机械动力学考试答案
机械动力学基础考试题答案

7、F0、 、m、c、k为已知实数且都不等于0的条件下,t为时间变量,运动微分方程 中的响应为单自由度有阻尼系统的自由振动。(错)
8、多自由度线性系统的固有振型之间一定存在着关于质量矩阵、阻尼矩阵、刚度矩阵的正交性。(错)
主要特性参数有:质量、刚度、阻尼。
(2)机械振动学研究的主要内容是什么?
主要研究外界激励(输入)、振动系统、响应(输出)三者之间的关系。
(3)试用数值说明阻尼对该振动系统的影响。
解:一方面使系统振动的周期略有增大,频率略有降低,即
另一方面使系统振动的振幅按几何级数衰减。
(4)什么是共振?在工程实际中机械系统共振时的突出表现是什么?
一、判断题
1、通常来说,线性振动系统的自由度数和固有频率数是相等的。(对)
2、振动系统的质量矩阵、阻尼矩阵、刚度矩阵与选取的广义坐标无关。(错)
3、单自由度弹簧振子在光滑水平面和铅垂平面做自由振动时,振动周期不相等。(错)
4、小阻尼单自由度系统的自由振动称为衰减振动。(对)
5、加大阻尼一定可以有效隔振ቤተ መጻሕፍቲ ባይዱ(错)
9、无阻尼振动系统的固有频率与系统的质量、弹簧刚度和所受外激励有关。(错)
10、对于能量无耗散的单自由度线性振动系统,在自由振动时系统的机械能守恒,采用能量法可直接得出系统的固有频率与运动微分方程。(对)
二、简答题
(1)简述机械振动的概念,并列出振动系统的主要特性参数有哪些?
所谓机械振动,是指物体(或物体系)在平衡位置(或平均位置)附近作来回往复的运动。
答:通常把激励频率与系统固有频率相等时称为共振。
机械振动系统的振幅显著增大。
合肥工业大学机械动力学基础试题(含部分答案)

②由动能定理可知: E = m1 x12
1 2
其中 x1 a , x2 b , 为杆转过的角度. J eq m1a 2 m2b2 再求等效刚度, keq x 2
1 2
1 2 1 2 2 kx2 kb keq kb2 2 2
④推导出用单元节点位移表示的单元应变、单元应力表达式,再利用虚功方程建立单元节 点力阵与节点位移列阵之间的关系,形成单元的刚度方程式。 ⑤根据系统的动能与势能,得到各单元的刚度矩阵和质量矩阵。 ⑥考虑整体结构的约束情况,修正整体刚度方程,求解单元节点的运动方程。 ⑦由单元节点的运动方程“装配”成为全系统的运动方程。 (6)简述机械系统的三要素及动力学模型。 (2012) 答:三要素:惯性、弹性、阻尼. 动力学模型:①集中参数模型,由惯性元件、弹性元件和阻尼元件等离散元件组成;②有 限单元模型,由有限个离散单元组成,每个单元则是连续的;③连续弹性体模型将实际结 构简化成质量和刚度均匀分布或按简单规律分布的弹性体. 3. 试求图示振动系统的运动微分方程和固有频率。 (图 3、图 5 作纯滚动)
不作用外载荷时的力矩平衡可列为: ∴系统固有频率为:
M J
eq
keq 0
keq J eq
kb 2 . m1a 2 m2b 2
③由于 m作纯滚动,则运动微分方程可表示为: J kx r 0 ,其中 J 为 m相对于接地 点的转动惯量, J
kk mx kx 0 ,即: mx 1 2 k3 cos 2 x 0 k1 k2
∴系统固有频率为:n
k m
k1k2 k3 cos 2 k k k (k k 2 ) cos 2 k1 k 2 . = 1 2 3 1 m m(k1 k 2 )
2022机械动力学试题答案

2022机械动力学试题答案一、判断题1.考虑效率时,等效力大小与效率值大小成反比。
2.某机械的广义坐标数为5,则该机械的广义力一定少于5个。
3.某机械系统自由度为4,那么其惯性系数J33一定不小于零。
4.定轴轮系在匀速转动时,等效力矩一定等于零。
5.在考虑弹性时,铰链四杆机构中单元杆的节点变形数一定等于系统的节点变形数。
1.某2.某3.√4.√5.某二、如图所示机构在水平面上运转,件1为原动件,转角为已知杆1长l0.8m,其绕A点转动惯量J1A0.2kgm2,件2质量m21.2kg,其质心为B2点,杆3质量m32kg,杆1受驱动力矩M,杆3受力F作用。
