平方根(提高)知识讲解--初中数学【名校学案+详细解答】
初中数学知识点精讲精析 平方根 (2)

2.2 平方根学习目标1.了解数的算术平方根的概念,会用根号表示一个数的算术平方根.2.了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根.3.了解算术平方根的性质。
知识详解1.平方根(1)平方根的概念:如果一个数x 的平方等于a ,即2x=a ,那么这个数x 就叫做a的平方根(也叫做二次方根). 23=9,所以3是9的平方根.2(3)-=9,所以-3也是9的平方根,所以9的平方根是3和-3.(2)平方根的表示方法:正数a a 读作“正、负根号a”.读作“根号”,“a”是被开方数.例如:2(3)平方根的性质:若2x=a ,则有2()x -=a ,即-x 也是a 的平方根,因此正数a 的平方根有两个,它们互为相反数;只有20=0,故0的平方根为0;由于同号的两个数相乘得正,因此任何数的平方都不会是负数,故负数没有平方根.综合上述:一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.如:4的平方根有两个:2和-2,-4没有平方根.一个数a(1)不是任何数都有平方根,负数可没有平方根,(2a ≥0时才有意义,因为负数没有平方根. 2.算术平方根(1)算术平方根的概念:如果一个正数x 的平方等于a ,即2x =a ,那么这个正数x 就叫做a 的算术平方根.(2)算术平方根的表示方法:正数a a”. (3)算术平方根的性质:正数有一个正的算术平方根;0的算术平方根是0;负数没有平方根,当然也没有算术平方根.算术平方根的性质(1)只有正数和0(即非负数)才有算术平方根,且算术平方根也是非负数;(2)一个正数a 的正的平方根就是它的算术平方根.如果知道一个数的算术平方根,就可以写出它的负的平方根.如何确定一个数的算术平方根:求一个数的算术平方根与求一个数的平方根类似,先找到一个平方等于所求数的数,再求算术平方根,应特别注意数的符号.3.开平方求一个数a (a≥0)的平方根的运算,叫做开平方,其中a 叫做被开方数.开平方运算是已知指数和幂求底数.(1)因为平方和开平方互逆,故可通过平方来寻找一个数的平方根,也可以利用平方验算所求平方根是否正确.(2)开平方与平方互为逆运算,正数、负数、0可以进行“平方”运算,且“平方”的结果只有一个;但“开平方”只有正数和0才可以,负数不能开平方,且正数开平方时有两个结果.(3)对于生活和生产中的已知面积求长度的问题,一般可用开平方加以解决.2的关系a 的算术平方根,依据算术平方根的定义,22a 的算术平方根,依据算术平方根的定义,若a≥0,则2a 的算术平方根为a ;若a <0,则2a 的算术平方根为-a |a|=⎩⎪⎨⎪⎧a ,a≥0,-a ,a<0.(1)区别:①意义不同:2表示非负数a a 的平方的算术平方根.②取值范围不同:2中的a 为非负数,即a 为任意数.③运算顺序不同:2是先求a先求a 的平方,再求平方后的算术平方根.④写法不同.在2中,幂指数2在根号的外2在根号的里面.⑤运算结果不同:2=a =|a|=⎩⎪⎨⎪⎧a ,a≥0,-a ,a<0.(2)联系:①在运算时,都有平方和开平方的运算.②两式运算的结果都是非负数,即2a≥0时,有25.平方根与算术平方根的关系(1)区别:①概念不同平方根的概念:如果一个数x的平方等于a,即2x=a,那么这个数x叫做a的平方根.算术平方根的概念:如果一个正数x的平方等于a,即2x=a,那么这个正数x叫做a的算术平方根.②表示方法不同平方根:正数a的平方根用符号±a表示.算术平方根:正数a的算术平方根用符号a表示,正数a的负的平方根-a可以看成是正数a的算术平方根的相反数.③读法不同a”.④结果和个数不同一个正数的算术平方根只有一个且一定为正数,而一个正数的平方根有两个,它们一正一负且互为相反数.(2)联系:①平方根中包含了算术平方根,就是说算术平方根是平方根中的一个,即一个正数的平方根有一正一负两个,其中正的那一个就是它的算术平方根,这样要求一个正数a的平方根,a≥0.严格地讲,正数和0既有平方根,又有算术平方根,负数既没有平方根,又没有算术平方根.③0的平方根和算术平方根都是0.与平方根相关的三种符号:弄清与平方根有关的三种符号±a,a,-a的意义是解决这类问题的关键.±a表示非负数a的平方根,a表示非负数a的算术平方根,-a 表示非负数a的负平方根.注意a≠±a.在具体解题时,“”的前面是什么符号,其计算结果就是什么符号,既不能漏掉,也不能多添.6.巧用算术平方根的两个“非负性”(1)被开方数具有非负性,即a≥0.(2本质属性.在解决与此相关的问题时,若能仔细观察、认真地分析题目中的已知条件,并挖掘出题目中隐含的这两个非负性,就可避免用常规方法造成的繁杂运算或误解,从而收到事半功倍的效果.由于初中阶段学习的非负数有三类,即一个数的绝对值,一个数的平方(偶次方)和非负数的算术平方根.关于算术平方根和平方数的非负性相关的求值问题,一般情况下都是它们的和等于0的形式.【典型例题】例)A.4B.2C.-2D.±2【答案】B【解析】22=4.例)A.1B.2C.3D.4【答案】C【解析】∵23=9例3. 已知实数x,y满足|x−0,则以x,y的值为两边长的等腰三角形的周长是()A.20或16B.20C.16D.以上答案均不对【答案】B【解析】根据非负数的意义列出关于x、y的方程并求出x、y的值,再根据x是腰长和底边长两种情况讨论求解.【误区警示】易错点1:实数意义1.已知实数x,y2(1)y+=0,则x-y等于()A.3B.-3C.1D.-1【答案】A【解析】根据题意得,x-2=0,y+1=0,解得x=2,y=-1,所以,x-y=2-(-1)=2+1=3.易错点2:算术平方根的算法2. 4的算术平方根是( ) A .2 B .-2 C .±2D 【答案】A【解析】∵2的平方为4,∴4的算术平方根为2. 【综合提升】 针对训练1. 下列运算正确的是( )A 2B .23-()=-9 C .32-=8 D .02=02. 9的算术平方根是( ) A .±3 B .3 C .-3D 3. 下列结论正确的是( ) A .3a+2a=25aBC .(a+b )(a-b )= 22a b -D .623x x x ÷=1.【答案】A【解析】分别根据算术平方根、有理数的平方、负整数指数幂及0指数幂的运算法则进行计算即可. 2.【答案】B【解析】∵23=9,∴9的算术平方根是3. 3.【答案】C【解析】A 、因为3a+2a=5a ,故本项错误;B 3,故本项错误;C 、根据平方差公式的定义,两个数的和与这两个数的差相乘,等于这两个数的平方差;故本项正确;D 、因为623x x x ÷=,故本项错误.课外拓展古埃及的三角形古埃及的皇帝叫做“法老”,著名的金字塔就是法老的坟墓。
初中数学辅导讲解教案

初中数学辅导讲解教案一、教学目标:1. 让学生理解平方根的概念,掌握求一个数的平方根的方法。
2. 培养学生运用平方根解决实际问题的能力。
