机械系统动力学
机械系统的动力学分析

机械系统的动力学分析机械系统是由各种部件组成的复杂结构,它们间的相互作用决定了机械系统的运动和性能。
为了更好地了解和优化机械系统的运行,我们需要进行动力学分析。
动力学分析是研究机械系统在外力作用下的运动规律和力学性质的重要方法。
动力学分析的基础概念是力和运动。
力是机械系统中最基本的因素之一,它的作用可以使机械系统发生位移或变形。
而运动是机械系统的一种状态,描述了机械系统中各个部件之间的相对运动方式和位置关系。
在进行动力学分析时,我们需要建立数学模型来描述机械系统的运动和力学行为。
其中,最常用的方法就是拉格朗日动力学和牛顿动力学。
拉格朗日动力学是以拉格朗日函数为基础的动力学分析方法。
拉格朗日函数考虑了系统的动能和势能,并通过最小作用量原理确定了系统的运动方程。
通过求解拉格朗日方程,可以得到系统的运动轨迹和各个部件受力情况。
而牛顿动力学是以牛顿第二定律为基础的动力学分析方法。
牛顿第二定律描述了力对物体运动的影响,它告诉我们力等于质量乘以加速度。
通过应用牛顿第二定律,可以得到系统的运动方程和受力情况。
动力学分析还需要考虑机械系统的约束条件。
约束条件是指机械系统中各个部件之间的约束关系,包括几何约束和运动约束。
几何约束描述了部件之间的位置关系,如平面约束、直线约束等;而运动约束描述了部件之间的相对运动关系,如滚动约束、滑动约束等。
通过考虑约束条件,可以得到系统的约束运动方程和约束受力情况。
不同的机械系统有不同的动力学特点。
例如,杆件系统是一种常见的机械系统,它由多个连杆和关节组成。
对于杆件系统的动力学分析,可以利用杆件体系的运动方程和受力条件,求解系统的运动轨迹和关节的受力情况。
另外,转子系统是另一种重要的机械系统,包括旋转轴和转子部件。
对于转子系统的动力学分析,我们可以根据系统的惯性特性和受力情况,推导出系统的转动方程和受力方程,从而得到系统的转速、振动和受力特性。
动力学分析在机械系统设计和优化中起着重要的作用。
《机械系统动力学》课件

数值模拟法的缺点是计算量大,计算时间长,且需要较高的数学建模 和数值计算能力。
解析法
01 02 03 04
解析法是通过数学解析的方法来求解机械系统动力学问题的方法。
解析法需要建立系统的数学模型,利用数学解析的方法求解模型的微 分方程或差分方程,以获得系统的解析解。
解析法的优点是能够获得系统的精确解,具有较高的理论价值。
实验研究法的优点是能够直接获取系统的实际动 力学行为,具有较高的真实性和可靠性。
数值模拟法
01
数值模拟法是通过计算机数值计算来模拟机械系统的动态行为的方法 。
02
数值模拟法需要建立系统的数学模型,利用数值计算方法求解模型的 微分方程或差分方程,以获得系统的动态响应。
03
数值模拟法的优点是能够模拟复杂系统的动态行为,具有较高的灵活 性和可重复性。
动能定理
总结词
描述物体动能变化的定理
详细描述
动能定理指出,一个物体动能的改变等于作用力对物体所做的功。这个定理是能 量守恒定律在动力学中的表现,是分析机械系统运动状态的重要工具。
势能定理
总结词
描述物体势能变化的定理
详细描述
势能定理指出,一个物体势能的改变等于作用力对物体所做的负功。这个定理可以帮助我们分析机械系统的运动 状态,特别是当物体受到重力的作用时。
CHAPTER 04
机械系统动力学的研究方法
实验研究法
实验研究法需要设计和搭建实验装置,对系统 施加激励并采集响应数据,通过分析数据来揭
示系统的动态特性。
