系统动力学(自己总结)

合集下载

系统动力学

系统动力学

系统动力学(System Dynamics)是研究信息反馈系统动态行为的计算机仿真方法,它巧妙地把信息反馈的控制原理与因果关系的逻辑分析结合起来,面对复杂的实际问题,从研究系统的微观结构人手,建立系统的仿真模型,并对模型实施各种不同的“政策试验”,通过计算机仿真展示系统的宏观行为,寻求解决问题的正确途径,即系统动力学模型能够处理高阶次、非线性、多重反馈的复杂时变系统的有关问题。

在生态学经济系统优化管理中得到广泛应用。

系统动力学模型由系统结构流程图和构造方程组成,二者相辅相成,融为一体。

流程图反映系统中各变量间因果关系和反馈控制网络,正反馈环有强化系统功能,表现为偏离目标的发散行为;负反馈环则有抑制功能,能跟踪目标产生收敛机制。

二者组合使系统在增长与衰减交替过程中保持动态平衡,达到预期目标。

所以,流程图用以体现实际系统的结构特征,构造方程是变量间定量关系的数学表达式,可由流程图直接确定或由相关函数给出,可以是线性或非线性函数关系,其一般表达式为:(,,,)i i i i dX f X V R P dt= (1) 其差分形式可形成:()()(,,,)t i i i i X t t X f X V R P t +∆=+∙∆ (2)式中,X 为状态变量,V 为辅助变量,R 为流率变量,P 为参数,t 为仿真时间,t ∆为仿真步长。

系统动力学模型的建立,首先是确定系统分析目的;其次是确定系统边界,即系统分析涉及的对象和范围;之后是建立因果关系(反馈回路)图和模型流程图;然后写出系统动力学方程;最后进行仿真试验和计算。

模型建立与模拟运行应用Stella 软件系统。

Stella 系统是动力学模型系统之一,它具有友好的图形界面,包含3个联结层:最上一层是映射层,在映射层可以建立模型的基本结构。

中间一层是图标层,有分别代表积累变量、流速变量和参数变量的图标,是建立模型的主要“组件”,给每一“组件”赋予初始值或函数关系,再通过信息流将这些“组件”连接起来,就是系统的模型流程图;同时,还可以在这一层形成用来采集数据的图表。

系统动力学研究综述

系统动力学研究综述

系统动力学研究综述摘要本文首先对系统动力学进行简要概述,并回顾其在国外和国内的发展历程。

其次通过对文献综述的方式,对系统动力学的研究领域进行梳理和罗列,并且介绍了系统动力学的研究成果和应用情况。

本文的目的在于对系统动力学的发展和应用进行清洗明确的概括的,增进系统动力学的了解,并表述其目前的发展趋势。

关键词:系统动力学、综述、应用现状、研究成果一、引言系统动力学自创立以来,其理论、方法和工具不断完善,应用范围不断拓展,在解决经济、社会、环境、生态、能源、农业、工业、军事等诸多领域的复杂问题中发挥了重要作用。

随着现代社会复杂性、动态性、多变性等问题的逐步加剧,更加需要类似系统动力学这样的方法,综合系统论、控制论、信息论等,并于经济学、管理学交叉,使人们清晰认识和深入处理产生于现代社会的非线性和时变现象,做出长期的、动态的、战略的分析和研究。

这位系统动力学方法的进一步发展提供了广阔的平台,也为深入研究系统动力学的应用提供了机遇和挑战。

为此,本文从系统动力学的研究与应用现状着手,通过总结和分析当前系统动力学的应用情况,探寻系统动力学未来的应用前景和方向,希望能促进系统动力学方法在现代社会中的广泛应用。