3. 提高学生对数学的兴趣,培养学生的逻辑思维能力。
二、教学内容:1. 平方根的定义:如果一个数的平方等于另一个数,那么这个数叫做另一个数的平方根。
2. 求一个数的平方根的方法:(1)直接求平方根:如果一个数是完全平方数,那么它的平方根就是整数。
(2)间接求平方根:如果一个数不是完全平方数,那么它的平方根是正负两个数,可以通过计算器或者查平方根表来求得。
3. 平方根的应用:解决实际问题,如计算面积、体积等。
三、教学过程:1. 导入:上课之初,老师可以提出一个问题:“同学们,你们知道什么是平方根吗?”让学生思考,然后简要介绍平方根的概念,引出本节课的主题。
2. 讲解:(1)讲解平方根的定义:老师可以通过举例说明,如2的平方是4,那么2就是4的平方根。
同时,强调平方根有两个,一个是正数,一个是负数。
(2)讲解求平方根的方法:① 如果一个数是完全平方数,如16,它的平方根就是整数4。
② 如果一个数不是完全平方数,如18,它的平方根是正负两个数,即3√2和-3√2。
老师可以演示如何通过计算器或者查平方根表来求得平方根。
(3)讲解平方根的应用:老师可以举例说明,如计算一个正方形的面积,知道边长是6,那么面积就是6×6=36,这里的36就是一个完全平方数,它的平方根是6。
3. 练习:老师可以布置一些练习题,让学生独立完成,检验他们对于平方根的理解和掌握程度。
如:(1)求下列数的平方根:① 9 ② 16 ③ 18 ④ 25(2)一个正方形的边长是8,求它的面积。
4. 总结:老师可以对本节课的内容进行总结,强调平方根的概念和求法,以及平方根在实际问题中的应用。
四、教学评价:通过课堂讲解、练习和课后作业,评价学生对平方根的掌握程度。
同时,关注学生在解决实际问题中的运用能力,鼓励他们发挥潜能,提高对数学的兴趣。
七年级数学6.1平方根、立方根讲解与例题

6.1 平方根、立方根1.了解平方根、算术平方根、立方根的定义和性质,会用根号表示非负数的平方根、算术平方根、立方根.2.能利用平方根、算术平方根、立方根的定义和性质解题. 3.知道开方是乘方的逆运算,会用开方求某些非负数的平方根. 4.能运用算术平方根解决一些简单的实际问题.1.平方根(1)平方根的概念:一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根,也叫做二次方根.换句话说,如果x 2=a ,那么x 叫做a 的平方根,例如22=4,(-2)2=4,则4的平方根是+2和-2(也可合写为±2),+2和-2都是4的平方根.(2)平方根的性质:一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.(3)平方根的表示:正数a 有两个平方根,一个是a 的正的平方根,记作“a ”,读作“根号a ”,另一个是a 的负的平方根,记作“-a ”,读作“负根号a ”,这两个平方根合起来可记作“±a ”,读作“正、负根号a ”,其中a 叫做被开方数.【例1-1】求下列各数的平方根:(1)0.64;(2)3625;(3)⎝ ⎛⎭⎪⎫-322.分析:要求一个数的平方根,我们可以根据平方根的概念,首先找到一个数,使它的平方等于已知的数,然后就可以求出这个数的平方根.解:(1)∵(±0.8)2=0.64,∴0.64的平方根是±0.8.(2)∵⎝ ⎛⎭⎪⎫±652=3625,∴3625的平方根是±65.(3)∵⎝ ⎛⎭⎪⎫±322=⎝ ⎛⎭⎪⎫-322,∴⎝ ⎛⎭⎪⎫-322的平方根是±32.求一个数的平方根,必须牢记正数有两个平方根,它们互为相反数,不会因为表达形式的改变而改变,如⎝ ⎛⎭⎪⎫-322是个正数,那么它有两个平方根,不要错误地认为它的平方根仅有-32.【例1-2】下列各数有平方根吗?如果有,求出它的平方根;若没有,请说明理由. (1)2516;(2)0;(3)-4;(4)-0.49;(5)(-3)2. 分析:解:(1)因为16是正数,所以16有两个平方根.由于⎝ ⎛⎭⎪⎫±542=2516,所以2516的平方根是±54.(2)0只有一个平方根,是它本身.(3)因为-4是负数,所以-4没有平方根.(4)因为-0.49是负数,所以-0.49没有平方根.(5)因为(-3)2=9,所以(-3)2为正数,有两个平方根.由于9的平方根是±3,所以(-3)2的平方根是±3.2.算术平方根的概念正数a 的正的平方根a 叫做a 的算术平方根.0的算术平方根是0.因此如果x 2=a ,那么正数x 叫做a 的算术平方根.平方根与算术平方根的区别与联系(1)区别:①表示方法不同:正数a 的平方根表示为±a ;正数a 的算术平方根表示为a .②个数不同:一个正数的平方根有两个,它们互为相反数;一个正数的算术平方根只有一个.③性质不同:一个正数的平方根有两个,可以是负数;一个非负数的算术平方根一定是非负数.平方根等于本身的数只有一个数,这个数是0;算术平方根等于本身的数有两个:0和1.(2)联系:平方根包含算术平方根,算术平方根是平方根的一个;平方根和算术平方根都只有非负数才有.负数没有平方根和算术平方根;0的平方根和算术平方根都是0.【例2】求下列各数的算术平方根:(1)196;(2)179;(3)16.分析:根据算术平方根的定义,求正数a 的算术平方根,也就是求一个非负数x ,使x 2=a ,则x 就是a 的算术平方根.(1)因为142=196,所以196的算术平方根是14.(2)因为179=169,⎝ ⎛⎭⎪⎫432=169,所以169的算术平方根是43,即179的算术平方根是43.(3)因为要求的是16的算术平方根,所以要先算出16,再求算术平方根.16表示的是16的算术平方根,所以16=4.由于22=4,所以4的算术平方根是2,即16的算术平方根是2.解:(1)196=14.(2)179=169=43.(3)因为16=4,4的算术平方根是2,所以16的算术平方根是2.求正数a 的算术平方根,只需找出平方等于a 的正数.求一个分数的算术平方根或平方根,当这个分数是带分数时,要先化成假分数,再求这个数的算术平方根或平方根,不要出现11649=147的错误.3.开平方(1)求一个数的平方根的运算叫做开平方.(2)用计算器求一个非负数的算术平方根及近似值.用计算器求一个非负数的算术平方根,只需直接按书写顺序按键即可.例如,用计算器求529与44.81的算术平方根:①在计算器上依次键入529=,显示结果为23,因此529的算术平方根为529=23.②在计算器上依次键入44.81=,显示结果为6.940 271 88,如果要求精确到0.01,那么44.81≈6.94.(1)平方根是一个数,是开平方的结果;而开平方是和加、减、乘、除、乘方一样的一种运算,是求平方根的过程.(2)开平方是平方的逆运算.我们可以用平方运算来检验开平方的结果是否正确. (3)平方和开平方之间的关系,我们可以这样来理解:已知底数m 和指数2,求幂,是平方运算,即m 2=(?);已知幂a 和指数2,求底数,是开平方,即(?)2=a .(4)选用的计算器不同,按键的顺序也不同,因此应该仔细阅读计算器的说明书,按照要求操作.