实验研究法的缺点是实验成本较高,实验条件难以控 制,且实验结果可能受到实验误差和环境因素的影响
。
实验研究法是通过实验测试和观察机械系统的 动态行为,以获取系统的动力学特性和性能参 数的方法。
第11章 机械系统动力学

l ——外力矩M L作用构件的角速度;
u xp、u yp、ul ——相应类速度。
3. 动力学方程
在不考虑系统势能变化的情况下(对于刚体机械系统,一般情 况下,构件重量产生的势能 构件动能,可以略去),将 E 1 J e1q12微分,得 2 E J e1q1 q
E 1 2 dJ e1 q1 q1 2 d q1
凯思方程:
是将主动力和惯性力都转化到广义坐标中,它们在广义
坐标中也同样应用达朗贝尔原理,表达式为:
( r ) M *(r ) FP Fm 0
P P 1 m 1
M个惯性力对第r个广义坐标的广义惯性力之和
P个主动力对第r个广义坐标的广义力之和
11-2 刚性机械系统动力学
系统的简化:
1. 系统的动能: 设系统有m个活动构件,则系统的总动能E:
1 m 2 2 E mi xsi ysi J sii2 2 i 1
“.”表示对时间的导数
由于xsi、ysi、i 都是广义坐标q1的函数,即 xsi xsi (q1 ) ysi ysi (q1 ) (q ) i 1 i 所以
H 13
(2)求等效转动惯量J e 根据动能等效原则,得:
1 1 2 2 2 J e12 J112 J 22 J H H m2vO2 2 2
2 2
2
vO2 2 H Je J 1 J2 J H m2 1 1 1 2 H 2 z3 2 H 由i23 1 3 2 3 H H z2 H 1 2 H 1 1 2 又 1 4
机械原理与机械设计 (上册) 第4版 第11章 机械系统动力学

k
qi
δW Fe1δq1 Fe2δq2
P Fe1q1 Fe2q2
(i 1,2)
3. 动力学方程
J11q1
J12q2
1 2
J11 q1
q12
J11 q2
q1q 2
J12 q2
1 2
J 22 q1
q22
Fe1
J 12 q1
J 22q2
J12 q1
1 2
J11 q2
q12
J 22 q1
q1q 2
dt
等效驱动力矩
等效阻力矩
若 me 与 Je 为常数,则
Fed Fer M ed M er
me Je
dv dt
d
dt
能量形式(积分形式)
s2 s1
Fedds
s2 s1
Ferds
1 2
me 2 v22
1 2
me1v12
阻抗功
损耗功
总耗功
输入功
Wd (Wr Wf ) Wd Wc E2 E1
终止动能
起始动能
第二节 多自由度机械系统的动力学分析(简介)
机械系统的动力学方程:外力与运动参数(位移、速度等)之间的函数关系式
一、拉格朗日方程
动能
势能
自由度
d dt
E qi
E qi
U qi
Fei
(i 1,2,, N)
J1 1
m2 vc2 Jc2 2
m3v3
d
1 2
J112
1 2
m2vc22
1 2
J
2
c2 2
1 2
m3v32
(M11
P3v3
)dt
《机械系统动力学特性的综合分析及其工程应用》

《机械系统动力学特性的综合分析及其工程应用》篇一一、引言机械系统动力学特性分析是机械工程领域的一项关键技术。
它涉及对系统运动过程中的各种力、运动、能量的分析和研究,对于机械系统的设计、优化和性能评估具有重要作用。
本文将就机械系统动力学特性的综合分析进行探讨,并阐述其在工程中的应用。
二、机械系统动力学基础机械系统动力学是研究机械系统在力作用下的运动规律及系统内部各部分之间的相互作用关系。
它主要包括静力学、运动学和动力学三个部分。
