离散型随机变量的方差重难点
离散型随机变量的均值与方差

解答
(3)若Y=4X+3,求Y的均值和方差. 解 因为Y=4X+3, 所以EY=4EX+3=2,DY=42DX=11.
解答
反思与感悟
方差的计算需要一定的运算能力,公式的记忆不能出错!在随机变量 X2的均值比较好计算的情况下,运用关系式DX=EX2-(EX)2不失为一 种比较实用的方法.另外注意方差性质的应用,如D(aX+b)=a2DX.
< ,则
1
2
√A.Eξ1<Eξ2,Dξ1<Dξ2
B.Eξ1<Eξ2,Dξ1>Dξ2
C.Eξ1>Eξ2,Dξ1<Dξ2
D.Eξ1>Eξ2,Dξ1>Dξ2
解析 答案
4.若X~B(n,p),且EX=6,DX=3,则P(X=1)的值为
A.3×2-2
B.2-4
√C.3×2-10
D.2-8
解析 由题意知nnpp= 1-6,p=3,
解答
本节小结:
1.离散型随机变量的均值和方差。 2.二项分布的均值和方差的计算公式。 3.运用均值和方差解决实际问题。
本课结束
可能损失30%,也可能不赔不赚,且这三种情况发生投资公司选择一个合理的项目,并说明
理由.
解答
课后巩固
1.随机变量X的分布列如下:
X -1 0 1
P
a
bc
其中 a,b,c 成等差数列.若 EX=31,则 DX 的值是
4 A.9
√B.59
2 C.3
类型一 求离散型随机变量的方差
命题角度1 已知分布列求方差 典例1 已知X的分布列如下:
X -1 0 1
(1)求X2的分布列;
P
1 2
1 4
a
解 由分布列的性质,知12+14+a=1,故 a=14,
人教课标版高中数学选修2-3《离散型随机变量的均值与方差(第1课时)》教案-新版

2.3 离散型随机变量的均值与方差(第1课时)一、教学目标1.核心素养通过对离散型随机变量的均值的学习,更进一步提高了学生的数学建模能力和数学运算能力.2.学习目标(1)通过实例,理解取得有限值的离散型随机变量的均值的概念;(2)能计算简单离散型随机变量的期望,并能解决一些实际问题.3.学习重点离散型随机变量的期望的概念、公式及其应用.4.学习难点灵活利用公式求期望.二、教学设计1.预习任务任务1阅读教材P60-P63,思考:何为加权平均、权数?随机变量的均值(数学期望)的定义是什么?它反应了什么?任务2根据数学期望的计算过程,可得到它的什么性质?任务3何为两点分布?如果随机变量服从两点分布,则其数学期望有什么特点?任务4随机变量均值与样本的平均值有何联系与区别?2.预习自测1.已知X的分布列为则E(X)等于()A.0.7 B.0.61 C.-0.3 D.02.设E(X)=10,E(Y)=3,则E(3X+5Y)=()A.45 B.40 C.30 D.153.若X ~B (4,12),则E (X )的值为( )A .4B .2C .1 D.12 (二)课堂设计 1.知识回顾(1)何为离散型随机变量. (2)离散型性随机变量的分布列. (3)何为样本平均值?怎么计算?.(4)我们预习本课的数学期望是怎么定义的?怎么计算? 2.创设情境 引入新知前面我们学习了离散性随机变量分布列的概念,研究了一些简单离散型随机变量的分布,建立了二项分布、超几何分布等应用广泛的概率模型.离散型随机变量的分布列刻画了随机变量取值的概率规律,但往往还需要进一步了解离散型随机变量取值的特征.比如:某商店为了满足市场需求,要将单价分别为18元/kg ,24元/kg 、36元/kg ,如果按照3:2:1的比例对糖果进行混合销售,其中混合糖果中每颗质量都相等,如何对每千克糖果定价才合理?通过师生探究发现:当定价为混合糖果的平均价格时才合理.进而求混合糖果的平均价格,从而得出如下结论:根据混合糖果中3种糖果的比例可知在1kg 的混合糖果中,3种糖果的质量分别是63kg ,62 kg 和61kg ,则混合糖果的合理价格应该是18×63+24×62+36×61=23(元/kg ). 问题1:上述分式中36,26和61的意义是什么?在学生思考后,教师指出:上面的平均值其实是一种加权平均数,其中36,26和61表示一种权重系数,简称为权数.在计算平均数时,权数可以表示总体中的各种成分所占的比例.权数越大的数据在总体中所占的比例越大,它对加权平均数的影响越大.加权平均数是不同比重数据的平均数.加权平均数就是把原始数据按照合理的比例来计算.通过交流,使学生达成共识:36,26和61分别表示价格为18元/kg 、24元/kg 何36元/kg 的糖果在混合糖果中所占的比例.问题2:如果每一颗糖果的质量都相等,则在搅拌均匀的混合糖果中, 任取一颗恰好是18元/kg 的糖果的概率是多少?恰好是24元/kg 的糖果的概率是多少?恰好是36元/kg 的糖果的概率是多少?学生讨论,得出共识:在混合糖果中,任取一颗恰好是18元/kg 的糖果的概率是36,恰好是24元/kg 的糖果的概率是26,恰好是36元/kg 的糖果的概率是61.问题3:假如从混合糖果中随机的选取一颗,记X 为该糖果原来的单价,你能写出X 的分布列吗?学生不难得出随机变量X 的分布列为:问题4:能否将混合糖果的平均价格用X 的取值及其相应的概率来表示呢?由之前的知识,学生得出: 每千克混合糖果的平均价格为:18×63+24×62+36×61=23(元/kg ) 即18×P(X=18)+24×P(X=24)+36×P(X=36)=23(元/kg ) 教师总结:这里混合糖果的平均价格为随机变量X 的取值与其相应概率乘积之和.混合糖果的平均价格既为随机变量X 的均值.(设计意图:用实际问题为背景,从求学生熟悉的样本平均数为出发点,设置问题串,层层递进,逐步深入,最终得出结论:离散型随机变量X 取值的平均值为离散型随机变量X 的所有取值与其相应概率乘积之和.这样不但可以使学生直观感受到数学与生活的联系,而且可以激发学生的学习兴趣与热情.同时有利于学生进行知识迁移,为下面概括抽象得出科学定义做好铺垫.) 3.概括抽象 构建概念问题5:能否用数学语言表述离散型随机变量的均值这一概念的定义? 可以使学生自行定义,教师作出修正,最终形成正式的定义:若离散型随机变量X 的分布列为:则称E(X)=x1p1+x2p2+…+xnpn为随机变量X的均值或数学期望.数学期望又简称为期望.它反映了离散型随机变量取值的平均水平.(设计意图:使学生经历离散型随机变量均值概念的形成过程,体验从具体问题中概括、抽象,形成定义的思想方法,体会概括、抽象是一种常用的数学逻辑方法,使学生学会科学定义的方法.这里渗透了从特殊到一般的数学思想方法)问题6:离散型随机变量ξ的期望与ξ可能取值的算术平均数相同吗?通过师生共同分析得出结论,期望的计算是从概率分布出发,因而它是概率意义下的平均值.随机变量ξ取每个值时概率不同导致了期望不同于初中所学的算术平均数.(设计意图:期望源于平均值,但又不同于平均值,通过比较,进一步加深对数学期望的理解.)问题7:能给出两点分布与二项分布的均值吗?根据均值的计算公式,学生不难得出:4.例题分析应用新知例1:设随机变量X的分布列如下所示,已知E(X)=1.6,则a-b=()A.0.2B.0.1 C【知识点:期望】详解:a+b=0.8,且E(X)=0×0.1+1×a+2×b+3×0.1=1.6.即a+b=0.8,且a+2b=1.3,∴a=0.3,b=0.5,a-b=-0.2.点拨:本题主要考查离散型随机变量的均值的计算公式,且要熟知离散型随机变量的概率之和为1.例2:有一批数量很大的产品,其次品率是15℅.对这批产品进行抽查,每次抽出1件,如果抽出次品,则抽查终止,否则继续抽查,直到抽到次品,但抽查次数最多不超过10次.求抽查次数ξ的期望.【知识点:期望】详解:解决这个实际问题的难点是求ξ的分布列,一般地,在产品抽查中已说明产品数量很大时,各次抽查结果可以认为是相互独立的.并且取1~10的整数,前k-1次取到正品,而第k 次取到次品的概率是P (ξ=k )=15.085.01⨯-k (k=1,2,3,…,9),P (ξ=10)=185.09⨯.然后学生运用数学期望的定义来解题点拨:求离散型随机变量期望的步骤: (1)确定离散型随机变量ξ的取值.(2)写出分布列,并检查分布列的正确与否. (3)求出期望.例3:某同学代表班级参加设计比赛,每连续设计10次,其中有3次中10环,5次中9环,2次中8环.①求次同学射击一次中靶的环数的均值是多少?②如果把该同学射击一次所得的环数的2倍再加上5记为该同学的设计成绩Y ,即Y=2X+5,那么试求Y 的均值. 