北师大版七年级数学上易错专题:有理数中的易错题.docx

合集下载

七年级数学上册2有理数及其运算易错课堂二新版北师大版

七年级数学上册2有理数及其运算易错课堂二新版北师大版
1)(-113)2=___1_96____; (2)(-12)3=_-_18____; (3)-(-37)2=-__4_99___;(4)-相等的是( B ) A.43和34 B.-35和(-3)5 C.-52和(-5)2 D.[-2×(-3)]2和-2×(-3)2 6.下列各式正确的是( C ) A.|-a2|=-a2 B.|-a3|=a3 C.(-a)2=a2 D.(-a)3=a3
对应训练
1.下列各结论成立的是( D ) A.若|m|=|n|,则m=n B.若m>n,则|m|>|n| C.若|m|>|n|,则m>n D.若m<n<0,则|m|>|n| 2.数轴上A,B,C三点所表示的数分别为a,b,c,其中AB=BC,如 果|a|>|c|>|b|,那么该数轴的原点的位置应该在( C ) A.点A的左边 B.点A与点B之间 C.点B与点C之间 D.点C的右边 3.绝对值大于1小于3的整数为_±__2_.
第2章 有理数及其错 例❶ 已知a=-3,|a|=|b|,则b=_±__3_. 错解:-3 错因分析:对绝对值的三种情况分析不全面,认为|a|=|b|,则a=b ,于是b=-3. 正解:±3 牛牛文档分 享 牛牛文档分 享
对应训练 7.计算:(-5)×15÷(-15)×5 解:原式=(-5)×15×(-5)×5=25 8.计算:-42-(-7)÷12×2
解:原式=-16-(-7)×2×2=-16+28=12
9.计算:2×(-3)2-6÷(-3)×(-13)2 解:原式=2×9-6×(-13)×19=18+29=1829
www.Leabharlann 牛牛文档分 享二、有理数的乘方运算,易出错 例❷ 计算:(1)-34;(2)(213)3;(3)342. 错因分析:对乘方的意义理解有误,不能认清底数和指数.

有理数的易错题及经典题.docx

有理数的易错题及经典题.docx

10月 14日作业单选题1.如图,数轴上、两点分别对应有理数、,则下列结论正确的是()。

A.B.C.D.2.有理数,在数轴上表示的点如图所示,则,的大小关系是()。

A.B.C.D.3.有理数,在数轴的位置如图,则下面关系:①;②;③;④。

其中正确的个数为()个。

A.B.C.D.4 . 如图,有理数在数轴上的位置如图所示,则下列结论正确的是()。

A.B.C.5 D.. 如图,数轴上点表示数,点表示数,则下列结论正确的是()。

A.B.C.D.6 . 有理数,在数轴上的位置如图所示,且,下列各式中:①;②;③;④;⑤,正确的个数是()。

10月 14日作业A.个B.个C.个D.个7. 若有理数、满足,且,则下列说法正确的是()。

A. ,可能一正一负B.,都是正数C.,中可能有一个为D. ,都是负数8. 下列说法:①一定是负数;②一定是正数;③倒数等于它本身的数是;④绝对值等于它本身的数是。

其中正确的个数是()。

A. 个B.个C.个D. 个9. 下列叙述中:①正数与它的绝对值互为相反数;②非负数与它的绝对值的差为;③的立方与它的平方互为相反数;④的倒数与它的平方相等。

其中正确的个数有()。

A. 1B. 2C. 3D. 410. 两个不为的有理数相除,如果交换被除数与除数的位置,它们的商不变,那么这两个数()。

A. 一定相等B. 一定互为倒数C. 一定互为相反数D. 相等或互为相反数判断题11. 互为相反数的两数相乘,积为负数。

()单选题12. 两个非零有理数的和为零,则它们的积是()。

A. B. 负数 C. 整数 D. 不能确定13. 若,则的值()。

D. 是非负数A. 是正数B. 是非正数C. 是负数14. 设为最小的正整数,是最大的负整数,是绝对值最小的整数,是倒数等于自身的有理数,则的值为()。

A. B. C.或 D. 或15.下列说法:①若两数的差是正数,则这两个数都是正数;②任何数的绝对值一定是正数;③零减去任何一个有理数,其差是该数的相反数;④在数轴上与原点距离越远的点表示的数越大;⑤正数的倒数是正数,负数的倒数是负数,任何数都有倒数。

《易错题》七年级数学上册第一单元《有理数》-解答题专项知识点(含解析)

《易错题》七年级数学上册第一单元《有理数》-解答题专项知识点(含解析)