【例3】求下列各式中未知数的值:(1)x 2=25;(2)(2a +3)2=16.分析:如果一个数的平方等于a ,那么这个数叫做a 的平方根,它有一正一负两个值.(1)因为x 2=25,所以x 就是25的平方根,有两个,是±5;(2)将2a +3看成一个整体,根据平方根的定义易知2a +3就是16的平方根,是±4,即2a +3=±4,在此基础上,分两种情况分别求出a 的值即可.解:(1)因为(±5)2=25, 所以x =±5.(2)因为(±4)2=16, 所以2a +3=±4.当2a +3=4时,解得a =12.当2a +3=-4时,解得a =-72.故所求a 的值是12或-72.利用开平方解方程的方法是:先把方程化为x 2=m (m ≥0)的形式,然后根据开平方得到x =±m .特别地,要注意整体思想的应用.4.立方根(1)立方根的概念:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根(也叫做三次方根).也就是说,如果x 3=a ,那么x 叫做a 的立方根.(2)立方根的表示方法:数a 的立方根记为“3a ”,读作“三次根号a ”,其中a 是被开方数,3是根指数,这里的根指数“3”不能省略.【例4】求下列各数的立方根:(1)27;(2)-27;(3)338;(4)-0.064;(5)0;(6)-5.分析:求一个数a 的立方根,关键是求出满足等式x 3=a 中x 的值,同时在学习了立方根的表示方法后,应用符号表示解题过程比语言叙述更为简洁.解:(1)因为33=27,所以327=3. (2)因为(-3)3=-27,所以3-27=-3.(3)因为338=278,而⎝ ⎛⎭⎪⎫323=278,所以3338=32.(4)因为(-0.4)3=-0.064, 所以3-0.064=-0.4. (5)因为03=0,所以30=0. (6)-5的立方根是3-5.开方开不尽的数,保留根号,如本题(6),-5的立方根是3-5.5.开立方(1)求一个数的立方根的运算叫做开立方. ①开立方与立方互为逆运算.我们可以根据这种关系求一个数的立方根或检验一个数是否是某个数的立方根.②被开立方的数可以是正数、负数和0;③求一个带分数的立方根时,必须把带分数化成假分数,再求它的立方根. (2)用计算器求一个数的立方根及近似值.用计算器求一个数的立方根的操作过程和求平方根操作过程基本相同,主要差别是先按2ndf 键,再按书写顺序按键即可.例如用计算器求31 845,在计算器上依次键入2ndf 31845=,显示结果为12.264 940 82,若计算结果要求精确到0.01,则1 845的立方根为12.26,即31 845≈12.26.【例5】解方程:(1)125x 3-27=0;(2)(5x -3)3=343.分析:(1)把原方程变形为x 3=27125后,可知x 是27125的立方根.(2)把5x -3看做整体,则易知它是343的立方根,其值可求,在此基础上可求x .解:因为125x 3-27=0,所以x 3=27125.故x =35.(2)因为(5x -3)3=343,所以5x -3=3343=7, 即5x =10.故x =2.利用开立方解方程的方法:先把方程化为x 3=m 的形式,然后根据开立方得到x =3m .特别地,要注意整体思想的应用.6.立方根的性质正数的立方根是一个正数,负数的立方根是一个负数,0的立方根是0. (1)立方根的符号与被开方数的符号一致; (2)一个数的立方根是唯一的; (3)3-a =-3a ,3a 3=a ,(3a )3=a . 【例6】下列语句正确的是( ). A .64的立方根是2 B .-3是27的立方根C .125216的立方根是±56D .(-1)2的立方根是-1解析:因为64=8,而2的立方等于8,所以64的立方根是2,即A 正确,解答时不要把“求64的立方根”误解为“求64的立方根”;因为-3的立方是-27,所以-3是27的立方根是错误的;因为56的立方是125216,所以125216的立方根是56,因此C 是错误的;因为(-1)2=1,它的立方根是1,而不是-1,所以D 是错误的.故本题选A .答案:A(1)任何数都有立方根,而负数没有平方根;(2)任何数的立方根只有一个,而正数有两个平方根.7.用平方根与立方根的定义及性质解题已知一个数的平方根或立方根求原数是利用平方根与立方根的定义及性质解题中的常见题型.(1)一个正数的两个平方根互为相反数,而互为相反数的两个数的和为零. (2)对于立方根来说,任何数的立方根只有一个,根据立方根的定义可知,3-a =-3a ,也就是说,求一个负数的立方根时,只要先求出这个负数的绝对值的立方根,然后再取它的相反数即可.(3)当两个数相等时,这两个数的立方根相等.反之,当两个数的立方根相等时,这两个数也相等.这与平方根不同,在平方根的计算中,若两数的平方根相等或互为相反数时,这两个数相等;若这两个数相等时,则两数的平方根相等或互为相反数.【例7-1】已知2x -1和x -11是一个数的平方根,求这个数.分析:因为2x -1和x -11是一个数的平方根,根据平方根的定义,可知2x -1和x -11相等或互为相反数.当2x -1和x -11相等时,可列出方程2x -1=x -11,当2x -1和x -11互为相反数时,可列出方程2x -1+x -11=0,从而求出x 的值,进一步可求出这个数.解:根据平方根的定义,可知2x -1和x -11相等或互为相反数.当2x -1=x -11时,x =-10,所以2x -1=-21,这时所求的数为(-21)2=441;当2x -1+x -11=0时,x =4,所以2x -1=7,这时所求的数为72=49. 综上可知,所求的数为49或441.【例7-2】若32a -1=-35a +8,求a 2 012的值.分析:根据立方根的唯一性和3-a =-3a ,可知2a -1与5a +8互为相反数,从而可构造出关于a 的一元一次方程2a -1=-(5a +8).进一步可求出a 2 012的值. 解:因为32a -1=-35a +8,所以32a -1=3-a +,即2a -1=-(5a +8).解得a =-1.故a 2 012=(-1)2 012=1. 8.非负性的应用非负数指的是正数和零,常用的非负数主要有: (1)绝对值|a |≥0;(2)平方a 2≥0;(3)算术平方根a 具有双重非负性: ①a 本身具有非负性,即a ≥0;②算术平方根a 的被开方数具有非负性,即a ≥0. 非负数有如下性质:若两个或多个非负数的和为0,则每个非负数均为0.在解决与此相关的问题时,若能仔细观察、认真地分析题目中的已知条件,并挖掘出题目中隐含的非负性,就可避免用常规方法造成的繁杂运算或误解,从而收到事半功倍的效果.与算术平方根和平方数的非负性相关的求值问题,一般情况下都是它们的和等于0的形式.此类问题可以分成以下几种形式:一是算术平方根、平方数、绝对值三种中的任意两种组成一题〔| |+( )2=0,| |+ =0,( )2+ =0〕,甚至同一道题目中出现这三个内容〔| |+( )2+ =0〕;二是题目中没有直接给出平方数,而是需要先利用数学公式把题目中的某些内容进行变形,然后再利用非负数的性质进行计算.