两边3x 的系数都不相等,原等式不可能恒成立, 于是不存在这样的,a b ,使得x b =为()f x 的对称轴,C 选项错误; D 选项,方法一:利用对称中心的表达式化简(1)33f a =-,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,事实上,32322()(2)2312(2)3(2)1(126)(1224)1812f x f x x ax x a x a x a x a +-=-++---+=-+-+-,于是266(126)(1224)1812a a x a x a -=-+-+-即126012240181266a a a a -=⎧⎪-=⎨⎪-=-⎩,解得2a =,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确. 方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,32()231f x x ax =-+,2()66f x x ax '=-,()126f x x a ''=-,由()02af x x ''=⇔=,于是该三次函数的对称中心为,22a a f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭, 由题意(1,(1))f 也是对称中心,故122aa =⇔=, 即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确. 故选:AD【名师点评】结论名师点评:(1)()f x 的对称轴为()(2)x b f x f b x =⇔=-;(2)()f x 关于(,)a b 对称()(2)2f x f a x b ⇔+-=;(3)任何三次函数32()f x ax bx cx d =+++都有对称中心,对称中心是三次函数的拐点,对称中心的横坐标是()0f x ''=的解,即,33b b f a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭是三次函数的对称中心 2.(2022∙全国新Ⅰ卷∙高考真题)(多选)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则( )A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=【答案】BC【详细分析】方法一:转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解.【答案详解】[方法一]:对称性和周期性的关系研究对于()f x ,因为322f x ⎛⎫- ⎪⎝⎭为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭①,所以()()3f x f x -=,所以()f x 关于32x =对称,则(1)(4)f f -=,故C 正确; 对于()g x ,因为(2)g x +为偶函数,(2)(2)g x g x +=-,(4)()g x g x -=,所以()g x 关于2x =对称,由①求导,和()()g x f x '=,得333333222222fx f x f x f x g x g x ''⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫''-=+⇔--=+⇔--=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,所以()()30g x g x -+=,所以()g x 关于3(,0)2对称,因为其定义域为R ,所以302g ⎛⎫= ⎪⎝⎭,结合()g x 关于2x =对称,从而周期34222T ⎛⎫=⨯-= ⎪⎝⎭,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.[方法二]:【最优解】特殊值,构造函数法.由方法一知()g x 周期为2,关于2x =对称,故可设()()cos πg x x =,则()()1sin ππf x x c =+,显然A ,D 错误,选BC. 故选:BC. [方法三]:因为322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,(2)(2)g x g x +=-, 所以()()3f x f x -=,(4)()g x g x -=,则(1)(4)f f -=,故C 正确;函数()f x ,()g x 的图象分别关于直线3,22x x ==对称,又()()g x f x '=,且函数()f x 可导,所以()()30,32g g x g x ⎛⎫=-=- ⎪⎝⎭,所以()(4)()3g x g x g x -==--,所以()(2)(1)g x g x g x +=-+=,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.【点评】方法一:根据题意赋值变换得到函数的性质,即可判断各选项的真假,转化难度较高,是该题的通性通法;方法二:根据题意得出的性质构造特殊函数,再验证选项,简单明了,是该题的最优解. 3.(2022∙全国乙卷∙高考真题)已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则()221k f k ==∑( )A .21-B .22-C .23-D .24-【答案】D【详细分析】根据对称性和已知条件得到()(2)2f x f x +-=-,从而得到()()()352110f f f +++=- ,()()()462210f f f +++=- ,然后根据条件得到(2)f 的值,再由题意得到()36g =从而得到()1f 的值即可求解.