我们知道一元一次不等式和一元二次不等式的解集都表示

合集下载

一元二次不等式及其解法

一元二次不等式及其解法
2
返回目录
返回目录
学点 四
根的分布问题
关于x的方程x2+(m-2)x+5-m=0的两根
都大于2,求实数m的取值范围.
图3-2-1
【解析】
返回目录
返回目录
图3-2-2
【评析】二次方程根的分布问题多借助根的判别式、 韦达定理或者用数形结合法由二次函数图象求解.
返回目录
3.如何研究根的分布问题? 实数k取何值时,含参数m的二次方程ax2+bx+c=0 (1)有实根、无实根、有两个相等实根. (2)有两正根、两负根,一正一负根. (3)有零根. (4)有两个大于k的根,有两个小于k的根,一根大 于k另一根小于k…的一般讨论方法通常考虑以下几个方 面:①求根公式.②判别式.③对称轴.④开口方向.⑤区间 端点处的函数值. 方法有三类:(一)判别式、韦达定理法;(二) 判别式、对称轴、构造函数法;(三)求根公式法. 以下几类是常见问题:(在a≠0条件下) (1)方程ax2+bx+c=0有实根,有两不等实根,无实 根.主要考虑判别式Δ和二次项系数a的符号. 返回目录
返回目录

m<-5或m>1, ≨ ≨1<m<19. 1<m<19,
综上1≤m<19. 【评析】(1)ax2+bx+c>0(a≠0)恒成立的条件为

a>0,
Δ<0.
(2)ax2+bx+c<0(a≠0)恒成立的条件为 a<0, Δ<0.
返回目录
不等式(a+1)x2+ax+a>m(x2+x+1)对任意x∈R恒成立,求 a与m之间的关系. 解:

常见不等式的解法

常见不等式的解法

常见不等式的解法【知识要点】一、一元一次不等式的解法任何一个一元一次不等式经过不等式的同解变形后,都可以化为(0)ax b a >≠的形式.当0a >时,不等式的解集为b x x a ⎧⎫>⎨⎬⎩⎭;当0a <时,不等式的解集为b x x a ⎧⎫<⎨⎬⎩⎭.二、一元二次不等式20(0)ax bx c a ++≥≠的解法1、二次不等式2()0f x ax bx c =++≥(0a >)的解法:最好的方法是图像法,充分体现了数形结合的思想.也可以利用口诀(大于取两边,小于取中间)解答.2、当二次不等式()f x =20(0)ax bx c a ++≥<时,可以画图,解不等式,也可以把二次项的系数a 变成正数,再利用上面的方法解答. 3、温馨提示(1)不要把不等式20ax bx c ++>看成了一元二次不等式,一定邀注意观察分析2x 的系数.(2)对于含有参数的不等式注意考虑是否要分类讨论.(3)如果运用口诀解一元二次不等式,一定要注意使用口诀必须满足的前提条件. (4)不等式的解集必须用集合或区间,不能用不等式,注意结果的规范性. 三、指数不等式和对数不等式的解法解指数不等式和对数不等式一般有以下两种方法(1)同底法:如果两边能化为同底的指数或对数,先化为同底,再根据指数、对数的单调性转化为代数不等式,底数是参数时要注意观察分析是否要对其进行讨论,并注意到对数真数大于零的限制条件.①当1a >时,()()()()f x g x a a f x g x >⇔>; ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩②当01a <<时,()()()()f x g x a a f x g x >⇔<; ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩(2)对指互化法:如果两边不能化成同底的指数或对数时,一般用对指互化法.对数不等式两边取指数,转化成整式不等式来解;指数不等式两边取对数,转化成整式不等式来解.(1)x a b a >>log ()log log x a a a a b x b ⇒>⇒> (01)x a b a ><<log ()log log x a a a a b x b ⇒<⇒<log 00log (1)aa xb x x x b a x b aa >>⎧⎧>⇒⇒>⎨⎨>>⎩⎩其中log 00log (1)aa xb x x x b a x b a a >>⎧⎧>⇒⇒<<⎨⎨<<⎩⎩其中0四、分式不等式的解法把分式不等式通过移项、通分、因式分解等化成()0()f x g x ≥的形式→化成不等式组()0()()0g x f x g x ≠⎧⎨≥⎩→解不等式组得解集.温馨提示:解分式不等式一定要考虑定义域. 五、高次不等式的解法先把高次不等式分解因式化成123()()()()0n x a x a x a x a ---->的形式(x 的系数必须为正)→标记方程的实根(注意空心和实心之分)→穿针引线,从右往左,从上往下穿(奇穿偶不穿)→写出不等式的解集.实际上,序轴标根法适用于所有的整式不等式,根据它可以很快地写出整式不等式的解集. 六、绝对值不等式的解法方法一:公式法 解只含有一个绝对值形如()ax b c +><的不等式,一般直接用公式x a x a x a >⇔><-或 x a a x a <⇔-<<,注意集合的关系和集合的运算,集合的运算主要利用数轴.方法二:零点讨论法 解含有两个绝对值形如()x a x b c +++><的不等式,常用零点讨论法和数形结合法.注意小分类求交大综合求并.方法三:平方法 如果绝对值的不等式的两边都是非负数,如:3x >,可以使用平方法. 七、无理不等式的解法无理不等式一般利用平方法和分类讨论解答.无理不等式转化为有理不等式,要注意平方的条件和根式有意义的条件,一般情况下,)()(x g x f ≥可转化为)()(x g x f >或)()(x g x f =,而)()(x g x f >等价于:⎩⎨⎧<≥0)(0)(x g x f 或⎪⎩⎪⎨⎧>≥≥2)]([)(0)(0)(x g x f x g x f .八、抽象的函数不等式的解法一般利用函数的单调性解答,先研究函数的单调性,再利用函数的单调性把抽象的函数不等式转化成具体的函数不等式解答. 学科#网 【方法讲评】【例1】 解关于x 的不等式01)1(2<++-x a ax .②当0>a 时,①式变为0)1)(1(<--x ax . ② ∵a a a -=-111,∴当10<<a 时,11>a ,此时②的解为ax 11<<.当1=a 时,11=a ,此时②的解为11<<x a. 【点评】解本题要注意分类讨论思想的运用,关键是要找到分类的标准,就本题来说有三级分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧>=<<><≠=∈11100000a a a a a a a R a 分类应做到使所给参数a 的集合的并集为全集,交集为空集,要做到不重不漏.另外,解本题还要注意在讨论0<a 时,解一元二次不等式01)1(2<++-x a ax 应首选做到将二次项系数变为正数再求解.【反馈检测1】 解关于x 的不等式0)(322>++-a x a a x .【例2】解不等式211126()82x x ---⨯<【点评】解这类指数不等式,常常需要通过变量代换把它变为整式不等式来解.【反馈检测2】解关于x 的不等式:)22(223x x x xa --<-(其中0a >)【例3】已知0>a 且1a ≠,关于x 的不等式1xa >的解集是{}0x x >,解关于x 的不等式1log ()0a x x-<的解集.【点评】本题选同底法解答,把0写成log 1a ,再利用对数函数的图像和性质将不等式变成分式不等式 组解答.【反馈检测3】解不等式21log (2)1x x x +-->.【例4】解关于x 的不等式12>-x【点评】分析:若将原不等式移项、通分整理可得:02)2()1(>----x a x a ⇔0)2)](2()1[(>----x a x a显然,现在有两个问题:(1)1a -的符号怎样?(2)12--a a 与2的大小关系怎样?这也就是本题的分类标准所在.【反馈检测4】 解不等式x xx x x <-+-+222322.)(n x a -数必须为正)→标记方程的实根(注意空心和实心之分)→穿针引线,从右往左,从上【例5】解不等式: 015223>--x x x【点评】如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(<x f )可用“穿根法”求解,但要注意处理好有重根的情况.学科#网【反馈检测5】0)2()5)(4(32<-++x x x【例6】|5||23|1x x --+<【点评】该题由于有两个不等式,所以一般利用零点讨论法.对于含有两个和两个以上的不等式,一般利用零点讨论法.【反馈检测6】解不等式242+<-x x【例7】 解关于x 的不等式)0(122>->-a x a ax .【解析】原不等式⎪⎩⎪⎨⎧->-≥->-⇔;)1(2,01,02)1(222x a ax x a ax 或⎩⎨⎧<-≥-.01,02)2(2x a x由0>a ,得:⎪⎪⎩⎪⎪⎨⎧<+++-≤>⇔;01)1(2,1,2)1(22a x a x x a x ⎪⎩⎪⎨⎧>≥⇔.1,2)2(x a x由判别式08)1(4)1(422>=+-+=∆a a a ,故不等式01)1(222<+++-a x a x 的解是a a x a a 2121++<<-+.当20≤<a 时,1212≤-+≤a a a,121>++a a ,不等式组(1)的解是121≤<-+x a a ,不等式组(2)的解是1>x .当2>a 时,不等式组(1)无解,(2)的解是2a x ≥. 综上可知,当20≤<a时,原不等式的解集是[)+∞-+,21a a ;当2>a 时,原不等式的解集是⎪⎭⎫⎢⎣⎡+∞,2a .【点评】本题分类讨论标准“20≤<a ,2>a ”是依据“已知0>a 及(1)中‘2ax >,1≤x ’,(2)中‘2ax ≥,1>x ’”确定的.解含有参数的不等式是不等式问题中的难点,也是近几年高考的热点.一般地,分类讨论标准(解不等式)大多数情况下依“不等式组中的各不等式的解所对应的区间的端点”去确定.本题易误把原不等式等价于不等式)1(22x a ax ->-.纠正错误的办法是熟练掌握无理不等式基本类型的解法.【反馈检测7】解不等式x x x ->--81032.【例8】若非零函数对任意实数均有,且当时,. (1)求证:;(2)求证:为减函数;(3)当时,解不等式.(3)由 原不等式转化为,结合(2)得:故不等式的解集为【点评】(1)第(3)问的关键是找到1(?)4f =,再利用函数的单调性把抽象的函数不等式转化成具()f x ,a b ()()()f a b f a f b +=0x <()1f x >()0f x >()f x 1(4)16f =21(3)(5)4f x f x --≤211(4)(2)1(2)164f f f ==⇒=,由())2()53(2f x x f ≤-+-10222≤≤⇒≥-+x x x {}10|≤≤x x体函数不等式.【反馈检测8】函数对任意(0)x y ∈+∞,,满足()()()f xy f x f y =+且当1x >时,()0f x <. (l )判断函数的单调性并证明相关结论;(2) 若(2)1f =-,试求解关于x 的不等式()(3)2f x f x +-≥-.【反馈检测9】【2017江苏,11】已知函数31()2e e x xf x x x =-+-, 其中e 是自然对数的底数. 若 2(1)(2)0f a f a -+≤,则实数a 的取值范围是 .不等式的解法参考答案【反馈检测1答案】见解析【反馈检测2答案】见解析【反馈检测2详细解析】解原不等式得:即),12()12(2222-<-x xxa0)14)(4(),14()14(4<--∴-<-x x x x x a a)0,(log ,14,104a a a x 此时不等式的解集为时当<<<<此时不等式无解时当,0)14(,12<-=x a )log ,0(,41,14a a a x 此时不等式的解集为时当<<>【反馈检测3答案】3x >()f x ()fx【反馈检测3详细解析】[法一]原不等式同解于所以原不等式的解为3x >.[法二]原不等式同解于211log (2)log (1)x x x x x ++-->+所以原不等式的解为3x >.【反馈检测4答案】}321{><<-x x x 或【反馈检测5答案】{}2455>-<<--<x x x x 或或【反馈检测5详细解析】原不等式等价于⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔>-++2450)2)(4(050)2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{}2455>-<<--<x x x x 或或【反馈检测6答案】{}31<<x x【反馈检测6详细解析】解法一:原不等式⎪⎩⎪⎨⎧+<-<-⎪⎩⎪⎨⎧+<-≥-⇔240424042222x x x x x x 或 即⎩⎨⎧>-<<<-⎩⎨⎧<<--≤≥1222222x x x x x x x 或或或 ∴32<≤x 或21<<x 故原不等式的解集为{}31<<x x .解法二:原不等式等价于 24)2(2+<-<+-x x x即⎪⎩⎪⎨⎧+->-+<-)2(42422x x x x ∴312132<<⎩⎨⎧-<><<-x x x x 故或. 【反馈检测7答案】⎭⎬⎫⎩⎨⎧>1374x x【反馈检测8答案】(1)()f x 在(0,)+∞上单调递减;(2){34}x x <≤.学科#网【反馈检测8详细解析】(1)()f x 在(0,)+∞上单调递减1212,,(0,)x x x x <∈+∞任取且 2221111()()()()x x f x f x f x f x x =⋅=+则 2211()()()x f x f x f x ∴-= 120x x << 21()0x f x ∴< 2112()()0()()f x f x f x f x ∴-<>即 ()(0,)f x ∴+∞在单调递减 (2)2)2()2()4(-=+=f f f ((3))(4f x x f ∴-≥原不等式可化为 ()0f x +∞又在(,)上单调递增030(3)4x x x x >⎧⎪∴->⎨⎪-≤⎩34x <≤解得 {34}x x ∴<≤原不等式解集为. 【反馈检测9答案】1[1,]2-。