【例8-1】如果y =2x -1+1-2x +2,则4x +y 的平方根是__________.解析:因为2x -1≥0且1-2x ≥0,所以2x -1=1-2x =0,即x =12.于是y =2x -1+1-2x +2=2.因此4x +y =4×12+2=4.故4x +y 的平方根为±2.答案:±2【例8-2】如果y =x 2-4+4-x 2x +2+2 012成立,求x 2+y -3的值.分析:由算术平方根被开方数的非负性知x 2-4≥0,4-x 2≥0,因此,只有x 2-4=0,即x =±2;又x +2≠0,即x ≠-2,所以x =2,y =2 012,于是得解.解:由题意可知x 2-4≥0且4-x 2≥0,因此x 2-4=0,即x =±2. 又∵x +2≠0,即x ≠-2, ∴x =2,y =2 012.故x 2+y -3=22+2 012-3=2 013.【例8-3】已知a -1+(b +2)2=0,求(a +b )2 012的值.分析:a -1表示a -1的算术平方根,所以a -1为非负数.因为(b +2)2为偶次幂,所以(b +2)2为非负数.由于两个正数相加不能为0,所以这两项都为0,因此解方程求值即可.解:因为a -1≥0,(b +2)2≥0,且a -1+(b +2)2=0,所以a -1=0,(b +2)2=0, 解得a =1,b =-2.故(a +b )2 012=(1-2)2 012=1.9.利用方根探索规律(1)可以利用计算器探究被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律. 规律:如果将被开方数的小数点向左(右)每移动2位,则它的算术平方根的小数点就相应地向同一方向移动1位.即当被开方数扩大(或缩小)100倍时,其算术平方根相应地扩大(或缩小)10倍;当被开方数扩大(或缩小)10 000倍时,其算术平方根相应地扩大(或缩小)100倍….(2)可利用计算器探究被开方数扩大(或缩小)与它的立方根扩大(或缩小)的规律. 规律:如果将被开方数的小数点向左(右)每移动3位,则它的立方根的小数点就相应地向同一方向移动1位.即当被开方数扩大(或缩小)1 000倍时,其立方根相应地扩大(或缩小)10倍;当被开方数扩大(或缩小)1 000 000倍时,其立方根相应地扩大(或缩小)100倍….(3)还可利用方根为问题背景进行规律的探索. 【例9】(1)观察下列各式:1+13=213,2+14=314,3+15=415,…,请你将发现的规律用含自然数n (n ≥1)的等式表示出来__________.(2)借助计算器可以求出42+32,442+332,4442+3332,…,观察上述各式特点,__________.解析:(1)第一个等式右边的2比左边被开方数里的1大1,被开方数13与左边被开方数的13相同且3比2大1;第二个等式右边的3比左边被开方数里的2大1,被开方数14与左边被开方数14相同且4比3大1,…,故有n +1n +2=(n +1)1n +2(n ≥1). (2)借助计算器,可以分别求得42+32=5,442+332=55,4442+3332=555,…,由此观察发现每个式子的结果都是由若干个5组成的,且5的个数为相应式子的左边4或35n 个.答案:(1)n +1n +2=(n +1)1n +2(n ≥1) (2)5555n 个10.平方根与立方根的实际应用解实际问题时,首先要读懂题意,善于构造数学模型,将它转化为数学问题.与平方根、立方根有关的实际应用多以正方形、正方体等几何图形为问题背景设题,解答时,常常根据题意列出方程,然后再利用平方根与立方根的定义及性质解方程即可.注意求出的结果要符合实际问题的实际意义.【例10-1】计划用100块地板砖来铺设面积为16 m 2的客厅,求需要的正方形地板砖的边长.解:设地板砖的边长为x m ,根据题意,得100x 2=16,即x 2=0.16,所以x =±0.16=±0.4.由于长度不能为负数,所以x =0.4(m). 故地板砖的边长为0.4 m.【例10-2】一种形状为正方体的玩具名为“魔方”,(每个面由9个小正方体面组成)体积为216 cm 3,求组成它的每个小正方体的棱长.解:设小正方体的棱长为a cm ,则玩具的棱长为3a cm ,由题意得(3a )3=216.于是27a3=216,a 3=8,a =2(cm).故每个小正方体的棱长为2 cm.。
(完整版)平方根、算术平方根、立方根重点例题讲解

6.1平方根、算术平方根、立方根例题讲解 第一部分:知识点讲解 1、学前准备【旧知回顾】2.平方根(1)平方根的定义:一般的,如果一个数的平方等于a ,那么这个数叫做a 的平方根,也叫做二次方根。
即若a x =2,)0(≥a ,则x 叫做a 的平方根。
即有a x ±=,(0≥a )。
(2)平方根的性质:(3)注意事项:a x ±=,a 称为被开方数,这里被开方数一定是一个非负数(0≥a )。
(4)求一个数平方根的方法:(5)开平方:求一个数平方根的运算叫做开平方。
它与平方互为逆运算。
3. 算术平方根(1)算术平方根的定义:若a x =2,)0(≥a ,则x 叫做a 的平方根。
即有a x ±=,(0≥a )。
其中a x =叫做a 的算术平方根。
(2)算术平方根的性质:(3)注意点:在以后的计算题中,像22-52)(++,其中,25分别指的是2和5的算术平方根。
4.几种重要的运算: ① b a ab •=()0,0>>b a , ab b a =•()0,0>>b a②b a b a =)0,0(>≥b a , b aba =)0,0(>≥b a ③ a a =2)()0(≥a , a a =2 , a a =2-)(★★★ 若0<+b a ,则()ba b a b a b a --=+-=+=+2)(5.立方根(1)立方根的定义:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根,也叫做三次方根。
即若a x =3,则x 叫做a 的立方根。
即有3a x =。
(2)立方根的性质:(3)开立方求一个数的立方根的运算叫做开立方,它与立方互为逆运算。
6.几个重要公式: ③ 333b a ab •=, 333ab b a =•333b a b a = )0(≠b , 333b a ba = )0(≠b④ a a =33)(可以为任何数)a (, a a =33 ,a a --33=)(第二部分:例题讲解题型1:求一个数的平方根、算术平方根、立方根。
初二数学中常见的平方根问题解析

初二数学中常见的平方根问题解析平方根是初中数学中的重要概念之一,它在解决各种数学问题时起到了关键作用。
在这篇文章中,我将详细解析初二数学中常见的平方根问题,并提供一些解题技巧和示例。
希望通过本文的阐述,能够帮助读者更好地理解和应用平方根概念。
一、平方根的定义与性质在开始解析具体问题之前,我们先来回顾一下平方根的定义与性质。