【答案详解】因为()y g x =的图像关于直线2x =对称, 所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-, 因为()(2)5f x g x +-=,所以()(2)5f x g x ++=, 代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-, 所以()()()()35212510f f f +++=-⨯=- , ()()()()46222510f f f +++=-⨯=- .因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-. 因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=, 联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R , 所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =-=-.所以()()()()()()()()221123521462213101024()k f f f f f f f f f k =+++++++++=----=-⎡⎤⎡⎤⎣⎦⎣⎦=∑ .故选:D【名师点评】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题. 4.(2020∙全国∙高考真题)已知函数f (x )=sin x +1sin x,则() A .f (x )的最小值为2B .f (x )的图象关于y 轴对称C .f (x )的图象关于直线x π=对称D .f (x )的图象关于直线2x π=对称【答案】D【详细分析】根据基本不等式使用条件可判断A;根据奇偶性可判断B;根据对称性判断C,D. 【答案详解】sin x 可以为负,所以A 错; 1sin 0()()sin ()sin x x k k Z f x x f x xπ≠∴≠∈-=--=-∴Q Q ()f x 关于原点对称; 11(2)sin (),()sin (),sin sin f x x f x f x x f x x xππ-=--≠-=+=Q 故B 错; ()f x ∴关于直线2x π=对称,故C 错,D 对故选:D【名师点评】本题考查函数定义域与最值、奇偶性、对称性,考查基本详细分析判断能力,属中档题.。

高考真题与模拟训练 专题02 函数及其性质(解析版)

专题2 函数及其性质第一部分 真题分类一、单选题1.(2021·浙江高考真题)已知函数21(),()sin 4f x xg x x =+=,则图象为如图的函数可能是( )A .1()()4y f x g x =+- B .1()()4y f x g x =-- C .()()y f x g x = D .()()g x y f x =【答案】D【解析】对于A ,()()21sin 4y f x g x x x =+-=+,该函数为非奇非偶函数,与函数图象不符,排除A ; 对于B ,()()21sin 4y f x g x x x =--=-,该函数为非奇非偶函数,与函数图象不符,排除B ; 对于C ,()()21sin 4y f x g x x x ⎛⎫==+ ⎪⎝⎭,则212sin cos 4y x x x x ⎛⎫'=++ ⎪⎝⎭,当4x π=时,22120221642y ππ⎛⎫'=⨯++⨯> ⎪⎝⎭,与图象不符,排除C. 故选:D.2.(2021·全国高考真题(文))下列函数中是增函数的为( ) A .()f x x =- B .()23xf x ⎛⎫= ⎪⎝⎭C .()2f x x =D .()3f x x =【答案】D【解析】对于A ,()f x x =-为R 上的减函数,不合题意,舍.对于B ,()23xf x ⎛⎫= ⎪⎝⎭为R 上的减函数,不合题意,舍. 对于C ,()2f x x =在(),0-∞为减函数,不合题意,舍.对于D ,()f x =R 上的增函数,符合题意,故选:D.3.(2021·全国高考真题(文))设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-=⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( ) A .53-B .13-C .13D .53【答案】C【解析】由题意可得:522213333f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 而21111133333f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=-==--=-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 故5133f ⎛⎫= ⎪⎝⎭. 故选:C.4.(2021·全国高考真题(理))设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫= ⎪⎝⎭( )A .94-B .32-C .74D .52【答案】D 【解析】因为()1f x +是奇函数,所以()()11f x f x -+=-+①;因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+, 因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路一:从定义入手.9551222222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1335112222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 511322=2222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以935222f f ⎛⎫⎛⎫=-=⎪ ⎪⎝⎭⎝⎭. 