二、系统动力学概述系统动力学(System Dynamics,简称SD)起源于控制论。

自Wienes在40年代建立控制论以来,随着现代工业与科学技术的日益发展,控制论的概念、领域和工具也得以拓展。

五十年代初,中国把自动控制理论翻译为“自动调节原理”。

苏联的B.B. COJIOJIOBHNKOB教授,在研究有关随即控制问题时,引入“系统动力学”的概念。

钱学森先生结合龚恒问题,编著了《工程控制论》,也阐述了系统动力学的有关问题。

苏联与后总共对系统动学的研究,是针对工程技术问题,限于自然科学领域。

美国在50年代后期,在系统动力学方面取得了很大的突破。

JW Forrester等发表了一系列关于SD方面的论文,使它的应用不限于工程技术,而是拓展到工业、经济、管理、生态、医药等各个领域,并出现了五花八门的各种动力学。

系统动力学原理

系统动力学原理

系统动力学原理第一篇:系统动力学原理5.1 系统动力学理论5.1.1 系统动力学的概念系统动力学(简称SD—System Dynamics),是由美国麻省理工学院(MIT)的福瑞斯特(J.W.Forrester)教授创造的,一门以控制论、信息论、决策论等有关理论为理论基础,以计算机仿真技术为手段,定量研究非线性、高阶次、多重反馈复杂系统的学科。

它也是一门认识系统问题并解决系统问题的综合交叉学科[1-3]。

从系统方法论来说:系统动力学是结构的方法、功能的方法和历史的方法的统一。

它基于系统论,吸收了控制论、信息论的精髓,是一门综合自然科学和社会科学的横向学科。

系统动力学对问题的理解,是基于系统行为与内在机制间的相互紧密的依赖关系,并且透过数学模型的建立与操作的过程而获得的,逐步发掘出产生变化形态的因、果关系,系统动力学称之为结构。

系统动力学模型不但能够将系统论中的因果逻辑关系与控制论中的反馈原理相结合,还能够从区域系统内部和结构入手,针对系统问题采用非线性约束,动态跟踪其变化情况,实时反馈调整系统参数及结构,寻求最完善的系统行为模式,建立最优化的模拟方案。

5.1.2 系统动力学的特点系统动力学是一门基于系统内部变量的因果关系,通过建模仿真方法,全面动态研究系统问题的学科,它具有如下特点[4-8]:(1)系统动力学能够研究工业、农业、经济、社会、生态等多学科系统问题。

系统动力学模型能够明确反映系统内部、外部因素间的相互关系。

随着调整系统中的控制因素,可以实时观测系统行为的变化趋势。

它通过将研究对象划分为若干子系统,并且建立各个子系统之间的因果关系网络,建立整体与各组成元素相协调的机制,强调宏观与微观相结合、实时调整结构参数,多方面、多角度、综合性地研究系统问题。

(2)系统动力学模型是一种因果关系机理性模型,它强调系统与环境相互联系、相互作用;它的行为模式与特性主要由系统内部的动态结构和反馈机制所决定,不受外界因素干扰。

系统动力学定义(精)

系统动力学定义(精)

系统动力学定义
系统动力学出现于1956年,是美国麻省理工学院JayW.Forrester福瑞斯特教授最早提出的一种对社会经济问题进行系统分析的方法论和定性与定量相结合的分析方法,是一门以系统反馈控制理论为基础,以计算机仿真技术为主要手段,定量地研究系统发展的动态行为的一门应用学科,属于系统科学的一个分支。

复旦大学管理学院王其藩教授在他所著的《高级系统动力学》中给出了系统动力学的内涵曰:系统动力学是一门研究信息反馈系统的学科,是一门探索如何认识和解决系统问题的科学,是一门交叉、综合性的学科。

系统动力学认为,系统的行为模式与特性主要地取决于其内部的动态结构与反馈机制,系统在内外动力和制约因素的作用下按一定的规律发展和演化。

系统动力学是从运筹学的基础上改进发展起来的。

鉴于运筹学太拘泥于“最优解”这一不足,系统动力学从观点上做了基本的代写硕士论文改变,它不依据抽象的假设,而是以现实存在的世界为前提,不追求“最佳解”,而是寻求改善系统行为的机会和途径。