对于任意一个非负实数a,它的平方根记作√a,满足(√a)^2=a。
其中,√a≥0,因为平方的结果必为非负数。
根据平方根的定义,我们可以得出以下性质:1. 非负实数的平方根是唯一的。
即对于一个非负实数a,它的平方根√a是唯一确定的。
2. 对于任意一个正实数a,它的平方根√a>0。
3. 对于任意一个非负实数a和b,有√(ab)=√a√b。
4. 对于任意一个非负实数a和b,有√(a/b)=√a/√b,其中b≠0。
理解了平方根的定义与性质,我们现在来看一些具体问题的解析。
二、平方根的运算问题1. 求平方根的运算问题对于求平方根的运算问题,常见的形式是给定一个数,要求求出其平方根。
解这类问题时,我们可以利用平方根的定义和平方根的性质进行运算。
例如,求√16的值。
根据平方根的定义,我们要寻找一个数x,使得x^2=16。
观察可知,4^2=16,因此√16=4。
再例如,求√18的值。
我们可以利用平方根的性质进行运算。
将18拆分成9×2,即18=9×2。
根据性质√(ab)=√a√b,我们可以得到√18=√9√2=3√2。
2. 求实数的平方问题对于求实数的平方问题,常见的形式是给定一个实数,要求求出它的平方。
解这类问题时,我们只需要利用平方根的性质进行运算即可。
例如,求(√3)^2的值。
根据平方根的定义,(√3)^2=3。
再例如,求(1+√2)^2的值。
我们可以利用平方根的性质进行运算。
根据性质(√a+√b)^2=a+2√ab+b,我们可以得到(1+√2)^2=1+2√2+2=3+2√2。
初中数学-春季班-人教版-初一(学生版) 第4讲 平方根与立方根--提高班

第4讲平方根、立方根知识点1 算术平方根1.如果一个正数x的平方等于a,即ax=2,那么这个正数x叫做a的算术平方根. ()0≥a a的算术平方根记为a,读作“根号a”,a叫做被开方数.规定:0的算术平方根是0 ,即00=.2.规律小结算术平方根具有双重非负数:(1)被开方数具有非负性,即0≥a;(2)本身具有非负性:即.0≥a注:具有非负数才有算术平方根,而负数没有算术平方根.【典例】例1 (2020秋•辉县市校级期中)如果a是2021的算术平方根,则2021100的算术平方根是()A.10aB.100aC.10a±D.210a【方法总结】本题主要考查算术平方根,解题的关键是掌握算术平方根的定义.例2(2020春•威县期末)小辰想用一块面积为2100cm的正方形纸片,沿着边的方向裁出一块面积为290cm的长方形纸片,使它的长宽之比为5:3.小辰能否用这张正方形纸片裁出符合要求的纸片?若能请写出具体栽法;若不能,请说明理由.【方法总结】本题考查了一元二次方程的应用以及算术平方根,解题的关键是先求出所裁出的长方形纸片的长.【随堂练习】1.(2020 1.421267≈⋯≈⋯ 4.494441确到0.1)≈___________.2.(2020秋•滨湖区期中)已知21+-的算术平方根为4.a ba-的平方根为3±,31(1)求a、b的值;(2)求2+的算术平方根.a b知识点2 平方根开平方1.平方根:一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根,x=2,那么x叫做a的平方根.即如果a±”,读作“正、负根号a”正数a的平方根表示为“a2.平方根与算术平方根的区别与联系3.开平方:求一个数a 的平方根的运算,叫做开平方.开平方是一种运算,它与平方运算是互逆运算,开平方运算的结果就是平方根,我们就是利用开平方与平方的互逆运算关系求平方根.【典例】例1 (2020春•丛台区校级月考)求下列各式中的:(x )(1)29250x -=;(2)24(21)36x -=.A .53x =和2x = B .53x =-和2x =或1x =- C .53x =±和1x =- D .53x =±和2x =或1x =-【方法总结】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.例2 (2020秋•雁塔区校级月考)若x ,y 210y -=,【方法总结】本题考查了算术平方根以及平方根,解题时注意:一个正数的两个平方根互为相反数.【随堂练习】1.已知一个正数m 的两个不同的平方根是1a -与52a -,求a 和m 的值.2.(2020秋•滨湖区期中)已知21a -的平方根为3±,31a b +-的算术平方根为4.(1)求a 、b 的值;(2)求2a b +的算术平方根.知识点3 立方根1.一般地,如果一个数x 的立方等于a ,那么这个数x 叫做a 的立方根或三次方根,这就是说,如果3x a =,那么x 叫做a 的立方根.2.一个数a “三次根号a ”,其中a 叫被开方数,3叫根指数,不能省略,若省略表示平方.3.理解立方根的概念需注意两点:(1)任意数a ;(2)判断一个数x 是不是某数a 的立方根,就看3x 是不是等于a.4. 立方根的性质(1)正数的立方根是正数,负数的立方根是负数,0的立方根是0 .(2)3333a a -=-(3)a a =33)(5.开立方:求一个数立方根的运算,叫做开立方.说明:开立方和立方互为逆运算,借助立方运算,我们可以求任意数的立方根. 【典例】例1 (2020秋•嵊州市期中)已知某正数的两个平方根分别是1-和4a -,12b -的立方根为2.(1)求a ,b 的值.(2)求a b +的平方根.【方法总结】本题主要考查了平方根与立方根,注意一个正数有两个平方根,这两个平方根互为相反数. 例2 (2020秋•碑林区校级月考)已知21a -的平方根是3±,31a b +-的算术平方根是4,求2a b +的立方根.【方法总结】此题考查了立方根,平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.【随堂练习】1.(2020春•嘉陵区期末)如果37(1)18x -+=,试求x 的值.2.(2020春•鱼台县期末)正数x 的两个平方根分别是2a -,27a -.(1)求a 的值;(2)求1x -这个数的立方根.3.(2020春•盐池县期末)已知21a +的平方根是3±,324a b +-的立方根是2-,求458a b -+的立方根.综合运用1.(20200=,则2020()a b -的值为( )A .1B .1-C .1±D .02.(2020a b +的值为______.3.(2020秋•金牛区校级月考)互为相反数,z 是64的平方根,求x y z-+的平方根.4.(2020春•潮安区期中)有一个边长为9cm 的正方形和一个长为24cm 、宽为6cm 的长方形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少厘米?5.(2020秋•宝应县期中)求下列各式中x 的值.(1)2(1)2x +=;(2)329203x +=.6.(2020秋•荥阳市期中)已知21x +的算术平方根是04,z 是27-的立方根, 求2x y z ++的平方根.7.(2020秋•吴江区期中)(1)若实数m 、n 满足等式|2|0m -,求23m n +的平方根;(2)已知8y8.(2020春•渝水区校级月考)已知一个正数m 的平方根为21n +和43n -.(1)求m 的值;(2)2|3|()0a c n --=,a b c ++的立方根是多少?。
