配方解一元二次方程3
一元二次方程的配方公式

一元二次方程的配方公式一元二次方程的配方公式是解决一元二次方程的有力工具,它可以帮助我们快速求解方程的根。
一元二次方程的一般形式为ax^2 + bx + c = 0,其中a、b、c为已知常数,且a ≠ 0。
配方公式的推导过程相对复杂,这里我将直接给出一元二次方程的配方公式:设一元二次方程ax^2 + bx + c = 0的解为x1和x2,则有:x1 = (-b + √(b^2 - 4ac)) / (2a)x2 = (-b - √(b^2 - 4ac)) / (2a)现在,我们来通过一个具体的例子来说明如何使用一元二次方程的配方公式解题。
假设我们有一个一元二次方程2x^2 + 5x - 3 = 0,我们希望求解该方程的根。
我们可以根据配方公式得到:x1 = (-5 + √(5^2 - 4*2*(-3))) / (2*2)x2 = (-5 - √(5^2 - 4*2*(-3))) / (2*2)计算得到:x1 = (-5 + √(25 + 24)) / 4= (-5 + √49) / 4= (-5 + 7) / 4= 2/4= 1/2x2 = (-5 - √(25 + 24)) / 4= (-5 - √49) / 4= (-5 - 7) / 4= -12/4= -3所以,方程2x^2 + 5x - 3 = 0的解为x1 = 1/2和x2 = -3。
通过上述例子,我们可以看到一元二次方程的配方公式的应用之便捷和高效。
通过代入已知的系数a、b、c,我们可以快速求得方程的根。
当然,在实际应用中,我们可能会遇到一些特殊情况,例如方程的解为无理数或复数等,但配方公式同样适用于这些情况。
除了通过配方公式求解一元二次方程,我们还可以使用其他方法来求解,例如因式分解、完成平方、图像法等。
这些方法各有优劣,根据具体问题的需要选择合适的方法。
一元二次方程的配方公式是解决一元二次方程的重要工具,它能够快速准确地求得方程的根。
3用配方法--------解一元二次方程

乐学教育学员个性化教学辅导教案学科:数学任课教师:韩授课时间:年月日(星期 )本次课授课内容用配方法--------解一元二次方程一、知识回顾解下列方程:(1)(x +2)2-16=0;(2)(x -1)2-18=0;(3)(1-3x)2=1;(4)(2x +3)2-25=0.解下列方程(1)(x+2)2=3(x+2) (2)2y(y-3)=9-3y (3)( x-2)2 — x+2 =0(4)(2x+1)2=(x-1)2 (5).二、新课讲解一、 一元二次方程的概念上述两个整式方程中都只含有一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程).通常可写成如下的一般形式:ax 2+bx +c =0(a 、b 、c 是已知数,a≠0)。
其中叫做二次项,叫做二次项系数;叫做一次项,叫做一次项系数,叫做常数项。
我们通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二次方程的方法称为配方法。
用配方法解一元二次方程的方法:平方根的意义:如果x 2=a ,那么x=±a 。
完全平方式:式子a 2±2ab +b 2叫完全平方式,且a 2±2ab +b 2=(a ±b )2 用配方法解一元二次方程的步骤:1、移项:把常数项移到方程的右边;49122=+-x x 2ax a bx b c2、配方:方程两边都加上一次项系数绝对值一半的平方;3、变形:方程左边分解因式,右边合并同类项;4、开方:根据平方根的意义,方程两边开平方;5、求解:解一元一次方程;6、定解:写出原方程的解。