一、解答题1.某农户家准备出售10袋大米,称得质量如下:(单位:千克) 182,180,175,173,182,185,183,181,180,183(1)填空:以180千克作为基准数,可用正、负数表示这10袋大米的质量与180的差为 ;(2)试计算这10袋大米的总质量是多少千克?解析:(1)+2,0,−5,-7,+2,+5,+3,+1,0,+3;(2)1804千克 【分析】(1)规定超出基准数为正数,则不足部分用负数表示,即可; (2)把第(1)题10个数相加,再加上180×10,即可. 【详解】(1)以180千克为基准数,超过180千克的记作正数,低于180千克的记作负数,那么各袋大米的质量分别为:+2,0,−5,-7,+2,+5,+3,+1,0,+3, 故答案是:+2,0,−5,-7,+2,+5,+3,+1,0,+3; (2)(+2+0−5-7+2+5+3+1+0+3)+ 180×10=1804(千克), 答:这10袋大米的总质量是1804千克. 【点睛】本题主要考查正负数的意义以及有理数的加减法的实际应用,熟练掌握有理数的加减法运算法则,是解题的关键. 2.计算:(1)()()128715--+--; (2)()()3241223125---÷+⨯--. 解析:(1)2-;(2)7. 【分析】(1)先去括号,再进行有理数运算即可;(2)根据有理数混合运算顺序和运算法则计算可得. 【详解】解:(1)12﹣(﹣8)+(﹣7)﹣15 =12+8﹣7﹣15 =(12+8)+(﹣7﹣15) =20﹣22 =﹣2(2)﹣12﹣(﹣2)3÷45+3×|1﹣(﹣2)2| =﹣12﹣(﹣8)×54+3×|1﹣4| =﹣12+10+3×|﹣3| =﹣12+10+9=7【点睛】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.3.某校七年级(1)至(4)班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,下表是实际购书情况:(2)这4个班实际共购书多少本?(3)书店给出一种优惠方案:一次购买不少于15本,其中2本书免费.若每本书的售价为30元,请计算这4个班整体购书的最低总花费是多少元?解析:(1)42,+3,22;(2)118本;(3)3120元.【分析】(1)由于4班实际购入21本,且实际购买数量与计划购买数量的差值=-9,即可得计划购书量=30,进而可把表格补充完整;(2)把每班实际数量相加即可;(3)根据已知求出总费用即可.【详解】解:(1)由于4班实际购入21本书,实际购入数量与计划购入数量的差值=-9,可得计划购入数量=30(本),所以一班实际购入30+12=42本,二班实际购入数量与计划购入数量的差值=33-30=3本,3班实际购入数量=30-8=22本.故答案依次为42,+3,22;(2)4个班一共购入数量=42+33+22+21=118(本);÷=余13得,如果每次购买15本,则可以购买7次,且最后还剩13本(3)由118157书需单独购买,得最低总花费=30×(15-2)×7+30×13=3120(元)..【点睛】本题考查了正负数的应用.在生活实际中利用正负数的计算能力,并通过相关运算来比较大小,进而得出最佳方案;这里要注意,生活中在选择方案时,要注意所有可能的情况.--,2,6,计算“24点”,请列出四个符合要求的不同算式.4.给出四个数:3,4⨯++=与(可运用加、减、乘、除、乘方运算,可用括号;注意:例如4(123)24 ++⨯=只是顺序不同,属同一个算式.)(213)424算式1:_________________;算式2_______________;算式3:_________________;算式4_______________;解析:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【分析】由241212,=+ 可得()342624,-⨯-+⨯=由()2438=-⨯-,可得()()342624,-⨯-+-=由()24124,=-⨯- 可得()()643224,⨯-⨯-+=由()2446=-⨯-,可得()()()()43624624-⨯--÷=-⨯-=,从而可得答案.【详解】解:算式1:()()3426121224,-⨯-+⨯=+= 算式2:()()()()34263824,-⨯-+-=-⨯-= 算式3:()()()()643224124,⨯-⨯-+=-⨯-=算式4:()()()()()()43624334624,-⨯--÷=-⨯--=-⨯-= 故答案为:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法,注意本题答案不唯一,这是一道开放性的题目,同时考查了学生的逆向思维. 5.计算: (1)()4235524757123⎛⎫÷--⨯-÷- ⎪⎝⎭; (2)()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭. 解析:(1)0;(2)1-. 【分析】(1)原式先把除法转换为乘法,再逆用乘法分配律进行计算即可得到答案; (2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值. 【详解】解:(1)()4235524757123⎛⎫÷--⨯-÷- ⎪⎝⎭ 45355171271234⎛⎫=⨯--⨯+⨯ ⎪⎝⎭ 4535571271212=-⨯-⨯+43517712⎛⎫=--+⨯ ⎪⎝⎭ 5012=⨯0=;(2)()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭()98427427⎛⎫-⨯+-⨯- ⎝=⎪⎭98=-+ 1=-. 【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键. 6.某超市对2020年下半年每月的利润用下表作了记录:(2)计算该商场下半年6个月的总利润额. 解析:(1)填表见解析;(2)40万元. 【分析】(1)根据“盈利记为正,则亏损就记为负”直接写出答案即可; (2)把该商场下半年6个月的利润相加即可. 【详解】解:(1)盈利记为正,亏损就记为负,填表如下:=36-10+14 =40(万元)∴该商场下半年6个月的总利润额为40万元. 【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.同时 还考查了有理数的加法运算.7.321032(2)(3)5-÷---⨯解析:﹣31. 【分析】根据有理数的混合运算法则计算即可. 【详解】解:321032(2)(3)5-÷---⨯ =10-32÷(﹣8)-9×5 =10-(﹣4)-45 =10+4-45 =14-45 =﹣31. 【点睛】此题主要考察了有理数的混合运算,解题关键是掌握有理数混合运算法则.8.计算:()22216232⎫⎛-⨯-- ⎪⎝⎭解析:2 【分析】原式先计算乘方,再运用乘法分配律计算,最后进行加减运算即可. 【详解】 解:()22216232⎫⎛-⨯-- ⎪⎝⎭=2136()432⨯--=213636432⨯-⨯-=24-18-4 =2. 【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键. 9.计算:329(1)4(2)34⎛⎫--÷-+-⨯ ⎪⎝⎭. 解析:12-. 【分析】根据有理数的四则混合运算顺序:“先算乘方,再算乘除,然后算加减”进行计算即可. 【详解】原式311222⎛⎫=-++-=- ⎪⎝⎭. 【点睛】本题考查了有理数的混合运算,掌握运算法则是解题的关键.10.以1厘米为1个单位长度用直尺画数轴时,数轴上互为相反数的点A 和点B 刚好对着直尺上的刻度2和刻度8.(1)写出点A 和点B 表示的数;(2)写出在点B 左侧,并与点B 距离为9.5厘米的直尺左端点C 表示的数;(3)若直尺长度为a 厘米,移动直尺,使得直尺的长边CD 的中点与数轴上的点A 重合,求此时左端点C 表示的数.解析:(1)点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是-6.5;(3)3-0.5a 【分析】(1)根据AB=8-2=6,点A 和点B 表示的数是互为相反数,即可得到结果; (2)利用点B 表示的数3减去9.5即可得到答案; (3)利用中点表示的数向左移动0.5a 个单位计算即可. 【详解】(1)∵AB=8-2=6,点A 和点B 表示的数是互为相反数, ∴点A 表示的数是-3,点B 表示的数是3; (2)点C 表示的数是:3-9.5=-6.5;(3)∵直尺长度为a 厘米,直尺中点表示的数是-3, ∴直尺此时左端点C 表示的数-3-0.5a . 【点睛】此题考查利用数轴表示数,数轴上两点之间的距离,数轴上点移动的规律,熟记数轴上点移动的规律进行计算是解题的关键. 11.计算: (1)()21112424248⎛⎫-+--+⨯-⎪⎝⎭(2)()()1178245122-÷-⨯--⨯+÷ 解析:(1)9;(2)34【分析】(1)根据绝对值的性质、乘法分配律计算各项,即可求解; (2)先算乘除,再算加减,即可求解. 【详解】解:(1)()21112424248⎛⎫-+--+⨯-⎪⎝⎭ ()()()11144242424248=-+-⨯-+⨯--⨯-01263=+-+9=;(2)()()1178245122-÷-⨯--⨯+÷ ()()1174204+=----34=. 【点睛】本题考查有理数的混合运算,掌握有理数的运算法则是解题的关键. 12.已知数轴上的点A ,B ,C ,D 所表示的数分别是a ,b ,c ,d ,且()()22141268+++=----a b c d .