【知识点:分布列、期望及性质】详解:(1)击靶数的分布列,根据期望的计算公式可得出E(X)=9.1(2)写出得分Y 的分布列,并求出E (Y )=23.2点拨:当X 为随机变量时,若Y=aX+b(a,b 为常数),则Y 也为随机变量,并称随机变量X 和Y 具有线性关系.X 与Y 的均值也具有线性关系,且E(Y=aX+b)=aE(X)+b 练习:设E (X )=10,E (Y )=3,则E (3X +5Y )=( ) A .45 B .40 C .30 D .15【知识点:离散型随机变量期望的性质】 详解:E(3X+5Y)=3E(X)+5E(Y)=45.点拨:随机变量X 和Y 具有线性关系.X 与Y 的均值也具有线性关系,且E(Y=aX+b)=aE(x)+b 5.课堂总结均值或数学期望:一般地,若离散型随机变量ξ的概率分布为则称=ξE 为ξ的均值或数学期望,简称期望.均值或数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平.均值或期望的一个性质:若b aX Y +=,其中b a ,是常数(X 是随机变量),则Y 也是随机变量,且有()()E aX b aE X b +=+.(1)当0=a 时,()E b b =,即常数的数学期望就是这个常数本身;(2)当1=a 时,()()E X b E X b +=+,即随机变量X 与常数之和的期望等于X 的期;(3)当0=b 时,E aX aE X =()(),即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积.①若X 服从两点分布,则)(X E =p ; ②若ξ~),,(p n B 则)(X E =np . 6. 随堂检测1.随机抛掷一个骰子,所得点数η的均值为( ) A.16 B.13 C.12 D.3.52.若X ~B (4,12),则E (X )的值为( ) A .4 B .2 C .1 D .123.若X 是一个随机变量,则E (X -E (X ))的值为( ) A .无解 B .0 C .E (X ) D .2E (X ) (三)课后作业 (一)基础型1.若随机变量ξ~B (n,0.6),且E (ξ)=3,则P (ξ=1)的值是( ) A .2×0.44 B .2×0.45 C .3×0.44 D .3×0.642.今有两台独立工作在两地的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,设发现目标的雷达数为ξ,则E (ξ)的值为( ) A .0.765 B .1.75 C .1.765 D .0.223.有10张卡片,其中8张标有数字2,2张标有数字5,从中任意抽出3张卡片,设3张卡片上的数字之和为ξ,则ξ的期望是( ) A .7.8 B .8 C .16 D .15.64.若X 是一个随机变量,则E (X -E (X ))的值为( ) A .无解 B .0 C .E (X ) D .2E (X ) (二)能力型5.两封信随机投入A 、B 、C 三个空邮箱,则A 邮箱的信件数ξ的数学期望是( )A.13 B.23 C.43 D.346.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A.100 B.200 C.300 D.4007.某一供电网络,有n个用电单位,每个单位在一天中使用电的机会是p,供电网络中一天平均用电的单位个数是()A.np(1-p) B.Np C.n D.p(1-p)8.甲、乙两台自动车床生产同种标准产品1 000件,ξ表示甲机床生产1 000件产品中的次品数,η表示乙机床生产1 000件产品中的次品数,经过一段时间的考察,ξ,η的分布列分别是:据此判定()A.甲比乙质量好B.乙比甲质量好C.甲与乙的质量相同D.无法判定9.在10件产品中,有3件一等品,4件二等品,3件三等品.从这10件产品中任取3件,求:(1)取出的3件产品中一等品件数X的分布列和数学期望;(2)取出的3件产品中一等品件数多于二等品件数的概率.10.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数.(1)求ξ的分布列;(2)求ξ的数学期望;(3)求“所选3人中女生人数ξ≤1”的概率.11.某安全生产监督部门对5家小型煤矿进行安全检查(简称安检),若安检不合格,则必须整改,若整改后经复查仍不合格,则强制关闭.设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8.计算(结果精确到0.01):(1)恰好有两家煤矿必须整改的概率;(2)平均有多少家煤矿必须整改;(3)至少关闭一家煤矿的概率.12.为了拉动经济增长,某市决定新建一批重点工程,分为基础设施工程、民生工程和产业建设工程三类.这三类工程所含项目的个数分别占总数的12、13、16.现有3名工人独立地从中任选一个项目参与建设.(1)求他们选择的项目所属类别互不相同的概率;(2)记ξ为3人中选择的项目属于基础设施工程或产业建设工程的人数,求ξ的分布列及数学期望.(三)探究型13.设l为平面上过点(0,1)的直线,l的斜率等可能地取-22,-3,-52,0,52,3,22,用ξ表示坐标原点到l的距离,则随机变量ξ的数学期望E(ξ)=________.14.马老师从课本上抄录一个随机变量ξ的概率分布如下表:请小牛同学计算ξ“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案E(ξ)=________.15.某企业2014年工作计划中,对每位员工完成工作任务的奖励情况作出如下规定:有一季度完成任务者得奖金300元;有两季度完成任务者得奖金750元;有三季度完成任务者得奖金1 260元;对四个季度均完成任务的员工,奖励 1 800元;若四个季度均未完成任务则没有奖金.假若每位员工在每个季度里完成任务与否都是等可能的,求企业每位员工在2014年所得奖金的数学期望.(四)自助餐1.已知某一随机变量X的概率分布列如下表,E(X)=6.3,则a值为()A.5 B.6 C.7 D.82.节日期间,某种鲜花的进价是每束2.5元,售价是每束5元,节后对没有卖出的鲜花以每束1.6元处理.根据前5年节日期间对这种鲜花销售情况需求量X(束)的统计(如下表),若进这种鲜花500束在今年节日期间销售,则期望利润是()A.706元B.690元3.如果袋中有6个红球,4个白球,从中任取1球,记住颜色后放回,连续摸取4次,设ξ为取得红球的次数,那么ξ的期望E(ξ)=()A.34 B.125 C.197 D.134.有10件产品,其中3件是次品,从中任取2件,若X表示取到次品的个数,则E(X)等于()A.35 B.815 C.1415 D.15.某人从家乘车到单位,途中有3个交通岗亭.假设在各交通岗遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇红灯的次数的期望为()A.0.4 B.1.2 C.0.43 D.0.66.袋子装有5只球,编号为1,2,3,4,5,从中任取3个球,用X表示取出的球的最大号码,则E(X)=()A.4 B.5 C.4.5 D.4.757.设15 000件产品中有1 000件次品,从中抽取150件进行检查,由于产品数量较大,每次检查的次品率看作不变,则查得次品数的数学期望为()A.15 B.10 C.20 D.58.某班有14的学生数学成绩优秀,如果从班中随机地找出5名学生,那么其中数学成绩优秀的学生数X~B(5,14),则E(-X)的值为()A.14B.-14C.54D.-549.设随机变量X的分布列为P(X=k)=p k(1-p)1-k(k=0,1,0<p<1),则E(X)=________.10.一个人有n把钥匙,其中只有一把能打开他的房门,他随意地进行试开,并将试开不对的钥匙除去,则打开房门所试开次数ξ的数学期望是________.11.某公司有5万元资金用于投资开发项目,如果成功,一年后可获得12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果:12.一个均匀小正方体的六个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2,将这个小正方体抛掷2次,则向上的数之积的数学期望是________.13.若事件在一次试验中发生次数的方差等于0.25,则该事件在一次试验中发生的概率为________. (四)参考答案 预习自测 1.C 2.A 3.B 随堂检测 1.D 2.B 3.B 课后作业 基础型 1.C 2.B 3.A 4.B 能力型 5.B 6.B 7.B 8.A9.解:(1)由于从10件产品中任取3件的结果数为C 310,从10件产品中任取3件,其中恰有k 件一等品的结果数为C k 3C 3-k 7,那么从10件产品中任取3件,其中恰有k 件一等品的概率为 P (X =k )=C k 3C 3-k7C 310,k =0,1,2,3.