静力学主要研究物体在受力时的平衡条件;运动学则研究物体的运动轨迹和速度、加速度等运动特征;动力学则进一步研究物体运动与受力之间的关系。
三、机械系统动力学特性的综合分析机械系统动力学特性的综合分析包括对系统运动过程中各种力、运动和能量的全面考察。
这需要运用数学模型、仿真技术和实验手段,对系统的运动过程进行定量和定性的描述。
分析过程中,需要关注系统的刚度、阻尼、惯性等动力学参数,以及这些参数对系统运动性能的影响。
同时,还需要考虑系统的外部环境和载荷条件,以及这些条件对系统动力学特性的影响。
四、机械系统动力学特性的工程应用1. 设计与优化:在机械系统的设计阶段,通过对系统动力学特性的综合分析,可以确定系统的结构、材料和工艺等参数,以满足系统的性能要求。
同时,通过优化设计,可以在保证系统性能的前提下,降低系统的成本和重量。
2. 性能评估与故障诊断:在机械系统的使用过程中,通过对系统动力学特性的监测和分析,可以评估系统的性能状态,及时发现和解决潜在的问题。
同时,通过对系统故障的动力学特征进行分析,可以有效地进行故障诊断和预测。
3. 控制系统设计:在机械系统的控制系统中,需要对系统的动力学特性进行精确的掌握和分析,以便设计出合理的控制策略和算法,实现对系统的精确控制。
4. 新材料与新技术的应用:随着新材料和新技术的不断发展,机械系统的动力学特性也在不断变化。
通过对这些新材料和新技术的动力学特性进行分析和研究,可以将其应用于机械系统的设计和优化中,提高系统的性能和可靠性。
机械系统动力学知识点总结

机械系统动力学知识点总结机械系统动力学是研究对象在外力作用下的运动规律和相互作用关系,是机械领域的基础知识之一。
了解机械系统动力学不仅可以帮助我们理解机械系统的工作原理,还能指导我们设计和优化机械系统,提高机械系统的性能。
本文将就机械系统动力学的相关知识进行总结,包括运动描述、牛顿定律、动量与冲量、角动量、能量和动力学方程等内容。
一、运动描述机械系统动力学研究的对象是物体在外力作用下的运动规律,因此对于机械系统中的物体运动进行描述是非常重要的。
在机械系统动力学中,常用的运动描述方法包括位移、速度和加速度。
位移描述了物体的位置变化,速度描述了物体的位置变化速率,而加速度描述了物体的速度变化速率。
1. 位移在机械系统动力学中,位移是描述物体位置变化的重要参数。
位移通常用矢量来表示,其方向表示位移的方向,大小表示位移的大小。
位移可以分为线性位移和角位移两种,线性位移是描述物体沿直线方向的位置变化,而角位移是描述物体绕固定轴旋转的位置变化。
2. 速度速度是描述物体位置变化速率的参数,通常用矢量来表示。
线性速度描述物体在直线方向上的位置变化速率,角速度描述物体绕固定轴旋转的位置变化速率。
线性速度的大小表示速度的大小,方向表示速度的方向,而角速度的大小表示角速度的大小,方向表示角速度的方向。
3. 加速度加速度是描述速度变化速率的参数,通常用矢量来表示。
线性加速度描述物体在直线方向上的速度变化速率,角加速度描述物体绕固定轴旋转的速度变化速率。
线性加速度的大小表示加速度的大小,方向表示加速度的方向,而角加速度的大小表示角加速度的大小,方向表示角加速度的方向。
以上就是机械系统动力学中常用的运动描述方法,通过对位移、速度和加速度进行描述,可以帮助我们理解物体在外力作用下的运动规律。
二、牛顿定律牛顿定律是机械系统动力学的基础法则,它描述了物体在外力作用下的运动规律。
牛顿定律一共包括三条,分别是惯性定律、动量定律和作用-反作用定律。
机械系统动力学