(1)求a ,b ,c ,d 的值;(2)点A ,C 沿数轴同时出发相向匀速运动,103秒后两点相遇,点A 的速度为每秒4个单位长度,求点C 的运动速度;(3)A ,C 两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,D 点以每秒1个单位长度的速度向数轴正方向开始运动,在t 秒时有2BD AC =,求t 的值;(4)A ,C 两点以(2)中的速度从起始位置同时出发相向匀速运动,当点A 运动到点C 起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点C 起始位置方向运动;当点C 运动到点A 起始位置时马上停止运动.当点C 停止运动时,点A 也停止运动.在此运动过程中,A ,C 两点相遇,求点A ,C 相遇时在数轴上对应的数(请直接写出答案).解析:(1)14a =-,12b =-,6c =,8d =;(2)点C 的运动速度为每秒2个单位;(3)4t =或20;(4)23-,223-,10-.【分析】(1)根据平方数和绝对值的非负性计算即可;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==,即可得解; (3)根据题意分别表示出AC ,BD ,在进行分类讨论计算即可; (4)根据点A ,C 相遇的时间不同进行分类讨论并计算即可; 【详解】(1)∵()()22141268+++=----a b c d , ∴()()221412+6+80+++--=a b c d ,∴14a =-,12b =-,6c =,8d =; (2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==, 解得:2x =,∴点C 的运动速度为每秒2个单位;(3)t 秒时,点A 数为144t -+,点B 数为-12,点C 数为62t +,点D 数为8t +,∴()62144202AC t t t =+--+=-,()81220BD t t =+--=+,∵2BD AC =,∴①2020t -≥时,()2022202t t +=-,解得:4t =; ②20-2t <0时,即t >10,()202220t t +=-,解得:20t =; ∴4t =或20.(4)C 点运动到A 点所需时间为()614102s --=,所以A ,C 相遇时间10t ≤,由(2)得103t =时,A ,C 相遇点为102144-33-+⨯=,A 到C 再从C 返回到A ,用时()()()6146147.548s ----+=;①第一次从点C 出发时,若与C 相遇,根据题意得()852t t ⨯-=,203t =<10,此时相遇数为20226233-⨯=-;②第二次与C 点相遇,得()()87.52614t t ⨯-+=--,解得8t =<10,此时相遇点为68210-⨯=-;∴A ,C 相遇时对应的数为:23-,223-,10-. 【点睛】本题主要考查了数轴的动点问题,准确分析计算是解题的关键.13.定义:数轴上给定不重合两点A ,B ,若数轴上存在一点M ,使得点M 到点A 的距离等于点M 到点B 的距离,则称点M 为点A 与点B 的“平衡点”.请解答下列问题: (1)若点A 表示的数为-3,点B 表示的数为1,点M 为点A 与点B 的“平衡点”,则点M 表示的数为_______;(2)若点A 表示的数为-3,点A 与点B 的“平衡点”M 表示的数为1,则点B 表示的数为________;(3)点A 表示的数为-5,点C ,D 表示的数分别是-3,-1,点O 为数轴原点,点B 为线段CD 上一点.①设点M 表示的数为m ,若点M 可以为点A 与点B 的“平衡点”,则m 的取值范围是________;②当点A 以每秒1个单位长度的速度向正半轴方向移动时,点C 同时以每秒3个单位长度的速度向正半轴方向移动.设移动的时间为t (0t >)秒,求t 的取值范围,使得点O 可以为点A 与点B 的“平衡点”.解析:(1)-1;(2)5;(3)①43t -≤≤-;②26t ≤≤且 5t ≠ 【分析】(1)根据平衡点的定义进行解答即可; (2)根据平衡点的定义进行解答即可;(3)①先得出点B 的范围,再得出m 的取值范围即可;②根据点A 和点C 移动的距离,求得点A 、C 表示的数,再由平衡点的定义得出答案即可. 【详解】解:(1)(1)点M 表示的数=312-+=−1; 故答案为:−1;(2)点B 表示的数=1×2−(−3)=5; 故答案为:5;(3)①设点B 表示的数为b ,则31b -≤≤-,∵点A 表示的数为-5,点M 可以为点A 与点B 的“平衡点”, ∴m 的取值范围为:43m -≤≤-, 故答案为:43m -≤≤-;②由题意得:点A 表示的数为5t -,点C 表示的数为33t -, ∵点O 为点A 与点B 的平衡点, ∴点B 表示的数为:5t -, ∵点B 在线段CD 上, 当点B 与点C 相遇时,2t =, 当点B 与点D 相遇时,6t =, ∴26t ≤≤,且 5t ≠,综上所述,当26t ≤≤且 5t ≠时,点O 可以为点A 与点B 的“平衡点”. 【点睛】本题考查了实数与数轴,掌握数轴上点的表示方法,以及两点的中点表示方法是解题的关键.14.某粮仓原有大米132吨,某一周该粮仓大米的进出情况如下表:(运进大米记作“+”,运出大米记作“-”,例如:当天运进大米8吨,记作8+吨;当天运出大米15吨,记作15-吨)若经过这一周,该粮仓存有大米88吨. (1)求星期五粮仓大米的进出情况;(2)若大米进出粮仓的装卸费用为每吨15元,求这一周该粮仓需要支付的装卸总费用. 解析:(1)星期五粮仓当天运出大米20吨;(2)2700元. 【分析】(1)根据有理数的加法,可得答案; (2)根据单位费用乘以总量,可得答案. 【详解】(1)m =88﹣(132﹣32+26﹣23﹣16+42﹣21)=﹣20, ∴星期五粮仓当天运出大米20吨;(2)(|﹣32|+|+26|+|﹣23|+|﹣16|+|﹣20|+|+42|+|﹣21|)×15=2700(元), 答:这一周该粮仓需要支付的装卸总费用为2700元. 【点睛】本题考查了用正负数表示相反意义的量及有理数加减法的应用,第(2)问利用单位费用乘以总量是解题关键. 15.计算 (1)3124623⎛⎫⎛⎫-÷-+⨯- ⎪ ⎪⎝⎭⎝⎭(2)()()34011 1.950.50|5|5---+-⨯⨯--+. 解析:(1)14;(2)0 【分析】(1)先计算乘法和除法,再计算加法;(2)分别计算乘方、乘法和绝对值,再计算加法和减法. 【详解】解:(1)原式=2124633⎛⎫⎛⎫-⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭()162=+-14=;(2)原式011055=-++-+=0.【点睛】本题考查有理数的混合运算.(1)中注意要先把除法化为乘法再计算;(2)中注意多个有理数相乘时,只要有一个因数为0,那么积就为0.(1)()11270.754⎛⎫--+-+ ⎪⎝⎭; (2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭; 解析:(1)6;(2)11.【分析】(1)先变成省略括号和形式,同时把小数化分数,把分数相加,同号相加,最后异号相加即可;(2)先算乘方,去绝对值和带分数化假分数,再计算乘法,最后计算加减法即可.【详解】解:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭, =1312744+-+, =1217+-,=13-7,=6;(2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭, =()351124444⎛⎫++⨯--⨯- ⎪⎝⎭=11235++-=11.【点睛】本题考查含有乘方的有理数混合,掌握有理数混合运算的法则,解答的关键是熟练掌握运算法则和运算顺序.17.计算题:(1)3×(﹣4)﹣28÷(﹣7);(2)﹣12020+(﹣2)3×1123⎛⎫-+ ⎪⎝⎭. 解析:(1)﹣8;(2)13. 【分析】(1)先计算乘除,再计算加减,即可得到答案;(2)先计算乘方、然后计算乘法和括号内的运算,再计算加法即可.【详解】解:(1)3×(﹣4)﹣28÷(﹣7)=﹣8;(2)﹣12020+(﹣2)3×1123⎛⎫-+⎪⎝⎭.=-1+(-8)×16⎛⎫-⎪⎝⎭=4 13 -+=13.【点睛】本题考查了有理数的加减乘除运算,解题的关键是熟练掌握运算法则进行解题.18.赣州享有“世界橙乡”的美誉,中华名果赣南脐橙热销世界各地.刚大学毕业的小明把自家的脐橙产品放到了网上售卖,他原计划每天卖100kg脐橙,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:kg).)根据记录的数据可知前三天共卖出kg(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售kg;(3)若脐橙按4.5元/kg出售,且小明需为买家支付运费(平均0.5元/kg),则小明本周一共赚了多少元?解析:(1)296;(2)29;(3)2868元【分析】(1)将前三天的销售量相加即可;(2)根据表格销量最多的一天为周六,最少的一天为周五,用周六的销量减去周五的销量即可得到答案;(3)先计算出本周的总销量,再乘以每千克的利润即可.【详解】(1)4-3-5+300=296(kg),故答案为:296;(2)(+21)-(-8)=29(kg),故答案为:29;(3)4-3-5+14-8+21-6=17(kg),17+100×7=717(kg),717×(4.5-0.5)=2868(元),小明本周一共赚了2868元.此题考查正负数的实际应用,有理数混合运算的实际应用,正确理解表格意义列式计算是解题的关键.19.计算:-32+2×(-1)3-(-9)÷213⎛⎫ ⎪⎝⎭解析:70【分析】先计算乘方,然后计算乘除,再计算加减,即可得到答案.【详解】解:原式=92(1)(9)9-+⨯---⨯=9281--+=70.【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算法则进行解题.20.