所以随机变量X 的分布列是X 的数学期望E (X )=0×724+1×2140+2×740+3×1120=910.(2)设“取出的3件产品中一等品件数多于二等品件数”为事件A ,“恰好取出1件一等品和2件三等品”为事件A 1,“恰好取出2件一等品”为事件A 2,“恰好取出3件一等品”为事件A 3.由于事件A 1,A 2,A 3彼此互斥,且A =A 1∪A 2∪A 3,而P (A 1)=C 13C 23C 310=340,P (A 2)=P (X =2)=740,P (A 3)=P (X =3)=1120,所以取出的3件产品中一等品件数多于二等品件数的概率为 P (A )=P (A 1)+P (A 2)+P (A 3)=340+740+1120=31120. ∴σ(X 3)=D X 3=10×12×12= 2.5.10. 解:(1)ξ可能取的值为0,1,2.P (ξ=k )=C k 2·C 3-k4C 36,k =0,1,2.所以,ξ的分布列为(2)由(1),ξ的数学期望为 E (ξ)=0×15+1×35+2×15=1.(3)由(1),“所选3人中女生人数ξ≤1”的概率为 P (ξ≤1)=P (ξ=0)+P (ξ=1)=45.11. 解:(1)每家煤矿必须整改的概率是1-0.5,且每家煤矿是否整改是相互独立的,所以恰好有两家煤矿必须整改的概率是P 1=C 25×(1-0.5)2×0.53=516≈0.31.(2)由题设,必须整改的煤矿数ξ服从二项分布B (5,0.5),从而ξ的数学期望E (ξ)=5×0.5=2.50,即平均有2.50家煤矿必须整改.(3)某煤矿被关闭,即该煤矿第一次安检不合格,整改后经复查仍不合格,所以该煤矿被关闭的概率是P 2=(1-0.5)×(1-0.8)=0.1,从而该煤矿不被关闭的概率是0.9.由题意可知,每家煤矿是否被关闭是相互独立的,故至少关闭一家煤矿的概率是P 3=1-0.95≈0.41.12. 解:记第i 名工人选择的项目属于基础设施工程、民生工程和产业建设工程分别为事件A i ,B i ,C i ,i =1,2,3,由题意知A 1,A 2,A 3相互独立,B 1,B 2,B 3相互独立,C 1,C 2,C 3相互独立,A i ,B j ,C k (i ,j ,k =1,2,3,且i ,j ,k 互不相同)相互独立,且P (A i )=12,P (B i )=13, P (C i )=16.(1)他们选择的项目所属类别互不相同的概率 P =3!P (A 1B 2C 3)=6P (A 1)P (B 2)P (C 3)=6×12×13×16=16.(2)解法一 设3名工人中选择的项目属于民生工程的人数为η, 由已知,η~B (3,13),且ξ=3-η, 所以P (ξ=0)=P (η=3)=C 33(13)3=127, P (ξ=1)=P (η=2)=C 23(13)2(23)=29, P (ξ=2)=P (η=1)=C 13(13)(23)2=49, P (ξ=3)=P (η=0)=C 03(23)3=827. 故ξ的分布列是ξ的数学期望E (ξ)=0×127+1×29+2×49+3×827=2.解法二 记第i 名工人选择的项目属于基础设施工程或产业建设工程分别为事件D i ,i =1,2,3. 由已知,D 1,D 2,D 3相互独立,且 P (D i )=P (A i +C i )=P (A i )+P (C i )=12+16=23.所以ξ~B (3,23),即P (ξ=k )=C k 3(23)k (13)3-k,k =0,1,2,3. 故ξ的分布列是ξ的数学期望E (ξ)=3×23=2. 探究型 13.47 14.215.解:P (X =0)=C 04(12)0(12)4=116;P (X =300)=C 14(12)1(12)3=14; P (X =750)=C 24(12)2(12)2=38;P (X =1 260)=C 34(12)3(12)1=14;P (X =1 800)=C 44(12)4(12)0=116. 故X 的分布列为E (X )=0×116+300×14+750×38+1 260×14+1 800×116=783.75(元). 自助餐 1.C 2.A 3.B 4.A 5.B 6.C 7.B 8.D 9.p 10.n +12 11.4 760 12.49 13.0.5。
离散型随机变量的方差

2.3.2离散型随机变量的方差学习目标 1.理解取有限个值的离散型随机变量的方差及标准差的概念(重点).2.能计算简单离散型随机变量的方差,并能解决一些实际问题(难点).3.掌握方差的性质,以及两点分布、二项分布的方差的求法,会利用公式求它们的方差(重点).知识点1离散型随机变量的方差、标准差设离散型随机变量X的分布列为X x1x2…x i…x nP p1p2…p i…p nn 则(x i-E(X))2描述了x i(i=1,2,…,n)相对于均值E(X)的偏离程度,而D(X)=i=1 (x i-E(X))2p i为这些偏离程度的加权平均,刻画了随机变量X与其均值E(X)的平均偏离程度.我们称D(X)为随机变量X的方差,并称其算术平方根D(X)为随机变量X的标准差.【预习评价】(1)离散型随机变量的方差和标准差反映了随机变量的什么性质?(2)离散型随机变量的方差越大,随机变量越稳定还是方差越小越稳定?提示(1)离散型随机变量的方差和标准差反映了随机变量取值偏离于均值的平均程度.(2)离散型随机变量的方差越小随机变量越稳定.知识点2离散型随机变量方差的性质1.设a,b为常数,则D(aX+b)=a2D(X).2.D(c)=0(其中c为常数).【预习评价】设随机变量X的方差D(X)=1,则D(2X+1)的值为()A.2B.3C.4D.5知识点3服从两点分布与二项分布的随机变量的方差1.若X 服从两点分布,则D (X )=p (1-p )(其中p 为成功概率).2.若X ~B (n ,p ),则D (X )=np (1-p ). 【预习评价】同时抛掷两枚均匀的硬币10次,设两枚硬币同时出现反面的次数为ξ,则D (ξ)等于( ) A.158B.154C.52D.5题型一 求离散型随机变量的方差【例1】 袋中有5个大小相同的小球,其中有1个白球、4个黑球,每次从中任取一球,每次取出的黑球不再放回去,直到取出白球为止.求取球次数X 的均值和方差.规律方法 求离散型随机变量的方差的类型及解决方法(1)已知分布列型(非两点分布或二项分布):直接利用定义求解,先求均值,再求方差.(2)已知分布列是两点分布或二项分布型:直接套用公式求解,具体如下: a.若X 服从两点分布,则D (X )=p (1-p ). b.若X ~B (n ,p ),则D (X )=np (1-p ).(3)未知分布列型:求解时可先借助已知条件及概率知识先求得分布列,然后转化成(1)中的情况.(4)对于已知D (X )求D (aX +b )型,利用方差的性质求解,即利用D (aX +b )=a 2D (X )求解.【训练1】袋中有大小相同的四个球,编号分别为1,2,3,4,每次从袋中任取一个球,记下其编号.若所取球的编号为偶数,则把该球编号改为3后放回袋中继续取球;若所取球的编号为奇数,则停止取球.(1)求“第二次取球后才停止取球”的概率;(2)若第一次取到偶数,记第二次和第一次取球的编号之和为X,求X的分布列和方差.题型二两点分布与二项分布的方差【例2】为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n株沙柳.各株沙柳的成活与否是相互独立的,成活率为p,设ξ为成活沙柳的株数,均值E(ξ)为3,标准差D(ξ)为6 2.(1)求n和p的值,并写出ξ的分布列;(2)若有3株或3株以下的沙柳未成活,则需要补种.求需要补种沙柳的概率.规律方法方差的性质:(1)D(aξ+b)=a2D(ξ).(2)若ξ服从两点分布,则D(ξ)=p(1-p).(3)若ξ~B(n,p),则D(ξ)=np(1-p).【训练2】已知随机变量ξ的分布列如下表:(1)求E(ξ),D(ξ),D(ξ);(2)设η=2ξ+3,求E(η),D(η).题型三均值与方差的综合应用【例3】有甲、乙两种建筑材料,从中各取等量样品检查它们的抗拉强度如下:其中,ξA,ξB分别表示甲、乙两种材料的抗拉强度,在使用时要求抗拉强度不低于120,试比较甲、乙两种建筑材料的稳定程度(哪一个的稳定性较好).规律方法(1)均值体现了随机变量取值的平均大小,在两种产品相比较时,只比较均值往往是不恰当的,还需比较它们的取值的离散程度,即通过比较方差,才能准确地得出更恰当的判断.