试求:1.以件1为等效件建立机构动力学方程。
2.该机构由静止起动时45,那么若F20N,M至少应大于多少才能启动机构。
3.若F20N,M15Nm,求90时,解:1、Slcov31linMvMFv31MFlinv322mJmlmlin31A23122JvJ1AvB2m212dJv由MvJv2d得:MFlinJ1Am2l2m3lin2ml322inco2、M200.8in450M11.3Nm3、MFlinJ1Am2l2m3lin2ml322inco9.34rad2图示轮系中,轮4转角为4,系杆转角为H,各件转动惯量:J10.4kgm2,J21.8kgm2,J3J62.1kgm2,J4J50.6kgm2,JH0.5kgm2。
各轮齿数:z120,z260,z4z530,z3z660,各件所受力矩大小:MH30Nm,M120Nm,M430Nm,M640Nm,方向如图所示。
忽略各件质量及重力,现选定q1=H,q24,试求H。
解:iH1=1,iH2=0,i410,i421,i11533151,i12,i21,i22,i61,i6222224422222J11J1i11(J2J3J5)i21J6i61JHiH116.4kgm2222J22J1i12(J2J3J5)i22J6i62J4i423.15kgm2J12J1i11i12(J2J3J5)i21i22J6i61i62-1.22kgm2Q1MHM1i11M6i6130NmQ2M4M1i12M6i6210Nm设M向上为正1J12q2Q1J11q得:H2.13rad/21J22q2Q2J21q图示机构中,件1受驱动力F1,件4受驱动力矩M4,件3受F3作用,方向如图,取广义坐标q1S1,q24。
机械动力学第二版第一章习题答案.

1.解:根据势能相等原理:则系统的等效刚度为2解:分别对圆盘左右两边的轴求刚度,由于两轴并联,所以系统的等效刚度:。
3解:有材料力学得,中间点的静挠度为:所以固有角频率为:。
则,于是只需要求出系统的等效质量即可。
有材料力学得:设中间点的挠度为,令物体m在振动过程中的最大速度为:。
于是梁上各点的最大运动速度为:。
中间点的最大动能为:系统的最大动能为:系统的等效质量为:将该式子带入到4.解:在空气中: (1在液体中有系统的振动方程:(2)(3结合(1(3可得:将上式变形后得:5解质量m产生的离心惯性力是。
它在L法线方向的分量(是摆线与O之间的夹角)由几何关系可以得到:(是摆线与水平线之间的夹角)当摆角很小时有:质量m的切向加速度:,(是摆线与质量到O连线的夹角)二力对点取力矩的合力应等于零。
整理后得到(1)无阻尼受迫振动方程为:(2)将(1)(2)对比后得到:系统的固有角频率为:6解:杆与水平面的夹角为,则利用等效质量和等效刚度先把原系统简化到B 点,根据简化后动能相等。
简化前后势能相等。
固有频率:7解:在临界位置系统的自由振动方程的解为:其中,到达平衡位置时,令带入相关数据得8解:在临界点状态时系统的自由度振动方程解为:其中(1)(2)到达平衡位置时,由(1)可得令带入相关数据得到达最远位置时,由(2)可得带入到(1)可得9解:系统的振动方程为其解为式中常数由初始条件确定,利用(1)可得带入(1)得初始响应为:(2)由已知条件可知,。
带入(2)近似得到。
式子中固有频率为,10解:有图示可得F(t)的方程式由傅里叶级数求各项系数分别为将带入。
系统的振动方程为:其中解方程后得:。
西北工业大学机械系统动力学试题(含答案)

考试科目: 机械系统动力学 课程编号:056022 开课学期: 2014-2015学年第二学期 考试时间:2015/07/08 说 明:所有答案必须写在答题册上,否则无效。