计算:(1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦(2)6÷(-2)3-|-22×3|+3÷2×12+1; 解析:(1)23-;(2)-11 【分析】(1)先计算乘方及括号,再计算乘法,最后计算加减法;(2)先计算乘方和绝对值,再计算乘除法,最后计算加减法.【详解】 (1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦=111(2)23--⨯⨯- =113-+=23-; (2)6÷(-2)3-|-22×3|+3÷2×12+1 =116(8)123122÷--+⨯⨯+ =3312144--++ =-11.此题考查含乘方的有理数的混合运算,掌握运算顺序及运算法则是解题的关键.21.(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭;(2)431(2)2(3)----⨯- 解析:(1)-29;(2)13.【分析】(1)利用乘法分配律进行简便运算,即可得出结果;(2)先计算有理数的乘方与乘法,再进行加减运算即可.【详解】解:(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭ 37(1242424)812=-⨯-⨯+⨯ (24914)=--+29=-;(2)431(2)2(3)----⨯-1(8)(6)=-----186=-++13=.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序、运算法则及乘法运算律是解题的关键.22.计算:(1)()()34287⨯-+-÷;(2)()223232-+---.解析:(1)16-;(2)6.【分析】(1)先算乘除,后算加法即可;(2)原式先计算乘方运算,再化简绝对值,最后算加减运算即可求出值.【详解】(1)原式12416=--=-(2)原式34926=-+-=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.计算(1)442293⎛⎫-÷⨯- ⎪⎝⎭2;(2)313242⎛⎫⨯⨯- ⎪⎝⎭3()32490.5234-⨯-÷+-. 解析:(1)16-;(2)34【分析】 (1)按照有理数的四则运算进行运算即可求解;(2)按照有理数的四则运算法则进行运算即可,先算乘方,注意符号.【详解】解:(1)原式944163616499=-⨯⨯=-⨯=-, (2)原式113924()(8)8444=⨯--⨯-⨯+ 39324=-++ 34=, 【点睛】本题考查有理数的加减乘除乘方运算法则,先算乘方,再算乘除,最后算加减,有括号先算括号内的,计算过程中细心即可.24.计算(1)2125824(3)3-+-+÷-⨯ (2)71113()2461224-+-⨯ 解析:(1)113-;(2)-19 【分析】(1)有理数的混合运算,先算乘方,然后算乘除,最后算加减,如果有小括号先算小括号里面的;(2)使用乘法分配律使得计算简便.【详解】解:(1)2125824(3)3-+-+÷-⨯=114324()33-++⨯-⨯ =8433-+- =113-(2)71113()2461224-+-⨯ =7111324242461224-⨯+⨯-⨯ =-28+22-13=-19【点睛】 本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.25.如图,数轴上A ,B 两点之间的距离为30,有一根木棒MN ,设MN 的长度为x .MN 数轴上移动,M 始终在左,N 在右.当点N 移动到与点A ,B 中的一个重合时,点M 所对应的数为9,当点N 移动到线段AB 的中点时,点M 所对应的数是多少?解析:点M 所对应的数为24或-6.【分析】设MN=x ,然后分类计算即可:①当点N 与点A 重合时,点M 所对应的数为9,则点N 对应的数为x+9;②当点N 与点B 重合时,点M 所对应的数为9,则点N 对应的数为x+9.【详解】设MN=x ,①当点N 与点A 重合时,点M 所对应的数为9,则点N 对应的数为x+9,∵AB=30,∴当N 移动到线段AB 的中点时,点N 对应的数为x+9+15=x+24,∴点M 所对应的数为x+24-x=24;②当点N 与点B 重合时,点M 所对应的数为9,则点N 对应的数为x+9,∵AB=30,∴当N 移动到线段AB 的中点时,点N 对应的数为x+9-15=x-6,∴点M 所对应的数为x-6-x=-6;综上,点M 所对应的数为24或-6.【点睛】本题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.数形结合并分类讨论是解题的关键.26.探索代数式222a ab b -+与代数式2()a b -的关系(1)当5a =,2b =-时,分别计算两个代数式的值.(2)你发现了什么规律?(3)利用你发现的规律计算:2220182201820192019-⨯⨯+解析:(1)49, 49;(2)a 2−2ab +b 2=(a−b )2;(3)1.【分析】(1)将a 、b 的值分别代入a 2−2ab +b 2与(a−b )2计算可得;(2)根据(1)中的两式的计算结果即可归纳总结出关系式;(3)原式变形后,利用完全平方公式计算可得结果.【详解】解:(1)当a =5,b =−2时,a 2−2ab +b 2=52−2×5×(−2)+(−2)2=25+20+4=49,(a−b )2=[5−(−2)]2=72=49;(2)根据(1)的计算,可得规律:a 2−2ab +b 2=(a−b )2;(3)20182−2×2018×2019+20192=(2018−2019)2=(−1)2=1.【点睛】本题考查了代数式的求值及完全平方公式的应用,解题的关键是掌握代数式的求值方法以及利用完全平方公式简便运算.27.(1)()()()()413597--++---+;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭. 解析:(1)-6;(2)715. 【分析】 (1)原式根据有理数的加减法法则进行计算即可得到答案;(2)原式把除法转换为乘法,再进行乘法运算即可得到答案.【详解】解:(1)()()()()413597--++---+=-4-13-5+9+7=-22+9+7=-13+7=-6;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭ =174435⨯⨯ =715. 【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.28.计算(1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭; (2)3221(2)(3)⎡⎤÷---⎣⎦;(3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯ ⎪⎝⎭. 解析:(1)22;(2)2117-;(3)54-. 【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算括号内的运算,最后除法运算即可得到结果; (3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;【详解】(1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭ 112(24)(24)(24)243⎛⎫⎛⎫=-⨯-+-⨯+-⨯- ⎪ ⎪⎝⎭⎝⎭12616=-+=22;(2)3221(2)(3)⎡⎤÷---⎣⎦()2189=÷--()2117=÷-2117=-; (3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯ ⎪⎝⎭ 255104=-⨯+ 54=-. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.29.高速公路养护小组,乘车沿东西方向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.2升/千米,则这次养护共耗油多少升?解析:(1)最后到达的地方在出发点的东边,距出发点15千米;(2)这次养护共耗油19.4升.【分析】(1)求出这一组数的和,结果是正数则在出发点的东边,是负数则在出发点的西侧; (2)所走的路程是这组数据的绝对值的和,然后乘以0.2,即可求得耗油量.【详解】解:(1)17﹣9+7﹣15﹣3+11﹣6﹣8+5+16,=17+7+11+5+16-(9+15+3+6+8),=15.答:最后到达的地方在出发点的东边,距出发点15千米;(2)(17971531168516)0.2++-+++-+-+++-+-++++⨯,=97×02,=19.4(升).答:这次养护共耗油19.4升.【点睛】 本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.也考查了有理数的加减运算.30.计算:(1)()()30122021π--+---;(2)()41151123618⎛⎫---+÷ ⎪⎝⎭. 解析:(1)18-;(2)-17.【分析】 (1)原式第一项利用绝对值代数意义进行化简,第二项利用负整数指数幂的运算法则进行计算,第三项利用零指数幂的运算法则进行化简,最后进行加减运算即可得到答案;(2)原式先计算有理数的乘方,再把除法转化为乘法去括号进行乘法运算,最后进行加减运算即可得到答案.【详解】解:(1)()()30122021π--+---=1118-- =18-;(2)()41151123618⎛⎫---+÷ ⎪⎝⎭ =115118236⎛⎫--+⨯ ⎪⎝⎭=115118+1818236-⨯⨯-⨯ =1-9+6-15 =-17.【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.。