(2)离散型随机变量的分布列、均值、方差之间存在着紧密的联系,利用题目中所给出的条件,合理地列出方程或方程组求解,同时也应注意合理选择公式,简化问题的解答过程.【训练3】 袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球.ξ表示所取球的标号. (1)求ξ的分布列、均值和方差;(2)若η=aξ+b ,E (η)=1,D (η)=11,试求a ,b 的值.课堂达标1.若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为( ) A.8 B.15C.16D.322.已知离散型随机变量X 的分布列为X 1 2 3 4 P14131614则D (X )的值为( ) A.2912B.31144C.179144D.17123.已知小明投10次篮,每次投篮的命中率均为0.7,记10次投篮中命中的次数为X ,则D (X )=________.4.已知离散型随机变量X 的可能取值为x 1=-1,x 2=0,x 3=1,且E (X )=0.1,D(X)=0.89,则对应x1,x2,x3的概率p1,p2,p3分别为________,________,________.5.某厂一批产品的合格率是98%,(1)计算从中抽取一件产品为正品的数量的方差;(2)从中有放回地随机抽取10件产品,计算抽出的10件产品中正品数的方差及标准差.课堂小结1.随机变量的方差和标准差都反映了随机变量取值的稳定与波动、集中与离散的程度,以及随机变量取值偏离于均值的平均程度.方差D(X)或标准差越小,则随机变量X偏离均值的平均程度越小;方差越大,表明平均偏离的程度越大,说明X的取值越分散.2.求离散型随机变量X的均值、方差的步骤(1)理解X的意义,写出X的所有可能的取值;(2)求X取每一个值的概率;(3)写出随机变量X的分布列;(4)由均值、方差的定义求E(X),D(X).特别地,若随机变量服从两点分布或二项分布,可根据公式直接计算E(X)和D(X).基础过关1.已知X~B(n,p),E(X)=8,D(X)=1.6,则n与p的值分别是()A.100和0.08B.20和0.4C.10和0.2D.10和0.82.若离散型随机变量X的分布列如下,则X的均值E(X)等于()X 0 1A.2B.2或12C.12D.13.已知随机变量X 的分布列为P (X =k )=13,k =1,2,3,则D (3X +5)等于( ) A.6B.9C.3D.44.随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________.5.已知某随机变量X 的分布列如下,其中x >0,y >0,随机变量X 的方差D (X )=12,则x +y =________.6.设随机变量ξ的分布列为P (ξ=k )=C k n ⎝ ⎛⎭⎪⎫23k·⎝ ⎛⎭⎪⎫13n -k,k =0,1,2,…,n ,且E (ξ)=24,求随机变量ξ的标准差.7.随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,求D (ξ)的值.能力提升8.设随机变量X 的分布列为P (X =k )=15(k =2,4,6,8,10),则D (X )等于( ) A.5B.8C.10D.169.某公司10位员工的月工资(单位:元)为x 1,x 2,…,x 10,其均值和方差分别为x 和s 2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( ) A.x ,s 2+1002 B.x +100,s 2+1002 C.x ,s 2D.x +100,s 210.已知随机变量ξ的分布列如下表,则ξ的方差为________.11.已知随机变量X的分布列如下,若E(X)=3,则D(X)=________.X 123 4P n 0.20.3m12.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,均值E(X)及方差D(X).13.(选做题)A,B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析,X1和X2的分布列分别如下表:X1=x i5%10%P(X1=x i)0.80.2X2=x i2%8%12%(1)在A,B两个投资项目上各投资100万元,Y1和Y2分别表示投资项目A和B 所获得的利润,求方差D(Y1),D(Y2).(2)将x(0≤x≤100)万元投资项目A,100-x万元投资项目B,f(x)表示投资项目A 所得利润的方差与投资项目B所得利润的方差的和.求f(x)的最小值,并指出x为何值时,f(x)取得最小值.。
人教B版新教材高中数学选择性必修第二册教案设计-离散型随机变量的方差

第2课时离散型随机变量的方差学 习 目 标核 心 素 养 1.理解离散型随机变量的方差及标准差的概念.(重点)2.掌握方差的性质以及两点分布、二项分布的方差.(重点)3.会用方差解决一些实际问题.(难点) 1.通过学习离散型随机变量的方差、标准差,体会数学抽象的素养. 2.借助方差的性质及两点分布、二项分布的方差解题,提高数学运算的素养.山东省要从甲、乙两名射击运动员中选出一人参加第十四届全运会,根据以往数据,这两名运动员射击环数分布列如下所示.甲的环数8 9 10 P0.2 0.6 0.2乙的环数8 9 10 P 0.3 0.4 0.3问题一些?1.离散型随机变量的方差与标准差(1)定义:如果离散型随机变量X 的分布列如下表所示.X x 1 x 2 … x k … x nP p 1 p 2 … p k … p n则D (X )=[x 1-E (X )]2p 1+[x 2-E (X )]2p 2+…+[x n -E (X )]2p n =∑ni =1[x i -E (X )]2p i ,称为离散型随机变量X 的方差;D (X )X 的标准差.(2)意义:方差和标准差均刻画一个离散型随机变量的离散程度(或波动大小).(3)性质:若X 与Y 都是随机变量,且Y =aX +b (a ≠0),则D (Y )=a 2D (X ).2.两点分布及二项分布的方差(1)若随机变量X 服从参数为p 的两点分布,则D (X )=p (1-p ).(2)若随机变量X ~B (n ,p ),则D (X )=np (1-p ).思考:两点分布与二项分布的方差间存在怎样的联系.[提示] 由于两点分布是特殊的二项分布,故两者之间是特殊与一般的关系.即若X ~B (n ,p ),则D (X )=np (1-p ),取n =1,则D (X )=p (1-p )就是两点分布的方差.1.思考辨析(正确的打“√”,错误的打“×”)(1)离散型随机变量X 的期望E (X )反映了X 取值的概率的平均值.( ) (2)离散型随机变量X 的方差D (X )反映了X 取值的平均水平.( ) (3)离散型随机变量X 的期望E (X )反映了X 取值的波动水平.( ) (4)离散型随机变量X 的方差D (X )反映了X 取值的波动水平.( ) [答案] (1)× (2)× (3)× (4)√2.设随机变量ξ的方差D (ξ)=1,则D (2ξ+1)的值为( )A .2B .3C .4D .5C [因为D (2ξ+1)=4D (ξ)=4×1=4,故选C.]3.若随机变量ξ~B ⎝ ⎛⎭⎪⎫4,12,则D (ξ)=________.1 [∵ξ~B ⎝ ⎛⎭⎪⎫4,12,∴D (ξ)=4×12×⎝ ⎛⎭⎪⎫1-12=1.]4.已知随机变量X 的分布列为X 1 3 5P 0.4 0.1 0.5则X 的标准差为________895 [E (X )=1×0.4+3×0.1+5×0.5=3.2,∴D (X )=(1-3.2)2×0.4+(3-3.2)2×0.1+(5-3.2)2×0.5=3.56.∴X 的标准差为D (X )= 3.56=895.]离散型随机变量的方差有n 个(n =1,2,3,4).现从袋中任取一球,X 表示所取球的标号.(1)求X 的分布列、均值和方差;(2)若Y =aX +b ,E (Y )=1,D (Y )=11,试求a ,b 的值.[思路点拨] (1)根据题意,由古典概型的概率公式求出分布列,再利用均值、方差的公式求解.(2)运用E (Y )=aE (X )+b ,D (Y )=a 2D (X ),求a ,b .[解] (1)X 的分布列为X 01 2 3 4 P 12 120 110 320 15∴E (X )=0×12+1×120+2×110+3×320+4×15=1.5.D (X )=(0-1.5)2×12+(1-1.5)2×120+(2-1.5)2×110+(3-1.5)2×320+(4-1.5)2×15=2.75.