随堂练习:用配方法解下列方程:1. x 2-2=02.x 2+4x=23. 3 x 2+8 x -3=0一、选择题1.将二次三项式x 2-4x+1配方后得( ).A .(x-2)2+3B .(x-2)2-3C .(x+2)2+3D .(x+2)2-32.已知x 2-8x+15=0,左边化成含有x 的完全平方形式,其中正确的是( ).A .x 2-8x+(-4)2=31B .x 2-8x+(-4)2=1C .x 2+8x+42=1D .x 2-4x+4=-113.如果mx 2+2(3-2m )x+3m-2=0(m ≠0)的左边是一个关于x 的完全平方式,则m 等于().A .1B .-1C .1或9D .-1或9【典型例题】例1 解方程:3 x 2+8 x -3=0解:3 x 2+8 x -3=0x 2+38x -1=0 1、化1:把二次项系数化为1;x 2+38x=1 2.移项:把常数项移到方程的右边;x 2+38x +(34)2=1+(34)2 3 . 配方:方程两边都加上一次项系数 绝对值一半的平方; (x +34)2=(35)2 4. 变形:方程左边分解因式,右边合并同类项;x +34=±35 5. 开方:根据平方根的意义, 方程两边开平方; x +34=35 或 x +34=-35 6. 求解:解一元一次方程; 所以x 1==31, x 2=-3 7. 定解:写出原方程的解。
九年级数学配方法解一元二次方程

拦住一辆面包车,然后出示了警官代谢说,我是警察,想搭你的车。司机打量了一下他全身的警服,并没看他的代谢件,就痛快地说,上来吧。 上车后,通过交谈,才知道司机是黎鸣家所在的镇街上的,在镇政府旁边开了一家饭馆,每隔几天开车去县城买一次菜。到了镇上后,司机主
动说,你离家还远,我送你吧。从镇上到村里三公里的路程,步行需要半个小时,而坐车,五分钟就到家门口了,省了他以前的步行之苦。 第一次搭车,黎鸣觉出了搭车的好处,方便快捷,省时省力。自此,每次回家,他都在县城搭车,而且每次都能如愿。这更使他感觉到了当警察的
黎鸣是个优秀的青年,为人诚实,懂礼貌;孝顺母亲,工作出色;二是黎鸣的违规行为并不严重,通过对他的约谈、警示,黎鸣已经认识到错误,不必再处分。事实代谢明“黎鸣从此再也没有搭过车”。这样人性化处理,体现了领导者的通情达理、体察民情,起到了保护、 鞭策作用。
例2:不认同。一方面,原则、制度必须遵守,人情不能超越法纪。因人而异的处理会导致不公。另一方面,千里之堤溃于蚁穴,如果因为情节轻微而不加以重视,就有可能会使一些违纪者产生侥幸心理,进而一犯再犯,最终走到无法挽救的地步。文中黎鸣起先在县城搭车,后来逐渐发
x=
=
=.
(t1= ,t2= - )
即 x1= -2 , x2= .
例 用公式法解方程: x2 – x - =0
解:方程两边同乘以 3
得 2 x2 -3x-2=0
a=2,b= -3,c= -2.
∴b2-4ac=(-3) 2-4×2×(-2)=25.
∴x=
=
= 即 x1=2,
x2= -
求根公式 : X=
记。 ③晨曦微亮,不必急于晨起,和衣而坐,望向邻近的窗棂,你会惊喜地发现,整个窗玻璃上冰窗花葳蕤①如春,轻轻地凑近鼻息,似乎能嗅出冰窗花散发着馥郁的馨香,冰洁,剔透,令人心灵震颤。手指轻轻抚摸上去,冰窗花棱角分明,如一朵朵雪花,被夜神的手指悄悄安抚上去,
配方法解一元二次方程

1、x2-4=0;
2、(x+1)2-25=0.
解:(x+2)(x-2)=0, 解:[(x+1)+5][(x+1)-5]=0,
∴x+2=0,或x-2=0. ∴x1=-2, x2=2.
∴x+6=0,或x-4=0. ∴x1=-6, x2=4.
这两个方程是否还有其它的解法?
你能用开平方法解下列方程吗?
x2 bx
=(
)2
用配方法解二次项系数是1的一元二次方程在时,添
上的常数项与一次项系数之间存在着什么样的关系?
常数项是一次项系数的一半的平方
例1、用配方法解下列一元二次方程
(1) x2+6x=1
(2)x2=6-5x
解:
(2)移项,得 x2 5x = 6
(1)方程两边同加上9,得
x2 6x 9=1 9 即 (x 3)2 =10
方程两边都加上1,得
x2-8/3x+16/9=25/9
x2+2x+1=5/2
即:(x-
即:(x+1)2=5/2
∴x4- /43/)32=255//39
∴x+1= 10 或x+1=- 10
2
2
或x- 4/3=- 5/3
∴x1=-1+ 或x2=-1-
∴x1=3 或x2=-1/3
用配方法解 2x2 x 1 0 时,配方结果正确的是( D )
( A) ( x 1 )2 3 24
(B) ( x 1)2 3 44
(C ) ( x 1)2 17 4 16
(D) ( x 1)2 9 4 16
1.用配方法解下列方程: (1)2x2+6x+3=0 (2)3x2-7x+5=0
配方法解一元二次方程

从以上题目你能否得到启示, 如何解方程x2+8x-9=0.