(完整版)平方根、算术平方根、立方根重点例题讲解
6.1平方根、算术平方根、立方根例题讲解第一部分:知识点讲解1、学前准备【旧知回顾】2.平方根( 1)平方根的定义:一般的,若是一个数的平方等于a ,那么这个数叫做 a 的平方根,也叫做二次方根。
即若 x2 a ,( a0) ,则x叫做a的平方根。
即有 x a ,(a0 )。
( 2)平方根的性质:( 3)注意事项:x a , a 称为被开方数,这里被开方数必然是一个非负数(a0 )。
( 4)求一个数平方根的方法:(5)开平方:求一个数平方根的运算叫做开平方。
它与平方互为逆运算。
3.算术平方根( 1)算术平方根的定义:若x2 a , (a 0) ,则x叫做a的平方根。
即有x a ,( a 0 )。
其中x a 叫做 a 的算术平方根。
( 2)算术平方根的性质:( 3)注意点:在今后的计算题中,像22, 5 分别指的是 2 和25 ( - 2),其中5的算术平方根。
4.几种重要的运算:①ab a ? b a 0, b 0, a ? b ab a 0,b0②a a0),a a0,b0) b(a 0,bb(ab b③(a )2a ( a 0) ,2,2aaa( - a)★★★ 若 a b 0,则(a b)2 a b a b a b5.立方根(1)立方根的定义:一般地,若是一个数的立方等于 a ,那么这个数叫做 a 的立方根,也叫做三次方根。
即若x3 a ,则x叫做a的立方根。
即有x 3 a。
(2)立方根的性质:(3)开立方求一个数的立方根的运算叫做开立方,它与立方互为逆运算。
6.几个重要公式:3ab 33,33b3ab③ a ?b a ?a 33a a3a(b 0),3(b 0) b33b bb④3333,33( a ) a (a可以为任何数),a a(- a)-a 第二部分:例题讲解题型 1:求一个数的平方根、算术平方根、立方根。
1.求平方根、算术平方根、立方根。
(1) 0 的平方根是,算术平方根是.(2) 25 的平方根是,算术平方根是.(3)1的平方根是,算术平方根是. 64(4)(9) 2的平方根是,算术平方根是.(5) 23 的平方根是,算术平方根是.(6)16的平方根是,算术平方根是.(6)(2,算术平方根是. 16)的平方根是(8)- 9的平方根是,算术平方根是.(9)8。
平方根计算初中数学知识点之平方根的计算方法
平方根计算初中数学知识点之平方根的计算方法平方根是初中数学中重要的概念之一,在解决实际问题和进行数学运算中都起到重要作用。
平方根的计算方法有多种,接下来将介绍几种常见的计算平方根的方法。
一、试算法试算法是最常见的计算平方根的方法之一,适用于小数的平方根计算。
下面以√13为例,介绍试算法的步骤:步骤一:找到最大的整数m,使得m的平方≤13,这里m=3。
步骤二:假设所求平方根为x,即x的平方≈13。
步骤三:将13除以3得到商4和余数1。
步骤四:将余数1放在商的右侧,得到41。
步骤五:在4的右侧添上一位,假设为a,即使(4*10+a)与平方的结果接近13,所以(4*10+a)的平方≈13,解这个方程:(4*10+a)^2=130+a^2+8a≈130。
步骤六:解得a=5。
所以所求平方根为3.5,即√13≈3.5。
二、图解法图解法是通过坐标系上的几何方法来计算平方根,适用于大数的平方根计算。
步骤一:首先,在坐标系上画出一个正方形。
假设我们要计算√170的平方根,则坐标系中的正方形边长为170。
步骤二:从原点开始,用直线将正方形一分为二,形成两个矩形。
步骤三:在这两个矩形中,通过调整,使得其中一个矩形的面积尽量接近170。
步骤四:再次将这个近似的正方形一分为二,在这两个矩形中,再次通过调整,使得一个矩形的面积尽量接近170。
步骤五:重复步骤四,直到无法再次分割为止。
步骤六:最后,通过测量近似正方形的边长,即可得到所求平方根的近似值。
三、借位法借位法是一种通过不断借位的方式来计算平方根的方法。
下面以√31为例,介绍借位法的步骤:步骤一:将所求平方根按十分位为界,分为两个数,个位数和十位数,即3和1。
步骤二:先计算十位数的候选值,从1开始,假设为x,即10x。
步骤三:判断10x与√31的乘积是否小于等于当前的被开方数,若小于等于,则将其作为十位数。
步骤四:再计算个位数的候选值,假设为y,即y^2。
步骤五:判断(10x+x)的平方与(当前被开方数-(10x))之差,是否小于等于y。
完全平方公式(提高)知识讲解【名校学案word版+详细解答】
完全平⽅公式(提⾼)知识讲解【名校学案word版+详细解答】完全平⽅公式(提⾼)【学习⽬标】1. 能运⽤完全平⽅公式把简单的多项式进⾏因式分解.2. 会综合运⽤提公因式法和公式法把多项式分解因式;3.发展综合运⽤知识的能⼒和逆向思维的习惯.【要点梳理】要点⼀、公式法——完全平⽅公式两个数的平⽅和加上(减去)这两个数的积的2倍,等于这两个数的和(差)的平⽅.即()2222a ab b a b ++=+,()2222a ab b a b -+=-. 形如222a ab b ++,222a ab b -+的式⼦叫做完全平⽅式.要点诠释:(1)逆⽤乘法公式将特殊的三项式分解因式;(2)完全平⽅公式的特点:左边是⼆次三项式,是这两数的平⽅和加(或减)这两数之积的2倍. 右边是两数的和(或差)的平⽅.(3)完全平⽅公式有两个,⼆者不能互相代替,注意⼆者的使⽤条件.(4)套⽤公式时要注意字母a 和b 的⼴泛意义,a 、b 可以是字母,也可以是单项式或多项式.要点⼆、因式分解步骤(1)如果多项式的各项有公因式,先提取公因式;(2)如果各项没有公因式那就尝试⽤公式法;(3)如⽤上述⽅法也不能分解,那么就得选择分组或其它⽅法来分解(以后会学到).要点三、因式分解注意事项(1)因式分解的对象是多项式;(2)最终把多项式化成乘积形式;(3)结果要彻底,即分解到不能再分解为⽌.【典型例题】类型⼀、公式法——完全平⽅公式1、分解因式:(1)22363ax axy ay -+-;(2)42242a a b b -+;(3)2222216(4)x y x y -+;(4)4224816a a b b -+.【答案与解析】解:(1)222223633(2)3()ax axy ay a x xy y a x y -+-=--+=--.(2)42242222222()[()()]()()a a b b a b a b a b a b a b -+=-=+-=+-.(3)2222216(4)x y x y -+ 22222222(4)(4)(44)(44)xy x y xy x y xy x y =-+=++--22222(2)[(44)](2)(2)x y x xy y x y x y =+--+=-+-.