(2)由D (Y )=a 2D (X ),得a 2×2.75=11,即a =±2.又E (Y )=aE (X )+b ,所以当a =2时,由1=2×1.5+b ,得b =-2;当a =-2时,由1=-2×1.5+b ,得b =4,∴⎩⎨⎧ a =2,b =-2或⎩⎨⎧a =-2,b =4即为所求.1.求离散型随机变量X 的方差的基本步骤理解X 的意义,写出X 可能取的全部值↓写出X 取每个值的概率↓写出X 的分布列↓由均值的定义求出E (X )↓利用公式D (X )=∑ni =1 (x i -E (X ))2p i 求值 2.对于变量间存在关系的方差,在求解过程中应注意方差性质的应用,如D (aξ+b )=a 2D (ξ),这样处理既避免了求随机变量η=aξ+b 的分布列,又避免了繁杂的计算,简化了计算过程.[跟进训练]1.(1)已知随机变量X 的分布列为X1 2 3 P 0.5 x y若E (X )=158,则D (X )等于( )A.3364B.5564C.732D.932 (2)已知X 的分布列如下.X -1 0 1P12 14 a ①求X 2的分布列;②计算X 的方差;③若Y =4X +3,求Y 的均值和方差. (1)B [由分布列的性质得x +y =0.5,又E (X )=158,所以2x +3y =118,解得x=18,y =38,所以D (X )=⎝ ⎛⎭⎪⎫1-1582×12+⎝ ⎛⎭⎪⎫2-1582×18+⎝ ⎛⎭⎪⎫3-1582×38=5564.](2)[解] ①由分布列的性质,知12+14+a =1,故a =14,从而X 2的分布列为X 2 0 1P 14 34②由①知a =14,所以X 的均值E (X )=(-1)×12+0×14+1×14=-14.故X 的方差D (X )=⎝ ⎛⎭⎪⎫-1+142×12+⎝ ⎛⎭⎪⎫0+142×14+⎝ ⎛⎭⎪⎫1+142×14=1116. ③E (Y )=4E (X )+3=4×⎝ ⎛⎭⎪⎫-14+3=2, D (Y )=16D (X )=11.两点分布、二项分布的方差各个交通岗遇到红灯这一事件是相互独立的,并且概率是13.(1)求这位司机遇到红灯次数X 的均值与方差;(2)若遇上红灯,则需等待30秒,求司机总共等待时间Y 的均值与方差.[解] (1)由题意知司机遇上红灯次数X 服从二项分布,且X ~B ⎝ ⎛⎭⎪⎫6,13, ∴E (X )=6×13=2,D (X )=6×13×⎝ ⎛⎭⎪⎫1-13=43. (2)由已知得Y =30X ,∴E (Y )=30E (X )=60,D (Y )=900D (X )=1 200.1.如果随机变量X 服从两点分布,那么其方差D (X )=p (1-p )(p 为成功概率).2.如果随机变量C 服从二项分布,即X ~B (n ,p ),那么方差D (X )=np (1-p ),计算时直接代入求解,从而避免了繁杂的计算过程.[跟进训练]2.(1)设一随机试验的结果只有A 和A ,且P (A )=m ,令随机变量ξ=⎩⎨⎧1,A 发生,0,A 不发生,则ξ的方差D (ξ)等于( )A.m B.2m(1-m) C.m(m-1) D.m(1-m)(2)若随机变量X~B(3,p),D(X)=23,则p=________.(1)D(2)13或23[(1)随机变量ξ的分布列为ξ01P 1-m m∴E(ξ)=0×(1-m)+1×m∴D(ξ)=(0-m)2×(1-m)+(1-m)2×m=m(1-m).(2)∵X~B(3,p),∴D(X)=3p(1-p),由3p(1-p)=23,得p=13或p=23.]期望、方差的综合应用1.A,B两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表.A机床次品数X10123P 0.70.20.060.04次品数X20123P 0.80.060.040.10试求E(X1),E(2[提示]E(X1)=0×0.7+1×0.2+2×0.06+3×0.04=0.44.E(X2)=0×0.8+1×0.06+2×0.04+3×0.10=0.44.2.在探究1中,由E(X1)和E(X2)的值能比较两台机床的产品质量吗?为什么?[提示]不能.因为E(X1)=E(X2).3.在探究1中,试想利用什么指标可以比较A,B两台机床加工质量?[提示]利用样本的方差.方差越小,加工的质量越稳定.【例3】甲、乙两名射手在一次射击中得分为两个相互独立的随机变量ξ,η,已知甲、乙两名射手在每次射击中射中的环数大于6环,且甲射中10,9,8,7环的概率分别为0.5,3a,a,0.1,乙射中10,9,8环的概率分别为0.3,0.3,0.2.(1)求ξ,η的分布列;(2)求ξ,η的数学期望与方差,并以此比较甲、乙的射击技术.[思路点拨](1)由分布列的性质先求出a和乙射中7环的概率,再列出ξ,η的分布列.(2)要比较甲、乙两射手的射击水平,需先比较两射手击中环数的数学期望,然后再看其方差值.[解](1)由题意得:0.5+3a+a+0.1=1,解得a=0.1.因为乙射中10,9,8环的概率分别为0.3,0.3,0.2,所以乙射中7环的概率为1-(0.3+0.3+0.2)=0.2.所以ξ,η的分布列如下表所示.ξ10987P 0.50.30.10.1η10987P 0.30.30.20.2(2)由(1)得:E(ξ)=10×0.5+9×0.3+8×0.1+7×0.1=9.2;E(η)=10×0.3+9×0.3+8×0.2+7×0.2=8.7;D(ξ)=(10-9.2)2×0.5+(9-9.2)2×0.3+(8-9.2)2×0.1+(7-9.2)2×0.1=0.96;D(η)=(10-8.7)2×0.3+(9-8.7)2×0.3+(8-8.7)2×0.2+(7-8.7)2×0.2=1.21.由于E(ξ)>E(η),D(ξ)<D(η),说明甲射击的环数的均值比乙高,且成绩比较稳定,所以甲比乙的射击技术好.利用均值和方差的意义分析解决实际问题的步骤1.比较均值.离散型随机变量的均值反映了离散型随机变量取值的平均水平,因此,在实际决策问题中,需先计算均值,看一下谁的平均水平高.2.在均值相等的情况下计算方差.方差反映了离散型随机变量取值的稳定与波动、集中与离散的程度.通过计算方差,分析一下谁的水平发挥相对稳定.3.下结论.依据方差的几何意义做出结论.[跟进训练]3.甲、乙两个野生动物保护区有相同的自然环境,且野生动物的种类和数量也大致相等.两个保护区内每个季度发现违反保护条例的事件次数的分布列分别为:甲保护区:X 0123P 0.30.30.20.2乙保护区:Y 012P 0.10.50.4[解]甲保护区的违规次数X的数学期望和方差分别为E(X)=0×0.3+1×0.3+2×0.2+3×0.2=1.3;D(X)=(0-1.3)2×0.3+(1-1.3)2×0.3+(2-1.3)2×0.2+(3-1.3)2×0.2=1.21.乙保护区的违规次数Y的数学期望和方差分别为E(Y)=0×0.1+1×0.5+2×0.4=1.3;D(Y)=(0-1.3)2×0.1+(1-1.3)2×0.5+(2-1.3)2×0.4=0.41.因为E(X)=E(Y),D(X)>D(Y),所以两个保护区内每季度发生的平均违规次数是相同的,但乙保护区内的违规事件次数更集中和稳定,而甲保护区的违规事件次数相对分散,故乙保护区的管理水平较高.1.求离散型随机变量的方差的类型及解决方法(1)已知分布列型(非两点分布或二项分布):直接利用定义求解,具体如下,①求均值;②求方差.(2)已知分布列是两点分布或二项分布型:直接套用公式求解,具体如下,①若X服从两点分布,则D(X)=p(1-p).②若X~B(n,p),则D(X)=np(1-p).(3)未知分布列型:求解时可先借助已知条件及概率知识求得分布列,然后求方差.(4)对于已知D(X)求D(aX+b)型,利用方差的性质求解,即利用D(aX+b)=a2D(X)求解.2.解答离散型随机变量的实际应用问题的关注点(1)分析题目背景,根据实际情况抽象出概率模型,特别注意随机变量的取值及其实际意义.(2)弄清实际问题是求均值还是方差,在实际决策问题中,需先计算均值,看一下谁的平均水平高,然后再计算方差,分析一下谁的水平发挥相对稳定.因此,在利用均值和方差的意义去分析解决实际问题时,两者都要分析.1.有甲、乙两种水稻,测得每种水稻各10株的分蘖数据,计算出样本方差分别为D(X甲)=11,D(X乙)=3.4.由此可以估计()A.甲种水稻比乙种水稻分蘖整齐B.乙种水稻比甲种水稻分蘖整齐C.甲、乙两种水稻分蘖整齐程度相同D.甲、乙两种水稻分蘖整齐不能比较B[∵D(X甲)>D(X乙),∴乙种水稻比甲种水稻分蘖整齐.]2.设二项分布B(n,p)的随机变量X的均值与方差分别是2.4和1.44,则二项分布的参数n,p的值为()A.n=4,p=0.6 B.n=6,p=0.4C.n=8,p=0.3 D.n=24,p=0.1B[由题意得,np=2.4,np(1-p)=1.44,∴1-p=0.6,∴p=0.4,n=6.]3.已知随机变量X ,且D (10X )=1009,则X 的标准差为________.13 [由题意可知D (10X )=1009,即100D (X )=1009,∴D (X )=19, ∴D (X )=13.即X 的标准差为13.]4.一批产品中,次品率为13,现连续抽取4次,其次品数记为X ,则D (X )的值为________.89 [由题意知X ~B ⎝ ⎛⎭⎪⎫4,13,所以D (X )=4×13×⎝ ⎛⎭⎪⎫1-13=89.] 5.已知离散型随机变量X 的分布列如下表.若E (X )=0,D (X )=1[解] 由题意,⎩⎪⎨⎪⎧ a +b +c +112=1,(-1)×a +0×b +1×c +2×112=0,(-1-0)2×a +(0-0)2×b +(1-0)2×c +(2-0)2×112=1,解得a =512,b =c =14.。