由此,系统动力学在传统管理程序的背景下,引进信息反馈和系统力学理论,把社会问题流体化,从而获得描述社会系统构造的一般方法,并且通过电子计算机强大的记忆能力和高速运算能力而获得对真实系统的跟踪,实现了社会系统的可重复性实验。

不同于运筹学侧重于依据数学逻辑推演而获得解答,系统动力学是依据对系统实际的观测所获得的信息建立动态仿真模型,并通过计算机实验室来获得对系统未来行为的描述。

当然,系统动力学建立的规范模型也只是实际系统的简化与代表。

一个模型只是实际系统一个断面或侧面,系统动力学认为,不存在终极的模型,任何模型都只是在满足预定要求的条件下的相对成果。

模型与现实系统的关系可用下图形象地加以说明。

系统动力学

系统动力学

1.系统动力学基本概念
因果关系图:
表示系统反馈结构的重要工具,因果图包 含多个变量,变量之间由标出因果关系的 箭头所连接。变量是由因果链所联系,因 果链由箭头所表示。
杯中水位 + 斟水速率 + + 决定添水 水位差 + 期望 水位
因果链极性:
每条因果链都具有极性,或者为正(+)或者 为负(-)。
反馈回路的极性:
反馈回路的极性取决于回路中各因果链符 号。回路极性也分为正反馈和负反馈,正 反馈回路的作用是使回路中变量的偏离增 强,负则趋于稳定。
1.系统动力学基本概念
系统动力学模型流图:是指由专用符号组成用以表示因果关
系环中各个变量之间相互关系的图示。专用符号主要如下
1.系统动力学基本概念
状态变量:代表事物(包括物质和非物质的)的积累。其数值大小是表
系统流图
公路货物运输系统流图,如图所示
公路货物运输系统用公路货运量 ( LGLHY) 总人口数 ( LZRK ) 和GDP 作 为每个子系统的状态变量,分别用公路货运量年增长量 ( DHY) 年净增 人口数 ( DRK ) GDP 年增长量 ( DGDP ) 作为速率变量,其他变量均为 辅助变量
Contents
系统动力学基本概念 系统动力学分析问题的步骤 系统动力学的应用
1 2
3
5
3.系统动力学的应用
系统动力学以一种结构性的视角,通过对各种系统关 系进行精确的定量分析研究解决问题。系统动力学的应用 几乎遍及各类系统,深入到各个领域,例如在区域货运系 统与经济互动关系研究、城市私家车拥有量发展问题、 航空系统客运量预测、 城市物流园区规划中的需求预测、 机动化发展政策对城市发展、城市交通系统的影响以及城 市公交价格组合策略研究等方面都有所应用。 下例是将系统动力学的方法应用于公路货物运输系统, 建立货物运输系统动力学模型,对未来运量预测,并以黑 龙江省公路货物运输相关统计数据对模型进行验证。