共6 页 第 1页1. 用加速度计测出某结构按频率82 Hz 简谐振动时的最大加速度为50g (2/980s cm g =). 求该振动的振幅及最大速度.解答: 已知振动频率 82f Hz =,最大加速度max 50a g =,振动角频率2164f ωππ==rad/s将简谐振动表述为正弦函数 sin()x A t ωϕ=+ ,则其速度为 cos()x A t ωωϕ=+ ,加速度为 2sin()x A t ωωϕ=-+振幅 m a x 22509.80.185(164)a A cm ωπ⨯=== 最大速度 max 1.8516495.1/v A cm s ωπ==⨯=2. 一个机器内某零件的振动规律为0.4sin 0.3cos x t t ωω=+,x 的单位是cm ,10/s ωπ=。
这个振动是否简谐振动? 求出它的振幅、最大速度及最大加速度,并用旋转矢量表示这三者之间的关系。
解答:频率相同的简谐振动合成的振动仍是简谐振动,显然该振动为简谐振动。
0.4sin 0.3cos sin()x t t A t ωωωϕ=+=+其中,振幅 0.5A == ,相角为 10.3370.4tg ϕ-==︒ 最大速度 max 0.5105v A ωππ==⨯=最大加速度 22max 0.5(10)500a A ωπ==⨯=振幅、最大速度和最大加速度之间的旋量关系可表示为图0 所示:图0 振幅、最大速度和最大加速度间的旋量关系表示3. 将图1所示的锯齿波展为富里叶级数, 并画出频谱图.考试科目: 机械系统动力学 课程编号:056022 开课学期: 2014-2015学年第二学期 考试时间:2015/07/08 说 明:所有答案必须写在答题册上,否则无效。
机械振动动力学试卷及(答案)

☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆一、填空题(每空2分,30分)1、某振动系统的固有频率为f0,作用在系统上的策动力的频率为f 。
该系统做受迫振动的频率为 f ,发生共振的条件是 f=f0 。
2、一阶系统的动特性参数是 时间常数 ,该参数大则动态响应 慢 。
3、听阀声压为 2*10-5 Pa ,痛阀声压为 20 Pa 。
4、声功率W 与声功率级Lw 关系为 。
5、声压属于声音的 客观 评价指标,响度属于声音的 主观 评价指标。
6、系统的振动响应等于 输入 与 系统脉冲响应 的卷积二、选择题(每题3分,30分)1、一质量为m 的物体挂在弹性系数为k 的轻质弹簧下,其振动周期为T 。
若将此弹簧分成3等分,将一质量为2m 的物体挂在分割后的一根弹簧上,则此心弹簧振子周期为(B )A .6/3TB .3/6TC .T 2D .T 62、已知月球上的重力加速度是地球的1/6,若一个单摆(只考虑小角度摆动)在地球上的振动周期为T ,将此单摆拿到月球上,其振动周期为 ( C )A .T 6B .6/TC .T 6D .6/T3、两同方向同频率的简谐振动的振动方程为)2/5cos(61π+=t x ,t x 5cos 42=,则它们的合振动的振动方程为( D )A .t x 5cos 4=B .)5cos(8π-=t xC .)2/10cos(4π-=t xD .)2/5cos(4π+=t x4、关于简谐运动的加速度,下列说法正确的是 ( C )A .大小与位移成正比,方向一周期变化一次B .大小不变,方向始终指向平衡位置C .大小与位移成正比,方向始终指向平衡位置D .大小变化是均匀的,方向一周期变化一次5、以下振动现象中表现为共振现象的是( B )A .钱塘江大桥上正通过一列火车是的振动.B .挑水走路,扁担和水桶上下振动,水溢出C .工厂机器开动引起厂房的振动. D .快艇上机关炮连续向敌人射击时的振动6、一物体作简谐振动,振动方程为)41cos(π+=t A x ω.在 t = T/4(T 为周期)时刻,物体的加速度为 A . 2221ωA -. B .2221ωA . C .2321ωA -. D .2321ωA .三、计算题(每题10分,40分)1、如图是弹簧振子的振动图线,试回答下列问题:(1)振动的振幅、周期、频率各是多少?(2)如果从O 点算起,到图线上哪一点为止振子完全成了一次全振动?从A 点算起呢? (3)从零到1.6s 时间内,哪些点的动能最大?哪些点的势能最大?答:1)振幅2cm ,周期0.8s ,频率1.25Hz 2)D 点,E 点 3)O 、B 、D 点动能最大,A 、C 、E 点势能最大。