选修2-3离散型随机变量的均值与方差第1课时教案新部编本

教师学科教案[ 20–20学年度第__学期]任教学科: _____________任教年级: _____________任教老师: _____________xx市实验学校§2.3 离散型随机变量的均值与方差§2.3.1 离散型随机变量的均值教学目标:知识与技能:了解离散型随机量的均或期望的意,会根据离散型随机量的分布列求出均或期望.过程与方法:理解公式“ E( aξ +b) =aEξ +b”,以及“若ξ: B( n,p ), Eξ =np” . 能熟地用它求相的离散型随机量的均或期望。
情感、态度与价值观:承前启后,感悟数学与生活的和之美, 体数学的文化功能与人文价。
教学重点:离散型随机量的均或期望的概念教学难点:根据离散型随机量的分布列求出均或期望授课类型:新授课时安排: 1教学过程:一、复习引入:1.离散型随机量的二分布: 在一次随机中,某事件可能生也可能不生,在 n 次独立重复中个事件生的次数ξ 是一个随机量.如果在一次中某事件生的概率是P,那么在 n 次独立重复中个事件恰好生k 次的概率是P n (k) C n k p k q n k,(k=0,1,2,⋯, n,q 1 p).于是得到随机量ξ 的概率分布如下:ξ01⋯k⋯nP C n0 p0q n C n1 p1q n 1⋯C n k p k q n k⋯C n n p n q0称的随机量ξ 服从二分布,作ξ~ B(n , p) ,其中n, p 参数,并C n k p k q n k=b(k;n,p).二、讲解新课:根据已知随机量的分布列,我可以方便的得出随机量的某些制定的概率,但分布列的用途不止于此,例如:已知某射手射所得数ξ 的分布列如下ξ45678910P0.020.040.060.090.280.290.22在 n 次射之前,可以根据个分布列估n 次射的平均数.就是我今天要学的离散型随机量的均或期望根据射手射所得数ξ 的分布列,我可以估,在 n 次射中,大有P(4)n0.02n次得 4;P(5)n0.04n次得 5;⋯⋯⋯⋯P(10) n 0.22n次得10.故在 n 次射的数大4 0.02 n5 0.04 n10 0.22n(4 0.02 5 0.0410 0.22) n ,从而,n 次射的平均数4 0.025 0.0410 0.22 8.32 .是一个由射手射所得数的分布列得到的,只与射数的可能取及其相的概率有关的常数,它反映了射手射的平均水平.于任一射手,若已知其射所得数ξ的分布列,即已知各个P(i ) (i=0,1,2,⋯, 10),我可以同他任意n 次射的平均数:0 P(0) 1 P(1)⋯10 P(10).1.均或数学期望 :一般地,若离散型随机量ξ 的概率分布ξx1x2⋯x n⋯P p1p⋯pn⋯2称 Ex1 p1 x2 p2⋯x n p n⋯ξ 的均或数学期望,称期望.2.均或数学期望是离散型随机量的一个特征数,它反映了离散型随机量取的平均水平3.平均数、均 :一般地,在有限取离散型随机量ξ的概率分布中,令 p1p2⋯ p n,有p1 p2⋯ p n 11,E( x1x2⋯ x n ),所以ξ 的数学期望又称平均数、n n均4.均或期望的一个性 :若a b (a、b是常数),ξ 是随机量,η也是随机量,它的分布列ξx1x2⋯x n⋯ηax1b ax2b⋯ax n b⋯P p1p2⋯p n⋯于是 E(ax1b) p1(ax2b) p2⋯(ax n b) p n⋯= a( x1 p1x2 p2⋯x n p n⋯)b( p1p2⋯p n⋯)= aE b ,由此,我得到了期望的一个性: E(a b) aE b5. 若ξ: B(n,p ), Eξ=np明如下:∵P(k) C n k p k (1 p)n k C n k p k q n k,∴E0×C n0p0q n+ 1×C1n p1q n 1+ 2×C n2p2q n 2+⋯+ k×C n k p k q n k+⋯+ n ×C n n p n q0.又∵kC n k k n!k)! (k n(n1)!nC n k11,k!(n1)![( n1)( k1)]!∴E np(C n01 p0q n 1+ C n11 p1q n2+⋯+ C n k11 p k 1 q( n 1) (k 1)+⋯ +C n n11 p n 1q 0 )np ( p q) n1np .故若ξ~ B(n , p) ,E np.三、讲解范例:例 1.球运在比中每次球命中得 1 分,不中得0 分,已知他命中的概率0.7 ,求他球一次得分的期望解:因 P(1)0.7, P(0) 0.3 ,所以 E10.70 0.30.7例 2.一次元由 20 个构成,每个有 4 个,其中有且有一个是正确答案,每正确答案得 5 分,不作出或不得分,分100 分学生甲任一的概率0.9 ,学生乙在中每都从 4 个中随机地一个,求学生甲和乙在次英元中的成的期望解:学生甲和乙在次英中正确答案的个数分是,,~B (20,0.9 ),~ B(20,0.25) ,E200.918, E200.25 5由于答对每题得 5 分,学生甲和乙在这次英语测验中的成绩分别是5和5所以,他们在测验中的成绩的期望分别是:E(5 ) 5E( ) 5 18 90,E(5 ) 5E( ) 5 5 25例 3.随机抛掷一枚骰子,求所得骰子点数的期望解:∵ P(i )1/ 6,i 1,2,,6 ,E11/ 621/ 6 6 1/ 6 =3.5例 4.随机的抛掷一个骰子,求所得骰子的点数ξ 的数学期望.解:抛掷骰子所得点数ξ的概率分布为ξ123456P 111111 666666所以E1×1+2×1+3×1+4×1+5×1+6×1 666666=(1 +2+3+4+5+6) ×1= 3.5 .6抛掷骰子所得点数ξ 的数学期望,就是ξ 的所有可能取值的平均值.四、课堂练习:1.口袋中有 5 只球,编号为1,2, 3,4,5,从中任取 3 球,以表示取出球的最大号码,则E()A. 4;B. 5;C.4.5 ;D. 4.75答案: C2.篮球运动员在比赛中每次罚球命中的 1 分,罚不中得 0 分.已知某运动员罚球命中的概率为 0.7 ,求⑴他罚球 1 次的得分ξ的数学期望;⑵他罚球 2 次的得分η的数学期望;⑶他罚球 3 次的得分ξ的数学期望.3.设有 m升水,其中含有大肠杆菌 n 个.今取水 1 升进行化验,设其中含有大肠杆菌的个数为ξ,求ξ 的数学期望.五、小结:(1)离散型随机变量的期望,反映了随机变量取值的平均水平;(2)求离散型随机变量ξ 的期望的基本步骤:①理解ξ 的意义,写出ξ 可能取的全部值;②求ξ 取各个值的概率,写出分布列;③根据分布列,由期望的定义求出 Eξ公式 E(aξ +b) = aEξ +b,以及服从二项分布的随机变量的期望 Eξ =np六、布置作业:练习册七、板书设计(略)八、教学反思:(1)离散型随机变量的期望,反映了随机变量取值的平均水平;(2)求离散型随机变量ξ 的期望的基本步骤:①理解ξ 的意义,写出ξ 可能取的全部值;②求ξ 取各个值的概率,写出分布列;③根据分布列,由期望的定义求出Eξ公式E(aξ +b)= aEξ +b,以及服从二项分布的随机变量的期望Eξ =np 。
离散型随机变量的均值与方差-课件

[解析] X 的取值为 3、4、5、6,P(X=k)=CC2k-361,k=3、4、 5、6,因此,X 的分布列如下表:
X3 4 5 6
p
1 20
3 20
3 10
1 2
所以 E(X)=3×210+4×230+5×130+6×12=5.25.