不等式的取值范围与解集求解

不等式的取值范围与解集求解

不等式的取值范围与解集求解不等式是数学中常见的一种关系式,它描述了数之间的大小关系。

在解不等式时,我们需要确定不等式的取值范围,并找出满足不等式条件的解集。

本文将介绍不等式的基本概念、解法以及一些常见的不等式类型。

一、不等式的基本概念不等式是由不等号连接的两个数或表达式所构成的关系式。

常见的不等号有大于号(>)、小于号(<)、大于等于号(≥)和小于等于号(≤)。

例如,x > 3表示x大于3,x + 2 ≤ 5表示x + 2小于等于5。

二、不等式的解集与取值范围解不等式的过程就是确定不等式的取值范围,并找出满足不等式条件的数的集合,这个集合被称为解集。

解集可以用不等号表示,也可以用集合符号表示。

1. 不等式的解集表示解集可以用不等号表示,例如x > 3的解集可以表示为{x | x > 3},读作“x的取值范围是大于3的数”。

解集也可以用集合符号表示,例如x > 3的解集可以表示为{x ∈ℝ | x > 3},其中ℝ表示实数集。

2. 不等式的取值范围表示不等式的取值范围表示了满足不等式条件的数的范围。

例如x > 3的取值范围是大于3的数,可以表示为(3, +∞),其中+∞表示正无穷大。

三、不等式的求解方法解不等式的方法与解方程类似,但在某些情况下需要注意一些特殊的性质。

下面介绍一些常见的不等式类型及其求解方法。

1. 一元一次不等式一元一次不等式是形如ax + b > 0的不等式,其中a和b是已知实数,且a≠0。

解一元一次不等式的步骤如下:(1)将不等式转化为等式,得到ax + b = 0;(2)求得等式的解x0;(3)根据a的正负确定不等式的解集。

2. 一元二次不等式一元二次不等式是形如ax^2 + bx + c > 0的不等式,其中a、b和c是已知实数,且a≠0。

解一元二次不等式的步骤如下:(1)将不等式转化为等式,得到ax^2 + bx + c = 0;(2)求得等式的解集{x1, x2};(3)根据a的正负和二次函数的凹凸性确定不等式的解集。

【初中数学】初中数学知识点不等式:一元二次不等式的解法

【初中数学】初中数学知识点不等式:一元二次不等式的解法

【初中数学】初中数学知识点??不等式:一元二次不等式的解法解法一当△=b2-4ac≥0时,二次三项式,ax2+bx+c有两个实根,那么ax2+bx+c总可分解为a(x-x1)(x-x2)的形式。