【例题】 解方程:x2+8x-9=0. 解:把常数项移到方程的右边,得 x2+8x=9
两边都加上42,(一次项系数8的一半的平方)得
x2+8x+42=9+42. 即 即 (x+4)2=25 x+4=5,或x+4=-5. 两边开平方,得 x+4=±5,
第二章 一元二次方程
2.2.1 配方法(一)
学习目标:
会用配方法解简单的一元二次方程
情境创设
使一块矩形场地的长比宽多8米,并 且面积为9m2,场地的长和宽应各是 多少? (1)这个问题如何解决? (2)如何解所列出的方程?怎样把 它转换成我们学过的方程
知识准备一
解下列方程: 1、x2=9 3、x2-1=8 5、2(x+1)2=2
35m
【跟踪训练】
2.解下列方程: (1)
x2 6 x 6 0
(2)移项,得
2 x 2 x 2 4 x 1 2
(2) 2 x 2 4 x 2 x 2 1
解:(1)移项 ,得 x 2 6 x 6 配方,得
x 2 6 x ( 3) 2 6 ( 3) 2
2、 (x+1)2=9
4、(x+1)2-1=0
知识准备二
a 2ab b (a b)
2 2
4 2 2 完成填空: 1、x2-4x+___=(x__)
36 6 2 2、x2+12x+___=(x+__) 16 4 2 3、y2-8y+___=(y-__) 1/16 =(x+___) 1/4 2 4、x2+1/2x+___
北师大版九年级数学上册课件2.2.2解一元二次方程—配方法

3.有n个方程:x2+2x-8=0;x2+2×2x-8×22=0;…;x2 +2nx-8n2=0.小静同学解第一个方程x2+2x-8=0的步骤 为:“①x2+2x=8;②x2+2x+1=8+1;③(x+1)2=9;④ x+1=±3;⑤x=1±3;⑥x1=4,x2=-2.” (1)小静的解法是从步骤______⑤__开始出现错误的; (2)用配方法解第n个方程x2+2nx-8n2=0.(用含有n的式子 表示方程的根)
2.2.2解一元二次方程— 配方 法
例2: 解方程3x2+8x-3=0
思路:将二次项系数化为1
解:方程两边都除以3,得 x2 + 8 x - 1=0.
3
移项得
x2 +
8 3
x =1
配方,得 x2 + 8 x + ( 4 ) 2 = ( 4 )2 +1 ,
3
3
3
(x +
4 3
)2
=
25 9
.
开平方得 所以
4
直接开平方,得2-x= ±3 地∴2-x= 2
∴x1=2- 3, x2=2+ 3.
3或2-x=-
2
,3
2
2
2
(2)原方程可变形为(3x+1)2=8,
直接开平方,得3x+1=±2 2,
∴3x+1=2
2 或3x+1=-2 2
,∴x1=1
2 3
2,x2=
1 2 . 2
3
(3)移项,得3x2+2x=3,
2
二次项系数化为1,得x2+ 3x=1,
2 (1)小静的解法是从步骤____2____开始出现错误1的;2
专题训练一:一元二次方程
解:等式变形为 a2-6a+9+b2-8b+16+ c-5=0, 即(a-3)2+(b-4)2+ c-5=0,由非负性得(a-3)2=0,(b-4)2=0, c-5=0,∴a=3,b=4,c=5.∵32+42=52,即 a2+b2=c2, ∴△ABC 为直角三角形
解:(1)不符合.设小路宽度均为x m,根据题意得(16-2x)(12-2x) 1 = ×16×12,解得x1=2,x2=12,但x2=12不符合题意,应舍 2 去,∴x=2,故小芳的方案不符合条件,小路的宽度均为2 m
(2)答案不唯一,略
三、几何图形问题
6.如图,AO=OB=50 cm,OC是一条射线,OC⊥AB,一蚂蚁 由A以2 cm/s的速度向B爬行,同时另一蚂蚁由O点以3 cm/s的速度沿 OC方向爬行,问几秒钟后两蚂蚁与 O点组成的三角形面积等于 450 cm2?
三、几何图形问题 解:分两种情况讨论:(1)当由A 点出发的蚂蚁到达 O点之前,设 离开A点t s后,两蚂蚁与O点组成的三角形面积等于450 cm2,根据 题意得 (50 - 2t)·3t = 450 , 整理得 t2 - 25t + 150 = 0 , 解得 t1 = 15 , t2 = 10 ; (2) 当由 A 点出发的蚂蚁爬完 OA 这段距离用了= 25(s) 后 , 开 始由O向B爬行,设从O点开始x秒钟后,两蚂蚁与O点组成的三角形 面积等于450 cm2,根据题意得·2x·3(25+x)=450,整理得x2+25x -150=0,解得x1=5,x2=-30(不合题意,舍去),当x=5时,x+ 25=30,这只蚂蚁已由A点爬行了30 s.综上可知,分别在10 s,15 s,30 s时,两蚂蚁与O点组成的三角形面积等于450 cm2
用配方法解一元二次方程优秀教案
2.3 米。
想想以上我们主要学习了什么内
1.直接开平方法的概念及
容?你觉得在解决问题中我们都应该注 依据;
意什么?