A
M
mi——第i个构件质心质量
Jsi——对质心轴线的转动惯量
整个机器的功能:
E
n i 1
1 2
mi vsi
2
m
j 1
J sj j 2
温州大学机电工程学院
14
10-14
等效方法 动能不变
等效质量 等效转动
惯量
机械原理
1
2
mevB2
k i 1
1 2
mi vS2i
k i 1
1 2
J
2
Si i
1
温州大学机电工程学院
5
10-5
等效动力学模型的建立
单自由度的机械系统
机械原理
某一构件的运动确定
整个系统的运动确定
整个机器的运动问题转化为某一构件的运动问题
为此,引出等效力、等效力矩、等效质量、等效 转动惯量的概念
为便于计算
将定轴转动或作直线移 动的构件作为等效构件
温州大学机电工程学院
6
10-6
等效动力学模型的建立
正反力 ——不作功 ❖ 运动副反力 总反力 摩擦反力 ——负功
❖ 惯性力 加速运动 ——阻力
减速运动 ——驱动力
温州大学机电工程学院
2
10-2
机械的运转过程及特征
机械系统运转过程的三阶段
❖ 启动阶段 ❖ 稳定运转阶段 ❖ 停车阶段
机械原理
温州大学机电工程学院
3
10-3
机械的运转过程及特征
三个运转阶段的特征
➢ 当取绕固定回转的构件为等效构件时,可
用一假想物体的转动惯量来代替机器所有
运动构件的质量和转动惯量
温州大学机电工程学院
机械设计中的机械系统动力学研究

机械设计中的机械系统动力学研究机械设计是机械工程中最为基础的领域之一,其涵盖范围非常广泛,从产品的概念设计,到工艺流程的开发和最终的量产制造都需要进行机械设计。
在机械设计中,机械系统动力学研究是一个非常重要的组成部分。
本文将从机械系统动力学理论、研究方法和应用实例三个方面对机械设计中的机械系统动力学研究进行探讨。
一、机械系统动力学理论机械系统动力学理论是研究机械系统在作用力下的运动、振动和稳定性等问题的学科。
其基本原理是运用牛顿力学理论和振动学理论,建立机械系统的动力学方程,进而分析其运动规律和稳定性,揭示机械系统的内部机理和行为特征。
机械系统动力学理论的重要研究内容包括:1. 机械振动理论:研究机械系统在外力作用下的振动规律和机械系统振动特性的分析方法。
2. 动力学模型建立与求解:如受力分析、位移、速度和加速度的计算,通过求解动力学方程,得到机械系统的运动规律。
3. 相关动力学参数的计算:包括质量、惯性、弹性模量、耗散系数、自由度等。
二、机械系统动力学研究方法机械系统动力学研究方法包括理论研究和实验研究两种方法。
理论研究主要适用于机械系统的初步设计和性能预估,在理论建模的基础上通过模拟计算等方式分析机械系统的特性。
实验研究则主要用于机械产品的研发和品质检测,通过试验台的装置,对机械系统的动态性能进行实际测量和分析。
机械系统动力学研究中常用的实验方法有:1. 振动试验法:通过振动试验来研究机械系统的振动规律、共振频率等动态特性。
2. 动力响应试验法:通过施加固定振动力和测量受力部件的运动状态,确定机械系统的共振特性和动力学指标。
3. 模拟试验方法:通过计算机编制计算模型,对机械系统的动力学性能进行仿真,进行参数化设计,以期优化机械系统的性能。
三、机械系统动力学研究的应用实例1.车辆悬架系统设计:依据牛顿力学理论和弹性力学理论建立悬架系统的动力学模型,并利用动态特性分析和优化设计方法,提高悬架系统的疲劳寿命、牵引性能和行驶稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《机械系统动力学》机械系统动力学中分析中的仿真前沿学院:机械工程学院专业:机制一班姓名:董正凯学号:S12080201006摘要计算机及其相应技术的发展为建立机械系统仿真提供了一个有效的手段,机械系统动力学中的许多难题均可以采用仿真技术来解决,本文主要讲述了目前在机械系统动力学的分析中仿真技术主要的研究重点及其研究中主要存在的问题。