第九章 机械动力学单元测试题(含答案)
第九章机械动力学单元测试题(含答案)1. 问题描述:一辆质量为200 kg的小汽车以速度10 m/s沿直线运动,受到了一个回力为400 N·m的刹车制动力矩,刹车制动力矩持续作用时间为2 s。
求车辆在制动过程中的角加速度。
解答:根据牛顿第二定律,力矩M等于质量m乘以加速度a与质心到转轴的距离r之积,即M = m * a * r。
由于力矩方向与车辆运动方向相反,所以力矩为负值。
所以有 -400 = 200 * a * r。
而车辆的质心到转轴的距离r为车辆的半长即5米,代入计算得到加速度a 约为 -40 m/s²。
角加速度α等于a除以车辆半长r,即α ≈ -40 / 5 = -8 rad/s²。
2. 问题描述:一个质量为5 kg的物体静止地被放在斜面上,斜面的角度为30°。
物体受到的滑动摩擦系数为0.3,求物体受到的摩擦力大小。
解答:物体受到的重力分解为垂直方向力和平行方向力。
垂直方向力等于重力分量,即mg * cos(30°),平行方向力等于重力分量与摩擦系数的乘积,即mg * sin(30°) * 0.3。
所以物体受到的摩擦力大小为mg * sin(30°) * 0.3 ≈ 5 * 9.8 * sin(30°) * 0.3 ≈ 7.35 N。
3. 问题描述:一辆汽车以速度20 m/s行驶在一个半径为100 m的圆弧上,汽车受到的向心力大小为500 N。
求汽车质量。
解答:向心力Fc等于汽车质量m乘以向心加速度ac,即Fc = m * ac。
向心加速度ac等于速度v的平方除以半径r,即ac = v² / r。
所以有500 = m * (20² / 100)。
解得汽车质量m ≈ 500 / 4 = 125 kg。
4. 问题描述:一个质量为2 kg的物体以速度3 m/s向右运动,受到一个力为6 N向左作用,持续时间为2 s,物体的速度改变了多少?解答:物体受到的力等于质量m乘以加速度a,即F = m * a。
机械动力学复习题答案
机械动力学复习题答案机械动力学复习题答案机械动力学是研究物体运动和力的学科,是机械工程中非常重要的一门课程。
它涉及到力、质点运动、刚体运动、动力学方程等内容。
在学习机械动力学时,我们经常会遇到一些复习题,下面是一些常见机械动力学复习题的答案,希望能对大家的学习有所帮助。
1. 什么是力?答:力是物体之间相互作用的结果,是一种物理量,用符号F表示,单位是牛顿(N)。
力可以改变物体的运动状态,包括速度、方向和形状等。
2. 什么是质点运动?答:质点运动是指将物体看作一个质点,忽略物体的形状和大小,只考虑物体的质量和位置的运动。
质点运动可以分为直线运动和曲线运动两种。
3. 什么是刚体运动?答:刚体运动是指物体保持形状不变的运动。
在刚体运动中,刚体的各个部分保持相对位置不变,刚体的形状和大小也不发生变化。
4. 什么是动力学方程?答:动力学方程描述了物体运动的规律。
它是牛顿第二定律的数学表达式,可以用来计算物体的加速度、速度和位移等物理量。
动力学方程的一般形式为F=ma,其中F是物体所受的合力,m是物体的质量,a是物体的加速度。
5. 什么是动量?答:动量是物体运动的量度,是物体质量和速度的乘积。
动量用符号p表示,单位是千克·米/秒(kg·m/s)。
动量的大小和方向都与物体的质量和速度有关。
6. 什么是冲量?答:冲量是力对物体作用的时间积分,是力对物体产生变化的量度。
冲量用符号J表示,单位是牛顿·秒(N·s)。
冲量的大小等于力的大小乘以作用时间的长度。
7. 什么是动能?答:动能是物体由于运动而具有的能量,是物体的质量和速度的平方的乘积的一半。
动能用符号K表示,单位是焦耳(J)。
动能的大小与物体的质量和速度的平方成正比。