这样,解一元二次不等式就可归结为解两个一元一次不等式组。

一元二次不等式的解集就是这两个一元一次不等式组的解集的交集。

举例:试解一元二次不等式2x2-7x+6<0解:利用十字相乘法2x-3x-2得(2x-3)(x-2)<0然后,分两种情况讨论口诀:大于取两边,小于取中间1)2x-3<0,x-2>0得x<1.5且x>2.不成立2)2x-3>0,x-2<0得x>1.5且x<2得最后不等式的解集为:1.5解法二另外,你也可以用配方法解二次不等式。

如上例题:2x2-7x+6=2(x2-3.5x)+6=2(x2-3.5x+3.0625-3.0625)+6=2(x2-3.5x+3.0625)-6.125+6=2(x-1.75)2-0.125<02(x-1.75)2<0.125(x-1.75)2<0.0625两边开平方,得x-1.75<0.25且x-1.75>-0.25x<2且x>1.5得不等式的解集为1.5解法三一元二次不等式也可通过一元二次函数图象进行求解。

通过看图象可知,二次函数图象与X轴的两个交点,然后根据题目所需求的“<0”或“>0”而推出答案。

求一元二次不等式的解集实际上是将这个一元二次不等式的所有项移到不等式一侧并进行因式分解分类讨论求出解集。

解一元二次不等式,可将一元二次方程不等式转化成二次函数的形式,求出函数与X轴的交点,将一元二次不等式,二次函数,一元二次方程联系起来,并利用图像法进行解题,使得问题简化。

解法四数轴穿根:用根轴法解高次不等式时,就是先把不等式一端化为零,再对另一端分解因式,并求出它的零点,把这些零点标在数轴上,再用一条光滑的曲线,从x轴的右端上方起,依次穿过这些零点,这大于零的不等式的解对应这曲线在x轴上方部分的实数x得起值集合,小于零的这相反。

不等式的解集

不等式的解集

不等式的解集1. 引言在数学中,不等式是描述数值之间大小关系的工具。

不等式的解集是满足给定不等式的所有实数值的集合。

解集的求解是解决不等式问题的关键步骤,对于理解和应用不等式具有重要意义。

本文将介绍不等式解集的概念、求解方法和常见类型的不等式,并提供一些实例来帮助读者更好地理解和应用不等式解集的求解过程。

2. 不等式解集的定义给定一个不等式,解集是满足此不等式的所有实数值组成的集合。

通常用数学符号表示如下:解集:{x | 不等式}其中,x表示满足不等式的实数值,竖线表示“使得”或“满足的条件”,不等式表示约束条件。

例如,解集 {x | x > 0} 表示所有大于0的实数构成的集合。

3. 不等式解集的求解方法解不等式的一般方法是通过分析和推导找出满足不等式的数值范围。

以下是一些常见的不等式解集求解方法:3.1. 一元一次不等式的解集求解一元一次不等式是指表达式中只含有一次幂的单个未知数的不等式。

解一元一次不等式的步骤如下:1.将不等式转化为等式。

2.根据等式的解集,绘制数轴并进行标记。

3.根据不等式的类型(大于、小于、大于等于、小于等于),确定解集的位置。

例如,对于不等式2x + 3 < 7,我们可以将其转化为等式2x + 3 = 7,解得 x = 2。

由于不等式为小于关系,解集为{x | x < 2}。

3.2. 一元二次不等式的解集求解一元二次不等式是指表达式中含有二次项的单个未知数的不等式。

解一元二次不等式的步骤如下:1.将不等式转化为等式。

2.根据等式的解集,绘制二次函数的图像。

3.根据不等式的类型(大于、小于、大于等于、小于等于),确定解集的位置。

例如,对于不等式x^2 - 4x + 3 > 0,我们可以将其转化为等式x^2 - 4x + 3 = 0。

解得 x = 1 或 x = 3。

通过绘制函数图像,我们可以确定解集为{x | x < 1 或 x > 3}。

概念含有一个未知数且未知数的最高次数为2次的的不等式叫做一元二次不等式

概念含有一个未知数且未知数的最高次数为2次的的不等式叫做一元二次不等式

概念含有一个未知数且未知数的最高次数为2次的的不等式叫做一元二次不等式,它的一般形式是ax^2+bx+c>0或ax^2+bx+c<0(a不等于0),其中ax^2+bx+c实数域上的二次三项式。

一元二次不等式的解法 1)当V("V"表示判别是,下同)=b^2-4ac>=0时,二次三项式,ax^2+bx+c有两个实根,那么ax^2+bx+c总可分解为a(x-x1)(x-x2)的形式。

这样,解一元二次不等式就可归结为解两个一元一次不等式组。

一元二次不等式的解集就是这两个一元一次不等式组的解集的并集。

还是举个例子吧。

2x^2-7x+6<0利用十字相乘法2 -31 -2得(2x-3)(x-2)<0然后,分两种情况讨论:一、2x-3<0,x-2>0得x<1.5且x>2。

不成立二、2x-3>0,x-2<0得x>1.5且x<2。

得最后不等式的解集为:1.5<x<2。

另外,你也可以用配方法解二次不等式:2x^2-7x+6=2(x^2-3.5x+3.0625-3.0625)+6=2(x^2-3.5x+3.0625)-6.125+6=2(x-1.75)^2-0.125<02(x-1.75)^2<0.125(x-1.75)^2<0.0625两边开平方,得x-1.75<0.25且x-1.75>-0.25x<2且x>1.5得不等式的解集为1.5<x<2我们知道,实数与数轴上的点是一一对应的.在数轴上不同的两点中,右边的点表示的实数比左边的点表示的实数大.例如,在图6-1中,点A表示实数a,点B表示实数b,点A在点B右边,那么a>b.我们再看图6-1,a>b表示a减去b所得的差是一个大于0的数即正数.一般地:如果a>b,那么a-b是正数;逆命题也正确.类似地,如果a<b,那么a-b是负数;如果a=b,那么a-b等于0.它们的逆命题都正确.这就是说:由此可见,要比较两个实数的大小,只要考察它们的差就可以了.例1 比较(a+3)(a-5)与(a+2)(a-4)的大小.解:(a+3)(a-5)-(a+2)(a-4)=(a2-2a-15)-(a2-2a-8)=-7<0,∴(a+3)(a-5)<(a+2)(a-4).例2 已知x≠0,比较(x2+1)2与x4+x2+1的大小.解:(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.由x≠0,得x2>0,从而(x2+1)2>x4+x2+1.想一想:在例2中,如果没有x≠0这个条件,那么两式的大小关系如何?练习1.比较(x+5)(x+7)与(x+6)2的大小.利用比较实数大小的方法,可以推出下列不等式的性质.定理1 如果a>b,那么b<a;如果b<a,那么a>b.证明:∵a>b,∴a-b>0.由正数的相反数是负数,得-(a-b)<0,即b-a<0,(定理1的后半部分请同学们自证.)定理1说明,把不等式的左边和右边交换,所得不等式与原不等式异向①.①在两个不等式中,如果每一个的左边都大于(或小于)右边,这两个不等式就是同向不等式,例如a2+2>a+1,3a2+5>2a是同向不等式;如果一个不等式的左边大于(或小于)右边,而另一个不等式的左边小于(或大于)右边,这两个不等式就是异向不等式,例如a2+3>2a,a2<a+5是异向不等式.定理2 如果a>b,且b>c,那么a>c.证明:∵a>b,b>c,∴a-b>0,b-c>0.根据两个正数的和仍是正数,得(a-b)+(b-c)>0,即a-c>0,∴a>c.如果c<b,且b<a,那么c<a.定理3 如果a>b,那么a+c>b+c.证明:∵(a+c)-(b+c)=a-b>0,∴a+c>b+c.定理3说明,不等式的两边都加上同一个实数,所得不等式与原不等式同向.想一想:如果a<b,是否有a+c<b+c?利用定理3可以得出:如果a+b>c,那么a>c-b.也就是说,不等式中任何一项改变符号后,可以把它从一边移到另一边.推论如果a>b,且c>d,那么a+c>b+d.证明:∵a>b,2007-8-10 15:33 回复Stand20 092楼∴a+c>b+c.①∵c>d,∴b+c>b+d.②由①、②得 a+c>b+d.很明显,这一推论可以推广到任意有限个同向不等式两边分别相加.这就是说,两个或者更多个同向不等式两边分别相加,所得不等式与原不等式同向.定理4 如果a>b,且c>0,那么ac>bc;如果a>b,且c<0,那么ac<bc.证明:ac-bc=(a-b)c.∵a>b,根据同号相乘得正,异号相乘得负,得当c>0时,(a-b)c>0,即ac>bc;当c<0时,(a-b)c<0,即ac<bc.由定理4,又可以得到:推论1 如果a>b>0,且c>d>0,那么ac>bd.同学们可以仿照定理3的推论证明定理4的推论1.很明显,这一推论可以推广到任意有限个两边都是正数的同向不等式两边分别相乘.这就是说,两个或者更多个两边都是正数的同向不等式两边分别相乘,所得不等式与原不等式同向.由此,我们还可以得到:推论2 如果a>b>0,那么an>bn(n∈N,且n>1).我们用反证法来证明.这些都同已知条件a>b>0矛盾.利用以上不等式的性质及其推论,就可以证明一些不等式.例3 已知a>b,c<d,求证a-c>b-d.证明:由a>b知a-b>0,由c<d知d-c>0.∵(a-c)-(b-d)=(a-b)+(d-c)>0,∴a-c>b-d.证明:∵a>b>0,即又 c<0,参考资料:/shuxue/60/noname.htm 回答者:☆贱习爱神♂ - 见习魔法师二级 1-27 13:42其他回答共 1 条解不等式1.解不等式问题的分类(1)解一元一次不等式.(2)解一元二次不等式.(3)可以化为一元一次或一元二次不等式的不等式.①解一元高次不等式;②解分式不等式;③解无理不等式;④解指数不等式;⑥解带绝对值的不等式;⑦解不等式组.2.解不等式时应特别注意下列几点:(1)正确应用不等式的基本性质.(2)正确应用幂函数、指数函数和对数函数的增、减性.(3)注意代数式中未知数的取值范围.3.不等式的同解性(5)|f(x)|<g(x)与-g(x)<f(x)<g(x)同解.(g(x)>0)(6)|f(x)|>g(x)①与f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0)同解;②与g(x)<0同解.(9)当a>1时,af(x)>ag(x)与f(x)>g(x)同解,当0<a<1时,af(x)>ag(x)与f(x)<g(x)同解.函数1、若集合A中有n 个元素,则集合A的所有不同的子集个数为,所有非空真子集的个数是。