(4)4224222222816(4)[(2)(2)](2)(2)a a b b a b a b a b a b a b -+=-=+-=+-.【总结升华】(1)提公因式法是因式分解的⾸选法.多项式中各项若有公因式,⼀定要先提公因式,常⽤思路是:①提公因式法;②运⽤公式法.(2)因式分解要分解到每⼀个因式不能再分解为⽌.举⼀反三:【变式】分解因式:(1)224()12()()9()x a x a x b x b ++++++.(2)22224()4()()x y x y x y +--+-.【答案】解:(1)原式22[2()]22()3()[3()]x a x a x b x b =++?+?+++ 22[2()3()](523)x a x b x a b =+++=++.(2)原式22[2()]22()()()x y x y x y x y =+-?+?-+- 22[2()()](3)x y x y x y =+--=+.2、分解因式:22(33)(35)1x x x x +++++.【思路点拨】若将括号完全展开,所含的项太多,很难找到恰当的因式分解的⽅法,通过观察发现:将相同的部分23x x +作为⼀个整体,展开后再进⾏分解就容易了.【答案与解析】解:22(33)(35)1x x x x +++++22[(3)3][(3)5]1x x x x =+++++ 222(3)8(3)16x x x x =++++22(34)x x =++.【总结升华】在因式分解中要注意整体思想的应⽤,对于式⼦较复杂的题⽬不要轻易去括号.举⼀反三:【变式】若x ,y 是整数,求证:()()()()4234x y x y x y x y y +++++是⼀个完全平⽅数.【答案】解:()()()()4234x y x y x y x y y +++++()()()()4423x y x y x y x y y =+++++22224(54)(56)x xy y x xy y y =+++++令2254x xy y u ++=∴上式2422222(2)()(55)u u y y u y x xy y ++=+=++即()()()()4222234(55)x y x y x y x y y x xy y +++++=++类型⼆、配⽅法分解因式3、⽤配⽅法来解决⼀部分⼆次三项式因式分解的问题,如: ()()()()()()222282118191313 24x x x x x x x x x --=-+--=--=-+--=+-那该添什么项就可以配成完全平⽅公式呢?我们先考虑⼆次项系数为1的情况:如2x bx +添上什么就可以成为完全平⽅式? 2222()2222b b b x bx x x x ++=+??+=+ ? ? 因此添加的项应为⼀次项系数的⼀半的平⽅.那么⼆次项系数不是1的呢?当然是转化为⼆次项系数为1了.分解因式:2352x x +-.【思路点拨】提出⼆次项的系数3,转化为⼆次项系数为1来解决.【答案与解析】解:如2252352333x x x x ?+-=+-222555233663x x =++--?? ? ??? 25493636x ????=+-?? ? 2257366x =+-?? ? ??575736666x x =+++-()1323x x ??=+- ??【总结升华】配⽅法,⼆次项系数为1的时候,添加的项应为⼀次项系数的⼀半的平⽅. ⼆次项系数不是1的时候,转化为⼆次项系数为1来解决.类型三、完全平⽅公式的应⽤4、先仔细阅读材料,再尝试解决问题:完全平⽅公式x 2±2xy+y 2=(x±y)2及(x±y)2的值恒为⾮负数的特点在数学学习中有着⼴泛的应⽤,⽐如探求多项式2x 2+12x ﹣4的最⼤(⼩)值时,我们可以这样处理:解:原式=2(x 2+6x ﹣2)=2(x 2+6x+9﹣9﹣2)=2[(x+3)2﹣11]=2(x+3)2﹣22因为⽆论x 取什么数,都有(x+3)2的值为⾮负数所以(x+3)2的最⼩值为0,此时x=﹣3进⽽2(x+3)2﹣22的最⼩值是2×0﹣22=﹣22所以当x=﹣3时,原多项式的最⼩值是﹣22.解决问题:请根据上⾯的解题思路,探求多项式3x 2﹣6x+12的最⼩值是多少,并写出对应的x 的取值.【答案与解析】解:原式=3(x 2﹣2x+4)=3(x 2﹣2x+1﹣1+4)=3(x ﹣1)2+9,∵⽆论x 取什么数,都有(x ﹣1)2的值为⾮负数,∴(x ﹣1)2的最⼩值为0,此时x=1,∴3(x ﹣1)2+9的最⼩值为:3×0+9=9,则当x=1时,原多项式的最⼩值是9.【总结升华】此题考查了完全平⽅公式,⾮负数的性质,以及配⽅法的应⽤,熟练掌握完全平⽅公式是解本题的关键.举⼀反三:【变式1】若△ABC 的三边长分别为a 、b 、c ,且满⾜222166100a b c ab bc --++=,求证:2a c b +=.【答案】解:22216610a b c ab bc --++()()()22222269251035a ab b b bc c a b b c =++--+=+-- 所以()()22350a b b c +--=()()2235a b b c +=- 所以3(5)a b b c +=±-所以28a c b b c a +==-或因为△ABC 的三边长分别为a 、b 、c ,c a b -<,所以8b c a b =-<,⽭盾,舍去.所以2a c b +=.【变式2】若(2015﹣x )(2013﹣x )=2014,则(2015﹣x )2+(2013﹣x )2= .【答案】4032.解:∵(2015﹣x )(2013﹣x )=2014,∴[(2015﹣x )﹣(2013﹣x )]2=(2015﹣x )2+(2013﹣x )2﹣2(2015﹣x )(2013﹣x )=4,则(2015﹣x )2+(2013﹣x )2=4+2×2014=4032.。
初二数学平方根的知识点
初二数学平方根的知识点
平方根表示法:一个非负数a的平方根记作,读作正负根号a。
a 叫被开方数。
中被开方数的取值范围:被开方数a≥0
平方根*质:①一个正数的平方根有两个,它们互为相反数。
②0的平方根是它本身0。
③负数没有平方根
开平方;求一个数的平方根的运算,叫做开平方。
平方根与算术平方根区别:
1、定义不同。
2表示方法不同。
3、个数不同。
4、取值范围不同。
联系
1、二者之间存在着从属关系。
2、存在条件相同。
3、0的算术平方根与平方根都是0
含根号式子的意义:表示a的平方根,表示a的算术平方根,表示a的负的平方根。
求正数a的算术平方根的方法;
完全平方数类型
①想谁的平方是数a。
②所以a的平方根是多少。
③用式子表示。
求正数a的算术平方根,只需找出平方后等于a的正数。
三个重要的非负数:
求正数a的平方根的方法;完全平方数类型
①想谁的平方是数a。
②所以a的平方根是多少。
③用式子表示=。
公式:(a≥0)∣a∣=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平方根(提高)
【学习目标】
1.了解平方根、算术平方根的概念,会用根号表示数的平方根.