思路二:从周期性入手由两个对称性可知,函数()f x 的周期4T =.所以91352222f f f ⎛⎫⎛⎫⎛⎫==-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:D .5.(2021·全国高考真题(理))设函数1()1xf x x-=+,则下列函数中为奇函数的是( ) A .()11f x -- B .()11f x -+C .()11f x +-D .()11f x ++【答案】B【解析】由题意可得12()111x f x x x-==-+++, 对于A ,()2112f x x --=-不是奇函数; 对于B ,()211f x x -=+是奇函数;对于C ,()21122f x x +-=-+,定义域不关于原点对称,不是奇函数; 对于D ,()2112f x x ++=+,定义域不关于原点对称,不是奇函数.故选:B6.(2020·天津高考真题)函数241xy x =+的图象大致为( ) A . B .C .D .【答案】A【解析】由函数的解析式可得:()()241xf x f x x --==-+,则函数()f x 为奇函数,其图象关于坐标原点对称,选项CD 错误; 当1x =时,42011y ==>+,选项B 错误. 故选:A.7.(2020·北京高考真题)已知函数()21xf x x =--,则不等式()0f x >的解集是( )A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞【答案】D【解析】因为()21xf x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2xy =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2), 不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞. 故选:D.8.(2020·海南高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( ) A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【答案】D【解析】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =, 所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =, 所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞时,()0f x <,所以由(10)xf x -≥可得:0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x = 解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃, 故选:D.9.(2020·全国高考真题(理))设函数()ln |21|ln |21|f x x x =+--,则f (x )( ) A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,)2-∞-单调递减【答案】D【解析】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称, 又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC ;当11,22x ⎛⎫∈-⎪⎝⎭时,()()()ln 21ln 12f x x x =+--, ()ln 21y x =+在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x ∴在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ;当1,2x ⎛⎫∈-∞-⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+-在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,D 正确. 故选:D. 二、填空题10.(2021·浙江高考真题)已知R a ∈,函数24,2()3,2,x x f x x a x ⎧->⎪=⎨-+≤⎪⎩若()63f f ⎡⎤=⎣⎦,则a =___________.【答案】2 【解析】()()()6642233f ff f a ⎡⎤=-==-+=⎣⎦,故2a =, 故答案为:2.11.(2021·全国高考真题)已知函数()()322xx x a f x -=⋅-是偶函数,则a =______.【答案】1【解析】因为()()322xx xa f x -=⋅-,故()()322x x f x x a --=-⋅-,因为()f x 为偶函数,故()()f x f x -=, 时()()332222xx x x xa x a --⋅-=-⋅-,整理得到()()12+2=0x x a --,故1a =, 故答案为:112.(2020·北京高考真题)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改,设企业的污水排放量W 与时间t 的关系为()W f t =,用()()f b f a b a---的大小评价在[,]a b 这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论: ①在[]12,t t 这段时间内,甲企业的污水治理能力比乙企业强;②在2t 时刻,甲企业的污水治理能力比乙企业强; ③在3t 时刻,甲、乙两企业的污水排放都已达标;④甲企业在[][][]112230,,,,,t t t t t 这三段时间中,在[]10,t 的污水治理能力最强. 