公开课教案离散型随机变量的方差
离散型随机变量的方差教案

离散型随机变量的方差教案第一章:离散型随机变量的概念1.1 离散型随机变量的定义介绍离散型随机变量的概念通过实例解释离散型随机变量的特点1.2 离散型随机变量的概率分布介绍离散型随机变量的概率分布的概念解释概率分布表的编制方法1.3 离散型随机变量的期望值介绍离散型随机变量的期望值的概念解释期望值的计算方法第二章:方差的概念2.1 方差的定义介绍方差的概念解释方差在概率论和统计学中的重要性2.2 方差的计算公式介绍离散型随机变量的方差计算公式解释公式中各参数的含义和计算方法2.3 方差的性质和特点介绍方差的性质和特点通过实例解释方差的应用和意义第三章:方差的估计3.1 方差的点估计介绍方差的点估计的概念解释如何通过样本数据来估计总体方差3.2 方差的区间估计介绍方差的区间估计的概念解释如何计算方差的置信区间3.3 方差的假设检验介绍方差的假设检验的概念解释如何利用样本数据进行方差的假设检验第四章:方差的应用4.1 方差在数据分析中的应用介绍方差在数据分析中的应用通过实例解释方差在数据分析中的作用和方法4.2 方差在质量控制中的应用介绍方差在质量控制中的应用通过实例解释方差在质量控制中的作用和方法4.3 方差在其他领域的应用介绍方差在其他领域的应用通过实例解释方差在其他领域中的作用和方法第五章:方差的进一步研究5.1 方差的优化和调整介绍方差的优化和调整的方法解释如何通过优化和调整方差来改善数据的质量和可靠性5.2 方差的分解和组合介绍方差的分解和组合的方法解释如何通过分解和组合方差来分析数据的结构和关系5.3 方差的比较和分析介绍方差的比较和分析的方法解释如何通过比较和分析方差来评估数据的差异和相似性第六章:方差与标准差的关系6.1 标准差的概念介绍标准差的概念解释标准差与方差的关系6.2 标准差的计算介绍标准差的计算方法解释如何通过方差计算标准差6.3 标准差的应用介绍标准差在数据分析中的应用通过实例解释标准差在数据分析中的作用和方法第七章:方差的假设检验7.1 方差的假设检验概述介绍方差的假设检验的基本概念解释方差假设检验的目的和方法7.2 单样本方差检验介绍单样本方差检验的方法解释如何进行单样本方差检验7.3 双样本方差检验介绍双样本方差检验的方法解释如何进行双样本方差检验第八章:方差的实际案例分析8.1 案例一:产品质量检验介绍一个产品质量检验的案例解释如何利用方差分析产品质量的稳定性8.2 案例二:金融市场分析介绍一个金融市场分析的案例解释如何利用方差分析金融市场的风险性8.3 案例三:教育成果评估介绍一个教育成果评估的案例解释如何利用方差分析教育成果的差异性第九章:方差的软件实现9.1 方差分析软件介绍介绍常用的方差分析软件解释如何使用这些软件进行方差分析9.2 方差分析软件操作实例通过实例演示如何使用方差分析软件进行数据分析解释软件操作的步骤和注意事项9.3 方差分析软件的结果解读介绍如何解读方差分析软件的结果解释结果中的各个指标的含义和作用10.1 方差的概念和作用强调方差在数据分析中的重要性10.2 方差的计算和应用强调方差在不同领域的应用价值10.3 方差分析的发展趋势展望方差分析的发展趋势强调方差分析在未来的应用前景重点和难点解析第一章:离散型随机变量的概念重点关注离散型随机变量的定义及其特点,理解概率分布的概念和编制方法。
离散型随机变量的方差优秀教学设计

离散型随机变量的方差【教学目标】: 1.了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。
2.了解方差公式“D (a ξ+b )=a2D ξ”,以及“若ξ~Β(n ,p ),则D ξ=np (1—p )”,并会应用上述公式计算有关随机变量的方差【教学重点】离散型随机变量的方差、标准差【教学难点】比较两个随机变量的期望与方差的大小,从而解决实际问题【授课类型】新授课【课时安排】2课时【教学准备】多媒体、实物投影仪【内容分析】数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,表示了随机变量在随机实验中取值的平均值,所以又常称为随机变量的平均数、均值。
今天,我们将对随机变量取值的稳定与波动、集中与离散的程度进行研究。
其实在初中我们也对一组数据的波动情况作过研究,即研究过一组数据的方差。
回顾一组数据的方差的概念:设在一组数据1x ,2x ,…,n x 中,各数据与它们的平均值x得差的平方分别是21)(x x -,22)(x x -,…,2)(x x n -,那么[12nS =21)(x x -+22)(x x -+…+])(2x x n -叫做这组数据的方差【教学过程】一、复习引入:1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出5. 分布列:6. i 12+ (1)7.二项分布:ξ~B (n ,p ),并记kn k k n q p C -=b (k ;n ,p )。
离散型随机变量方差的教案

离散型随机变量方差的教案教案标题:离散型随机变量方差的教案一、教学目标:1. 理解离散型随机变量的概念和特点。
2. 掌握求离散型随机变量方差的方法和步骤。
