北师大八年级上《第1章勾股定理》单元测试(5)含答案解析
第一章 勾股定理数学八年级上册-单元测试卷-北师大版(含答案)

第一章勾股定理数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、若,,为的三边长,则下列条件中不能判定是直角三角形的是()A. ,,B.C.D.2、如图,矩形ABCD的两条对角线相交于点O,∠ACB=30°,AB=2,则矩形的面积为()A. B.2 C.4 D.3、如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为()A.5cmB.12cmC.16cmD.20cm4、如图,O是正内一点,,,,将线段BO以点B为旋转中心逆时针旋转得到线段,下列五个结论中,其中正确的结论是()可以由绕点B逆时针旋转得到;点O与的距离为4;;;.A. B. C. D.5、如图:图形A的面积是()A.225B.144C.81D.无法确定6、如图,一个小球沿倾斜角为的斜坡向下滚动,经过5秒时,测得小球的平均速度为米秒.已知,则小球下降的高度是()A.1米B.1.5米C.2米D.2.5米7、用圆心角为120°,半径为3 cm的扇形纸片卷成一个圆锥形无底纸冒(如图所示),则这个纸冒的高是()A.3 cmB.2 cmC.3 cmD.4 cm8、在Rt△ABC中,∠C=90°,AB=15,AC:BC=3:4,则这个直角三角形的面积是()A.24B.48C.54D.1089、如图,在△ABC中,AB=AC=5,P是BC边上除B、C点外的任意一点,则代数式AP2+PB•PC等于()A.25B.15C.20D.3010、如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,点M,N分别是AB,AC的中点,则线段MN长的最大值为()A.5B.C.5D.11、在直角坐标系中,点P(-2,3)到原点的距离是( )A. B. C. D.212、如图所示,点B,D在数轴上,OB=3,OD=BC=1,∠OBC=90°,以D为圆心,DC长为半径画弧,与数轴正半轴交于点A,则点A表示的实数是()A. B. 1 C. 1 D.不能确定13、如图,将一边长为a的正方形(最中间的小正方形)与四块边长为b的正方形(其中b>a)拼接在一起,则四边形ABCD的面积为()A.b 2+(b﹣a)2B.b 2+a 2C.(b+a)2D.a 2+2ab14、如图,在矩形中,,,过对角线交点作交于点,交于点,则的长是( )A.1B.C.2D.15、如图,将等腰直角三角形()沿折叠,使点落在边的中点处,,那么线段的长度为()A.5B.4C.4. 25D.二、填空题(共10题,共计30分)16、如图,等边的边与轴交于点,点是反比例函数图像上一点,若为边的三等分点时,则等边的边长为________.17、如图,在△ABC中,AB=BC=6,AO=BO,P是射线CO上在AB下方的一个动点,∠AOC =45°.则当△PAB为直角三角形时,AP的长为________.18、如图,巳知AB是⊙O的一条直径,延长AB至C点,使得AC=3BC,CD与⊙O相切,切点为D.若CD= ,则线段BC的长度等于________.19、《九章算术》中有一个“折竹抵地”问题:“今有竹高九尺,末折抵地,去本三尺,问折者高几何?”意思是:现有竹子高9尺,折后竹尖抵地与竹子底部的距离为3尺,问折处高几尺?即:如图,AB+AC=9尺,BC=3尺,则AC=________尺.20、已知△ABC中,AB=5,AC=3,BC=4,P为边AB上一点,且△APC为等腰三角形,则CP 的长为________21、如图,已知菱形ABCD的周长为16,面积为8 ,E为AB的中点,若P为对角线BD 上一动点,则EP+AP的最小值为________.22、如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要________cm.23、如图,线段AB=2,过点B作BD⊥AB,使BD= AB,连接AD,在AD上截取DE=DB.在AB上截取AC=AE.那么线段AC的长为________.24、在⊙O中,弦AB=24cm,圆心O到弦AB的距离为5cm,则⊙O的半径为________cm.25、如图,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以OA1为直角边作等腰Rt△OA1A2,以OA2为直角边作等腰Rt△OA2A3,…则OA8的长度为________.三、解答题(共5题,共计25分)26、如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.求AB的长.27、如图,在平面直角坐标系xOy中,点A、B坐标分别为(4,2)、(0,2),线段CD 在于x轴上,CD=,点C从原点出发沿x轴正方向以每秒1个单位长度向右平移,点D随着点C同时同速同方向运动,过点D作x轴的垂线交线段AB于点E、交OA于点G,连结CE交OA于点F.设运动时间为t,当E点到达A点时,停止所有运动.(1)求线段CE的长;(2)记S为RtΔCDE与ΔABO的重叠部分面积,试写出S关于t的函数关系式及t的取值范围;(3)连结DF,①当t取何值时,有DF=CD?