其中所有正确结论的序号是____________________. 【答案】①②③ 【解析】()()f b f a b a---表示区间端点连线斜率的负数,在[]12,t t 这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;甲企业在[][][]112230,,,,,t t t t t 这三段时间中,甲企业在[]12,t t 这段时间内,甲的斜率最小,其相反数最大,即在[]12,t t 的污水治理能力最强.④错误;在2t 时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在3t 时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,所以都已达标;③正确; 故答案为:①②③13.(2020·全国高考真题(理))关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图象关于y 轴对称. ②f (x )的图象关于原点对称. ③f (x )的图象关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 【答案】②③【解析】对于命题①,152622f π⎛⎫=+=⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭, 11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<, 命题④错误. 故答案为:②③.14.设(),()fx g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,()f x =,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中0k >.若在区间(0]9,上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是_____. 【答案】1,34⎡⎫⎪⎢⎪⎣⎭. 【解析】当(]0,2x ∈时,()f x =即()2211,0.x y y -+=≥又()f x 为奇函数,其图象关于原点对称,其周期为4,如图,函数()f x 与()g x 的图象,要使()()f x g x =在(]0,9上有8个实根,只需二者图象有8个交点即可.当1g()2x =-时,函数()f x 与()g x 的图象有2个交点; 当g()(2)x k x =+时,()g x 的图象为恒过点()2,0-的直线,只需函数()f x 与()g x 的图象有6个交点.当()f x 与()g x 图象相切时,圆心()1,0到直线20kx y k -+=的距离为1,即2211k kk +=+,得24k =,函数()f x 与()g x 的图象有3个交点;当g()(2)x k x =+过点1,1()时,函数()f x 与()g x 的图象有6个交点,此时13k =,得13k =.综上可知,满足()()f x g x =在(]0,9上有8个实根的k 的取值范围为1234⎡⎫⎪⎢⎪⎣⎭,. 三、解答题15.(2021·全国高考真题(文))已知函数()2,()2321f x x g x x x =-=+--.(1)画出()y f x =和()y g x =的图像; (2)若()()f x a g x +≥,求a 的取值范围. 【答案】(1)图像见解析;(2)112a ≥【解析】(1)可得2,2()22,2x x f x x x x -<⎧=-=⎨-≥⎩,画出图像如下:34,231()232142,2214,2x g x x x x x x ⎧-<-⎪⎪⎪=+--=+-≤<⎨⎪⎪≥⎪⎩,画出函数图像如下:(2)()|2|f x a x a +=+-,如图,在同一个坐标系里画出()(),f x g x 图像,()y f x a =+是()y f x =平移了a 个单位得到,则要使()()f x a g x +≥,需将()y f x =向左平移,即0a >, 当()y f x a =+过1,42A ⎛⎫⎪⎝⎭时,1|2|42a +-=,解得112a =或52-(舍去),则数形结合可得需至少将()y f x =向左平移112个单位,112a ∴≥.16.设函数()211f x x x =++-. (1)画出()y f x =的图像;(2)当[)0x +∞∈,,()f x ax b ≤+,求+a b 的最小值.【答案】(1)见解析 (2)5【解析】(1)()13,,212,1,23, 1.x x f x x x x x ⎧-<-⎪⎪⎪=+-≤<⎨⎪≥⎪⎪⎩()y f x =的图像如图所示.(2)由(1)知,()y f x =的图像与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a ≥且2b ≥时,()f x ax b ≤+在[)0,+∞成立,因此a b +的最小值为5.第二部分 模拟训练一、单选题1.设函数()f x ,()g x 的定义域为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论中正确的是( ) A .()()f x g x 是偶函数 B .|()|()f x g x 是奇函数 C .()()f x g x 是奇函数 D .()()f x g x 是奇函数【答案】C 【解析】()f x 是奇函数,()g x 是偶函数,()()()(),f x f x g x g x ∴-=--=,对于A ,()()()()f x g x g x g x --=-,故()()f x g x 是奇函数,故A 错误;对于B ,|()|()|()|()|()|()f x g x f x g x f x g x --=-=,故|()|()f x g x 是偶函数,故B 错误; 对于C ,()()()()f x g x f x g x --=-,故()()f x g x 是奇函数,故C 正确; 对于D ,()()()()f x g x f x g x --=,故()()f x g x 是偶函数,故D 错误. 