3. 能够应用所学知识解决相关问题。
二、教学重点和难点:1. 离散型随机变量的方差计算方法。
2. 离散型随机变量方差计算的实际应用。
三、教学内容和步骤:1. 离散型随机变量的概念和特点介绍(10分钟)- 介绍离散型随机变量的定义和特点,以及其在实际问题中的应用。
2. 离散型随机变量方差的定义和计算方法(15分钟)- 介绍离散型随机变量方差的定义和计算公式。
- 通过具体的例子演示方差的计算步骤和方法。
3. 离散型随机变量方差计算的实际应用(15分钟)- 结合实际问题,引导学生应用所学知识计算离散型随机变量的方差。
- 引导学生分析和讨论方差在实际问题中的意义和应用。
4. 练习与讨论(10分钟)- 给学生提供一些练习题,让他们在课堂上进行练习并相互讨论。
- 对学生的解题过程和答案进行指导和讨论,帮助他们加深对离散型随机变量方差的理解。
四、教学方法:1. 讲授结合示例:通过具体的例子演示离散型随机变量方差的计算方法,帮助学生理解和掌握知识。
2. 互动讨论:引导学生在课堂上进行讨论和交流,加深对知识点的理解和应用。
3. 练习指导:给学生提供一定数量的练习题,并在课堂上进行指导和讨论,帮助他们巩固所学知识。
五、教学资源:1. 教科书和课件:提供相关的教学材料和示例,帮助学生理解和掌握知识。
2. 练习题和答案:为学生提供一些练习题,帮助他们巩固所学知识。
六、教学评估:1. 课堂练习:通过学生在课堂上的练习情况和讨论表现,评估他们对离散型随机变量方差的掌握程度。
2. 作业和考试:布置相关的作业和考试题目,检验学生对所学知识的掌握情况。
七、教学反思:根据学生在课堂上的学习情况和表现,及时调整教学方法和内容,帮助他们更好地理解和掌握离散型随机变量方差的知识。
离散型随机变量的方差教案

教案:离散型随机变量的方差教学目标:1. 理解离散型随机变量的概念;2. 掌握方差的定义和计算方法;3. 能够运用方差分析数据的不均匀程度。
教学内容:一、离散型随机变量的概念1. 引入随机变量的概念,引导学生理解随机变量是随机现象的结果;2. 讲解离散型随机变量的定义,强调其取值有限且可数的特点;3. 通过实例让学生了解离散型随机变量的具体应用。
二、方差的定义1. 引入方差的概念,引导学生理解方差是衡量数据分散程度的指标;2. 讲解方差的计算公式,强调方差等于各个数据与平均数差的平方的平均数;3. 通过实例让学生了解方差的计算过程。
三、方差的计算方法1. 讲解如何计算离散型随机变量的方差,强调先求平均数,再求各个数据与平均数差的平方的平均数;2. 通过实例让学生掌握方差的计算步骤;3. 引导学生运用数学软件或工具进行方差的计算。
四、方差的应用1. 讲解方差在实际应用中的重要性,如统计学、经济学、自然科学等领域;2. 通过实例让学生了解如何运用方差分析数据的不均匀程度,如判断数据的分布情况、比较不同数据的离散程度等;3. 引导学生运用方差进行数据分析,培养学生的实际应用能力。
五、总结与练习1. 总结本节课的主要内容,让学生掌握离散型随机变量的概念、方差的定义和计算方法及其应用;2. 布置练习题,让学生巩固所学内容,提高解题能力。
教学资源:1. 离散型随机变量的定义和方差的计算方法的相关教材或教辅;2. 数学软件或工具,如Excel、MATLAB等;3. 实例数据,如统计数据、经济数据等。
教学评价:1. 学生能正确理解离散型随机变量的概念;2. 学生能熟练运用方差的计算方法计算离散型随机变量的方差;3. 学生能运用方差分析数据的不均匀程度,解决问题。
教案:离散型随机变量的方差(续)教学内容:六、方差的性质1. 讲解方差的性质,包括对称性、非负性、不变性和可加性等;2. 通过实例让学生了解方差的性质在实际应用中的作用;3. 引导学生运用方差的性质进行数据分析。
离散型随机变量的均值与方差ppt课件市公开课获奖课件省名师示范课获奖课件

A1 )
1 2
,
P ( B2
)
1 3
,
P(C3 )
1 6
.
(1)他们选择旳项目所属类别互不相同旳概率
P=3!P(A1B2C3)=6P(A1)P(B2)P(C3)
6 11 1 1. (2)设32名工3 人6中选6 择旳项目属于民生工程旳人数为
η,由已知, ~ B(3, 1), 且 3 ,
所以P(
解析 X ~ B(3, 1), D( X ) 3 1 3 9 .
4
4 4 16
题型分类 深度剖析
题型一 离散型随机变量旳均值与方差旳求法 【例1】 (2023·湖南理,17)为拉动经济增长,某市决
定新建一批要点工程,分为基础设施工程、民生工程 和产业建设工程三类,这三类工程所含项目旳个数分 别占总数旳 1 , 1 , 1 , 既有3名工人独立地从中任选一
解 (1)ξ旳全部可能取值有6,2,1,-2.
P( 6) 126 0.63, P( 2) 50 0.25,
200
200
P( 1) 20 0.1, P( 2) 4 0.02.
200
200
故ξ旳分布列为
6
2
1
-2
P 0.63 0.25 0.1 0.02
(2)E(ξ)=6×0.63+2×0.25+1×0.1+(-2)×0.02
随机变量ξ1、ξ2分别表达对甲、乙两项目各投资
10万元一年后旳利润.