• [点评] 求出随机变量的均值(数学期望)的关 键在于写出它的分布列,再代入公式E(X)= x1p1+x2p2+…+xnpn即可.
•超几何分布的均值
从 4 名男生和 2 名女生中任选 3 人参加演讲比 赛,设随机变量 X 表示所选 3 人中女生的人数.
(1)求 X 的分布列; (2)求 X 的均值; (3)求“所选 3 人中女生人数 X≤1”的概率.
• [分析] 本题是超几何分布问题,可用超几何 分布的概率公式求解.
[解析] (1)X 的可能取值为 0、1、2, P(X=k)=Ck2CC3634-k,k=0、1、2, 所以,X 的分布列为:
()
• A.15
B.10
• C.20
D.5
• [答[解案析]] 次B品率 P=115000000=115,且该题目中 X 服从二项分
布,由公式得 E(X)=np=150×115=10,故选 B.
2.设一随机试验的结果只有 A 和 A 两种情况,P(A)=p,
令随机变量 X=10, ,AA出 不现 出, 现. ,则 X 的方差为(
(2)从上述比赛中选择一个主场和一个客场,求李明的投篮 命中率一场超过 0.6,一场不超过 0.6 的概率;
(3)记-x 为表中 10 个命中次数的平均数.从上述比赛中随 机选择一场,记 X 为李明在这场比赛中的命中次数,比较 EX 与-x 的大小.(只需写出结论)
湘教版高中数学选修第三册Ⅱ第一章概率与统计教案第课离散型随机变量的期望与方差

课 题: 1.2离散型随机变量的期望与方差(一)教学目的:1了解离散型随机变量的期望的意义,会根据离散型随机变量的分布列求出期望.⒉理解公式“E (a ξ+b )=aE ξ+b ”,以及“若ξ:B (n,p ),则E ξ=np ”.能熟练地应用它们求相应的离散型随机变量的期望 教学重点:离散型随机变量的期望的概念教学难点:根据离散型随机变量的分布列求出期望 授课类型:新授课 课时安排:2课时教 具:多媒体、实物投影仪 教学过程: 一、复习引入:1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出若ξ是随机变量,b a b a ,,+=ξη是常数,则η也是随机变量并且不改变其属性(离散型、连续型)5. 分布列:设离散型随机变量ξ可能取得值为x 1,x 2,…,x 3,…,ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表6. 分布列的两个性质: ⑴P i ≥0,i =1,2,...; ⑵P 1+P 2+ (1)7.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是k n k kn n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1).称这样的随机变量服从二项分布,记作~(,),其中,为参数,并记kn k k n q p C -=b (k ;n ,p ).8. 离散型随机变量的几何分布:在独立重复试验中,某事件第一次发生时,所作试验的次数ξ也是一个正整数的离散型随机变量.“k ξ=”表示在第k 次独立重复试验时事件第一次发生.如果把k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,P(k A )=p ,P(k A )=q(q=1-p),那么112311231()()()()()()()k k k k k P k P A A A A A P A P A P A P A P A q pξ---====L L (k =0,1,2,…, p q -=1).于是得到随机变量ξ的概率分布如下:称这样的随机变量服从几何分布记作g (k ,p )= 1k qp -,其中k =0,1,2,…, p q -=1.二、讲解新课:根据已知随机变量的分布列,我们可以方便的得出随机变量的某些制定的概率,但分布列的用途远不止于此,例如:已知某射手射击所得环数ξ的分布在n 次射击之前,可以根据这个分布列估计n 次射击的平均环数.这就是我们今天要学习的离散型随机变量的期望根据射手射击所得环数ξ的分布列,我们可以估计,在n 次射击中,预计大约有n n P 02.0)4(=⨯=ξ 次得4环;n n P 04.0)5(=⨯=ξ 次得5环;…………n n P 22.0)10(=⨯=ξ 次得10环.故在n 次射击的总环数大约为+⨯⨯n 02.04++⨯⨯Λn 04.05n ⨯⨯22.010+⨯=02.04(++⨯Λ04.05n ⨯⨯)22.010,从而,预计n 次射击的平均环数约为+⨯02.04++⨯Λ04.0532.822.010=⨯.这是一个由射手射击所得环数的分布列得到的,只与射击环数的可能取值及其相应的概率有关的常数,它反映了射手射击的平均水平.对于任一射手,若已知其射击所得环数ξ的分布列,即已知各个)(i P =ξ(i =0,1,2,…,10),我们可以同样预计他任意n 次射击的平均环数:+=⨯)0(0ξP +=⨯)1(1ξP …)10(10=⨯+ξP .1.则称 =ξE +11p x +22p x …++n n p x … 为ξ的数学期望,简称期望. 2. 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平3. 平均数、均值:一般地,在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有=1p =2p …np n 1==,=ξE +1(x +2x …nx n 1)⨯+,所以ξ的数学期望又称为平均数、均值 4. 期望的一个性质:若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,它们的分布列为于是=ηE ++11)(p b ax ++22)(p b ax …+++n n p b ax )(…=+11(p x a +22p x …++n n p x …)++1(p b +2p …++n p …) =b aE +ξ,由此,我们得到了期望的一个性质:b aE b a E +=+ξξ)( 5.若ξ:B (n,p ),则E ξ=np 证明如下:∵ kn k k n k n k k n q p C p p C k P --=-==)1()(ξ, ∴ =ξE 0×n n q p C 00+1×111-n n q p C +2×222-n n q p C +…+k ×kn k k n q p C -+…+n ×0q p C n n n .又∵ 11)]!1()1[()!1()!1()!(!!--=-----⋅=-⋅=k n kn nC k n k n n k n k n k kC ,∴ =ξE (np 0011n n C p q --+2111--n n q p C +…+)1()1(111------k n k k n q p C +…+)0111q p C n n n ---np q p np n =+=-1)(. 故 若ξ~B (n ,p ),则=ξE np .三、讲解范例:例1. 篮球运动员在比赛中每次罚球命中得1分,罚不中得0分,已知他命中的概率为0.7,求他罚球一次得分ξ的期望解:因为3.0)0(,7.0)1(====ξξP P , 所以7.03.007.01=⨯+⨯=ξE例2. 随机抛掷一枚骰子,求所得骰子点数ξ的期望 解:∵6,,2,1,6/1)(⋅⋅⋅===i i P ξ,6/166/126/11⨯+⋅⋅⋅+⨯+⨯=∴ξE =3.5例3. 有一批数量很大的产品,其次品率是15%,对这批产品进行抽查,每次抽取1件,如果抽出次品,则抽查终止,否则继续抽查,直到抽出次品为止,但抽查次数不超过10次求抽查次数ξ的期望(结果保留三个有效数字)解:抽查次数ξ取1ξ≤≤10的整数,从这批数量很大的产品中抽出1件检查的试验可以认为是彼此独立的,取出次品的概率是0.15,取出正品的概率是0.85,前1-k 次取出正品而第k 次(k =1,2,…,10)取出次品的概率:15.085.0)(1⨯==-k k P ξ(k =1,2, (10)需要抽查10次即前9次取出的都是正品的概率:985.0)10(==ξP 由此可得ξ的概率分布如下:根据以上的概率分布,可得ξ的期望35.52316.0101275.0215.01=⨯+⋅⋅⋅+⨯+⨯=ξE例4. 一次英语单元测验由20个选择题构成,每个选择题有4个选项,其中有且仅有一个选项是正确答案,每题选择正确答案得5分,不作出选择或选错不得分,满分100分学生甲选对任一题的概率为0.9,学生乙则在测验中对每题都从4个选择中随机地选择一个,求学生甲和乙在这次英语单元测验中的成绩的期望解:设学生甲和乙在这次英语测验中正确答案的选择题个数分别是ηξ,,则ξ~ B (20,0.9),)25.0,20(~B η,525.020,189.020=⨯==⨯=∴ηξE E由于答对每题得5分,学生甲和乙在这次英语测验中的成绩分别是5ξ和5η所以,他们在测验中的成绩的期望分别是:2555)(5)5(,90185)(5)5(=⨯===⨯==ηηξξE E E E例5.随机的抛掷一个骰子,求所得骰子的点数ξ的数学期望.