2.直接开平方适合的一元
二次方程的形式;
3.直接开平方法解一元二
次方程应注意的问题如计算的
准确性,有分类讨论的意识等;
3/7
4.转化、化归、分类、类 比的数学思想和方法。
作业布置 【第二课时】
=(x+6)2
(2)x2-4x+
=(x-
)2
因此,解一元二次方程的基本 思路是将方程转化为(x+m)2=n 的 形式,它的一边是一个完全平方 式,另一边是一个常数,当 n≥0 时,两边开平方便可求出它的根。
(3)x2+8x+
=(x+
)2
从上可知:常数项配上一次项系数的一半的平方。
4.讲解例题:
例 1:解方程:x2+8x-9=0 分析:先把它变成(x+m)2=n(n≥0)的形式再用直接开
7 2
,x2=-
7 2
解法 2: 4x2-7=0 (2x)2=7
2x=± 7
x1=
7 2
,x2=-
7 2
解法 3: 4x2-7=0
四、巩固应用 五、深化提高 六、小结
这里的 x 既可以是字母,单项式, 也可以是含有未知数的多项式。换言之: 只要经过变形可以转化为 x2=a(a≥0)形式 的一元二次方程都可以用直接开平方法 求解。
2.用配方法解一元二次方程的步骤:
(1)把二次项系数化为 1;
学生活动 学生回答。
由学生共同小结。
6/7
(2)移项,方程的一边为二次项和一次项,另一边为常数项。
22.2 降次-解一元二次方程-配方法,公式法,因式分解法
2 3 2 3 y1 1 , y2 1 . 3 3
(1)3 x 2 x 5 0;
2
(2)2 y y 6 0;
2
(3)3 x 6 x 1.
2
1.熟悉配方法解方程的步骤 2.体会转化的数学思想.
解下列方程:
(1)t 2t 48;
2
(2)2 x 4 x 5 0.
x 3 5, x1 3 5 , x2 3 5.
解: x 2 5 x 6,
(2)
5 5 x 5x 6 , 2 2
2
2
2
x 5x 6 0.
2
5 25 x 6 , 2 4 5 49 x , 2 4 5 7 5 7 x1 , x2 , 2 2 2 2 x1 1, x2 6.
课时总结
(1)、可直接开方解形如 x p ( p 0) 的方程,那么 x p 达到降次的目的;
2
(2)、可直接开方解形如 ( mx n) p ( p 0) 的方程,那么 mx n p 达到降次的目 的;
2
一元二次方程配方的一般步骤: 化简:把方程化简为一般形式, 把二次项系数化为1 配方:方程两边都加上一次项系数一半的平方 开方:根据平方根意义,方程两边开平方 求解:解一元二次方程 定解:写出原方程的解
2
(2) 可直接开方解形如 (mx n) p ( p 0) 的方程, 那么 mx n p 达到降次的目的;
2
问题2 要使一块矩形场地的长比宽多6m , 并且 面积为16 m2 ,场地的长和宽应各是多少?