(1)求ξ1、ξ2旳概率分布和数学期望E(ξ1)、 E(ξ2); (2)当E(ξ1)<E(ξ2)时,求p旳取值范围. 解 (1)措施一 ξ1旳概率分布列为
1 1.2 1.18 1.17
概率与统计—离散型随机变量的期望与方差—教学设计示例

离散型随机变量的期望与方差教学设计教学目标:知识目标:简述离散型随机变量的方差,以及标准差的意义;说出方差公式“D(aξ+b)=a2Dξ””,以及“若ξ~B(n,p),则Dξ=npq(这里q=1-p)”。
能力目标:能够根据离散型随机变量的分布列求出方差或标准差,并会应用相关公式计算随机变量的方差。
情感目标:树立辩证唯物主义世界观。
教学重点:离散型随机变量的方差、标准差的概念以及求解方法。
教学难点:对于离散型随机变量的方差在生活中的实际意义的理解。
教学用具:投影仪、计算机。
教学过程:(1)离散型随机变量的期望概念、意义、计算方法;(2)一组数据的方差的定义及其意义;(3)用类比一组数据的方差引出离散型随机变量的方差。
(4)一般地,如果离散型随机变量的分布列为那么,把叫做随机变量的均方差,简称方差;(5)的算术平方根叫做随机变量的标准差,记作.随机变量的方差与标准差都反映了随机变量取值的稳定与波动、集中与离散的程度.其中标准差与随机变量本身有相同的单位,在实际中应用更广泛;(6)两个用来计算方差的简单公式(不要求证明):1. .2.如果,那么,这里.例1:设随机变量的分布列为求 。
解析:∵ ,∴例2:(教科书第13页例5) 例3:(教科书第15页例6) 例4:A 、B 两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表所示: A 机床B 机床哪一台机床加工的质量更好一些呢? 解析: ∵,, ∴它们的期望相同。
∵∴∴。
所以A机床加工的质量比较稳定,更好一些。
布置教科书第16页中的“练习”作为课堂练习。
教学设计思路:首先对将要学习的离散型随机变量的期望与方差的相关定义与计算公式进行简单的介绍,然后通过对具有实际意义的例题进行讲解,使学生对于讲述过的理论知识有一个形象化的认识,从而达到教学的目标。
板书设计:建议把概念性的文字部分始终保留在学生的视野里(具体可以通过投影或者具体写在黑板的左上角的核心位置),以便于在讲述立体的过程中时刻与理论知识进行对照。
离散型随机变量的方差说课稿 教案 教学设计
离散型随机变量的方差教材整理1 离散型随机变量的方差的概念 离散型随机变量的方差与标准差 名称定义意义方差一般地,设一个离散型随机变量X 所有可能取的值为x 1,x 2,…,x n ,这些值对应的概率是p 1,p 2,…,p n ,则D (X )=(x 1-E (X ))2p 1+(x 2-E (X ))2p 2+…+(x n -E (X ))2p n ,叫做这个离散型随机变量X 的方差.离散型随机变量的方差和标准差反映了离散型随机变量取值相对于期望的平均波动大小(或说离散程度).标准差D (X )的算术平方根D (X )叫做离散型随机变量X 的标准差.1.下列说法正确的有________(填序号).①离散型随机变量X 的期望E (X )反映了X 取值的概率的平均值; ②离散型随机变量X 的方差D (X )反映了X 取值的平均水平; ③离散型随机变量X 的期望E (X )反映了X 取值的波动水平; ④离散型随机变量X 的方差D (X )反映了X 取值的波动水平.【解析】 ①错误.因为离散型随机变量X 的期望E (X )反映了X 取值的平均水平. ②错误.因为离散型随机变量X 的方差D (X )反映了随机变量偏离于期望的平均程度. ③错误.因为离散型随机变量的方差D (X )反映了X 取值的波动水平,而随机变量的期望E (X )反映了X 取值的平均水平.④正确.由方差的意义可知. 【答案】 ④2.已知随机变量X ,D (X )=19,则ξ的标准差为________.【解析】 X 的标准差D (X )=19=13. 【答案】 13教材整理2 二点分布、二项分布的方差 阅读教材P 63例2以下部分,完成下列问题. 服从二点分布与二项分布的随机变量的方差(1)若X 服从二点分布,则D (X )=p (1-p ); (2)若X ~B (n ,p ),则D (X )=np (1-p ).若随机变量X 服从二点分布,且成功概率P =0.5,则D (X )=________,E (X )=________. 【解析】 E (X )=0.5,D (X )=0.5(1-0.5)=0.25. 【答案】 0.25 0.5离散型随机变量的方差的性质及应用设在12个同类型的零件中有2个次品,抽取3次进行检验,每次抽到一个,并且取出后不再放回,若以X 和Y 分别表示取出次品和正品的个数.(1)求X 的分布列、期望及方差; (2)求Y 的分布列、期望及方差.【精彩点拨】 (1)可先求出X 分布列,然后利用期望和方差公式求解;(2)可由Y 分布列及其期望、方差、公式求解,也可由期望、方差性质求解.【自主解答】 (1)X 的可能取值为0,1,2.若X =0,表示没有取出次品,其概率为P (X =0)=C 310C 312=611,同理,有P (X =1)=C 12C 210C 312=922, P (X =2)=C 22C 110C 312=122.∴X 的分布列为X 0 1 2 P611922122∴E (X )=0×611+1×922+2×122=12,D (X )=⎝⎛⎭⎫0-122×611+⎝⎛⎭⎫1-122×922+⎝⎛⎭⎫2-122×122=322+988+988=1544. (2)Y 的可能取值为1,2,3,显然X +Y =3. 法一:P (Y =1)=P (X =2)=122, P (Y =2)=P (X =1)=922,P (Y =3)=P (X =0)=611,∴Y 的分布列为Y 1 2 3 P122922611E (Y )=1×122+2×922+3×611=52,D (Y )=⎝⎛⎭⎫1-522×122+⎝⎛⎭⎫2-522×922+⎝⎛⎭⎫3-522×611=1544. 法二:E (Y )=E (3-X )=3-E (X )=52,D (Y )=D (3-X )=(-1)2D (X )=1544.1.由本例可知,利用公式D (aX +b )=a 2D (X )及E (aX +b )=aE (X )+b 来求E (Y )及D (Y ),既避免了求随机变量Y =aX +b 的分布列,又避免了涉及大数的计算,从而简化了计算过程.2.