关键词:机械系统动力学仿真系统建模机械系统动力学中分析中的仿真前沿机械专业既是一个传统的专业,又是一个不断融合新技术、不断创新的专业。
随着科技的发展,计算机仿真技术越来越广泛地应用在各个领域。
基于多体系统动力学的机械系统动力学分析与仿真技术,从二十世纪七十年代开始吸引了众多研究者,已解决了自动化建模和求解问题的基础理论问题,并于八十年代形成了一系列商业化软件,到了九十年代,机械系统动力学分析与仿真技术更已能成熟应用于工业界。
目前的研究重点表现在以下几个方面:(1)柔性多体系统动力学的建模理论多刚体系统的建模理论已经成熟,目前柔性多体系统的建模成了一个研究热点,柔性多体系统动力学由于本身既存在大范围的刚体运动又存在弹性变形运动,因而其与有限元分析方法及多刚体力学分析方法有密切关系。
事实上,绝对的刚体运动不存在,绝对的弹性动力学问题在工程实际中也少见,实际工程问题严格说都是柔性多体动力学问题,只不过为了问题的简化容易求解,不得不化简为多刚体动力学问题、结构动力学问题来处理。
然而这给使用者带来了不便,同一个问题必须利用两种分析方法处理。
大多商用软件系统采用的浮动标架法对处理小变形部件的柔性系统较为有效,对包含大变形部件的柔体多体系统会产生较大仿真分析误差甚至完全错误的仿真结论。
最近提出的绝对节点坐标方法,是对有限元技术的拓展和较大创新,在常规有限元中梁单元、板壳单元采用节点微小转动作为节点坐标,因而不能精确描述刚体运动。
绝对节点坐标法则采用节点位移和节点斜率作为节点坐标,其形函数可以描述任意刚体位移。
利用这种方法梁和板壳可以看作是等参单元,系统的质量阵为一常数阵,然而其刚度阵为强非线性阵,这与浮动标架法有截然不同的区别。
这种方法已成功应用于手术线的大变形仿真中。
寻求有限元分析与多刚体力学的统一近年来成为多体动力学分析的一个研究热点,绝对节点坐标法在这方面有极大的潜力,可以说绝对节点坐标法是柔性多体力学发展的一个重要进展。
另外,各种柔性多体的分析方法之间是否存在某种互推关系也引起了人们的注意,如两个主要分析方法:浮动标架法、绝对节点坐标法之间是否可以互推?这些都具有重大理论意义。
另外柔性多体系统动力学中由于大范围的刚体运动与弹性变形运动相互耦合,采用浮动标架法时,即便是小变形问题,由于处于高速旋转仍会产生动力刚化现象。
如果仅仅采用小变形理论,将产生错误的结论,必须计及动力刚化效应。
动力刚化现象已成为柔性多体动力学的一个重要研究方面。
如何利用简单的补偿方法来考虑动力刚化是问题的关键。
柔性多体系统动力学中关于柔性体的离散化表达存在三种形式:基于有限元分析的模态表达,基于试验模态分析的模态表达和基于有限元节点坐标的有限元列式。
有限元列式由于大大地增加了系统的求解规模使其应用受到限制,因而一般采用模态分析方法,对模态进行模态截断、模态综合,从而缩减系统的求解规模。
为了保证求解精度,同时又能提高求解速度如何进行模态截断、模态综合就成了一个关键问题。
再者如何充分利用试验模态分析的结果也是一个关键性研究课题,这一方面的研究还不够深入。
柔性多体系统动力学可以计算出每一时刻的弹性位移,通过计算应变可计算计算出应力。
由于一般的多柔体分析程序不具备有限元分析功能,因而柔性体的应力分析都是由有限元程序处理。