所以=ξE 1×61+2×61+3×61+4×61+5×61+6×61=(1+2+3+4+5+6)×61=3.5.抛掷骰子所得点数ξ的数学期望,就是ξ的所有可能取值的平均值.例6.某城市出租汽车的起步价为10元,行驶路程不超出4km 时租车费为10元,若行驶路程超出4km ,则按每超出lkm 加收2元计费(超出不足lkm 的部分按lkm 计).从这个城市的民航机场到某宾馆的路程为15km .某司机经常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm 路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量.设他所收租车费为η(Ⅰ)求租车费η关于行车路程ξ的关系式; (Ⅱ)若随机变量ξ的分布列为求所收租车费η的数学期望.(Ⅲ)已知某旅客实付租车费38元,而出租汽车实际行驶了15km ,问出租车在途中因故停车累计最多几分钟?解:(Ⅰ)依题意得 η=2(ξ-4)十10,即 η=2ξ+2;(Ⅱ)=ξE 4.161.0183.0175.0161.015=⨯+⨯+⨯+⨯ ∵ η=2ξ+2∴ =ηE 2E ξ+2=34.8 (元)故所收租车费η的数学期望为34.8元.(Ⅲ)由38=2ξ+2,得ξ=18,5⨯(18-15)=15 所以出租车在途中因故停车累计最多15分钟 四、课堂练习:1. 口袋中有5只球,编号为1,2,3,4,5,从中任取3球,以ξ表示取出球的最大号码,则E ξ=( )A .4;B .5;C .4.5;D .4.75 答案:C2. 篮球运动员在比赛中每次罚球命中的1分,罚不中得0分.已知某运动员罚球命中的概率为0.7,求⑴他罚球1次的得分ξ的数学期望; ⑵他罚球2次的得分η的数学期望; ⑶他罚球3次的得分ξ的数学期望.解:⑴因为7.0)1(==ξP ,3.0)0(==ξP ,所以=ξE 1×)1(=ξP +0×7.0)0(==ξP⑵η的概率分布为所以 =ξE 0×09.0+1×42.0+2×98.0=1.4. ⑶的概率分布为所以 =ξE 0×027.0+1×189.0+2×98.0=2.1.3.设有m 升水,其中含有大肠杆菌n 个.今取水1升进行化验,设其中含有大肠杆菌的个数为ξ,求ξ的数学期望.分析:任取1升水,此升水中含一个大肠杆菌的概率是m1,事件“ξ=k ”发生,即n 个大肠杆菌中恰有k 个在此升水中,由n 次独立重复实验中事件A (在此升水中含一个大肠杆菌)恰好发生k 次的概率计算方法可求出P (ξ=k ),进而可求Eξ.解:记事件A :“在所取的1升水中含一个大肠杆菌”,则P(A)=m1. ∴ P (ξ=k )=P n (k )=C knm 1)k (1-m1)n -k(k =0,1,2,….,n ).∴ ξ~B (n ,m 1),故 Eξ =n ×m 1=mn五、小结 :(1)离散型随机变量的期望,反映了随机变量取值的平均水平;(2)求离散型随机变量ξ的期望的基本步骤:①理解ξ的意义,写出ξ可能取的全部值;②求ξ取各个值的概率,写出分布列;③根据分布列,由期望的定义求出E ξ 公式E (a ξ+b )= aE ξ+b ,以及服从二项分布的随机变量的期望E ξ=np六、课后作业:1.一袋子里装有大小相同的3个红球和两个黄球,从中同时取出2个,则其中含红球个数的数学期望是 (用数字作答) 解:令取取黄球个数ξ (=0、1、2)则ξ的要布列为于是 E (ξ)=0×10+1×5+2×10=0.8故知红球个数的数学期望为1.22.袋中有4个黑球、3个白球、2个红球,从中任取2个球,每取到一个黑球记0分,每取到一个白球记1分,每取到一个红球记2分,用ξ表示得分数 ①求ξ的概率分布列 ②求ξ的数学期望解:①依题意ξ的取值为0、1、2、3、4ξ=0时,取2黑 p(ξ=0)=612924=C Cξ=1时,取1黑1白 p(ξ=1)=31291314=⋅C C C ξ=2时,取2白或1红1黑p(ξ=2)= 2923C C +3611291412=⋅C C Cξ=3时,取1白1红,概率p(ξ=3)= 61291213=⋅C C C ξ=4时,取2红,概率p(ξ=4)= 3612922=C C∴ξ分布列为(2)期望E ξ=0×61+1×31+2×3611+3×61+4×361=9143.学校新进了三台投影仪用于多媒体教学,为保证设备正常工作,事先进行独立试验,已知各设备产生故障的概率分别为p 1、p 2、p 3,求试验中三台投影仪产生故障的数学期望解:设ξ表示产生故障的仪器数,A i 表示第i 台仪器出现故障(i=1、2、3)i A 表示第i 台仪器不出现故障,则:p(ξ=1)=p(A 1·2A ·3A )+ p(1A ·A 2·3A )+ p(1A ·2A ·A 3) =p 1(1-p 2) (1-p 3)+ p 2(1-p 1) (1-p 3)+ p 3(1-p 1) (1-p 2) = p 1+ p 2+p 3-2p 1p 2-2p 2p 3-2p 3p 1+3p 1p 2p 3p(ξ=2)=p(A 1· A 2·A )+ p(A 1·2A ·3A )+ p(1A ·A 2·A 3) = p 1p 2 (1-p 3)+ p 1p 3(1-p 2)+ p 2p 3(1-p 1) = p 1p 2+ p 1p 3+ p 2p 3-3p 1p 2p 3 p(ξ=3)=p(A 1· A 2·A 3)= p 1p 2p 3∴ξE =1×p(ξ=1)+2×p(ξ=2)+3×p(ξ=3)= p 1+p 2+p 3注:要充分运用分类讨论的思想,分别求出三台仪器中有一、二、三台发生故障的概率后再求期望4.一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个,含红球个数的数学期望是 1.2解:从5个球中同时取出2个球,出现红球的分布列为2.13.026.011.00=⨯+⨯+⨯=∴ξE5. A 、B 两个代表队进行乒乓球对抗赛,每队三名队员,A 队队员是321,,A A A ,B 队队员是321,,B B B ,按以往多次比赛的统计,对阵队员之间胜负概率如下:现按表中对阵方式出场,每场胜队得1分,负队得0分,设队,队最后所得分分别为ξ,η(1)求ξ,η的概率分布; (2)求ξE ,ηE 解:(Ⅰ)ξ,η的可能取值分别为3,2,1,0 ()()()()2535353310,525253315352315353321,75285253325252315352322,2785252323=⨯⨯===⨯⨯+⨯⨯+⨯⨯===⨯⨯+⨯⨯+⨯⨯===⨯⨯==ξξξξP P P P 根据题意知3=+ηξ,所以 ()()()()()()()()25303,5212,752821,75830================ξηξηξηξηP P P P P P P P(Ⅱ)15222530521752827583=⨯+⨯+⨯+⨯=ξE ; 因为3=+ηξ,所以15233=-=ξηE E 七、板书设计(略)八、课后记:。
2.3离散型随机变量的均值与方差(经典系统全面知识点梳理)

课题:2.3离散型随机变量的均值与方差
学科:数学 年级:高二 班级:
学习目标:
1.理解取有限个值的离散型随机变量的均值、方差的概念.
2.能计算简单离散型随机变量的均值、方差,并能解决一些简单实际问题.
3.了解正态密度曲线的特点及曲线所表示的意义,并进行简单应用.
二、教学重点与难点
重点:
理解离散型随机变量的均值和方差的含义。
难点:
利用离散型随机变量的均值和方差解决实际问题。
[知识梳理]
1.离散型随机变量的均值与方差
若离散型随机变量X 的分布列为
(1)均值
称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平.
(2)方差
称D (X )=∑i =1n (x i -E (X ))2p i 为随机变量X 的方差,它刻画了随机变量X 与其均值
E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差.
2.均值与方差的性质
(1)E (aX +b )=aE (X )+b .
(2)D (aX +b )=a 2D (X )(a ,b 为常数).
3.两点分布与二项分布的均值、方差
(1)若X服从两点分布,则E(X)=p,D(X)=p(1-p).
(2)若X~B(n,p),则E(X)=np,D(X)=np(1-p).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本次研修,自己选定的重难
点是什么? 学段 学科 年级 教材版本 章节 高中 数学 高三 第三节
重难点问题名称 离散型随机变量的方差
自我诊断
想一想,自己在教学中,是“眉毛胡子一把抓”,还
是聚焦教学内容的重点与学生学习的难点进行教学
在教学中,没有很好地因材施教,针对性辅
导不强
说一说,自己在本次研修中选定的教学重难点教学
中,有哪些经验或者较有效的一招是什么(举例说
明即可)
课前搜集相关知识,方便理解
说一说,自己在本次研修中选定的教学重难点教学
中,存在的主要问题是什么
知识散,讲解太细,容易逻辑错位