解:设场地的宽为 x m ,长为( x 6) m .根据 2 矩形面积为16 m ,列方程
一元二次方程3 公式法
公式法1、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c 2、一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆I 当△>0时,一元二次方程有2个不相等的实数根; II 当△=0时,一元二次方程有2个相同的实数根; III 当△<0时,一元二次方程没有实数根公式法用配方法解方程如果这个一元二次方程是一般形式ax 2+bx+c=0(a ≠0),你能否用上面配方法的步骤求出它们的两根。
问题:已知ax 2+bx+c=0(a ≠0),试推导它的两个根x 1=,x 2(这个方程一定有解吗?什么情况下有解?)解:移项,得:ax 2+bx=-c二次项系数化为1,得x 2+b a x=-c a配方,得:x 2+b a x+(2b a )2=-c a +(2b a)2即(x+2b a)2=2244b aca - ∵4a 2>0,4a2>0, 当b 2-4ac ≥0时2244b aca -≥0∴(x+2b a)2=(2a )2直接开平方,得:x+2ba =±2a 即x=2b a -±∴x 1x 2由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b 2-4ac ≥0时,•将a 、b 、c 代入式子x=2b a-±就得到方程的根.(2)这个式子叫做一元二次方程的求根公式. (3)利用求根公式解一元二次方程的方法叫公式法.公式的理解(4)由求根公式可知,一元二次方程最多有两个实数根. 例1.用公式法解下列方程.(1)2x 2-x-1=0 (2)x 2+1.5=-3x (3) x 2x+ 12=0 举一反三(1)4x 2-3x+2=0 (2)(x-2)(3x-5)=0应用拓展例2.某数学兴趣小组对关于x 的方程(m+1)22m x++(m-2)x-1=0提出了下列问题.(1)若使方程为一元二次方程,m 是否存在?若存在,求出m 并解此方程. 你能解决这个问题吗?练习一一、选择题1.用公式法解方程4x 2-12x=3,得到( ).A .B .C .D .22的根是( ).A .x 1,x 2B .x 1=6,x 2C .x 1x 2D .x 1=x 23.(m 2-n 2)(m 2-n 2-2)-8=0,则m 2-n 2的值是( ).A.4 B.-2 C.4或-2 D.-4或2二、填空题1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,条件是________.2.当x=______时,代数式x2-8x+12的值是-4.3.若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值是_____.三、综合提高题1、用公式法解关于x的方程:x2-2ax-b2+a2=0.2.设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,试推导x1+x2=-ba,x1·x2=ca;判别一元二次方程根的情况一、用公式法解下列方程.(1)2x 2-3x=0 (2)3x 2 (3)4x 2+x+1=0 二、探索新知从前面的具体问题,我们已经知道b 2-4ac>0(<0,=0)与根的情况,现在我们从求根公式的角度来分析:求根公式:x=2b a-±,(1)当b 2-4ac>0时,的x 1=2b a -+≠x 1=2b a--,即有两个不相等的实根.(2)当b 2-4ac=0时,•=0,所以x 1=x 2=2ba-,即有两个相等的实根; (3)当b 2-4ac<0时,根据平方根的意义,负数没有平方根,所以没有实数解.因此,(结论)(1)当b 2-4ac>0时,一元二次方程ax 2+bx+c=0(a ≠0)有两个不相等实数根即x 1x 2.(2)当b-4ac=0时,一元二次方程ax2+bx+c=0(a≠0)有两个相等实数根即x1=x2=2b a.(3)当b2-4ac<0时,一元二次方程ax2+bx+c=0(a≠0)没有实数根.例1.不解方程,判定方程根的情况(1)16x2+8x=-3 (2)9x2+6x+1=0举一反三判断根的情况(1)2x2-9x+8=0 (2)x2-7x-18=0三、巩固练习不解方程判定下列方程根的情况:(1)x2+10x+26=0 (2)x2-x-34=0 (3)3x2+6x-5=0 (4)4x2-x+116=0(5)x2x-14=0 (6)4x2-6x=0 (7)x(2x-4)=5-8x四、应用拓展例2.若关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数解,求ax+3>0的解集(用含a的式子表示).练习二一、选择题1.以下是方程3x2-2x=-1的解的情况,其中正确的有().A.∵b2-4ac=-8,∴方程有解B.∵b2-4ac=-8,∴方程无解C.∵b2-4ac=8,∴方程有解D.∵b2-4ac=8,∴方程无解2.一元二次方程x2-ax+1=0的两实数根相等,则a的值为().A.a=0 B.a=2或a=-2 C.a=2 D.a=2或a=03.已知k≠1,一元二次方程(k-1)x2+kx+1=0有根,则k的取值范围是().A.k≠2 B.k>2 C.k<2且k≠1 D.k为一切实数二、填空题1.已知方程x2+px+q=0有两个相等的实数,则p与q的关系是________.2.不解方程,判定2x2-3=4x的根的情况是______(•填“二个不等实根”或“二个相等实根或没有实根”).3.已知b≠0,不解方程,试判定关于x的一元二次方程x2-(2a+b)x+(a+ab-2b2)•=0的根的情况是________.三、综合提高题1.不解方程,试判定下列方程根的情况.(1)2+5x=3x2(2)x2-(2.当c<0时,判别方程x2+bx+c=0的根的情况.3.不解方程,判别关于x的方程x2-2kx+(2k-1)=0的根的情况.4.某集团公司为适应市场竞争,赶超世界先进水平,每年将销售总额的8%作为新产品开发研究资金,该集团2000年投入新产品开发研究资金为4000万元,2002年销售总额为7.2亿元,求该集团2000年到2002年的年销售总额的平均增长率课堂总结1、(1)求根公式的概念及其推导过程;(2)公式法的概念;(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0.2)找出系数a,b,c,注意各项的系数包括符号。