专题2.4-2.5 一元一次不等式、一元一次不等式与一次函数(教师版)

专题2.4-2.5 一元一次不等式、一元一次不等式与一次函数1.理解一元一次不等式的概念;2.会解一元一次不等式;3.掌握一次不等式(方程)与一次函数的联系。

知识点01 一元一次不等式【知识点】1、一元一次不等式的概念:只含有一个未知数,未知数的次数是一次的不等式,叫做一元一次不等式,例如,2503x >是一个一元一次不等式.注意:(1)一元一次不等式满足的条件:①左右两边都是整式(单项式或多项式);②只含有一个未知数;③未知数的最高次数为1.(2) 一元一次不等式与一元一次方程既有区别又有联系:相同点:二者都是只含有一个未知数,未知数的次数都是1,“左边”和“右边”都是整式.不同点:一元一次不等式表示不等关系,由不等号“<”、“≤”、“≥”或“>”连接,不等号有方向;一元一次方程表示相等关系,由等号“=”连接,等号没有方向.【知识拓展1】一元一次不等式的定义例1.(2022·黑龙江·哈尔滨八年级阶段练习)下列不等式是一元一次不等式的是( )A .23459x x>-B .324x -<C .12x <D .4327x y -<-【答案】B【分析】根据含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式进行分析即可.【详解】解:A 、未知数的次数含有2次,不是一元一次不等式,故此选项不合题意;B 、是一元一次不等式,故此选项符合题意;C 、1x 是分式,故该不等式不是一元一次不等式,故此选项不合题意;D 、含有两个未知数,不是一元一次不等式,故此选项不合题意;故选:B .【点睛】此题主要考查了一元一次不等式定义,关键是掌握一元一次不等式的定义.【即学即练】1.(2022·浙江·八年级专题练习)下列各式中,(1)22225x x x x ++<-+;(2)2x xy y ++;(3)340x y -≥;(4)352x x-<;(5)0x ¹;(6)215a +>.是一元一次不等式的有( )A .1个B .2个C .3个D .4个【答案】B 【分析】根据一元一次不等式的定义:形如0ax b +>或0ax b +<或0ax b +³或0ax b +£(其中a 是不等于0的常数,b 为常数),由此进行判断即可.【详解】解:(1)22225x x x x ++<-+即225x x +<-是一元一次不等式;(2)2x xy y ++是二元二次整式,不是不等式;(3)340x y -≥是二元一次不等式(4)352x x-<不是一元一次不等式;(5)0x ¹是一元一次不等式 ;(6)215a +>不是一元一次不等式,故选B .【点睛】本题主要考查了一元一次不等式的定义,解题的关键在于能够熟练掌握一元一次不等式的定义.【知识拓展2】根据一元一次不等式的定义求参数例2.(2022·江苏·南通市八年级阶段练习)若211852m x -->是关于x 的一元一次不等式,则m =_______.【答案】1【分析】根据一元一次不等式的定义可得2m −1=1,求解即可.【详解】解:根据题意得2m −1=1,解得m =1,故答案为1.【点睛】本题主要考查一元一次不等式的定义,正确把握定义是解题关键.【即学即练】1.(2022·湖南天心·八年级期末)已知(m +2)x |m|﹣1+1>0是关于x 的一元一次不等式,则m 的值为( )A .1B .±1C .2D .±2【答案】C【分析】根据一元一次不等式的定义列出方程和不等式即可确定m 的值.含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式.【详解】解:∵(m +2)x |m |﹣1+1>0是关于x 的一元一次不等式,∴|m |﹣1=1且m +2≠0,解得m =2.故选:C .【点睛】本题考查了一元一次不等式的定义,解题关键是根据一元一次不等式的定义列出方程和不等式,注意:未知数的系数不能为0.【知识拓展3】一元一次不等式的解集例3.(2022·吉林·珲春市八年级期末)若关于x 的不等式1x m +>的解集如图所示,则m 的值为_____.【答案】3【分析】由数轴可以得到不等式的解集是x >﹣2,根据已知的不等式可以用关于m 的式子表示出不等式的解集.就可以得到一个关于m 的方程,可以解方程求得.【详解】解:解不等式x +m >1得1x m>-由数轴可得,x >﹣2,则12m -=-解得,m =3.故答案为:3.【点睛】本题主要考查了解一元一次不等式,数轴上表示不等式的解集,解一元一次方程,注意数轴上的空心表示不包括﹣2,即x >﹣2.并且本题是不等式与方程相结合的综合题.【即学即练3】1.(2021·上海市进才中学北校期中)根据数轴上的表示,写出解集:x _________________【答案】1x ->【分析】根据数轴上画出的部分写出不等式的解集即可.【详解】解:根据数轴得:1x ->【点睛】此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.2.(2022·浙江义乌·八年级期末)1x =是不等式0x b -<的一个解,则b 的值不可能是( )A .1B .2C .3D .4【答案】A【分析】根据题意解不等式,根据不等式的解确定解集的范围即可.【详解】解:∵0x b -<x b \< 1x =Q 是不等式0x b -<的一个解,∴1b <故选A 【点睛】本题考查了解一元一次不等式,不等式的解的定义,掌握不等式的解的定义是解题的关键.知识点02 一元一次不等式的解法【知识点】1.解不等式:求不等式解的过程叫做解不等式.2.一元一次不等式的解法:与一元一次方程的解法类似,其根据是不等式的基本性质,将不等式逐步化为:x a <(或x a >)的形式,解一元一次不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)化为ax b >(或ax b <)的形式(其中0a ¹);(5)两边同除以未知数的系数,得到不等式的解集.注意:(1)在解一元一次不等式时,每个步骤并不一定都要用到,可根据具体问题灵活运用.(2)解不等式应注意:①去分母时,每一项都要乘同一个数,尤其不要漏乘常数项;②移项时不要忘记变号;③去括号时,若括号前面是负号,括号里的每一项都要变号;④在不等式两边都乘(或除以)同一个负数时,不等号的方向要改变.3.不等式的解集在数轴上表示:在数轴上可以直观地把不等式的解集表示出来,能形象地说明不等式有无限多个解,它对以后正确确定一元一次不等式组的解集有很大帮助.注意: 在用数轴表示不等式的解集时,要确定边界和方向:(1)边界:有等号的是实心圆点,无等号的是空心圆圈;(2)方向:大向右,小向左.【知识拓展1】一元一次不等式的解法例1.(2022·重庆市八年级阶段练习)解不等式1226123x x ++³-,并将解集在数轴上表示;【答案】7x ³-,数轴表示见解析【分析】先去分母,然后再求解一元一次不等式即可.【详解】解:1226123x x ++³-去分母得:()()3162226x x +³-+,去括号得:336452x x +³--,移项、合并同类项得:749x ³-,系数化为1得:7x ³-;数轴表示如下:【点睛】本题主要考查一元一次不等式的解法,熟练掌握一元一次不等式的解法是解题的关键.【即学即练】1.(2022·浙江嘉兴·八年级期末)解不等式()319x -£,并把解在数轴上表示出来.【答案】4x £,见解析【分析】不等式两边同除以3、移项并合并同类项即求得不等式的解集.【详解】由()319x -£,两边同除以3,得:13x -£,移项、合并同类项,得:4x £.解集在数轴上表示如下:【点睛】本题考查了解一元一次方程,用数轴表示不等式的解集,根据不等式的特点灵活地解不等式,可以使解题过程简化.2.(2022·浙江下城·八年级期中)解不等式,并把解集在数轴上表示出来.(1)7x ﹣2≤9x +2; (2)7132184x x --->.【答案】(1)x ≥-2,在数轴上表示见解析;(2)x <1,在数轴上表示见解析【分析】(1)根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得;(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【详解】解:(1)7x -2≤9x +2,移项,得:7x -9x ≤2+2,合并同类项,得:-2x ≤4,系数化为1,得:x ≥-2.将不等式的解集表示在数轴上如下:;(2)7132184x x --->,去分母,得:8-(7x -1)>2(3x -2),去括号,得:8-7x +1>6x -4,移项,得:-7x -6x >-4-8-1,合并同类项,得:-13x >-13,系数化为1,得:x <1.将不等式的解集表示在数轴上如下:.【点睛】本题主要考查了解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.【知识拓展2】一元一次不等式的整数解例2.(2022·黑龙江·哈尔滨八年级阶段练习)不等式353x x -<+的非负整数解有______.【答案】0,1,2,3【分析】先求出不等式的解集,再根据非负整数的定义得到答案.【详解】解:353x x -<+,2x <8,x <4,∴不等式353x x -<+的非负整数解有0,1,2,3,故答案为:0,1,2,3.【点睛】此题考查了解不等式,求不等式的非负整数解,正确解不等式是解题的关键.【即学即练】1.(2022·上海市八年级期末)不等式313x x -<+的自然数解是_________.【答案】0,1【分析】先求出不等式的解集,即可求解.【详解】解:313x x -<+,∴24x < ,解得:2x <,\自然数的解是0、1.