七年级有理数易错题和易错点

七年级有理数易错题和易错点

七年级有理数易错题和易错点一、易错题1. 求两数之和Tom在试卷上遇到了这样一个问题:计算-5和-3的和。

他心算后填写了答案-8,然而,他的答案是错误的。

究竟是哪里出了问题?答案解析:对于两个负数相加,我们可以使用以下规则:两个相同符号的负数相加,绝对值越大,和越小。

所以,在这个例子中,-5和-3的和应该是-5+(-3)=-8。

2. 求整数的绝对值Lisa在计算|-9|时,填写了答案9。

然而,她的答案是错误的。

你知道正确答案是什么吗?答案解析:绝对值是表示一个数与0的距离,所以无论这个数是正数还是负数,它的绝对值都是正数。

在这个例子中,|-9|的绝对值应该是9。

3. 比较数的大小Mike被要求比较-2和-5的大小,他认为-2比-5大。

然而,他的答案是错误的。

你知道正确答案是什么吗?答案解析:要比较两个负数的大小,可以转化为比较它们的绝对值的大小。

在这个例子中,-2的绝对值是2,-5的绝对值是5,所以-5比-2要大。

二、易错点1. 符号的运算规则有理数的符号运算规则是很容易混淆的一个点。

当两个数的符号相同时,可以直接将它们的绝对值相加,再加上相同的符号。

当两个数的符号不同时,可以转化为相同符号的运算,再进行计算。

2. 绝对值的概念有些学生对绝对值的概念理解不深刻,误以为绝对值只是取一个数的正值。

实际上,绝对值是表示一个数与0的距离,所以它的值总是正数。

3. 负数的大小比较对于负数的大小比较,学生常常会误以为绝对值较大的数就是较小的数。

要纠正这个错误,需要强调负数的绝对值越大,它的值越小。

由于有理数在七年级是一个相对新概念,学生们可能会因为对这些概念的理解不深刻而犯错误。

希望同学们在学习有理数的过程中,注意理解并掌握这些易错点,确保能正确应用有理数的相关知识。

北师大版七年级数学上册课件 有理数四则运算的九种易错类型

北师大版七年级数学上册课件 有理数四则运算的九种易错类型
|cc|都为 1,从而|aa|+|bb|+|cc|=3; ②当 a,b,c 为一正两负时, 可得|aa|,|bb|,|cc|中有一个为 1,其余两个都为-1,从而|aa|+|bb|
+|cc|=-1.综上,|aa|+|bb|+|cc|的值为 3 或-1.
北师大版 七年级上
第二章 有理数及其运算
阶段易错专训 有理数四则运算的九)+(+3)=-10; ③(-5)+0=5;
④23+-623=-6;
⑤+56+-16=23. 其中错.误.的有( C ) A.1 个 B.2 个 C.3 个
9.已知|x|=4,|y|=1,且x>y,则x+y的值为( D )
A.5
B.3
C.-5或-3
D.5或3
10.已知|aabbcc|=1,求|aa|+|bb|+|cc|的值.
解:由|aabbcc|=1,可得 a,b,c 都为正数或 a,b,c 为一正两 负,分两种情况讨论.①当 a,b,c 都为正数时,可得|aa|,|bb|,
6.下列计算: ①(-10)÷10=1; ②(-10)÷(-1)=-10; ③1÷(-10)=-10; ④(-10)÷-110=100. 其中正确的有( A ) A.1 个 B.2 个 C.3 个
D.4 个
7.计算-18÷3×-13的结果为( D ) A.-18 B.18 C.-2 D.2
8.下面是某同学计算 15÷15-13的运算过程: 解:原式=15÷15-15÷13=15×5-15×3=75-45=30. 解题过程是否有错误?若有错误,请说明原因,并更正. 解:解题过程有错误,原因是除法没有分配律. 更正:原式=15÷-125=15×-125=-112.5.
4.下列计算正确的有( B ) ①(-3)×(-4)=-12; ②(-2)×5=-10; ③(-41)×(-1)=41; ④0×(-5)=-5. A.1个 B.2个 C.3个

最新七年级数学上册有理数易错题(Word版 含答案)

最新七年级数学上册有理数易错题(Word版 含答案)