由于可以计算出每个柔性体的应力的变化历史,因而可以再根据疲劳分析程序对柔性体进行寿命分析,但如何利用柔性体的应力分析结果于疲劳分析程序也是一个关键问题。
(2)接触碰撞建模问题具有运动学约束的机械多体系统的动力学分析已经十分成熟,然而机械多体系统中纯粹的运动学约束是不存在的,如铰链间由于制造精度或者使用中由于摩损而存在间隙,以及各刚体在运动中不可避免地发生接触-碰撞,因而多体中的接触-碰撞带有普遍性,而这种现象的仿真分析确是一个难点,吸引了许多学者的注意。
接触-碰撞现象可以认为系统在碰撞的瞬间构型不变,但发生碰撞的刚体动量发生改变。
碰撞是一种单边约束,两刚体的外形边界不能相互侵入。
对多体中接触-碰撞现象一般采取两类方法:基于冲量定理的恢复系数方法和基于罚函数的连续接触力方法。
恢复系数方法的特点是计算效率高,但不易实现仿真过程的自动化,而且无法计算出发生碰撞时的接触碰撞力,速度为不连续。
存在采用牛顿假设计算恢复系数和采用泊松假设计算恢复系数两种方法,牛顿假设利用速度计算恢复系数,而泊松假设利用冲量计算恢复系数。
仿真中恢复系数的选取是仿真的关键,一般需通过试验获得。
连续接触力方法将接触-碰撞现象处理为连续的动力学问题,速度为连续,可以计算出碰撞力,某种程度上可以较真实地模拟碰撞的过程,而恢复系数方法认为碰撞是在瞬间完成的。
在接触-碰撞中都伴有摩擦,一般采用库仑定律,考虑摩擦对系统的收敛性有很大影响。
柔性多体系统动力学中的接触-碰撞算法与多刚体系统相同,主要有基于经典理论冲量定律的恢复系数法和基于解析罚函数的连续力法两种。
在柔性多体系统中可能需更进一步考虑弹性波的影响,弹性波对整个碰撞过程会有影响,如何判断接触-碰撞的条件、接触点的位置,这些都需要新理论的支持,目前也是柔性多体动力学的一个研究重点。
(3)多领域集成化仿真与控制实际的机械多体系统还存在液压元件、气动元件、电子电路以及控制系统。
因此仅仅考虑多(柔)刚体系统的动力学是不完善的,要全面研究系统的动态特性必须全面考虑机、电、液、气、控制耦合的多领域多体模型。
如多体系统中许多外力是一个受控系统,通过控制策略的计算,经过电子线路得到控制信号并传递到液压气动系统去执行。
目前这一领域已成为一个研究热点。
如在航天设备中,液体火箭、充液卫星、航天飞船以及空间站等都是多体充液系统,由于航天设备精度的严格要求,液体的晃动,以及晃动控制问题成为了当前航天界的一个重要问题。
此外,带油罐的地面车辆稳定性也成为车辆动力学的一个研究分支。
因此充液多体系统的研究不但具有重要的理论指导意义而且具有重大的工程价值。
按充液量的多少,可以区分为全充液多体系统和半充液多体系统;全充液多体系统的液体仅有旋转运动,而后者还会引发液体的晃动;在刚性腔内的液体晃动是一种自由液面的波动,可能是微幅晃动,也可能是大幅晃动或产生自由液面的破碎和液体的飞溅,这些都是强非线性现象,对系统的稳定性产生很大影响。
又如柔性体的动力学控制问题,由于考虑了弹性变形,使对柔性多体系统的控制相对多刚体系统来说要复杂得多,关于柔性多体的控制有许多问题需进一步研究,由于表达刚体运动的铰链自由度与弹性自由度之间的强耦合,使其控制变得复杂,如何选取控制参数是一个极其重要的课题。
由于选取不同的参考标架,因而弹性模态存在区别,虽然在动力学上没有太大的影响,但对控制参数的选取产生影响。
这个问题也需要研究,研究如何最优选取控制参数。
(4)多体系统参数识别问题机械多体系统仿真结果的准确与否与系统的输入参数有很大关系。