故答案为:0;1【点睛】本题主要考查了解一元一次不等式,熟练掌握解一元一次不等式的基本步骤是解题的关键.2.(2022·浙江余杭·八年级期末)不等式1531422x x ->--的最小负整数解______.【答案】-3【分析】移项,合并同类项,系数化成1,再求出不等式的最小负整数解即可.【详解】解:1531422x x ->--,移项,得1514322x x +>-+,合并同类项,得3x >-11,系数化成1,得x >113-,所以不等式的最小负整数解是-3,故答案为:-3.【点睛】本题考查了解一元一次不等式和不等式的整数解,能根据不等式的性质求出不等式的解集是解此题的关键.【知识拓展3】含绝对值的不等式解法例3.(2022·成都市·八年级专题练习)阅读:我们知道,00a a a a a ³ì=í-<î于是要解不等式|3|4x -£,我们可以分两种情况去掉绝对值符号,转化为我们熟悉的不等式,按上述思路,我们有以下解法:解:(1)当30x -³,即3x ³时:34x -£ 解这个不等式,得:7x £由条件3x ³,有:37x ££(2)当30x -<,即3x <时,(3)4x --£ 解这个不等式,得:1x ³-由条件3x <,有:13x -£<∴如图,综合(1)、(2)原不等式的解为17x -££根据以上思想,请探究完成下列2个小题:(1)|1|2x +£; (2)|2|1x -³.【答案】(1)-3≤x≤1;(2)x≥3或x≤1.【分析】(1)分①x+1≥0,即x≥-1,②x+1<0,即x <-1,两种情况分别求解可得;(2)分①x-2≥0,即x≥2,②x-2<0,即x <2,两种情况分别求解可得.【详解】解:(1)|x+1|≤2,①当x+1≥0,即x≥-1时:x+1≤2,解这个不等式,得:x≤1由条件x≥-1,有:-1≤x≤1;②当x+1<0,即 x <-1时:-(x+1)≤2解这个不等式,得:x≥-3由条件x <-1,有:-3≤x <-1∴综合①、②,原不等式的解为:-3≤x≤1.(2)|x-2|≥1①当x-2≥0,即x≥2时:x-2≥1解这个不等式,得:x≥3由条件x≥2,有:x≥3;②当x-2<0,即 x <2时:-(x-2)≥1,解这个不等式,得:x≤1,由条件x <2,有:x≤1,∴综合①、②,原不等式的解为:x≥3或x≤1.【点睛】本题主要考查绝对值不等式的求解,熟练掌握绝对值的性质分类讨论是解题的关键.【即学即练】1.(2022·成都市·八年级课时练习)解下列不等式:(1)|2|30x +->(2)35572x -+<【答案】(1)5x <-或1x >;(2)133x <<【分析】根据绝对值的意义,分类讨论,再解一元一次不等式不等式即可.【详解】(1)|2|30x +->当2x ³-时,则230x +->,解得1x >,1x \>,当2x <-时,则230x --->,解得5x <-,5\<-x ,综上,5x <-或1x >;(2)35572x -+<当3502x -³,即53x ³时,35572x -+<,解得3x <,533x \£<,当53x <时,则35572x --+<,解得13x >,1533x \<<,综上,133x <<.【点睛】本题考查了解一元一次不等式,根据绝对值的意义,分类讨论是解题的关键.2.(2022·云南盘龙·八年级期中)阅读下面材料:小明在数学课外小组活动时遇到这样一个问题:如果一个不等式(含有不等号的式子)中含有绝对值,并且绝对值符号中含有未知数,我们把这个不等式叫做绝对值不等式.求绝对值不等式3x >的解集(满足不等式的所有解).小明同学的思路如下:先根据绝对值的定义,求出x 恰好是3时x 的值,并在数轴上表示为点A ,B ,如图所示.观察数轴发现,以点A ,B 为分界点把数轴分为三部分:点A 左边的点表示的数的绝对值大于3;点A ,B 之间的点表示的数的绝对值小于3;点B 右边的点表示的数的绝对值大于3.因此,小明得出结论,绝对值不等式3x >的解集为:3x <-或3x >.参照小明的思路,解决下列问题:(1)请你直接写出下列绝对值不等式的解集.①1x >的解集是 ;② 2.5x <的解集是 .(2)求绝对值不等式359x -+>的解集.(3)直接写出不等式24x >的解集是 .【答案】(1)①x >1或x <-1;②-2.5<x <2.5;(2)x >7或x <-1;(3)x >2或x <-2【分析】(1)根据题中小明的做法可得;(2)将359x -+>化为34x ->后,根据以上结论即可得;(3)求不等式24x >的解集实际上是求|x|>2的解集即可.【详解】解(1)由题意可得:①令|x|=1,x=1或-1,如图,数轴上表示如下:∴|x|>1的解集是x >1或x <-1;②令|x|=2.5,x=2.5或-2.5,如图,数轴上表示如下:∴|x|<2.5的解集是-2.5<x <2.5;(2)359x -+>,化简得34x ->,当34x -=时,x=-1或7,如图,数轴上表示如下:可知:359x -+>的解集为:x >7或x <-1;(3)不等式x 2>4可化为|x|>2,如图,数轴上表示如下:可知:不等式x 2>4的解集是 x >2或x <-2.【点睛】本题考查解一元一次不等式,解题的关键是熟练掌握一元一次不等式的基本步骤和绝对值的性质.【知识拓展4】用一元一次不等式解决实际问题例4.(2022·江苏宜兴·八年级期末)某厂计划生产A ,B 两种产品若干件,已知两种产品的成本价和销售价如下表:A 种产品B 种产品成本价(元/件)400300销售价(元/件)560450(1)第一次工厂用220000元资金生产了A ,B 两种产品共600件,求两种产品各生产多少件?(2)第二次工厂生产时,工厂规定A 种产品生产数量不得超过B 种产品生产数量的一半.工厂计划生产两种产品共3000件,应如何设计生产方案才能获得最大利润,最大利润是多少?【答案】(1)A 种产品生产400件,B 种产品生产200件(2)A 种产品生产1000件时,利润最大为460000元【分析】(1)设A 种产品生产x 件,则B 种产品生产(600-x )件,根据600件产品用220000元资金,即可列方程求解;(2)设A 种产品生产x 件,总利润为w 元,得出利润w 与A 产品数量x 的函数关系式,根据增减性可得,A 产品生产越多,获利越大,因而x 取最大值时,获利最大,据此即可求解.【解析】(1)解:设A 种产品生产x 件,则B 种产品生产(600-x )件,由题意得:400(600)300220000x x +-´=,解得:x =400,600-x =200,答:A 种产品生产400件,B 种产品生产200件.(2)解:设A 种产品生产x 件,总利润为w 元,由题意得:(560400)(450300)(3000)10450000w x x x =-+--=+由30002xx-£,得:1000x£,因为10>0,w随x的增大而增大,所以当x=1000时,w最大=460000元.【点睛】本题考查一元一次方程、一元一次不等式以及一次函数的实际应用. 解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.【即学即练】1.(2022·重庆沙坪坝·七年级期中)某次知识竞赛共有20道题,规定每答对一题得10分,答错或不答都扣5分,小明得分要超过125分,他至少要答对多少道题?如果设小明答对x道题,根据题意可列不等式( )A.10x﹣5(20﹣x)≥125B.10x+5(20﹣x)≤125C.10x+5(20﹣x)>125D.10x﹣5(20﹣x)>125【答案】D【分析】据规定每答对一题得10分,答错或不答都扣5分,可以列出相应的不等式,从而可以解答本题.【详解】解:由题意可得,10x-5(20-x)>125,故选:D.【点睛】本题考查由实际问题抽象出一元一次不等式,解答本题的关键是明确题意,列出相应的不等式.2.(2022·山东青州·八年级期末)小明要从甲地到乙地,两地相距2千米.已知小明步行的平均速度为100米/分,跑步的平均速度为200米/分,若要在不超过15分钟的时间内到达乙地,至少需要跑步多少分钟?设小明需要跑步x分钟,根据题意可列不等式为( )A.200x+100(15﹣x)≥2000B.200x+100(15﹣x)≤2000C.200x+100(15﹣x)≥2D.100x+200(15﹣x)≥2【答案】A【分析】根据“跑步的路程+步行的路程≥2000米”可得不等式.【详解】解:设小明需要跑步x分钟,根据题意可列不等式为200x+100(15-x)≥2000,故选:A.【点睛】此题主要考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算其蕴含的不等式关系是解题的关键.3.(2022·浙江新昌·八年级期末)某种家用电器的进价为每件800元,以每件1200元的标价出售,由于电器积压,商店准备打折销售,但要保证利润率不低于5%,则最低可按标价的______折出售.【答案】七【分析】设按标价的x折出售,利用利润=售价-成本,结合利润不低于5%,即可得出关于x的一元一次不等式,解出不等式取最小值即可.【详解】解:设按标价的x 折出售由题意得:12008008005%10x ´-³´ 解得:7x ³ \最低可按标价的7折出售 故答案为7【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.知识点03 一元一次不等式与一次函数的关系【知识点】一元一次不等式与一次函数的关系1)一次不等式可转化为一般式:kx +b >0(或kx +b <0)2)从函数的角度看,就是寻求使一次函数y =kx +b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.3)若两个不等式比较大小,如y 1>y 2,反映在图像上为l 1的图象在l 2的图像上面部分x 的取值范围。