一、初一数学有理数解答题压轴题精选(难)1.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是________;表示-3和2两点之间的距离是________;一般地,数轴上表示数m和数n的两点之间的距离等于|m-n|.(2)如果|x+1|=3,那么x=________;(3)若|a-3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B 两点间的最大距离是________.(4)若数轴上表示a的点位于-4与2之间,则|a+4|+|a-2=________.【答案】(1)3;5(2)2或-4(3)8(4)6【解析】【解答】解:数轴上表示4和1的两点之间的距离是:;表示和两点之间的距离是:故答案为:或或故答案为:或(3)或或当时,则两点间的最大距离是,当a=5,b=-1时,A、B两点间的距离是6,当a=1,b=-3时,A、B两点间的距离是4,当时,则两点间的最小距离是,则两点间的最大距离是,最小距离是故答案为:(4)数轴上表示a的点位于-4与2之间,则故答案为:【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的绝对值即可算出答案;(2)根据绝对值的意义去绝对值的符号,再解方程即可;(3)根据绝对值的意义去绝对值的符号,再解方程求出a,b的值,然后分四种情况求出ab 之间的距离,再比大小即可;(4)根据数轴上的点所表示的数的特点可知-4<a<2,所以a+4>0,a-2<0,再根据绝对值的意义去绝对值符号并合并同类项即可.2.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A、B在数轴上对应的数分别为a、b,则A、B两点间的距离表示为AB=|a﹣b|.根据以上知识解题:(1)点A在数轴上表示3,点B在数轴上表示2,那么AB=________.(2)在数轴上表示数a的点与﹣2的距离是3,那么a=________.(3)如果数轴上表示数a的点位于﹣4和2之间,那么|a+4|+|a﹣2|=________.(4)对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值.如果没有.请说明理由.【答案】(1)1(2)1或-5(3)6(4)解:∵|a-3|+|a﹣6|表示a到3与a到6的距离的和,∴当3≤a≤6时,|a-3|+|a-6|= =3,当a>6或a<3时,|a-3|+|a﹣6|>3,∴|a-3|+|a﹣6|有最小值,最小值为3.【解析】【解答】(1)AB= =1,故答案为:1( 2 )∵数轴上表示数a的点与﹣2的距离是3,∴ =3,∴-2-a=3或-2-a=-3,解得:a=1或a=-5,故答案为:1或-5( 3 )数a位于﹣4与2之间,|a+4|+|a﹣2|表示a到-4与a到2的距离的和,∴|a+4|+|a﹣2|= =6,故答案为:6【分析】(1)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值即可算出答案;(2)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值列出方程,求解即可;(3)根据题意可知:此题其实质就是求数轴上表示数a的点到表示数字-4的点的距离与数轴上表示数a的点到表示数字2的点的距离的和,又数轴上表示数a的点位于-4与2之间,故该距离等于数轴上表示数字-4与表示数字2的点之间的距离,从而即可得出答案;(4)此题其实质就是求数轴上表示数a的点到表示数字3的点的距离与数轴上表示数a 的点到表示数字6的点的距离的和,从而分当3≤a≤6时,当a>6或a<3时三种情况考虑即可得出答案.3.阅读下面的材料:如图1,在数轴上A点衰示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线段AB的长可以用右边的数减去左边的数表示,即AB﹣b﹣a.请用上面的知识解答下面的问题:如图2,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B 点,然后向右移动7cm到达C点,用1个单位长度表示1cm.(1)请你在数轴上表示出A.B.C三点的位置:(2)点C到点人的距离CA=________cm;若数轴上有一点D,且AD=4,则点D表示的数为________;(3)若将点A向右移动xcm,则移动后的点表示的数为________;(用代数式表示)(4)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动.设移动时间为t秒,试探索:CA﹣AB的值是否会随着t的变化而改变?请说明理由.【答案】(1)解:如图所示:(2)5;﹣5或3(3)﹣1+x(4)解:CA﹣AB的值不会随着t的变化而变化,理由如下:根据题意得:CA=(4+4t)﹣(﹣1+t)=5+3t,AB=(﹣1+t)﹣(﹣3﹣2t)=2+3t,∴CA﹣AB=(5+3t)﹣(2+3t)=3,∴CA﹣AB的值不会随着t的变化而变化【解析】【解答】(2)CA=4﹣(﹣1)=4+1=5(cm);设D表示的数为a,∵AD=4,∴|﹣1﹣a|=4,解得:a=﹣5或3,∴点D表示的数为﹣5或3;故答案为5,﹣5或3;( 3 )将点A向右移动xcm,则移动后的点表示的数为﹣1+x;故答案为﹣1+x;【分析】(1)根据题意容易画出图形;(2)由题意容易得出CA的长度;设D表示的数为a,由绝对值的意义容易得出结果;(3)将点A向右移动xcm,则移动后的点表示的数为-1+x;(4)表示出CA和AB,再相减即可得出结论.4.如图,AB=12cm,点C在线段AB上,AC=3BC,动点P从点A出发,以4cm/s的速度向右运动,到达点B之后立即返回,以4cm/s的速度向左运动;动点Q从点C出发,以1cm/s的速度向右运动,到达点B之后立即返回,以1cm/s的速度向左运动.设它们同时出发,运动时间为t秒,当第二次重合时,P、Q两点停止运动.(1)AC=________cm,BC=________cm;(2)当t=________秒时,点P与点Q第一次重合;当t=________秒时,点P与点Q第二次重合;(3)当t为何值时,AP=PQ?【答案】(1)9;3(2)3;(3)解:在点P和点Q运动过程中,当AP=PQ时,存在以下三种情况:①点P与点Q第一次重合之前,可得:2×4t=9+t,解得t= ;②点P与点Q第一次重合后,P、Q由点B向点A运动过程中,可得:2×[12-(4t-12)]=12-(t-3),解得t= ;③当点P运动到点A,继续由点A向点B运动,点P与点Q第二次重合之前,可得:2×(4t-24)=12-(t-3),解得t=7.故当t为秒、秒或7秒时,AP=PQ.【解析】【解答】(1)∵AB=12cm,AC=3BC∴AC= AB=9,BC=12-9=3.故答案为:9;3.(2)设运动时间为t,则AP=4t,CQ=t,由题意,点P与点Q第一次重合于点B,则有4t-t=9,解得t=3;当点P与点Q第二次重合时有:4t+t=12+3+24,解得t= .故当t=3秒时,点P与点Q第一次重合;当t= 秒时,点P与点Q第二次重合.故答案为:3;.【分析】(1)由题目中AB=12cm,点C在线段AB上,AB=3BC,可直接求得;(2)根据运动过程,两点重合时他们走过距离之间的关系列方程即可求得;(3)满足AP=PQ,则2AP=AQ,在整个运动过程中正确的位置存在三处,依次分析列出方程即可求得.5.如图,数轴上一动点从原点出发,在数轴上进行往返运动,运动情况如下表(注:表格中的表示2到4之间的数).运动次数运动方向运动路程数轴上对应的数第1次____①_____3-3第2次左____②_____第3次____③_________④_____(1)完成表格;①________;②________;③________;④________.(2)已知第4次运动的路程为 .①此时数轴上对应的数是________;②若第4次运动后点恰好回到原点,则这4次运动的总路程是多少?________【答案】(1)左;;右; .(2)或;解:当时,或-0.5,不符合题意;当时,,,所以这4次运动的总路程是32.【解析】【解答】解:(1)动点从原点运动到点-3,所以是向左运动;再从点-3向左运动,故终点数字是;∵,∴,∴第三次点是向右运动,运动路程是,故答案为:左,,右, .( 2 )①向右运动时,;向左运动时,,故答案为或;【分析】(1)根据始点与终点的数字符号确定第一次运动方向;第一次终点数字与第二次运动路程的差即第二次终点数字;根据第三次终点数字与第二次终点数字的差的符号确定运动方向和运动路程.(2)①分向左或向右两种可能,根据确定第四次移动后最终在数轴上的对应数字;②根据第四次运动后的对应数字确定的值,再计算总路程.6.【新知理解】如图①,点C在线段AB上,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC 称作互为圆周率伴侣线段.(1)若AC=3,则AB=________;(2)若点D也是图①中线段AB的圆周率点(不同于点C),则AC________BD;(填“=”或“≠”)(3)【解决问题】如图②,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.若点M、N是线段OC的圆周率点,求MN的长;(4)图②中,若点D在射线OC上,且线段CD与以O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数.【答案】(1)3+3(2)=(3)解:∵d=1,∴c=d=,∴C点表示的数为:+1,∵M、N都是线段OC的圆周率点,设点M离O点近,且OM=x,则CM=x,∵OC=OM+ MC,∴+1=x+x,解得:x=1,∴OM=CN=1,∴MN=OC-OM-CN=+1-1-1=-1.(4)解:设点D表示的数为x,则OD=x,①若CD=OD,如图1,∵OC=OD+CD,∴+1=x+x,解得:x=1,∴点D表示的数为1;②若OD=CD,如图2,∵OC=OD+CD,∴+1=x+,解得:x=,∴点D表示的数为;③若OC=CD,如图3,∵CD=OD-OC=x--1,∴+1=(x--1),解得:x=++1,∴点D表示的数为++1;④若CD=OC,如图4,∵CD=OD-OC=x--1,∴x--1=(+1),解得:x=2+2+1,∴点D表示的数为2+2+1;综上所述:点D表示的数为:1、、++1、2+2+1.【解析】【解答】解:(1)∵AC=3,BC=AC,∴BC=3∴AB=AC+CB=3+3.故答案为:3+3.(2)∵点D、C都是线段AB的圆周率点且不重合,∴BC=AC,AD=BD,设AC=x,BD=y,则BC=x,AD=y,∵AB=AC+CB=AD+DB,∴x+x=y+y,∴x=y,∴AC=BD.故答案为:=.【分析】(1)由已知条件求得BC长,再由AB=AC+CB即可求得答案.(2)根据题意可得BC=AC,AD=BD,由此设AC=x,BD=y,则BC=x,AD=y,由AB=AC+CB=AD+DB即可得AC=BD.(3)根据题意可得C点表示的数为+1,根据M、N都是线段OC的圆周率点,设点M 离O点近,且OM=x,则CM=x,由OC=OM+ MC列出方程+1=x+x,解之可得OM=CN=1,由MN=OC-OM-CN即可求得.