若X ~B (n ,p ),则D (X )=np (1-p ),若X 服从二点分布,则D (X )=p (1-p ),其中p 为成功概率,应用上述性质可大大简化解题过程.[再练一题]1.为防止风沙危害,某地政府决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n 株沙柳,已知各株沙柳成活与否是相互独立的,成活率为p ,设X 为成活沙柳的株数,已知E (X )=3,D (X )=32,求n ,p 的值.【解】 由题意知,X 服从二项分布B (n ,p ), 由E (X )=np =3,D (X )=np (1-p )=32,得1-p =12,∴p =12,n =6.求离散型随机变量的方差、标准差编号为1,2,3的三位学生随意入座编号为1,2,3的三个座位,每位学生坐一个座位,设与座位编号相同的学生的人数是ξ,求E (ξ)和D (ξ).【精彩点拨】 首先确定ξ的取值,然后求出ξ的分布列,进而求出E (ξ)和D (ξ)的值. 【自主解答】 ξ的所有可能取值为0,1,3,ξ=0表示三位同学全坐错了,有2种情况,即编号为1,2,3的座位上分别坐了编号为2,3,1或3,1,2的学生,则P (ξ=0)=2A 33=13;ξ=1表示三位同学只有1位同学坐对了. 则P (ξ=1)=C 13A 33=12;ξ=3表示三位学生全坐对了,即对号入座, 则P (ξ=3)=1A 33=16.所以,ξ的分布列为ξ 0 1 3 P131216E (ξ)=0×13+1×12+3×16=1;D (ξ)=13×(0-1)2+12×(1-1)2+16×(3-1)2=1.求离散型随机变量的方差的类型及解决方法1.已知分布列型(非二点分布或二项分布):直接利用定义求解,具体如下, (1)求均值;(2)求方差.2.已知分布列是二点分布或二项分布型:直接套用公式求解,具体如下, (1)若X 服从二点分布,则D (X )=p (1-p ). (2)若X ~B (n ,p ),则D (X )=np (1-p ).3.未知分布列型:求解时可先借助已知条件及概率知识求得分布列,然后转化成(1)中的情况.4.对于已知D (X )求D (aX +b )型,利用方差的性质求解,即利用D (aX +b )=a 2D (X )求解.[再练一题]2.有10张卡片,其中8张标有数字2,2张标有数字5,从中随机地抽取3张卡片,设3张卡片数字之和为ξ,求E (ξ)和D (ξ).【解】 这3张卡片上的数字之和为ξ,这一变量的可能取值为6,9,12.ξ=6表示取出的3张卡片上均标有2,则P (ξ=6)=C 38C 310=715.ξ=9表示取出的3张卡片上两张标有2,一张标有5,则P (ξ=9)=C 28C 12C 310=715.ξ=12表示取出的3张卡片上一张标有2,两张标有5,则P (ξ=12)=C 18C 22C 310=115.∴ξ的分布列为ξ 6 9 12 P715715115∴E (ξ)=6×715+9×715+12×115=7.8.D (ξ)=(6-7.8)2×715+(9-7.8)2×715+(12-7.8)2×115=3.36.期望、方差的综合应用探究1 A ,B 两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表:A 机床次品数X 10 1 2 3 P0.70.2 0.060.04B 机床次品数X 20 1 2 3 P0.80.060.040.10试求E (X 1),E (X 2).【提示】 E (X 1)=0×0.7+1×0.2+2×0.06+3×0.04=0.44. E (X 2)=0×0.8+1×0.06+2×0.04+3×0.10=0.44.探究2 在探究1中,由E (X 1)和E (X 2)的值能比较两台机床的产品质量吗?为什么? 【提示】 不能.因为E (X 1)=E (X 2).探究3 在探究1中,试想利用什么指标可以比较A 、B 两台机床加工质量? 【提示】 利用样本的方差.方差越小,加工的质量越稳定.甲、乙两名射手在一次射击中得分为两个相互独立的随机变量ξ,η,已知甲、乙两名射手在每次射击中射中的环数大于6环,且甲射中10,9,8,7环的概率分别为0.5,3a ,a,0.1,乙射中10,9,8环的概率分别为0.3,0.3,0.2.(1)求ξ,η的分布列;(2)求ξ,η的数学期望与方差,并以此比较甲、乙的射击技术.【精彩点拨】 (1)由分布列的性质先求出a 和乙射中7环的概率,再列出ξ,η的分布列.(2)要比较甲、乙两射手的射击水平,需先比较两射手击中环数的数学期望,然后再看其方差值.【自主解答】(1)由题意得:0.5+3a+a+0.1=1,解得a=0.1.因为乙射中10,9,8环的概率分别为0.3,0.3,0.2.所以乙射中7环的概率为1-(0.3+0.3+0.2)=0.2.所以ξ,η的分布列分别为ξ10987P 0.50.30.10.1η10987P 0.30.30.20.2(2)由(1)得:E(ξ)=10×0.5+9×0.3+8×0.1+7×0.1=9.2;E(η)=10×0.3+9×0.3+8×0.2+7×0.2=8.7;D(ξ)=(10-9.2)2×0.5+(9-9.2)2×0.3+(8-9.2)2×0.1+(7-9.2)2×0.1=0.96;D(η)=(10-8.7)2×0.3+(9-8.7)2×0.3+(8-8.7)2×0.2+(7-8.7)2×0.2=1.21.由于E(ξ)>E(η),D(ξ)<D(η),说明甲射击的环数的均值比乙高,且成绩比较稳定,所以甲比乙的射击技术好.利用均值和方差的意义分析解决实际问题的步骤1.比较均值.离散型随机变量的均值反映了离散型随机变量取值的平均水平,因此,在实际决策问题中,需先计算均值,看一下谁的平均水平高.2.在均值相等的情况下计算方差.方差反映了离散型随机变量取值的稳定与波动、集中与离散的程度.通过计算方差,分析一下谁的水平发挥相对稳定.3.下结论.依据方差的几何意义做出结论.[再练一题]3.甲、乙两个野生动物保护区有相同的自然环境,且野生动物的种类和数量也大致相等.两个保护区内每个季度发现违反保护条例的事件次数的分布列分别为:甲保护区:X 0123P 0.30.30.20.2乙保护区:Y 012P 0.10.50.4【解】甲保护区的违规次数X的数学期望和方差分别为:E(X)=0×0.3+1×0.3+2×0.2+3×0.2=1.3;D(X)=(0-1.3)2×0.3+(1-1.3)2×0.3+(2-1.3)2×0.2+(3-1.3)2×0.2=1.21.乙保护区的违规次数Y的数学期望和方差分别为:E(Y)=0×0.1+1×0.5+2×0.4=1.3;D(Y)=(0-1.3)2×0.1+(1-1.3)2×0.5+(2-1.3)2×0.4=0.41.因为E(X)=E(Y),D(X)>D(Y),所以两个保护区内每季度发生的平均违规次数是相同的,但乙保护区内的违规事件次数更集中和稳定,而甲保护区的违规事件次数相对分散,故乙保护区的管理水平较高.。