高中不等式知识点归纳总结

高中不等式知识点总结1. 不等式的定义和基本性质不等式是数学中用来表示大小关系的符号。

一般地,设a、b是实数,可以有以下四种不等式关系:•$ a < b $ :表示a小于b,即a严格小于b;•$ a > b $ :表示a大于b,即a严格大于b;•$ a b $ :表示a小于等于b,即a小于或等于b;•$ a b $ :表示a大于等于b,即a大于或等于b。

基本性质:•对于不等式的加减运算:若a小于等于b,则a+c小于等于b+c,a-c小于等于b-c(c为实数);•对于不等式的乘法运算:若a小于等于b且c大于0,则ac小于等于bc,若c小于0,则ac大于等于bc;•对于不等式的除法运算:若a小于等于b且c大于0,则a/c小于等于b/c,若c小于0,则a/c大于等于b/c(c不等于0)。

2. 一元一次不等式2.1 不等式的解集表示一元一次不等式的解集可以用数轴上的区间表示。

对于形如ax+b>0或ax+b<0的一元一次不等式,可以先求出方程的零点x=-b/a,再根据a的正负判断不等式的解集:•当a>0时,不等式的解集为x<−b/a或x>−b/a;•当a<0时,不等式的解集为x>−b/a或x<−b/a。

2.2 一元一次不等式的性质•当且仅当不等式两边同时加上(或减去)同一个正数时,不等号的方向不变;•当且仅当不等式两边同时乘以(或除以)同一个正数时,不等号的方向不变;•当且仅当不等式两边同时乘以(或除以)同一个负数时,不等号的方向改变。