系统动力学

系统动力学

2.系统动力学的原理
主要变量和敏感变量与子结构 在系统中总是存在一部分相对重要的变量,它们对系 统的结构与行为的性质、特征的作用与影响比较大,而且 总是被包含于主回路之中。 系统动力学认为,系统中往往存在一些灵敏变量(或 参数)与子结构,它们对干扰与涨落的反应十分敏感和强 烈,一旦系统处于临界状态,涨落对这些灵敏变量(或称 涨落点)的作用可能导致新旧结构的更迭。若这类灵敏变 量处于主回路中或两种极性的回路的联结处,由于灵敏变 量(往往是非线性的)本身的微小变化或由于涨落的作用, 将使主回路转移,或改变主回路极性,甚至导致整个系统 的结构与行为产生巨大的变化或质的变化。
1.系统动力学发展历程
• 1968年出版《系统原理》(Principles of Systems)一书,论 述了系统动力学的基本原理和方法。 • 1969年出版《城市动力学》(Urban Dynamics),研究波士 顿市的各种问题。 • 1971年进一步把研究对象扩大到世界范围,出版《世界动 力学》(World Dynamics)一书,提出了“世界模型II”。 • 1972年他的学生梅多斯教授等出版了《增长的极限》(The Limits to Growth)一书,提出了更为细致的“世界模型III”。 这个由罗马俱乐部主持的世界模型的研究报告已被翻译成 34种语言,在世界上发行了600多万册。 • 两个世界模型在国际上引起强烈的反响。
目录
1 2
系统动力学发展历程 系统动力学原理 系统动力学基本概念 系统动力学方法 系统动力学模拟语言 系统动力学实例分析
3 4 5
6
2.系统动力学的原理
什么是系统动力学? • 系统动力学(System Dynamics)是一门分析研究信息反馈系 统的学科,也是一门认识系统问题和解决系统问题交叉的 综合性的新学科。 • 它是系统科学和管理科学中的一个分支,也是一门沟通自 然科学和社会科学等领域的横向学科。 • 从系统方法论来说,系统动力学的方法是结构方法、功能 方法和历史方法的统一。 • 系统动力学认为,系统的行为模式与特性主要地取决于其 内部的动态结构与反馈机制。

系统动力学方法

系统动力学方法

中文名特 点概 念释 义目录系统动力学方法本词条缺少概述图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧!系统动力学是通过分析社会经济系统内部各变量之间的反馈结构关系来研究整系统整体行为的理论。

系统动力学认为系统的行为是由系统的结构所决定的,与产业经济学的结构主义分析方法是一致的;系统动力学更进一步指出系统的结构是动态反馈结构从而可用控制论的方法来研究,这又与产业经济学中各产业之间的联系和产业内各企业之间的相互作用产业经济是十分有效的。

系统动力学尤其注i 重各经是一致的,所以用系统动力学方法来研究产业经济是值要求不高,故特别适合像产业经济这种许老济变量之间的动态反馈结构,面对变量的精确数值用系统动力学来研究产业结构,方面难以定量的复杂系统的研究。