离散型随机变量的均值与方差_教案
离散型随机变量的均值与方差_教案第一章:离散型随机变量的概念1.1 离散型随机变量的定义介绍离散型随机变量的概念通过实例说明离散型随机变量的特点1.2 离散型随机变量的取值讨论离散型随机变量的取值范围解释离散型随机变量的概率分布1.3 离散型随机变量的概率质量函数定义概率质量函数(PMF)示例说明如何计算离散型随机变量的概率第二章:离散型随机变量的均值2.1 离散型随机变量的均值定义引入离散型随机变量的均值概念解释均值的意义和重要性2.2 计算离散型随机变量的均值介绍计算离散型随机变量均值的方法通过实例演示如何计算均值2.3 均值的性质讨论离散型随机变量均值的性质证明均值的线性性质第三章:离散型随机变量的方差3.1 方差的概念引入方差的概念和意义解释方差在描述随机变量离散程度方面的作用3.2 计算离散型随机变量的方差介绍计算离散型随机变量方差的方法通过实例演示如何计算方差3.3 方差的性质讨论离散型随机变量方差的性质证明方差的线性性质第四章:离散型随机变量的标准差4.1 标准差的概念引入标准差的概念和意义解释标准差在描述随机变量离散程度方面的作用4.2 计算离散型随机变量的标准差介绍计算离散型随机变量标准差的方法通过实例演示如何计算标准差4.3 标准差的性质讨论离散型随机变量标准差的性质证明标准差的线性性质第五章:离散型随机变量的期望和方差的关系5.1 期望和方差的关系引入期望和方差的关系概念解释期望和方差在描述随机变量特性方面的作用5.2 计算离散型随机变量的期望和方差介绍计算离散型随机变量期望和方差的方法通过实例演示如何计算期望和方差5.3 期望和方差的性质讨论离散型随机变量期望和方差的性质证明期望和方差的线性性质这五个章节涵盖了离散型随机变量的均值和方差的基本概念、计算方法和性质。
通过这些章节的学习,学生可以掌握离散型随机变量的均值和方差的计算方法,并了解它们在描述随机变量特性和规律方面的应用。
高中数学选修2-3公开课教案2.3.2离散型随机变量的方差
2.3.2离散型随机变量的方差教学目标:知识与技能:了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。
过程与方法:了解方差公式“D (aξ+b )=a 2Dξ”,以及“若ξ~Β(n ,p ),则Dξ=np (1—p )”,并会应用上述公式计算有关随机变量的方差 。
情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。
教学重点:离散型随机变量的方差、标准差教学难点:比较两个随机变量的期望与方差的大小,从而解决实际问题 教具准备:多媒体、实物投影仪 。
教学设想:了解方差公式“D (aξ+b )=a 2Dξ”,以及“若ξ~Β(n ,p ),则Dξ=np (1—p )”,并会应用上述公式计算有关随机变量的方差 。
授课类型:新授课 课时安排:2课时教 具:多媒体、实物投影仪 内容分析:数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,表示了随机变量在随机实验中取值的平均值,所以又常称为随机变量的平均数、均值.今天,我们将对随机变量取值的稳定与波动、集中与离散的程度进行研究.其实在初中我们也对一组数据的波动情况作过研究,即研究过一组数据的方差.回顾一组数据的方差的概念:设在一组数据1x ,2x ,…,n x 中,各数据与它们的平均值x 得差的平方分别是21)(x x -,22)(x x -,…,2)(x x n -,那么[12nS =21)(x x -+22)(x x -+…+])(2x x n -叫做这组数据的方差 教学过程:一、复习引入:1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母ξ、η等表示2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出5.6. 分布列的两个性质: ⑴i ≥0,=1,2,...; ⑵1+2+ (1)7.二项分布:ξ~B (n ,p ),并记kn k k n q p C -=b (k ;n ,p ).8.几何分布: g (k ,p )= 1k q p -,其中k =0,1,2,…, p q -=1.9.数学期望:则称 =ξE +11p x +22p x …++n n p x … 为ξ的数学期望,简称期望.10. 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平 11 平均数、均值:在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有=1p =2p …n p n 1==,=ξE +1(x +2x …nx n 1)⨯+,所以ξ的数学期望又称为平均数、均值12. 期望的一个性质: b aE b a E +=+ξξ)( 13.若ξ:B (n,p ),则E ξ=np二、讲解新课:1. 方差: 对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…,且取这些值的概率分别是1p ,2p ,…,n p ,…,那么,ξD =121)(p E x ⋅-ξ+222)(p E x ⋅-ξ+…+n n p E x ⋅-2)(ξ+…称为随机变量ξ的均方差,简称为方差,式中的ξE 是随机变量ξ的期望.2. 标准差:ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ.3.方差的性质:(1)ξξD a b a D 2)(=+;(2)22)(ξξξE E D -=; (3)若ξ~B (n ,p ),则=ξD np (1-p ) 4.其它:⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的; ⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛 三、讲解范例:例1.随机抛掷一枚质地均匀的骰子,求向上一面的点数的均值、方差和标准差.