(4)设点D表示的数为x,则OD=x,根据题意分情况讨论:①若CD=OD,②若OD=CD,③若OC=CD,④若CD=OC,根据题中定义分别列出方程,解之即可得出答案.7.已知数轴上A,B两点对应的有理数分别是,15,两只电子蚂蚁甲,乙分别从A,B两点同时出发相向而行,甲的速度是3个单位/秒,乙的速度是6个单位/秒(1)当乙到达A处时,求甲所在位置对应的数;(2)当电子蚂蚁运行秒后,甲,乙所在位置对应的数分别是多少?(用含的式子表示)(3)当电子蚂蚁运行()秒后,甲,乙相距多少个单位?(用含的式子表示)【答案】(1)解:乙到达A处时所用的时间是(秒),此时甲移动了个单位,所以甲所在位置对应的数是(2)解:∵甲的速度是3个单位/秒,乙的速度是6个单位/秒,∴移动秒后,甲所在位置对应的数是:,乙所在位置对应的数是(3)解:由(2)知,运行秒后,甲,乙所在位置对应的数分别是,,当时,,,所以,运行()秒后,甲,乙间的距离是:个单位【解析】【分析】(1)根据有理数的减法算出AB的长度,再根据路程除以速度等于时间算出乙到达A处时所用的时间,接着利用速度乘以时间算出甲移动的距离,用甲移动的距离减去其离开原点的距离即可算出其即可得出答案;(2)根据移动的方向,用甲移动的距离减去其距离原点的距离即可得出移动秒后,甲所在位置对应的数;用乙距离原点的距离减去其移动的距离即可得出移动秒后,乙所在位置对应的数;(3)由(2)知,运行秒后,甲,乙所在位置对应的数分别是,,当时甲已经移动到原点右边了,乙也移动到原点左边了,即,,根据两点间的距离公式即可算出它们之间的距离.8.阅读下列材料:对于排好顺序的三个数: 称为数列 .将这个数列如下式进行计算: ,,,所得的三个新数中,最大的那个数称为数列的“关联数值”.例如:对于数列因为所以数列的“关联数值”为6.进一步发现:当改变这三个数的顺序时,所得的数列都可以按照上述方法求出“关联数值”,如:数列的“关联数值”为0;数列的“关联数值”为 3...而对于“ ”这三个数,按照不同的排列顺序得到的不同数列中,“关联数值"的最大值为6.(1)数列的“关联数值”为________;(2)将“ ”这三个数按照不同的顺序排列,可得到若干个不同的数列,这些数列的“关联数值”的最大值是________,取得“关联数值”的最大值的数列是________ (3)将“ ” 这三个数按照不同的顺序排列,可得到若干个不同的数列,这些数列的“关联数值”的最大值为10,求的值,并写出取得“关联数值”最大值的数列.【答案】(1)-4(2)7;-3、4、2(3)解:∵-3=-3,-3+(-6)=-9,-3+(-6)-a=-9-a,a>0,∴-9-a<-9<-3,∴数列3、-6、a的“关联数值”为-3,∵-3=-3,-3+a=a-3,-3+a-(-6)=a+3,a>0,∴-3<-3+a<a+3,∴数列3、a、-6的“关联数值”为a+3,∵-(-6)=6,-(-6)+a=a+6,-(-6)+a-3=a+3,a>0,∴a+6>6,a+6>a+3,∴数列-6、a、3的“关联数值”为a+6,∵-(-6)=6,-(-6)+3=9,-(-6)+3-a=9-a,a>0,∴9>9-a,9>6,∴数列-6、3、a的“关联数值”为9,∵-a=-a,-a+(-6)=-a-6,-a+(-6)-3=-a-9,a>0,∴-a-9<-a-6<-a,∴数列a、-6、3的“关联数值”为-a,∵-a=-a,-a+3=3-a,-a+3-(-6)=9-a,a>0,∴-a<3-a<9-a,∴数列a、3、-6的“关联数值”为9-a,∵a>0,这些数列的“关联数值”的最大值为10,∴-3、9、-a、9-a不符合题意,∵a+6>a+3,∴a+6=10,解得:a=4.取得“关联数值”最大值的数列为-6,4、3.【解析】【解答】(1)∵-4=-4,-4+(-3)=-7,-4+(-3)-2=-9,∴数列的“关联数值”为-4.故答案为-4(2)“4、-3、2”这三个数按照不同的顺序排列有4、-3、2;4、2、-3;-3、4、2;-3、2、4;2、4、-3;2、-3、4共6种排列顺序,由(1)得数列的“关联数值”为-4.∵-4=-4,-4+2=-2,-4+2-(-3)=1,∴数列4,2,-3的“关联数值”为1,∵-(-3)=3,-(-3)+4=7,-(-3)+4-2=5,∴数列-3、4、2的“关联数值”为7,∵-(-3)=3,-(-3)+2=5,-(-3)+2-4=1,∴数列-3、2、4的“关联数值”为5,∵-2=-2,-2+4=2,-2+4-(-3)=5,∴数列2、4、-3的“关联数值”为5,∵-2=-2,-2+(-3)=-5,-2+(-3)-4=-9,∴数列2、-3、4的“关联数值”为-2,∴这些数列的“关联数值”的最大值是7,取得“关联数值”的最大值的数列是-3、4、2故答案为7;-3、4、2【分析】(1)根据材料所给计算方法计算即可;(2)按不同顺序计算出“关联数值”即可;(3)按不同顺序计算出“ ” 这三个数的“关联数值”,根据a>0,这些数列的“关联数值”的最大值为10,求出a值即可.9.(1)阅读下面材料:点、在数轴上分别表示实数,,、两点之间的距高表示为当、两点中有一点在原点时,不妨设点在原点,如图1,;当、都不在原点时,①如图2,点、都在原点的右侧,;②如图3,点、都在原点的左侧,;③如图4,点、在原点的两侧,;(1)回答下列问题:①数轴上表示2和5的两点间的距离是________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是________;②数轴上表示和-1的两点和之间的距离是________,如果,那么为________;③当代数式取最小值时,相应的的取值范围是________;④求的最小值,提示:.【答案】(1)3;3;4;;1或-3;-1≤x≤2;解:④.④由③可知,要使最小,则在1和2015之间即可,要使最小,则在2和2014之间即可…… 以此类推,要使最小,则在1007和1009之间即可,最后还剩余最小时,取即可,当时,原式【解析】【解答】解:①表示2和5的两点间的距离为,表示-2和-5的两点之间的距离为,表示1和-3的两点之间的距离为;②表示和-1的两点和之间的距离为,若,则,∴,∴或③ ,是到的距离,表示到的距离,当在和2之间时,距离之和最小,∴取最小值时,相应的的取值范围是【分析】①根据(1)中的两点间距离公式可求答案;②根据(1)中的两点间距离公式列出方程求解;③根据线段上的点到两端的距离之和最小可得结果;④根据线段上的点到两端的距离之和最小列出算式计算即可;10.如图,数轴上点A,B分别对应数a,b.其中a<0,b>0.(1)当a=﹣2,b=6时,求a-b=________,线段AB的中点对应的数是________;(直接填结果)(2)若该数轴上另有一点M对应着数m.①当a=﹣4,b=8,点M在A,B之间,且AM=3BM时,求m的值.②当m=2,b>2,且AM=2BM时,求代数式a+2b+20的值.【答案】(1)-8;2(2)解:①∵AM=3BM②∵AM=2BM整理得【解析】【解答】(1),所以线段AB的中点对应的数是2故答案为-8,2【分析】(1)直接利用有理数的减法即可求出的值;即为中点对应的数;(2)①根据AM=3BM,可得出 ,利用a,b两点可求出AB之间的距离,进而可求AM的长度,则m的值可求.②可根据AM=2BM之间的关系式,找到a,b之间的一个等式,然后整体代入a+2b+20中即可求值.11.已知式子M=(a+5)x3+7x2-2x+5是关于x的二次多项式,且二次项系数为b,数轴上A,B两点所对应的数分别是a和b.(1)a=________,b=________.A,B两点之间的距离=________;(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度……按照如此规律不断地左右运动,当运动到第2019次时,求点P所对应的有理数;(3)在(2)的条件下,点P会不会在某次运动时恰好到达某一位置,使点P到点B的距离是点P到点A的距离的3倍?若可能请求出此时点P的位置,若不可能请说明理由.【答案】(1)-5;7;12(2)依题意得:−5−1+2−3+4−5+6−7+…+2014−2015+2016-2017+2018-2019,=−5+1009−2019,=−1015.答:点P所对应的有理数的值为−1013;(3)解:设点P对应的有理数的值为p,①当点P在点A的左侧时:PA=−5−p,PB=7−p,依题意得:7−p=3(−5−p),解得:p=−11;②当点P在点A和点B之间时:PA=p−(−5)=p+5,PB=7−p,依题意得:7−p=3(p+5),解得:p=−2;③当点P在点B的右侧时:PA=p−(−5)=p+5,PB=p−7,依题意得:p−7=3(p+5),解得:x=−11,这与点P在点B的右侧(即x>7)矛盾,故舍去.综上所述,点P所对应的有理数分别是−11和−2.【解析】【解析】解:(1)∵式子M=(a+5)x3+7x2−2x+5是关于x的二次多项式,且二次项系数为b,∴a+5=0,b=7,则a=−5,∴A、B两点之间的距离=|−5-7|=12.故答案是:−5;7;12.【分析】(1)根据多项式的项及次数的定义得到a+5=0,由此求得a、b的值,然后根据数轴上任意两点间的距离,等于这两点所表示的数的差的绝对值即可求线段AB的值;(2)根据题意得到点P每一次运动后所在的位置,然后由有理数的加法进行计算即可;(3)设点P对应的有理数的值为p,分情况进行解答:点P在点A的左侧,点P在点A、B之间、点P在点B的右侧三种情况,根据根据数轴上任意两点间的距离,等于这两点所表示的数的差的绝对值表示出PA,PB的长度,进而根据点P到点B的距离是点P到点A的距离的3倍分别列出方程,求解即可.12.点A在数轴上对应的数为3,点B对应的数为b,其中A、B两点之间的距离为5 (1)求b的值(2)当B在A左侧时,一点D从原点O出发以每秒2个单位的速度向左运动,请问D运动多少时间,可以使得D到A、B两点的距离之和为8?(3)当B在A的左侧时,一点D从O出发以每秒2个单位的速度向左运动,同时点M从B出发,以每秒1个单位的速度向左运动,点N从A出发,以每秒4个单位的速度向右运动;在运动过程中,MN的中点为P,OD的中点为Q,请问MN-2PQ的值是否会发生变化?若发生变化,请说明理由;如果没有变化,请求出这个值.【答案】(1)解:由题意得:,解得:(2)解:当B在A左侧时,由(1)可知:,设点D运动的时间为t秒,则D 表示的数为-2t,当D到A、B两点的距离之和为8时,可得D在B左侧,且DB+DA=DB+DB+AB=2DB+5=8,故 DB=1.5,即-2-(-2t)=1.5,解得t=1.75(3)解:在运动过程中,MN-2PQ=4恒成立,理由如下:当B在A左侧时,由(1)可知:,设点D运动的时间为t秒,则D表示的数为-2t,M表示的数为-2-t,N表示的数为3+4t;故MN的中点P表示的数为0.5+1.5t,OD的中点Q表示的数为-t;则MN-2PQ=[(3+4t)-(-2-t)]-2[(0.5+1.5t)-(-t)]=5+5t-2(0.5+2.5t)=5+5t-1-5t=4【解析】【分析】(1)根据数轴上两点之间的距离公式即可求解.(2)根据运动速度可表达出D点坐标,根据D到A、B两点的距离之和为8,可知D点在B的左侧,根据两点之间的距离公式即可求解(3)根据运动速度可表达出M、D、N点的坐标,根据中点公式求出P、Q坐标进而求出MN、PQ线段长即可求解.。