现在国内外已有许多学着产业布局、产业组织等诸多产业经济对象,并取得了令人满意的结果。

[1](1)适用于处理长期性和周期性的问题。

如自然界的生态平衡、人的生命周期和社会问题中的经济危机等都呈现周期性规律并需通过较长的历史阶段来观察,已有不少系统动力学模型对其机制作出了较为科学的解释。

(2)适用于对数据不足的问题进行研究。

建模中常常遇到数据不足或某些数据难于量化的问题,系统动力学籍各要素间的因果关系及有限的数据及一定的结构仍可进行推算分析。

(3)适用于处理精度要求不高的复杂的社会经济问题。

上述总是常因描述方程是高阶非线性动态的,应用一般数学方法很难求解。

系统动力学则藉助于计算机及仿真技术仍能获得主要信息。

(4)强调有条件预测。

本方法强调产生结果的条件,采取“如果……则"的形式,对预测未来提供了新的手段。

(1)因果反馈。

如果事件A (原因)引起事件B (结果),AB 便形成因果关系。

若A 增加引起B 增加,称AB 构成正因果关系;若A 增加引起B 减少,则称为负因果关系。

两个以上因果关系链首尾相连构成反馈回路,亦分正、负反馈回路。

(2)积累。

系统动力学简介

系统动力学简介

1990年,Forrester的学生Peter Senge发表 《第五项修炼》(the Fifth Decipline),该 书被誉为20世纪最重要的管理著作之一。
பைடு நூலகம்
Peter Senge
什么是系统动力学?
系统动力学(System Dynamics)是一门分析研究信 息反馈系统的学科,也是一门认识系统问题和解决 系统问题交叉的综合性的新学科。 它是系统科学和管理科学中的一个分支,也是一门 沟通自然科学和社会科学等领域的横向学科。 从系统方法论来说,系统动力学的方法是结构方法、 功能方法和历史方法的统一。 系统动力学认为,系统的行为模式与特性主要地取 决于其内部的动态结构与反馈机制。
关于情人之间相互作用的二阶系统
The Red and the Black by Stendhal
Gone with the Wind by Margaret Mitchell Romeo and Juliet by William Shakespeare
罗密欧与朱丽叶 Romeo and Juliet are madly in love with each other. With each secret meeting, Romeo’s love for Juliet grows. Because he loves her, he does everything he can to impress her. Juliet is flattered by his attention and, in return, her love for Romeo also grows. Because Romeo senses that Juliet loves him, he allows his passion to soar(骤升,升腾).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

系统动力学 1. 系统动力学的发展 系统动力学(简称SD—system dynamics)的出现于1956年,创始人为美国麻省理工学院的福瑞斯特教授。系统动力学是福瑞斯特教授于1958年为分析生产管理及库存管理等企业问题而提出的系统仿真方法,最初叫工业动态学。是一门分析研究信息反馈系统的学科,也是一门认识系统问题和解决系统问题的交叉综合学科。从系统方法论来说:系统动力学是结构的方法、功能的方法和历史的方法的统一。它基于系统论,吸收了控制论、信息论的精髓,是一门综合自然科学和社会科学的横向学科。 系统动力学的发展过程大致可分为三个阶段: 1)系统动力学的诞生—20世纪50-60年代 由于SD这种方法早期研究对象是以企业为中心的工业系统,初名也就叫工业动力学。这阶段主要是以福雷斯特教授在哈佛商业评论发表的《工业动力学》作为奠基之作,之后他又讲述了系统动力学的方法论和原理,系统产生动态行为的基本原理。后来,以福雷斯特教授对城市的兴衰问题进行深入的研究,提出了城市模型。 2)系统动力学发展成熟—20世纪70-80 这阶段主要的标准性成果是系统动力学世界模型与美国国家模型的研究成功。这两个模型的研究成功地解决了困扰经济学界长波问题,因此吸引了世界范围内学者的关注,促进它在世界范围内的传播与发展,确立了在社会经济问题研究中的学科地位。 3)系统动力学广泛运用与传播—20世纪90年代-至今 在这一阶段,SD在世界范围内得到广泛的传播,其应用范围更广泛,并且获得新的发展.系统动力学正加强与控制理论、系统科学、突变理论、耗散结构与分叉、结构稳定性分析、灵敏度分析、统计分析、参数估计、最优化技术应用、类属结构研究、专家系统等方面的联系。许多学者纷纷采用系统动力学方法来研究各自的社会经济问题,涉及到经济、能源、交通、环境、生态、生物、医学、工业、城市等广泛的领域。