3.1 不等式的解集表示一元二次不等式的解集可以用数轴上的区间表示。

对于形如ax2+bx+c>0或ax2+bx+c<0的一元二次不等式,可以先求出抛物线的顶点和判别式D的值,再根据D的正负判断不等式的解集。

•当a>0时,不等式的解集为抛物线顶点的左右两侧;•当a<0时,不等式的解集为抛物线顶点的外侧。

一元二次方程 不等式 分式方程

中考总复习:一元一次不等式(组)—知识讲解【知识网络】【考点梳理】考点一、不等式的相关概念 1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种: “≠”、 “>” 、 “<” 、 “≥”、 “≤”. 2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点:解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左. 3.解不等式求不等式的解集的过程或证明不等式无解的过程,叫做解不等式.要点诠释:不等式的解与一元一次方程的解是有区别的:不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值. 考点二、不等式的性质性质1:不等式两边加上(或减去)同一个数(或式子),不等号的方向不变,即如a >b ,那么a ±c >b ±c .性质2:不等式两边乘以(或除以)同一个正数,不等号的方向不变,即如果a >b ,c >0,那么ac >bc (或a c >bc ). 性质3:不等式两边乘以(或除以)同一个负数,不等号的方向改变,即如果a >b ,c <0,那么ac <bc (或a c <b c). 要点诠释:(1)不等式的其他性质:①若a >b ,则b <a ;②若a >b ,b >c ,则a >c ;③若a ≥b ,且b ≥a ,•则a=b ;④若a 2≤0,则a=0;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号.概念 基本性质不等式的定义 不等式的解法 一元一次不等式 的解法一元一次不等式组 的解法 不等式 实际应用 不等式的解集(2)任意两个实数a 、b 的大小关系:①a -b >O ⇔a >b ;②a -b=O ⇔a=b ;③a-b <O ⇔a <b . 不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c . 考点三、一元一次不等式(组) 1.一元一次不等式的概念只含有一个未知数,且未知数的次数是1,系数不等于0的不等式叫做一元一次不等式.其标准形式:ax+b >0(a ≠0)或ax+b ≥0(a ≠0) ,ax+b <0(a ≠0)或ax+b ≤0(a ≠0). 2.一元一次不等式的解法一元一次不等式的解法与一元一次方程的解法类似,•但要特别注意不等式的两边都乘以(或除以)同一个负数时,不等号要改变方向.解一元一次不等式的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)化系数为1. 要点诠释:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方. 3.一元一次不等式组及其解集含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组. 一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定. 要点诠释:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多. 4.一元一次不等式组的解法由两个一元一次不等式组成的一元一次不等式组的解集的四种情况如下表.注:不等式有等号的在数轴上用实心圆点表示. 不等式组 (其中a >b )图示解集口诀x ax b >⎧⎨>⎩ bax a > (同大取大)x ax b <⎧⎨<⎩ b ax b <(同小取小) x ax b <⎧⎨>⎩ bab x a << (大小取中间)x ax b>⎧⎨<⎩ ba无解 (空集) (大大、小小 找不到)5.一元一次不等式(组)的应用列一元一次不等式(组)解实际应用问题,可类比列一元一次方程解应用问题的方法和技巧,不同的是,列不等式(组)解应用题,寻求的是不等关系,因此,根据问题情境,抓住应用问题中“不等”关系的关键词语,或从题意中体会、感悟出不等关系显得十分重要.要点诠释:列一元一次不等式组解决实际问题是中考考查的一个重要内容,在列不等式解决实际问题时,应掌握以下三个步骤:(1)•找出实际问题中的所有不等关系或相等关系(有时要通过不等式与方程综合来解决),设出未知数,列出不等式组(•或不等式与方程的混合组);(2)解不等式组;(3)从不等式组(或不等式与方程的混合组)•的解集中求出符合题意的答案. 6.一元一次不等式、一元一次方程和一次函数的关系一次函数(0)y kx b k =+≠,当函数值0y =时,一次函数转化为一元一次方程;当函数值0y >或0y <时,一次函数转化为一元一次不等式,利用函数图象可以确定x 的取值范围.【典型例题】类型一、解不等式(组)1.解不等式(组),并把它们的解集在数轴上表示出来 (1)2x ﹣1<3x+2 (2).举一反三:【变式】131321≤---x x 解不等式:.2.解不等式组352,1212x x x x -<⎧⎪⎨-≤+⎪⎩并将其解集在数轴上表示出来.举一反三:【变式1】解不等式组312(1)2(1)4x x x x +≥-⎧⎨+>⎩,并把它的解集在数轴上表示出来.【变式2】解不等式组24x ≤⎧⎪⎨+⎪⎩(x-1)+33x x-2>3,并写出不等式组的整数解;类型二、一元一次不等式(组)的特解问题3.若不等式组的正整数解有3个,那么a 必须满足( ) A .5<a <6 B .5≤a<6 C .5<a≤6 D .5≤a≤6举一反三:【变式1】关于x 的方程,如果3(x +4)-4=2a +1的解大于3)43(414-=+x a x a 的解,求a 的取值范围.【变式2】若不等式-3x+n >0的解集是x <2,则不等式-3x+n <0的解集是_______.类型三、一元一次不等式(组)的应用4.仔细观察下图,认真阅读对话:根据对话内容,试求出一盒饼干和一袋牛奶的标价各是多少元.举一反三:【变式】某牛奶乳业有限公司经过市场调研,决定从明年起对甲、乙两种产品实行“限产压库”,要求这两种产品全年共新增产量20件,这20件的总产值p(万元)满足:110<p<120.已知有关数据如表所示,•那么该公司明年应怎样安排新增产品的产量?产品每件产品的产值甲 4.5万元乙7.5万元类型四、一元一次不等式(组)与方程的综合应用5.某钱币收藏爱好者,想把3.50元纸币兑换成的1分,2•分,5分的硬币;他要求硬币总数为150枚,2分硬币的枚数不少于20枚且是4的倍数,5•分的硬币要多于2分的硬币;请你根据此要求,设计所有的兑换方案.6.某校组织学生到外地进行综合实践活动,共有680名学生参加,并携带300件行李.学校计划租用甲、乙两种型号的汽车共20辆.经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.⑴如何安排甲、乙两种汽车可一次性地将学生和行李全部运走?有哪几种方案?⑵如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案【巩固练习】一、选择题1. 不等式-x-5≤0的解集在数轴上表示正确的是()A B C D2.若实数a>1,则实数M=a,N=23a+,P=213a+的大小关系为()A.P>N>M B.M>N>P C.N>P>M D.M>P>N3.如图所示,一次函数y=kx+b的图象经过A ,B两点,则不等式kx+b>0•的解集是()A.x>0 B.x>2 C.x>-3 D.-3<x<24.如果不等式213x++1>13ax-的解集是x<53,则a的取值范围是()A.a>5 B.a=5 C.a>-5 D.a=-55.已知整数x满足是不等式组,则x的算术平方根为()A.2 B.±2 C. D.46.不等式组3(2)423xa xxx+--≤⎧>⎪⎨⎪⎩无解,则a的取值范围是()A.a<1 B.a≤1 C.a>1 D.a≥1二、填空题7.若不等式ax<a的解集是x>1,则a的取值范围是__ ____.8.若(m﹣1)x|2m﹣1|﹣8>5是关于x的一元一次不等式,则m= .9.已知3x+4≤6+2(x-2),则│x+1│的最小值等于__ ____.10.若不等式a(x-1)>x-2a+1的解集为x<-1,则a的取值范围是____ __.11.满足22x+≥213x-的x的值中,绝对值不大于10的所有整数之和等于__ ____.12.有10名菜农,每个可种甲种蔬菜3亩或乙种蔬菜2亩,•已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元,若要总收入不低于15.6万元,•则最多只能安排_______人种甲种蔬菜.三、解答题13.解下列不等式(组),并把解集在数轴上表示出来.(1)x-3≥354x-.(2)解不等式组14. 若0231<-+x x ,求x 的取值范围.15.某电器商场销售A 、B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A 、B 两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A 、B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?16. 如图所示,一筐橘子分给若干个儿童,如果每人分4个,•则剩下9个;如果每人分6个,则最后一个儿童分得的橘子数少于3个,问共有几个儿童,•分了多少个橘子?中考总复习:一元二次方程、分式方程的解法及应用—知识讲解【知识网络】【考点梳理】考点一、一元二次方程 1.一元二次方程的定义只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程.它的一般形式为20ax bx c ++=(a ≠0). 2.一元二次方程的解法(1)直接开平方法:把方程变成2x m =的形式,当m >0时,方程的解为x m =m =0时,方程的解1,20x =;当m <0时,方程没有实数解.(2)配方法:通过配方把一元二次方程20ax bx c ++=变形为222424b b ac x a a -⎛⎫+= ⎪⎝⎭的形式,再利用直接开平方法求得方程的解.(3)公式法:对于一元二次方程20ax bx c ++=,当240b ac -≥时,它的解为24b b acx -±-=.(4)因式分解法:把方程变形为一边是零,而另一边是两个一次因式积的形式,使每一个因式等于零,就得到两个一元一次方程,分别解这两个方程,就得到原方程的解. 要点诠释:直接开平方法和因式分解法是解一元二次方程的特殊方法,配方法和公式法是解一元二次方程的一般方法.3.一元二次方程根的判别式一元二次方程根的判别式为ac 4b 2-=∆. △>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根; △<0⇔方程没有实数根.上述由左边可推出右边,反过来也可由右边推出左边. 要点诠释:△≥0⇔方程有实数根. 4.一元二次方程根与系数的关系如果一元二次方程0c bx ax 2=++(a ≠0)的两个根是21x x 、,那么ac x x a b x x 2121=⋅-=+,.考点二、分式方程 1.分式方程的定义分母中含有未知数的有理方程,叫做分式方程. 要点诠释:(1)分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量.(2)分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和都是分式方程,而关于的方程和都是整式方程.2.分式方程的解法去分母法,换元法. 3.解分式方程的一般步骤(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程; (2)解这个整式方程;(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公 分母等于零的根是原方程的增根.口诀:“一化二解三检验”. 要点诠释:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.考点三、一元二次方程、分式方程的应用 1.应用问题中常用的数量关系及题型 (1)数字问题(包括日历中的数字规律)关键会表示一个两位数或三位数,对于日历中的数字问题关键是弄清日历中的数字规律.关键是寻找其中的不变量作为等量关系.(3)打折销售问题其中的几个关系式:利润=售价-成本价(进价),利润率=利润成本价×100%. 明确这几个关系式是解决这类问题的关键.(4)关于两个或多个未知量的问题重点是寻找到多个等量关系,能够设出未知数,并且能够根据所设的未知数列出方程.(5)行程问题对于相遇问题和追及问题是列方程解应用题的重点问题,也是易出错的问题,一定要分析其中的特点,同向而行一般是追及问题,相向而行一般是相遇问题.注意:追及和相遇的综合题目,要分析出哪一部分是追及,哪一部分是相遇.(6)和、差、倍、分问题增长量=原有量×增长率;现有量=原有量+增长量;现有量=原有量-降低量.2.解应用题的步骤(1)分析题意,找到题中未知数和题给条件的相等关系;(2)设未知数,并用所设的未知数的代数式表示其余的未知数;(3)找出相等关系,并用它列出方程;(4)解方程求出题中未知数的值;(5)检验所求的答数是否符合题意,并做答.要点诠释: 方程的思想,转化(化归)思想,整体代入,消元思想,分解降次思想,配方思想,数形结合的思想用数学表达式表示与数量有关的语句的数学思想.注意:①设列必须统一,即设的未知量要与方程中出现的未知量相同;②未知数设出后不要漏棹单位;③列方程时,两边单位要统一;④求出解后要双检,既检验是否适合方程,还要检验是否符合题意.【典型例题】类型一、一元二次方程1.用配方法解一元二次方程:2213x x +=举一反三:【变式】用配方法解方程x 2-7x-1=0.2.已知关于x 的一元二次方程mx 2﹣(m+2)x+2=0.(1)证明:不论m 为何值时,方程总有实数根;(2)m 为何整数时,方程有两个不相等的正整数根.举一反三:【变式】已知关于x 的方程2(2)210x m x m +++-=.(1)求证方程有两个不相等的实数根.(2)当m 为何值时,方程的两根互为相反数?并求出此时方程的解.类型二、分式方程 3.解分式方程:=﹣.举一反三:【变式1】解分式方程:21233x x x -+=--.【变式2】方程22123=-+--xx x 的解是x= . 4.若解分式方程2111(1)x m x x x x x ++-=++产生增根,则m 的值是( ) A.B. C. D.举一反三: 【变式】若关于x 的方程2332+-=--x m x x 无解,则m 的值是 .类型三、一元二次方程、分式方程的应用5.轮船在一次航行中顺流航行80千米,逆流航行42千米,共用了7小时;在另一次航行中,用相同的时间,顺流航行40千米,逆流航行70千米.求这艘轮船在静水中的速度和水流速度.举一反三:【变式】甲、乙两班同学参加“绿化祖国”活动,已知乙班每小时比甲班多种2棵树,甲班种60棵所用的时间与乙班种66棵树所用的时间相等,求甲、乙两班每小时各种多少棵树?6.某服装厂生产一批西服,原来每件的成本价是500元,销售价为625元,经市场预测,该产品销售价第一个月将降低20%,第二个月比第一个月提高6%,为了使两个月后的销售利润达到原来水平,该产品的成本价平均每月应降低百分之几?【巩固练习】一、选择题1. 用配方法解方程2250x x --=时,原方程应变形为( )A .()216x +=B .()216x -=C .()229x +=D .()229x -=2.关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( )A .1B .12C .13D .25 3.关于x 的一元二次方程kx 2+2x+1=0有两个不相等的实数根,则k 的取值范围是( )A .k >﹣1B .k≥﹣1C .k≠0D .k <1且k≠04.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于( )A .1B .2C .1或2D .05.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( ).A .213014000x x +-=B .2653500x x +-=C .213014000x x --=D .2653500x x --=6.甲、乙两地相距S 千米,某人从甲地出发,以v 千米/小时的速度步行,走了a 小时后改乘汽车,又过b 小时到达乙地,则汽车的速度( )A.B. C. D.二、填空题 7.方程﹣=0的解是 . 8.如果方程ax 2+2x +1=0有两个不等实根,则实数a 的取值范围是___ ___.9.某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x ,可列方程为 __ .10.当m 为 时,关于x 的一元二次方程02142=-+-m x x 有两个相等的实数根;此时这两个实数根是 . 11.如果分式方程1+x x =1+x m 无解, 则 m = . 12.已知关于x 的方程 x 1 - 1-x m = m 有实数根,则 m 的取值范围是 .三、解答题13. (1)解方程:x x x x 4143412+-=---; (2)解方程:x x x x 221103+++=.14.一列火车从车站开出,预计行程450千米,当它开出3小时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地,求这列火车的速度.15.已知关于x 的方程x 2+(2m ﹣1)x+m 2=0有实数根,(1)求m 的取值范围;(2)若方程的一个根为1,求m 的值;(3)设α、β是方程的两个实数根,是否存在实数m 使得α2+β2﹣αβ=6成立?如果存在,请求出来,若不存在,请说明理由.16.如图,利用一面墙,用80米长的篱笆围成一个矩形场地(1)怎样围才能使矩形场地的面积为750平方米?(2)能否使所围的矩形场地面积为810平方米,为什么?。