从而111111123456 3.5666666EX =⨯+⨯+⨯+⨯+⨯+⨯=;2222221111(1 3.5)(2 3.5)(3 3.5)(4 3.5)666611(5 3.5)(6 3.5) 2.9266DX =-⨯+-⨯+-⨯+-⨯+-⨯+-⨯≈1.71X σ=≈.例2.有甲乙两个单位都愿意聘用你,而你能获得如下信息:根据工资待遇的差异情况,你愿意选择哪家单位?解:根据月工资的分布列,利用计算器可算得EX 1 = 1200×0.4 + 1 400×0.3 + 1600×0.2 + 1800×0.1 = 1400 ,DX 1 = (1200-1400) 2 ×0. 4 + (1400-1400 ) 2×0.3 + (1600 -1400 )2×0.2+(1800-1400) 2×0. 1 = 40 000 ;EX 2=1 000×0.4 +1 400×0.3 + 1 800×0.2 + 2200×0.1 = 1400 ,DX 2 = (1000-1400)2×0. 4+(1 400-1400)×0.3 + (1800-1400)2×0.2 + (2200-1400 )2×0.l = 160000 .因为EX 1 =EX 2, DX 1<DX 2,所以两家单位的工资均值相等,但甲单位不同职位的工资相对集中,乙单位不同职位的工资相对分散.这样,如果你希望不同职位的工资差距小一些,就选择甲单位;如果你希望不同职位的工资差距大一些,就选择乙单位.例3.设随机变量ξ的分布列为求D ξ解:(略)12n E ξ+=, 2D 12ξ=例4.已知离散型随机变量1ξ的概率分布为离散型随机变量2ξ的概率分布为求这两个随机变量期望、均方差与标准差解:47177127111=⨯+⋅⋅⋅+⨯+⨯=ξE ; 471)47(71)42(71)41(2221=⨯-+⋅⋅⋅+⨯-+⨯-=ξD ;11==ξσξD4713.4718.3717.32=⨯+⋅⋅⋅+⨯+⨯=ξE ;2ξD =0.04, 2.022==ξσξD .点评:本题中的1ξ和2ξ都以相等的概率取各个不同的值,但1ξ的取值较为分散,2ξ的取值较为集中.421==ξξE E ,41=ξD ,04.02=ξD ,方差比较清楚地指出了2ξ比1ξ取值更集中.1σξ=2,2σξ=0.02,可以看出这两个随机变量取值与其期望值的偏差例5.甲、乙两射手在同一条件下进行射击,分布列如下:射手甲击中环数8,9,10的概率分别为0.2,0.6,0.2;射手乙击中环数8,9,10的概率分别为0.4,0.2,0.24用击中环数的期望与方差比较两名射手的射击水平解:180.290.6100.29E ξ=⨯+⨯+⨯=221(89)0.2(99)0.6D ξ=-⨯+-⨯+(10-9)4.02.02=⨯;同理有.0,922==ξξD E由上可知,21ξξE E =,1D D ξξ<所以,在射击之前,可以预测甲、乙两名射手所得的平均环数很接近,均在9环左右,但甲所得环数较集中,以9环居多,而乙得环数较分散,得8、10环地次数多些.点评:本题中,1ξ和2ξ所有可能取的值是一致的,只是概率的分布情况不同.21ξξE E ==9,这时就通过1ξD =0.4和2ξD =0.8来比较1ξ和2ξ的离散程度,即两名射手成绩的稳定情况 例6.A 、B 两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表所示:A 机床B 机床问哪一台机床加工质量较好解: E ξ1=0×0.7+1×0.2+2×0.06+3×0.04=0.44,E ξ2=0×0.8+1×0.06+2×0.04+3×0.10=0.44.它们的期望相同,再比较它们的方差D ξ1=(0-0.44)2×0.7+(1-0.44)2×0.2+(2-0.44)2×0.06+(3-0.44)2×0.04=0.6064,D ξ2=(0-0.44)2×0.8+(1-0.44)2×0.06+(2-0.44)2×0.04+(3-0.44)2×0.10=0.9264. ∴D ξ1< D ξ2 故A 机床加工较稳定、质量较好. 四、课堂练习:1 .已知()~,,8, 1.6B n p E D ξξξ==,则,n p 的值分别是( )A .1000.08和;B .200.4和;C .100.2和;D .100.8和 答案:1.D2. 一盒中装有零件12个,其中有9个正品,3个次品,从中任取一个,如果每次取出次品就不再放回去,再取一个零件,直到取得正品为止.求在取得正品之前已取出次品数的期望.分析:涉及次品率;抽样是否放回的问题.本例采用不放回抽样,每次抽样后次品率将会发生变化,即各次抽样是不独立的.如果抽样采用放回抽样,则各次抽样的次品率不变,各次抽样是否抽出次品是完全独立的事件.解:设取得正品之前已取出的次品数为ξ,显然ξ所有可能取的值为0,1,2,3当ξ=0时,即第一次取得正品,试验停止,则 P (ξ=0)=43129= 当ξ=1时,即第一次取出次品,第二次取得正品,试验停止,则 P (ξ=1)=449119123=⨯ 当ξ=2时,即第一、二次取出次品,第三次取得正品,试验停止,则 P (ξ=2)=2209109112123=⨯⨯ 当ξ=3时,即第一、二、三次取出次品,第四次取得正品,试验停止,则P (ξ=3)=220199101112123=⨯⨯⨯ 所以,E ξ=10322013220924491430=⨯+⨯+⨯+⨯3. 有一批数量很大的商品的次品率为1%,从中任意地连续取出200件商品,设其中次品数为ξ,求E ξ,D ξ分析:涉及产品数量很大,而且抽查次数又相对较少的产品抽查问题.由于产品数量很大,因而抽样时抽出次品与否对后面的抽样的次品率影响很小,所以可以认为各次抽查的结果是彼此独立的.解答本题,关键是理解清楚:抽200件商品可以看作200次独立重复试验,即ξ:B (200,1%),从而可用公式:E ξ=np ,D ξ=npq(这里q=1-p)直接进行计算解:因为商品数量相当大,抽200件商品可以看作200次独立重复试验,所以ξ:B (200,1%E ξ=np ,D ξ=npq ,这里n=200,p=1%,q=99%,所以,E ξ=200×1%=2,Dξ=200×1%×99%=1.984. 设事件A 发生的概率为p ,证明事件A 在一次试验中发生次数ξ的方差不超过1/4 分析:这是一道纯数学问题.要求学生熟悉随机变量的期望与方差的计算方法,关键还是掌握随机变量的分布列.