2.系统动力学的原理 系统动力学是一门分析研究信息反馈系统的学科。它是系统科学中的一个分支,是跨越自然科学和社会科学的横向学科。系统动力学基于系统论,吸收控制论、信息论的精髓,是一门认识系统问题和解决系统问题交叉、综合性的新学科。 从系统方法论来说,系统动力学的方法是结构方法、功能方法和历史方法的统一。 系统动力学是在系统论的基础上发展起来的,因此它包含着系统论的思想。系统动力学是以系统的结构决定着系统行为前提条件而展开研究的。它认为存在系统内的众多变量在它们相互作用的反馈环里有因果联系。反馈之间有系统的相互联系,构成了该系统的结构,而正是这个结构成为系统行为的根本性决定因素。 人们在求解问题时都是想获得较优的解决方案,能够得到较优的结果。所以系统动力学解决问题的过程实质上也是寻优过程,来获得较优的系统功能。系统动力学强调系统的结构并从系统结构角度来分析系统的功能和行为,系统的结构决定了系统的行为。因此系统动力学是通过寻找系统的较优结构,来获得较优的系统行为。 系统动力学把系统看成一个具有多重信息因果反馈机制。因此系统动力学在经过剖析系统,获得深刻、丰富的信息之后建立起系统的因果关系反馈图,之后再转变为系统流图,建立系统动力学模型。最后通过仿真语言和仿真软件对系统动力学模型进行计算机模拟,来完成对真实系统的结构进行仿真。通过上述过程完成了对系统结构的仿真,接下来就要寻找较优的系统结构。 寻找较优的系统结构被称作为政策分析或优化,包括参数优化、结构优化、边界优化。参数优化就是通过改变其中几个比较敏感参数来改变系统结构来寻找较优的系统行为。结构优化是指主要增加或减少模型中的水平变量、速率变量来改变系统结构来获得较优的系统行为。边界优化是指系统边界及边界条件发生变化时引起系统结构变化来获得较优的系统行为。系统动力学就是通过计算机仿真技术来对系统结构进行仿真,寻找系统的较优结构,以求得较优的系统行为。 总结:系统动力学把系统的行为模式看成是由系统内部的信息反馈机制决定的。通过建立系统动力学模型,利用DYNAMO仿真语言和Vensim软件在计算机上实现对真实系统的仿真,可以研究系统的结构、功能和行为之间的动态关系,以便寻求较优的系统结构和功能。

2. 系统动力学的基本概念

①系统:一个由相互区别、相互作用的各部分(即单元或要素)有机地联结在一起,为同一目的完成某种功能的集合体。 ②反馈:系统内同一单元或同一子块其输出与输入间的关系。对整个系统而言,“反馈”则指系统输出与来自外部环境的输入的关系。 ③反馈系统:反馈系统就是包含有反馈环节与其作用的系统。它要受系统本身的历史行为的影响,把历史行为的后果回授给系统本身,以影响未来的行为。如库存订货控制系统。 ④反馈回路:反馈回路就是由一系列的因果与相互作用链组成的闭合回路或者说是由信息与动作构成的闭合路径。 ⑤因果回路图(CLD):表示系统反馈结构的重要工具,因果图包含多个变量,变量之间由标出因果关系的箭头所连接。变量是由因果链所联系,因果链由箭头所表示。 ⑥因果链极性:每条因果链都具有极性,或者为正(+)或者为负(—)。极性是指当箭尾端变量变化时,箭头端变量会如何变化。极性为正是指两个变量的变化趋势相同,极性为负指两个变量的变化趋势相反。 ⑦反馈回路的极性:反馈回路的极性取决于回路中各因果链符号。回路极性也分为正反馈和负反馈,正反馈回路的作用是使回路中变量的偏离增强,而负反馈回路则力图控制回路的变量趋于稳定。 ⑧确定回路极性的方法  若反馈回路包含偶数个负的因果链,则其极性为正;  若反馈回路包含奇数个负的因果链,则其极性为负。 ⑨系统流图:表示反馈回路中的各水平变量和各速率变量相互联系形式及反馈系统中各回路之间互连关系的图示模型。 水平变量:也被称作状态变量或流量,代表事物(包括物质和非物质的)的积累。其数值大小是表示某一系统变量在某一特定时刻的状况。可以说是系统过去累积的结果,它是流入率与流出率的净差额。它必须由速率变量的作用才能由某一个数值状态改变另一数值状态。 速率变量:又称变化率,随着时间的推移,使水平变量的值增加或减少。速率变量表示某个水平变量变化的快慢。 ⑩水平变量和速率变量的符号标识:  水平变量用矩形表示,具体符号中应包括有描述输入与输出流速率的流线、变量名称等。  速率变量用阀门符号表示,应包括变量名称、速率变量控制的流的流线和其所依赖的信息输入量。 系统动力学一个突出的优点在于它能处理高阶次、非线性、多重反馈复杂时变系统的问题。 高阶次:系统阶数在四阶或五阶以上者称为高阶次系统。典 型的社会一经济系统的系统动力学模型阶数则约在十至数百之间。如美国国家模型的阶数在两百以上。 多重回路:复杂系统内部相互作用的回路数目一般在三个或四个以上。诸回路中通常存在一个或一个以上起主导作用的回路,称为主回路。主回路的性质主要地决定了系统内部反馈结构的性质及其相应的系统动态行为的特性,而且,主回路并非固定不变,它们往在在诸回路之间随时间而转移,结果导致变化多端的系统动态行为。 非线性:线性指量与量之间按比例、成直线的关系,在空间和时间上代表规则和光滑的运动;而非线性则指不按比例、不成直线的关系,代表不规则的运动和突变。线性关系是互不相干的独立关系,而非线性则是相互作用,而正是这种相互作用,使得整体不再是简单地等于部分之和,而可能出现不同于“线性叠加”的增益或亏损。实际生活中的过程与系统几乎毫无例外地带有非线性的特征。正是这些非线性关系的耦合导致主回路转移,系统表现出多变的动态行为。