故选:C. 2.函数ln e1xy x =--的图象大致为( )A .B .C .D .【答案】B 【解析】因为ln e 1xy x =--当1≥x 时,()ln 111xy ex x x =--=-+=当01x <<时,()ln 111xy ex x x-=+-=+- 所以1,111,01x y x x x≥⎧⎪=⎨+-<<⎪⎩,故排除AC ;当12x =时,113101222y =+-=>,故排除D ; 故选:B3.已知二次函数()()22f x ax bx b a =+≤,定义()(){}1max 11f x f t t x =-≤≤≤,()(){}2min 11f x f t t x =-≤≤≤,其中{}max ,a b 表示,a b 中的较大者,{}min ,a b 表示,a b 中的较小者,下列命题正确的是( )A .若()()1111f f -=,则()()11f f ->B .若()()2211f f -=,则()()11f f ->C .若()()2111f f =-,则()()1111f f -<D .若()()211-1f f =,则()()2211f f -> 【答案】C【解析】由于2b a ≤,故二次函数的对称轴[]1,12bx a=-∈-.()(){}()11max |11f f t t f -==-=-, ()(){}11max |11f f t t =-≤≤,若此时对称轴为0x =,则有()()111f f =,即()()11f f -=,所以A 选项不正确,()(){}()21min |11f f t t f -==-=-, ()(){}21min |11f f t t =-≤≤,在对称轴的位置取得最小值,即对称轴为1x =-,所以()()11f f -<,故B 选项不正确,()(){}21min |11f f t t =-≤≤,()(){}()11max |11f f t t f -==-=-,也即是函数在区间[]1,1-上的最小值,故()()1111f f -<, 所以选C .4.若函数()y f x =, x M ∈,对于给定的非零实数a ,总存在非零常数T ,使得定义域M 内的任意实数x ,都有()()af x f x T =+恒成立,此时T 为()f x 的类周期,函数()y f x =是M 上的a 级类周期函数.若函数()y f x =是定义在区间[)0,+∞内的2级类周期函数,且2T =,当[)0,2x ∈时,()()212,01,22,12,x x f x f x x ⎧-≤≤⎪=⎨⎪-<<⎩函数()212ln 2g x x x x m =-+++.若[]16,8x ∃∈, ()20,x ∃∈+∞,使()()210g x f x -≤成立,则实数m 的取值范围是( )A .5,2⎛⎤-∞ ⎥⎝⎦B .13,2⎛⎤-∞ ⎥⎝⎦C .3,2⎛⎤-∞- ⎥⎝⎦D .13,2⎡⎫+∞⎪⎢⎣⎭【答案】B【解析】根据题意,对于函数f (x ),当x ∈[0,2)时,()()212,01,22,12,x x f x f x x ⎧-≤≤⎪=⎨⎪-<<⎩分析可得:当0≤x≤1时,f (x )=12﹣2x 2,有最大值f (0)=12,最小值f (1)=﹣32, 当1<x <2时,f (x )=f (2﹣x ),函数f (x )的图象关于直线x=1对称,则此时有﹣32< f (x )<12, 又由函数y=f (x )是定义在区间[0,+∞)内的2级类周期函数,且T=2; 则在∈[6,8)上,f (x )=23•f(x ﹣6),则有﹣12≤f(x )≤4, 则f (8)=2f (6)=4f (4)=8f (2)=16f (0)=8,则函数f (x )在区间[6,8]上的最大值为8,最小值为﹣12;对于函数()212ln 2x x x x m =-+++ ,有g′(x )=﹣2x +x+1=22(1)(2)x x x x x x+--+=, 分析可得:在(0,1)上,g′(x )<0,函数g (x )为减函数, 在(1,+∞)上,g′(x )>0,函数g (x )为增函数, 则函数g (x )在(0,+∞)上,由最小值f (1)=32+m , 若∃x 1∈[6,8],∃x 2∈(0,+∞),使g (x 2)﹣f (x 1)≤0成立, 必有g (x )min ≤f(x )max ,即32+m≤8,解可得m≤132,即m 的取值范围为(﹣∞,132]; 故答案为:B5.已知函数()f x 满足:①对任意1x 、()20,x ∈+∞且12x x ≠,都有()()12120f x f x x x ->-;②对定义域内的任意x ,都有()()f x f x =-,则符合上述条件的函数是( ) A .()21f x x x =++B .()1f x x x=- C .()ln 1f x x =+ D .()cos f x x =【答案】A【解析】由题意得:()f x 是偶函数,在(0,)+∞单调递增, 对于A ,()()f x f x -=,是偶函数,且0x >时,2()1f x x x =++,对称轴为12x =-,故()f x 在(0,)+∞递增,符合题意; 对于B ,函数()f x 是奇函数,不合题意; 对于C ,由10x +=,解得:1x ≠-,定义域不关于原点对称,故函数()f x 不是偶函数,不合题意; 对于D ,函数()f x 在(0,)+∞无单调性,不合题意; 故选:A6.