求出方差D ξ=P(1-P)后,我们知道D ξ是关于P(P ≥0)的二次函数,这里可用配方法,也可用重要不等式证明结论证明:因为ξ所有可能取的值为0,1且P (ξ=0)=1-p,P(ξ=1)=p, 所以,E ξ=0×(1-p)+1×p=p则 D ξ=(0-p )2×(1-p)+(1-p) 2×p=p(1-p) 412)p 1(p 2=⎪⎭⎫ ⎝⎛-+≤5. 有A 、B 两种钢筋,从中取等量样品检查它们的抗拉强度,指标如下:其中ξA 、ξB 分别表示A 、B 两种钢筋的抗拉强度.在使用时要求钢筋的抗拉强度不低于120,试比较A 、B 两种钢筋哪一种质量较好分析: 两个随机变量ξA 和ξB &都以相同的概率0.1,0.2,0.4,0.1,0.2取5个不同的数值.ξA 取较为集中的数值110,120,125,130,135;ξB 取较为分散的数值100,115,125,130,145.直观上看,猜想A 种钢筋质量较好.但猜想不一定正确,需要通过计算来证明我们猜想的正确性解:先比较ξA 与ξB 的期望值,因为E ξA =110×0.1+120×0.2+125×0.4+130×0.1+135×0.2=125, E ξB =100×0.1+115×0.2+125×0.4十130×0.1+145×0.2=125.所以,它们的期望相同.再比较它们的方差.因为D ξA =(110-125)2×0.1+(120-125) 2 ×0.2+(130-125) 2×0.1+(135-125) 2×0.2=50,D ξB =(100-125)2×0.1+(110-125) 2 ×0.2+(130-125) 2×0.1+(145-125) 2×0.2=165.所以,D ξA < D ξB .因此,A 种钢筋质量较好6. 在有奖摸彩中,一期(发行10000张彩票为一期)有200个奖品是5元的,20个奖品是25元的,5个奖品是100元的.在不考虑获利的前提下,一张彩票的合理价格是多少元?分析:这是同学们身边常遇到的现实问题,比如福利彩票、足球彩票、奥运彩票等等.一般来说,出台各种彩票,政府要从中收取一部分资金用于公共福利事业,同时也要考虑工作人员的工资等问题.本题的“不考虑获利”的意思是指:所收资金全部用于奖品方面的费用解:设一张彩票中奖额为随机变量ξ,显然ξ所有可能取的值为0,5,25,100依题 意,可得ξ的分布列为2.02000100500255054000E =⨯+⨯+⨯+⨯=ξ答:一张彩票的合理价格是0.2元.五、小结 :⑴求离散型随机变量ξ的方差、标准差的步骤:①理解ξ的意义,写出ξ可能取的全部值;②求ξ取各个值的概率,写出分布列;③根据分布列,由期望的定义求出E ξ;④根据方差、标准差的定义求出ξD 、σξ.若ξ~B (n ,p ),则不必写出分布列,直接用公式计算即可.⑵对于两个随机变量1ξ和2ξ,在1ξE 和2ξE 相等或很接近时,比较1ξD 和2ξD ,可以确定哪个随机变量的性质更适合生产生活实际,适合人们的需要六、课后作业: P69练习1,2,3 P69 A 组4 B 组1,21.设ξ~B(n 、p)且E ξ=12 D ξ=4,求n 、p解:由二次分布的期望与方差性质可知E ξ=np D ξ= np (1-p )∴⎩⎨⎧=-=4)1(12p np np ∴⎪⎩⎪⎨⎧==3218p n2.已知随机变量ξ服从二项分布即ξ~B(6、31)求b (2;6,31) 解:p(ξ=2)=c 62(31)2(32)43.已知甲、乙两名射手在一次射击中的得分为两个相互独立的随机变量ξ和η,已知ξ和η的分布列如下:(注得分越大,水平越高)试分析甲、乙技术状况解:由0.1+0.6+a+1⇒a=0.3 0.3+0.3+b=1⇒a=0.4 ∴E ξ=2.3 , E η=2.0 D ξ=0.81 , D η=0.6七、板书设计(略)八、教学反思:⑴求离散型随机变量ξ的方差、标准差的步骤: ①理解ξ的意义,写出ξ可能取的全部值; ②求ξ取各个值的概率,写出分布列; ③根据分布列,由期望的定义求出E ξ;④根据方差、标准差的定义求出ξD 、σξ.若ξ~B (n ,p ),则不必写出分布列,直接用公式计算即可.⑵对于两个随机变量1ξ和2ξ,在1ξE 和2ξE 相等或很接近时,比较1ξD 和2ξD ,可以确定哪个随机变量的性质更适合生产生活实际,适合人们的需要。
离散型随机变量的均值与方差_教案
离散型随机变量的均值与方差_教案第一章:离散型随机变量的概念1.1 离散型随机变量的定义介绍离散型随机变量的概念举例说明离散型随机变量1.2 离散型随机变量的概率分布概率分布的定义概率分布的性质概率分布的图形表示1.3 离散型随机变量的期望值期望值的定义期望值的计算方法期望值的意义第二章:离散型随机变量的均值2.1 离散型随机变量的均值的概念均值的定义均值的意义2.2 离散型随机变量的均值的计算方法均值的计算公式均值的计算步骤2.3 离散型随机变量的均值的性质均值的性质1:线性性质均值的性质3:单调性第三章:离散型随机变量的方差3.1 离散型随机变量的方差的概念方差的定义方差的意义3.2 离散型随机变量的方差的计算方法方差的计算公式方差的计算步骤3.3 离散型随机变量的方差的性质方差的性质1:非负性方差的性质2:对称性方差的性质3:单调性第四章:离散型随机变量的协方差4.1 离散型随机变量的协方差的概念协方差的定义协方差的意义4.2 离散型随机变量的协方差的计算方法协方差的计算公式协方差的计算步骤4.3 离散型随机变量的协方差的性质协方差的性质1:线性性质协方差的性质3:对称性第五章:离散型随机变量的相关系数5.1 离散型随机变量的相关系数的定义相关系数的定义相关系数的意义5.2 离散型随机变量的相关系数的计算方法相关系数的计算公式相关系数的计算步骤5.3 离散型随机变量的相关系数的性质相关系数的性质1:取值范围相关系数的性质2:单调性相关系数的性质3:对称性第六章:离散型随机变量的标准化6.1 离散型随机变量标准化的概念标准化的定义标准化的意义6.2 离散型随机变量的标准化方法标准化的计算公式标准化的计算步骤6.3 离散型随机变量标准化后的性质标准化后的分布标准化后的期望值和方差第七章:离散型随机变量的均值的估计7.1 离散型随机变量均值估计的概念均值估计的定义均值估计的意义7.2 离散型随机变量均值的点估计点估计的定义点估计的计算方法7.3 离散型随机变量均值的区间估计区间估计的定义区间估计的计算方法第八章:离散型随机变量的方差的估计8.1 离散型随机变量方差估计的概念方差估计的定义方差估计的意义8.2 离散型随机变量方差的点估计点估计的定义点估计的计算方法8.3 离散型随机变量方差的区间估计区间估计的定义区间估计的计算方法第九章:离散型随机变量的协方差的估计9.1 离散型随机变量协方差估计的概念协方差估计的定义协方差估计的意义9.2 离散型随机变量协方差的点估计点估计的定义点估计的计算方法9.3 离散型随机变量协方差的区间估计区间估计的定义区间估计的计算方法第十章:离散型随机变量的相关系数的估计10.1 离散型随机变量相关系数估计的概念相关系数估计的定义相关系数估计的意义10.2 离散型随机变量相关系数的点估计点估计的定义点估计的计算方法10.3 离散型随机变量相关系数的区间估计区间估计的定义区间估计的计算方法重点和难点解析重点环节1:离散型随机变量的期望值和方差的计算方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3.2离散型随