2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方
根.
【要点梳理】
要点一、平方根和算术平方根的概念
1.算术平方根的定义
如果一个正数x的平方等于a,即2xa,那么这个正数x叫做a的算术平方根(规定
0的算术平方根还是0);a的算术平方根记作a,读作“a的算术平方根”,a叫做被
开方数.
要点诠释:当式子a有意义时,a一定表示一个非负数,即a≥0,a≥0.
2.平方根的定义
如果2xa,那么x叫做a的平方根.求一个数a的平方根的运算,叫做开平方.平方与
开平方互为逆运算. a(a≥0)的平方根的符号表达为(0)aa,其中a是a的算术平
方根.
要点二、平方根和算术平方根的区别与联系
1.区别:(1)定义不同;(2)结果不同:a和a
2.联系:(1)平方根包含算术平方根;
(2)被开方数都是非负数;
(3)0的平方根和算术平方根均为0.
要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方
根;负数没有平方根.
(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的
另一个平方根.因此,我们可以利用算术平方根来研究平方根.
要点三、平方根的性质
2
(0)||0(0)(0)aaaaaaa
2
0aaa
要点四、平方根小数点位数移动规律
被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者
向左移动1位.例如:62500250,62525,6.252.5,0.06250.25.
【典型例题】
类型一、平方根和算术平方根的概念
1、若2m-4与3m-1是同一个正数的两个平方根,求m的值.
【思路点拨】由于同一个正数的两个平方根互为相反数,由此可以得到2m-4=-(3m-
1),解方程即可求解.
【答案与解析】
解:依题意得 2m-4=-(3m-1),
解得m=1;
∴m的值为1.
【总结升华】此题主要考查了平方根的性质:一个正数有两个平方根,它们互为相反数.
举一反三:
【变式】已知2a-1与-a+2是m的平方根,求m的值.
【答案】2a-1与-a+2是m的平方根,所以2a-1与-a+2互为相反数.
解:当2a-1+(-a+2)=0时,a=-1,
所以m=22221[2(1)1]39a
2、x为何值时,下列各式有意义?
(1)2x; (2)4x; (3)11xx; (4)13xx.
【答案与解析】
解:(1)因为20x,所以当x取任何值时,2x都有意义.
(2)由题意可知:40x,所以4x时,4x有意义.
(3)由题意可知:1010xx解得:11x.所以11x时11xx有意
义.
(4)由题意可知:1030xx,解得1x且3x.
所以当1x且3x时,13xx有意义.
【总结升华】(1)当被开方数不是数字,而是一个含字母的代数式时,一定要讨论,只有当
被开方数是非负数时,式子才有意义.(2)当分母中含有字母时,只有当分母不为0时,式
子才有意义.
举一反三:
【变式】已知4322232baa,求11ab的算术平方根.
【答案】
解:根据题意,得320,230.aa则23a,所以b=2,∴1131222ab,
∴11ab的算术平方根为112ab.
类型二、平方根的运算
3、求下列各式的值.
(1)2222252434g;(2)111200.36900435.
【思路点拨】(1)首先要弄清楚每个符号表示的意义.(2)注意运算顺序.
【答案与解析】
解:(1)2222252434g49257535g;
(2)1118111200.369000.63043543590.261.72.
【总结升华】(1)混合运算的运算顺序是先算平方开方,再乘除,后加减,同一级运算按先
后顺序进行.(2)初学可以根据平方根、算术平方根的意义和表示方法来解,熟练后直接根
据2(0)aaa来解.
类型三、利用平方根解方程
4、求下列各式中的x.
(1)23610;x (2)21289x;
(3)2932640x
【答案与解析】
解:(1)∵23610x
∴2361x
∴36119x
(2)∵21289x
∴1289x
∴x+1=±17
x=16或x=-18.
(3)∵2932640x
∴264329x
∴8323x
∴21499xx或
【总结升华】本题的实质是一元二次方程,开平方法是解一元二次方程的最基本方法.(2)
(3)小题中运用了整体思想分散了难度.
举一反三:
【变式】求下列等式中的x:
(1)若21.21x,则x=______; (2)2169x,则x=______;
(3)若29,4x则x=______; (4)若222x,则x=______.
【答案】(1)±1.1;(2)±13;(3)32;(4)±2.
类型四、平方根的综合应用
5、已知a、b是实数,且26|2|0ab,解关于x的方程2(2)1axba.
【答案与解析】
解:∵a、b是实数,26|2|0ab,260a,|2|0b,
∴260a,20b.
∴a-3,2b.
把a-3,2b代入2(2)1axba,得-x+2=-4,∴x=6.
【总结升华】本题是非负数的性质与方程的知识相结合的一道题,应先求出a、b的值,再
解方程.此类题主要是考查完全平方式、算术平方根、绝对值三者的非负性,只需令每项分
别等于零即可.
举一反三:
【高清课堂:389316 平方根:例5练习】
【变式】若2110xy,求20112012xy的值.
【答案】
解:由2110xy,得210x,10y,即1x,1y.
①当x=1,y=-1时,20112012201120121(1)2xy.
②当x=-1,y=-1时,2011201220112012(1)(1)0xy.
6、小丽想用一块面积为4002cm的正方形纸片,沿着边的方向裁出一块面积为300
2
cm
的长方形纸片,使它长宽之比为2:3,请你说明小丽能否用这块纸片裁出符合要求
的长方形纸片.
【答案与解析】
解:设长方形纸片的长为3x (x>0) cm,则宽为2xcm,依题意得
32300xx.
26300x.
250x.
∵ x>0,
∴ 50x.
∴ 长方形纸片的长为350cm.
∵ 50>49,
∴507.
∴ 35021, 即长方形纸片的长大于20cm.
由正方形纸片的面积为400 2cm, 可知其边长为20cm,
∴ 长方形的纸片长大于正方形纸片的边长.
答: 小丽不能用这块纸片裁出符合要求的长方形纸片.
【总结升华】本题需根据平方根的定义计算出长方形的长和宽,再判断能否用边长为20
cm
的正方形纸片裁出长方形纸片.