8. 什么是功?答:功是力对物体做的功,是力在物体上产生的能量转化。
功用符号W表示,单位是焦耳(J)。
功的大小等于力的大小乘以物体移动的距离。
9. 什么是机械能?答:机械能是物体的动能和势能的总和。
机械动力学基础课后答案
机械动力学基础课后答案一、填空题(每空1分,共30分)1、构件就是机器的_运动___单元体;零件就是机器的__生产___单元体;部件就是机器的__加装___单元体。
2、平面运动副可分为______低副__和____高副___,低副又可分为__转动副_____和___移动副____。
3、轮系运动时,所有齿轮几何轴线都固定不动的,表示___定轴轮系____轮系,至少存有一个齿轮几何轴线不紧固的,表示___行星轮系______轮系。
4、为保证带传动的工作能力,一般规定小带轮的包角α≥___120°_______。
5、若键的标记为键B20×70GB-79,则该键为__B____平键,b=___20___,L=_____70___。
6、轴的作用是_____支承轴上的旋转零件________________________。
按轴的承载情况不同,可以分为___传递运动和转矩____、___心轴_____、__转轴、传动轴_______。
7、凸轮机构就是由_____机架_______、________凸轮____、______从动件______三个基本构件共同组成的。
8、在曲柄摇杆机构中,当曲柄等速转动时,摇杆往复摆动的平均速度不同的'运动特性称为___急回特性_________。
9、在蜗轮齿数维持不变的情况下,蜗杆的头数越太少,则传动比就越_______小_____。
10、齿轮啮合时,当主动齿轮的____齿根__推动从动齿轮的___齿顶___,一对轮齿开始进入啮合,所以开始啮合点应为______从动轮齿顶圆______与啮合线的交点;当主动齿轮的___齿顶___推动从动齿轮的___齿根___,两轮齿即将脱离啮合,所以终止啮合点为________主动轮齿顶圆____与啮合线的交点。
11、滚动轴承内圈与轴颈的协调使用____基孔新制__制,外圈与轴承孔的协调使用基轴制 _______制。
《机械动力学答案》
A、急停阶段 B、启动阶段 C、稳定运转阶段 D、停车阶段 72、在动力分析中,主要涉及的力是( ) 。 A、驱动力 B、重力 C、摩擦力 D、生产阻力 73、以下选项中,与等效力有关的是( ) 。 A、外力 B、传动比 C、ωj/v D、vk/v 74、以下选项中,与等效力矩有关的是( ) 。 A、外力据 B、传动比 C、ωj/ω D、vk/ω 75、以下选项中,可归为阻尼的有( ) 。 A、物体的内力 B、物体表面间的摩擦力 C、周围介质的阻力 D、材料的内摩擦 四、填空题(每空 2 分,共 30 空,共 60 分) 76、从惯性载荷被平衡的程度看,平衡可分为 、 和 。 77、机械动力学的分析方法按功能分类可分为 和 。 78、动力学的分析方法按水平分类,可分为 、 、 和 。 79、用质量再分配实现摆动力的完全平衡,其分析方法主要有 、 、 和 。 80、机械系统运转的全过程可分为 、 和 这几个阶段。 81、机器人动力学是机器人 、 和 的基础。 82、工业机器人通常由 、 、 和 组成。 83、二自由度系统的等效转动惯量是系统的 、 、 和 的函数。 84、实现摆动力完全平衡的方法有 、 和 。 76、部分平衡、完全平衡、优化综合平衡 77、动力学反问题、动力学正问题 78、静力分析、动态静力分析、动态分析、弹性动态分析 79、广义质量代换法、线性独立矢量法、质量矩替代法、有限位置法 80、启动阶段、稳定运转阶段、停车阶段 81、操作机设计、控制器设计、动态性能分析 82、执行机构、驱动装置、控制系统、传感系统 83、时间、惯性参数、几何参数、广义坐标 84、加配重、合理布置机构、设置附加机构 五、计算题(第 85、86 题各 30 分,第 87 题 10 分,第 88 题 20 分,共 90 分) 85、如图所示为一对心曲柄滑块机构。