最新七年级数学有理数易错题(Word版 含答案)

最新七年级数学有理数易错题(Word版 含答案)

一、初一数学有理数解答题压轴题精选(难)1.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A、B在数轴上对应的数分别为a、b,则A、B两点间的距离表示为AB=|a﹣b|.根据以上知识解题:(1)点A在数轴上表示3,点B在数轴上表示2,那么AB=________.(2)在数轴上表示数a的点与﹣2的距离是3,那么a=________.(3)如果数轴上表示数a的点位于﹣4和2之间,那么|a+4|+|a﹣2|=________.(4)对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值.如果没有.请说明理由.【答案】(1)1(2)1或-5(3)6(4)解:∵|a-3|+|a﹣6|表示a到3与a到6的距离的和,∴当3≤a≤6时,|a-3|+|a-6|= =3,当a>6或a<3时,|a-3|+|a﹣6|>3,∴|a-3|+|a﹣6|有最小值,最小值为3.【解析】【解答】(1)AB= =1,故答案为:1( 2 )∵数轴上表示数a的点与﹣2的距离是3,∴ =3,∴-2-a=3或-2-a=-3,解得:a=1或a=-5,故答案为:1或-5( 3 )数a位于﹣4与2之间,|a+4|+|a﹣2|表示a到-4与a到2的距离的和,∴|a+4|+|a﹣2|= =6,故答案为:6【分析】(1)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值即可算出答案;(2)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值列出方程,求解即可;(3)根据题意可知:此题其实质就是求数轴上表示数a的点到表示数字-4的点的距离与数轴上表示数a的点到表示数字2的点的距离的和,又数轴上表示数a的点位于-4与2之间,故该距离等于数轴上表示数字-4与表示数字2的点之间的距离,从而即可得出答案;(4)此题其实质就是求数轴上表示数a的点到表示数字3的点的距离与数轴上表示数a 的点到表示数字6的点的距离的和,从而分当3≤a≤6时,当a>6或a<3时三种情况考虑即可得出答案.2.在学习绝对值后,我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离.类似的,有:|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)画一条数轴,并在数轴上分别用A、B表示出1和3的两点(2)数轴上表示1和3的两点之间的距离是________;(3)点A、B、C在数轴上分别表示有理数1、3、x,那么C到A的距离与C到B的距离之和可表示为________(用含绝对值的式子表示)(4)若将数轴折叠,使得表示1和3的两点重合,则原点与表示数________的点重合【答案】(1)解:如图所示,(2)2(3)(4)4【解析】【解答】解:(2)数轴上表示1和3的两点之间的距离=,故答案为2;(3)由题意得,C到A的距离与C到B的距离之和可表示为:,故答案为:;(4)在数轴上,1和3中点的数为:,设与原点重合的点的数为x,由题意得:, ∴x-2=±2,解得x=0或4,∴则原点与表示数4的点重合,故答案为:4.【分析】(1)画出数轴,在数轴上找出1、3点,分别用A、B表示即可;(2)根据题意,计算数轴上表示1和3的两点之间的距离即可;(3)根据题意,把C到A的距离与C到B的距离之和表示出来即可;(4)首先求出1和3中点表示的数,再设与原点重合的点的数为x,根据题意列式求出x 即可.3.如图,在数轴上,点A表示﹣5,点B表示10.动点P从点A出发,沿数轴正方向以每秒1个单位的速度匀速运动;同时,动点Q从点B出发,沿数轴负方向以每秒2个单位的速度匀速运动,设运动时间为t秒:(1)当t为________秒时,P、Q两点相遇,求出相遇点所对应的数________;(2)当t为何值时,P、Q两点的距离为3个单位长度,并求出此时点P对应的数.【答案】(1)5;0(2)解:若P、Q两点相遇前距离为3,则有t+2t+3=10-(-5),解得:t=4,此时P点对应的数为:-5+t=-5+4=-1;若P、Q两点相遇后距离为3,则有t+2t-3=10-(-5),解得:t=6,此时P点对应的数为:-5+t=-5+6=1;综上可知,当t为4或6时,P,Q两点的距离为3个单位长度,此时点P对应的数分别为-1或1.【解析】【解答】(1)解:由题意可知运动t秒时P点表示的数为-5+t,Q点表示的数为10-2t;若P,Q两点相遇,则有-5+t=10-2t,解得:t=5,-5+t=-5+5=0,即相遇点所对应的数为0,故答案为5;相遇点所对应的数为0;【分析】(1)由题意可知运动t秒时P点表示的数为-5+t,Q点表示的数为10-2t,若P、Q相遇,则P、Q两点表示的数相等,由此可得关于t的方程,解方程即可求得答案;(2)分相遇前相距3个单位长度与相遇后相距3个单位长度两种情况分别求解即可得.4.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a-30|+(b+6)2=0.点O是数轴原点。

初一数学有理数易错题

初一数学有理数易错题

初一数学有理数易错题1.下列哪个选项是有理数?A.3.14B.2π+1C.0.576D. 10答案:C解析:有理数是指分数和整数,无理数是无限不循环小数。

A是有限小数,属于有理数;B是无限不循环小数,属于无理数;D是无理数。

2.下列哪个选项是正确的?A.(−3)²=−3²B.(−3)²=−3×2C.(−3)²=−3+2D.(−3)²=−3÷2答案:A解析:根据有理数乘方的定义,(−3)²表示2个(−3)相乘,即(−3)²=(−3)×(−3),其结果是9,而其他选项的计算结果均不是9。

3.下列哪个选项是正确的?A.1÷(−3)=−1÷3=−\frac{1}{3}B.(−7)÷(−3)=7÷3=2 (1)C.(−6)÷(−2)=6÷(−2)=−3D.(−16)÷8=(−2)×\frac{1}{8}=−\frac{1}{4}答案:A解析:有理数的除法法则:除以一个不为0的数,等于乘以这个数的倒数。

因此,1÷(−3)=−1÷3=−\frac{1}{3}。

4.下列哪个选项是正确的?A.−\frac{7}{8}<0<\frac{7}{8}<1B.−\frac{7}{8}<0<1<\frac{7}{8}C.−\frac{7}{8}<0<1<\frac{8}{7}D.−\frac{7}{8}<0<\frac{8}{7}<1答案:B解析:有理数比较大小的方法:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,绝对值大的反而小。

因此,−8/7<0<1<8/7。

5.下列哪个选项是正确的?A.(−4)×(−5)=20B.(−4)×(−5)=−20C.(−4)×(−5)=45D.(−4)×(−5)=50答案:A解析:有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学试卷
鼎尚图文**整理制作
易错专题:有理数中的易错题

类型一 遗漏“0”及对“0”的认识不够

1.下列说法正确的是( )
A.符号相反的数互为相反数
B.当a≠0时,|a|总大于0
C.一个数的绝对值越大,表示它的点在数轴上越靠右
D.一个有理数不是正数就是负数
2.绝对值小于2.5的所有非负整数的积为________.

类型二 与运算相关的符号的判断不准确

3.在-32,-|-2.5|,-(-2.5),-(-3)2,(-3)2016,(-3)3中,负数的个数是( )
A.1个 B.2个
C.3个 D.4个
4.下列式子成立的是( )
A.-|-5|>4 B.-3<|-3|
C.-|-4|=4 D.|-5.5|<5

5.--23的相反数是________.
6.(-1)2016+(-1)2017=________.

类型三 运算法则、运算顺序及符号错误

7.化简:|π-4|+|3-π|=________.【易错5】
8.计算下列各题:
(1)(-3.1)-(-4.5)+(+4.4)-(+1.3);

(2)-24×-23+34+112;

(3)-14-15×[|-2|-(-3)3]-(-4)2.

类型四 多种情况时漏解

9.在数轴上到原点距离等于2的点所表示的数是( )
A.-2 B.2
C.±2 D.不能确定
10.已知|x|=4,|y|=1,且x>y,则x+y的值为( )
A.5 B.3
C.-5或-3 D.5或3
11.若|x|=|-2|,则x=________.【易错3】
12.数轴上点A表示的数为-2,若点B到点A的距离为3个单位,求点B表示的数.【易
错4②】

13.★已知abc|abc|=1,求|a|a+|b|b+|c|c的值.
参考答案与解析
1.B 2.0 3.D 4.B 5.23 6.0 7.1
8.解:(1)原式=4.5.(2)原式=-4.(3)原式=-2245.
9.C 10.D 11.±2
12.解:点B表示的数为1或-5.

13.解:由abc|abc|=1,可得a,b,c 三个都为正数或a,b,c 中只有一个为正数.分两种情

况讨论:①当a,b,c 三个都为正数,则有:|a|a,|b|b,|c|c三个都为1 ,可得:|a|a+|b|b+|c|c=
3;②当a,b,c中只有一个为正数,则有:|a|a,|b|b,|c|c中有一个为1,其余两个都为-1,
可得|a|a+|b|b+|c|c=-1.综上可得,|a|a+|b|b+|c|c的值为3或-1.

相关文档
最新文档