3. 系统动力学的分析步骤

① 问题的识别 。 ② 确定系统边界,即系统分析涉及的对象和范围。 ③ 建立因果关系图和流图。 ④ 写出系统动力学方程。 ⑤ 进行仿真试验和计算等(Vensim软件)。 ⑥ 比较与评价、政策分析——寻找最优的系统行为 系统动力学过程图 4. 相关理解 系统动力学对问题的理解,是基于系统行为与内在机制间的相互紧密的依赖关系,并且透过数学模型的建立与操弄的过程而获得的,逐步发掘出产生变化形态的因、果关系,系统动力学称之为结构。所谓结构是指一组环环相扣的行动或决策规则所构成的网络,例如指导组织成员每日行动与决策的一组相互关联的准则、惯例或政策,这一组结构决定了组织行为的特性。构成系统动力学模式结构的主要元件包含下列几项,“流”(flow)、“积量”(level)、“率量” (rate)、“辅助变量”(auxiliary) (Forrester, 1961)。

系统动力学将组织中的运作,以六种流来加以表示,包括订单(order)流、人员(people)流、钱(money)流、设备(equipment)流、物料流 (material)与资讯(information)流,这六种流归纳了组织运作所包含的基本结构。积量表示真实世界中,可随时间递移而累积或减少的事物,其中包含可见的,如存货水平、人员数;与不可见的,如认知负荷的水平或压力等,它代表了某一时点,环境变量的状态,是模式中资讯的来源;率量表示某一个积量,在单位时间内量的变化速率,它可以是单纯地表示增加、减少或是净增加率,是资讯处理与转换成行动的地方;辅助变量在模式中有三种涵意,资讯处理的中间过程、参数值、模式的输入测试函数。其中,前两种涵意都可视为率量变量的一部分。 系统动力学的建模基本单位-资讯回馈环路结构的基本组成是资讯回馈环路(information feedback loops)。环路是由现况、目标以及现况(积量)与目标间差距所产生的调节行动(率量)所构成的,环路行为的特性在消弭目标与现况间的差距,例如存货的调节环路。除了目标追寻的负环外,还有一种具有自我增强(self-reinforced)的正回馈环路,即因果彼此相互增强的影响关系,系统的行为则是环路间彼此力量消长的过程。但除此之外结构还须包括时间滞延(time delay)的过程,如组织中不论是实体的过程例如生产、运输、传递等,或是无形的过程例如决策过程,以及认知的过程等都存在着或长或短的时间延迟。系统动力学的建模过程,主要就是透过观察系统内六种流的交互运作过程,讨论不同流里,其积量的变化与影响积量的各种率量行为

相关文档
最新文档