曲柄以转速度 ω1 作等速回转运动,曲柄与水平方 向夹角为 θ1 ,曲柄长度为 r ,质心与其回转中心 A 重合。连杆长度 l ,连杆与水平方向夹 角为 θ 2 ,连杆质心 S2 到铰链 B 的距离 BS 2 = L ,连杆质量 m 2 ,对其质心的转动惯量 J 2 。 滑 块质量 m3 ,其质心与铰链 C 重合。1)画出曲柄、连杆和滑块的受力分析图;2)写出曲 柄、连杆和滑块的平衡方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图4 机器安装示意图
88、一个质量20Kg 的机器,按图4所示方式安装。
若弹簧的总刚度
为17KN/m ,总阻尼为300m s N ⋅。
试求初始条mm x 250=,s mm x
3000= 时的振动响应。
88、解:由0=++kx x c x m
代入数据后得 08501501017300203=++=⨯++x x x x x x
(8分)
其中,152=a ,8502=n ω,计算阻尼比和固有圆频率
17.2826.012.291126.02
.295.722=-⨯=-=<===ζωωωζn d n a
(4分)
将初始条件代入
00020020arctan )(ax x x ax x
x A d d
+=++= ωϕω (4分)
得:
o
d d
ax x x mm ax x
x A 3.555.25.730017.2825arctan arctan )(4.30)17.2825.7300(25)(0002220020⨯+⨯=+==⨯++=++= ωϕω(2分)
则系统的振动响应为
4.
305.7+
=-t
x t(2分)e
sin(
28
)
96
.0
.
17
1. “机械动力学”主要研究哪些内容,请以任一机器为对象举例说明研究内容及其相互关系。
答:机械动力学是研究机械在力的作用下的运动和机械在运动中产生的力,并从力与运动的相互作用的角度进行机械设计和改进的科学。
动力学主要研究内容概括起来有:1,共振分析;2,振动分析与动载荷计算;3,计算机与现代测试技术的运用;4,减震与隔振。
柴油机上的发动机,发动机不平衡时会产生很强的地面波,从而产生噪声,而承受震动的结构,发动机底座,会由于振动引起的交变应力而导致材料的疲劳失效,而且振动会加剧机械零部件的磨损,如轴承和齿轮的磨损等,并使机械中的紧固件如螺母等变松。
在加工时还会导致零件加工质量变差。
通过对共振的研究和分析,使机械的运转频率避免共振区,避免机械共振事故的发生,通过振动分析与动载荷计算可以求出在外力作用下机械的真实运动,运用计算机和现代测试技术对机械的运行状态进行检测,以及故障诊断,模态分析以及动态分析,现实中机器运转时由于各种激励因素的存在,不可避免发生振动,为了减小振动,通常在机器底部加装弹簧,橡胶等隔振材料。
2.简述在刚性运动前提下,如何进行运动构件的真实运动分析求解(请列出步骤)?
答:首先建立等效力学模型,将复杂的机械系统简化为一个构件,即等效构件,根据质点系动能定理,将作用于机械系统上的所有外力和外力矩、所有构件的质量和转动惯量,都向等效构件转化;其次计算等效构件上的等效量(包括等效力矩,等效力,等效质量,等效转动惯量);再次建立等效构件的运动方程式,有两种形式,能量形式和力矩形式;最后通过方程式求出等效构件的角速度函数和角加速度函数,这样便可以求出机械系统的真实运动规律。
3.在弹性运动假设下,有哪些弹性动力学建模方法,各有什么特点?请解释“瞬时刚化” 的概念。
)
答:弹性动力学模型有集中参数模型和有限元模型。
集中参数模型建立起的运动方程为常微分方程,但是由于质量简化过多,模型粗糙,精度比较差;有限元建立的运动方程也为常微分方程,但相较集中参数模型精确,适应性广,可以模拟复杂形状的构件,运算模型统一。
瞬时刚化:机构在运动到循环中的某一位置时,可将机构的形状和作用在其上的载荷瞬时冻结起来,从而可瞬时的将机构看做一个刚体结构。