已知函数()2f x x x a x =-+,若存在(]23a ∈,,使得关于x 的函数()()y f x tf a =-有三个不同的零点,则实数t 的取值范围是( ) A .9584⎛⎫⎪⎝⎭, B .25124⎛⎫ ⎪⎝⎭,C .918⎛⎫ ⎪⎝⎭,D .514⎛⎫ ⎪⎝⎭,【答案】B【解析】(]2,3a ∈,()()()222,2,x a x x af x x a x x a ⎧+-≥⎪=⎨-++<⎪⎩,当x a ≥时,因为2222a a a -+<<, 则函数在[),a +∞上为增函数,在2,2a a +⎡⎫⎪⎢⎣⎭上为减函数,在在2,2a +⎛⎤-∞ ⎥⎝⎦上为增函数, 故函数的图象如图所示:由于关于x 的函数()()y f x tf a =-有三个不同的零点, 故()2y tf a at ==与()y f x =的图象有3个不同的交点,故()22,2a at f a f ⎛⎫+⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭即()221,8a t a ⎛⎫+ ⎪∈ ⎪⎝⎭而()2214488a a aa +⎛⎫=++ ⎪⎝⎭为(]2,3上的增函数, 故()()22max2322588324a t a ⎡⎤++<==⎢⎥⨯⎢⎥⎣⎦,所以251,24t ⎛⎫∈ ⎪⎝⎭.故选:B. 二、填空题7.定义在R 上的函数()f x 满足()()f x f x -=,且当0x ≥21,01,()22,1,xx x f x x ⎧-+≤<=⎨-≥⎩若任意的[],1x m m ∈+,不等式(1)()f x f x m -≤+恒成立,则实数m 的最大值是 ____________ 【答案】13-【解析】因为当0x ≥时 ()21,01,22,1,xx x f x x ⎧-+≤<=⎨-≥⎩为单调递减函数,又()()f x f x -=,所以函数()f x 为偶函数,因此不等式()()1f x f x m -≤+恒成立,等价于不等式()()1f x fx m -≤+恒成立,即1x x m -≥+,平方化简得()2211m x m +≤-,当10m +=时,x R ∈; 当10m +>时,12m x -≤对[],1x m m ∈+恒成立,11111233m m m m -+≤∴≤-∴-<≤-;当10m +<时,12m x -≥对[],1x m m ∈+恒成立,1123m m m -≥∴≥(舍); 综上113m -≤≤-,因此实数m 的最大值是13-.8.已知定义在R 上的偶函数()f x ,满足()()2f x f x +=,当[]0,1x ∈时,()1xf x e =-,则()()20172018f f -+=__________. 【答案】e 1-【解析】由()()2f x f x +=可知,函数()f x 的周期为2,又()f x 为偶函数 ∴()()()()()()()()20172018f 20161f 01f 01f 0e 1f f f f -+=--+=-+=+=- 故答案为e 1-9.定义在[1,1]-上的函数()f x 满足()()0f x f x +-=且(1)1f =,又当12,[1,1]x x ∈-且120x x +≠时,有()()12120f x f x x x +>+.若2()21f x m am ≤-+对所有[1,1]x ∈-,[1,1]a ∈-恒成立,则实数m 的取值范围是__________.【答案】(,2]{0}[2,)-∞-+∞【解析】定义在[1,1]-上的函数()f x 满足()()0f x f x +-=,故函数()f x 为奇函数,设任意的12,,1[]0x x ∈,12x x <,则120x x -≠,由题设有()()()12120f x f x x x +->+-,因为120x x -<,故()()120f x f x +-<即()()120f x f x -<, 所以()()12f x f x <,故()f x 为[0,1]上的增函数, 而()f x 为[1,1]-上奇函数,故()f x 在[1,1]-上为增函数. 若2()21f x m am ≤-+对所有[1,1]x ∈-,[1,1]a ∈-恒成立,所以2max ()(1)21f x f m am -=≤+,即2211m am -+≥,设2()2g a m am =-,则有()0g a ≥在[1,1]a ∈-上恒成立,因()g a 在[1,1]-上的图象为线段,故(1)0(1)0g g ≥⎧⎨-≥⎩,所以222020m m m m ⎧-≥⎨+≥⎩,解得2m ≥或2m ≤-或0m =. 故答案为:(,2]{0}[2,)-∞-+∞.二、解答题10.已知函数()|3||2|f x x x =++-.(1)若x R ∀∈,2()6f x a a ≥-恒成立,求实数a 的取值范围;(2)求函数()y f x =的图像与直线9y =围成的封闭图形的面积S . 【答案】(1)(,1][5,)-∞+∞;(2)28.【解析】(Ⅰ)∵()32325f x x x x x =++-≥+-+=, ∴256a a ≥-,解得][(),15,a ∈-∞⋃+∞.(Ⅱ)()21,2,32{5,32,12,3,x x f x x x x x x +≥=++-=-<<--≤-当()9f x =时,5x =-或4x =.画出图象可得,围成的封闭图形为等腰梯形,上底长为9,下底长为5,高为4,所以面积为()1954282S =+⨯=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函 数【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <. (3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:利用常见函数的值域来求一次函数y=ax+b(a ≠0)的定义域为R ,值域为R ; 反比例函数)0(≠=k xky 的定义域为{x|x ≠0},值域为{y|y ≠0}; 二次函数)0()(2≠++=a c bx ax x f 的定义域为R ,当a>0时,值域为{ab ac y y 4)4(|2-≥};当a<0时,值域为{ab ac y y 4)4(|2-≤}②配方法:③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.