因此多体系统输入参数的获取、识别也就成了多体系统动力学仿真的一个基本的、关键性的问题。
机械多体系统一般都进行大范围的刚体转动和移动,其解呈现出高度的非线性;然而系统的动力学方程对系统参数而言呈现线性特征,这对系统参数的识别提供了便利。
系统存在许多参数如距离、质量、惯量、弹簧的刚度系数、阻尼器的阻尼系数等等,因此参数应尽可能的直接获取,如从CAD中提取尺寸、质量、惯量等,或通过简单试验直接测量质量、惯量、刚度、阻尼等。
其它的参数就需要通过参数识别试验来获取。
系统参数识别的典型方法是利用宽带白噪声作为系统的激励,对系统的状态变量进行采样并用数字识别算法对包含微分方程的系统模型方程处理进行辨识。
由于数字计算机是基于代数运算的,因而多体系统的参数识别的关键是如何将连续微分方程转换为代数参数识别问题。
第一种方法是在采样点测量系统的激励、状态变量以及状态变量的导数,这样就会形成关于未知系统参数的代数方程,利用代数模型辨识技术如最小二乘法就可对系统参数进行辨识。
然而有时系统状态变量的导数不易测量,可使用状态变量滤波技术来近似估计系统状态变量的导数。
第二种方法是对测量信号进行FFT变换,基于FFT变换的辨识技术适合线性系统,对非线性系统这种方法受到许多限制,因此频域方法对多体系统的辨识似乎价值不大。
第三种方法是协方差分析方法,利用稳态、各态历经、有色白噪声作为系统激励,对激励和系统的状态变量进行线性稳态滤波处理。
由于利用辨识技术进行参数识别比将系统拆开进行测量有很大的优越性,因此参数识别技术仍会是将来一段时间内的研究热点。
(5)多目标(学科)协同优化随着仿真技术的深入发展,多体系统分析方法已从单纯的分析转向为系统综合的工具。
优化方法与多体系统动力学进行结合可用于多体问题动态性能的优化。
多体系统的动态性能是由系统的质量、惯量、几何尺寸、刚度系数、阻尼系数以及控制参数等决定。
这些参数可以作为系统动态性能优化的设计参数。
实际的机械多体系统时常需要考虑不同的甚至是相互矛盾的目标要求,从而需要确定几个不同的性能评判准则,即成为多目标或多学科协同优化问题。
多目标优化方法为寻求系统不同性能的最优化提供了一种可能。
工程问题中时常是对系统的不同性能分析采用不同的分析模型。
例如车辆动力学中对车辆的平顺性分析需要建立车辆的1/4或 1/2振动模型即可,而车辆的操纵稳定性分析则需要建立两轮的自行车甚至整车空间模型,而且两种特性存在设计参数的耦合,需进行多学科协同优化,才能找到满足两者要求的最优解。
每个性能指标需采用不同的子模型进行计算分析,每个子模型分别对应工程中的不同设计目标。
涉及多体系统性能计算或目标函数的计算由于其本身是微分方程或微分代数方程非常耗时,因而并非所有的多目标优化策略都适合多体系统的动态性能多目标优化,将矢量优化问题转化为非线性优化问题被证实有较高的效率,可以利用顺序二次规划(SQP)算法求解,其缺点是需要计算各子系统的梯度信息。
一般多体系统的动态性能为某一段时间内的积分特性,因而其目标函数不仅仅是系统设计参数的函数而且还是系统状态变量的函数,研究表明这类目标函数的梯度计算用伴随变量方法更有效率,有限差分法并不适用。
虽然优化理论及其算法在多体系统中的应用相对滞后,但近来针对多体系统的多模型、多学科优化随着非线性规划理论的完善已有了很大进步,相信多体系统的优化与综合会有更大的进展。
(6)硬件在环、人在回路仿真有效快速的仿真算法是计算动力学的追求目标,特别在多体系统的半实物仿真分析-硬件再在环问题以及多体系统的人在回路仿真分析问题中要求进行实时仿真,因而快速的仿真算法就显得十分重要了。