高中不等式公式大全及范围

高中不等式公式大全及范围
高中不等式的公式和范围较多,以下是一些常见的不等式公式和范围:1. 一元二次不等式的解:一般地,用不等式的基本性质将一个一元二
次不等式化成形如ax^2+bx+c>0(a>0)或ax^2+bx+c<0(a<0)的形式,即
求出二次函数图像的交点,然后根据二次函数的开口方向确定不等式
的解集。

2. 均值不等式:对于任意实数a、b,都有(a+b)/2≥√ab(当且仅当
a=b时取“=”),即当且仅当a=b时,等号成立。

3. 基本不等式:一元二次不等式的解集可以转化为相应的一元二次方
程的根的分布问题。

4. 一元二次不等式有唯一解时,其对应的二次函数的图像与x轴的交
点就是解集中的唯一解。

5. 含绝对值的不等式有四种解法:去绝对值号转化为不含绝对值的不
等式求解;零点分区间法;数轴标根法;三角换元法。

6. 大于号小与号的证明即反证法在数学中的广泛应用,比如柯西不等式、排序不等式、切线不等式等都是反证法的成功应用。

至于不等式的范围,一般而言,一元一次不等式的解集为数轴上的点
表示的范围;一元二次不等式的解集为对应的一元二次方程的实数根
的分布范围;对于多元不等式,应结合数轴标根法、数轴穿头法、数
轴穿心法等灵活求解不等式的范围。

以上内容仅供参考,建议到相关网站查询或请教他人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档