转化成型如:)0(>+=k xkx y ,利用平均值不等式公式来求值域;⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象. (7)求函数解析式的题型有:1)已知函数类型,求函数的解析式:待定系数法;2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法;3)已知函数图像,求函数解析式;4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式解方程组法;5)应用题求函数解析式常用方法有待定系数法等yxo〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,-∞、)+∞上为增函数,分别在[、上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.1 (4)证明函数单调性的一般方法:①定义法:设2121,x x A x x <∈且;作差)()(21x f x f -,判断正负号②用导数证明: 若)(x f 在某个区间A 内有导数,则()0f x ≥’,)x A ∈(⇔)(x f 在A 内为增函数;⇔∈≤)0)(A x x f ,(’)(x f 在A 内为减函数 (5)求单调区间的方法:定义法、导数法、图象法(6)复合函数[])(x g f y =在公共定义域上的单调性:①若f 与g 的单调性相同,则[])(x g f 为增函数;②若f 与g 的单调性相反,则[])(x g f 为减函数(7)一些有用的结论:①奇函数在其对称区间上的单调性相同;②偶函数在其对称区间上的单调性相反; ③在公共定义域内:增函数+)(x f 增函数)(x g 是增函数;减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数;减函数-)(x f 增函数)(x g 是减函数④函数)0,0(>>+=b a x bax y 在,⎛⎫-∞+∞ ⎪⎪⎝⎭或上单调递增;在0⎡⎫⎛⎪ ⎢⎪ ⎣⎭⎝或上是单调递减【1.3.2】奇偶性②若奇函数()f x 的定义域包含0,则(0)0f =.()f x 为偶函数()(||)f x f x ⇔=③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反. ④在公共定义域内,奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇判断函数的奇偶性有时可以用定义的等价形式:()()0f x f x ±-=,()1()f x f x =±- 函数周期性定义:若T 为非零常数,对于定义域内的任一x ,使)()(x f T x f =+恒成立,则f(x)叫做周期函数,T 叫做这个函数的一个周期〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去①y=f(x) 轴x →y=f(x); ②y=f(x) 轴y →y=f(x);③y=f(x)ax =→直线y=f(2a x); ④y=f(x)xy =→直线y=f 1(x);⑤y=f(x) 原点→y= f(x)(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次当n 是偶数时,正数a 的正的n 负的n 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当n 为奇数时,a =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m naa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()na a n M M n R =∈ ④log a N a N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且【2.2.2】对数函数及其性质(6)设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y fx -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x fy -=;③将1()x fy -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义(2(3①一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q p y x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则qpy x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a-+∞上递增,当2bx a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函数值符号.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a=- ③若2bq a ->,则()m f q =①若02b x a -≤,则()M f q = ②0b x ->,则()M f p =(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a=- ③若2bq a ->,则()M f q =①若02x a -≤,则()m f q = ②02x a ->,则(m f =xxxxxfxfxfxx第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

相关文档
最新文档