机变量的方差
一、三维目标:
1、知识与技能:了解离散型随机变量的方差、标准差的意义,会根据离散型
随机变量的分布列求出方差或标准差。
2、过程与方法:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),
则Dξ=np(1—p)”,并会应用上述公式计算有关随机变量的方差 。
3、情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的
文化功能与人文价值。
二、教学重点:离散型随机变量的方差、标准差
三、教学难点:比较两个随机变量的期望与方差的大小,从而解决实际问题 四、教学过程: (一)、复习引入: 1..数学期望: 一般地,若离散型随机变量ξ的概率分布为 ξ x1 x2 … xn … P p1 p2 … pn … 则称 E11px22px…nnpx… 为ξ的数学期望,简称期望. 2. 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平 3. 期望的一个性质: baEbaE)( 4、如果随机变量X服从两点分布为 X 1 0 P p 1-p Eξ=np 5、如果随机变量X服从二项分布,即X ~ B(n,p),则EX=np (二)、讲解新课: 1、(探究1) 某人射击10次,所得环数分别是:1,1,1,1,2,2,2,3,3,4;则所得的平均环数是多少? (探究2) 某人射击10次,所得环数分别是:1,1,1,1,2,2,2,3,3,4;则这组数据的方差是多少? 2、离散型随机变量取值的方差的定义:
设离散型随机变量X的分布为:
则(xi-EX)2描述了xi(i=1,2,…n)相对于均值EX的偏离程度,而
DX
为这些偏离程度的加权平均,刻画了随机变量X与其均值EX的平均偏离程度。
我们称DX为随机变量X的方差,其算术平方根DX叫做随机变量X的标准
差.
随机变量的方差与标准差都反映了随机变量偏离于均值的平均程度的平
均程度,它们的值越小,则随机变量偏离于均值的平均程度越小,即越集中于
均值。
(三)、基础训练
1、已知随机变量X的分布
求DX和
解:00.110.220.430.240.12EX
X X1 X2 … Xi … X
n
P P1 P2 … Pi … P
n
X 0 1 2 3 4
P 0.1 0.2 0.4 0.2 0.1
10
4332221111
X
21014102310321041
])()()[(122212xxxxxxnsni
1])24()23()23()22()22()22()21()21()21()21[(10122222222222
s
22222
)24(101)23(102)22(103)21(104s
niiipEXx1
2
)(
DX
22222
(02)0.1(12)0.2(22)0.4(32)0.2(42)0.11.2DX
(四)、方差的应用 例1:甲、乙两名射手在同一条件下射击,所得环数X1, X2分布列如下: X1 8 9 10 P 0.2 0.6 0.2 用击中环数的期望与方差分析比较两名射手的射击水平。 表明甲、乙射击的平均水平没有差别,在多次射击中平均得分差别不会很大,但甲通常发挥比较稳定,多数得分在9环,而乙得分比较分散,近似平均分布在8-10环。 问题1:如果你是教练,你会派谁参加比赛呢? 问题2:如果其他对手的射击成绩都在8环左右,应派哪一名选手参赛? 问题3:如果其他对手的射击成绩都在9环左右,应派哪一名选手参赛? 例2.有甲乙两个单位都愿意聘用你,而你能获得如下信息: 甲单位不同职位月工资X1/元 1200 1400 1600 1800 获得相应职位的概率P1 0.4 0.3 0.2 0.1 乙单位不同职位月工资X2/元 1000 1400 1800 2000 获得相应职位的概率P2 0.4 0.3 0.2 0.1 根据工资待遇的差异情况,你愿意选择哪家单位? 解:根据月工资的分布列,利用计算器可算得 EX1 = 1200×0.4 + 1 400×0.3 + 1600×0.2 + 1800×0.1 = 1400 , DX1 = (1200-1400) 2 ×0. 4 + (1400-1400 ) 2×0.3 + (1600 -1400 )2×0.2+(1800-1400) 2×0. 1 = 40 000 ; EX2=1 000×0.4 +1 400×0.3 + 1 800×0.2 + 2200×0.1 = 1400 , DX2 = (1000-1400)2×0. 4+(1 400-1400)×0.3 + (1800-1400)2×0.2 + (2200-1400 )2×0.l
= 160000 .
因为EX1 =EX2, DX1
同职位的工资差距小一些,就选择甲单位;如果你希望不同职位的工资差距大
一些,就选择乙单位.
(五)、几个常用公式:
(1)若X服从两点分布,则DX=p(1-p)。
(2)若X~B(n,p),则DX=np(1-p)
(3)D(ax+b)= a2DX;
(六)、练习:
2、已知随机变量X的分布列
求DX和
3、若随机变量X满足P(X=c)=1,其中c为常数,求DX。
(七)、小结:
1、离散型随机变量取值的方差、标准差及意义
2、记住几个常见公式:
(1)若X服从两点分布,则DX=p(1-p)。
(2)若X~B(n,p),则DX=np(1-p)
(3)D(ax+b)= a2DX;
(八)、作业:P69 1、4
X2 8 9 10
P 0.4 0.2 0.4
X 0 1 2 3 4
P 0.1 0.2 0.4 0.2 0.1
095.12.1DX
9,921EX:EX解8.0,4.021DXDX
DD则,且、已知,138131
DX