②直接写出ΔCDF的外接圆与OA相切时t的值.28、在Rt△ABC中,∠ACB=90°,AC=BC,D为AB边的中点,点P为BC边上一点,把△PBD沿PD翻折,点B落在点E处,设PE交AC于F,连接CD(1)求证:△PCF的周长=CD;(2)设DE交AC于G,若, CD=6,求FG的长29、将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B (0,1),点0(0,0).过边OA上的动点M(点M不与点O,A重合)作MN丄AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△AM′N与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S= 时,求点M的坐标(直接写出结果即可).30、如图,AB是的直径,弦于点E,若,,求的长.参考答案一、单选题(共15题,共计45分)1、D2、A3、D4、C5、C6、B7、B8、C9、A10、D11、B12、C13、A14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)28、29、30、。
北师大八年级数学上《第1章勾股定理》单元检测试题(含答案)

八年级数学上册第1章勾股定理单元检测试题班级:__________姓名:__________一、单选题(共10题;共30分)1.下列各组数中,能构成直角三角形的是()A. 4,5,6B. 6,8,11C. 1,1,D. 5,12,22.已知一个Rt△的两边长分别为3和4,则第三边长的平方是()A. 25B. 14,C. 7D. 7或253.已知a、b、c是三角形的三边长,如果满足(a-6)2+=0,则三角形的形状是( )A. 底与腰不相等的等腰三角形B. 等边三角形C. 钝角三角形D. 直角三角形4.一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5m,消防车的云梯最大升长为13m,则云梯可以达到该建筑物的最大高度是()A. 12mB. 13mC. 14mD. 15m5.一块木板如图所示,已知AB=4,BC=3,DC=12,AD=13,∠B=90°,木板的面积为()A. 60B. 30C. 24D. 126.如图,在5×5的正方形网格中,从在格点上的点A,B,C,D中任取三点,所构成的三角形恰好是直角三角形的个数为()A. 1B. 2C. 3D. 47.一个三角形的三边的长分别是3、4、5,则这个三角形最长边上的高是()A. 4B.C.D.8.如图,在△ABD中,∠D=90°,CD=6,AD=8,∠ACD=2∠B,则BD的长是()A. 12B. 14C. 16D. 189.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A、B在围成的正方体中的距离是()A. 0B. 1C.D.10.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A. ∠A+∠B=∠CB. ∠A:∠B:∠C=1:2:3C. a2=c2﹣b2D. a:b:c=3:4:6二、填空题(共8题;共24分)11.如图为某楼梯的侧面,测得楼梯的斜长AB为13米,高BC为5米,计划在楼梯表面铺地毯,地毯的长度至少需要________米.12.在直角三角形ABC中,斜边AB=2,则AB2+AC2+BC2=________.13.一直角三角形的一条斜边和一直角边的长度分别是4和3,则它的另一直角边长是________.14.已知直角三角形的两边的长分别是3和4,则第三边长为________.15.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是________ .16.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=________17.要在一个长方体中放入一细直木条,现知长方体的长为2,宽为,高为,则放入木盒的细木条最大长度为________ .18.如图,一根旗杆在离地面9米处断裂,旗杆顶部落在离旗杆底部12米处,则旗杆折断之前有________米.三、解答题(共66分)19.已知:如图,在△ABC 中,∠C=90°,D 是BC 的中点,AB=10,A C=6.求AD 的长度.20.求如图的Rt△ABC的面积.21.如图,∠AOB=90°,OA=90cm,OB=30cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?22.一个25米长的梯子AB,斜靠在一竖直的墙AO上,这时的AO距离为24米,如果梯子的顶端A沿墙下滑4米,那么梯子底端B也外移4米,对吗?为什么?23.铁路上A,B两站(视为直线上的两点)相距50km,C,D为两村庄(视为两个点),DA⊥AB于点A,CB⊥AB于点B(如图).已知DA=20km,CB=10km,现在要在铁路AB上建一个土特产收购站E,使得C,D 两村庄到收购站E的直线距离相等,请你设计出收购站的位置,并计算出收购站E到A站的距离.24.如图,南北向MN为我国领海线,即MN以西为我国领海,以东为公海,上午9时50分,我国反走私A艇发现正东方有一走私艇以13海里/时的速度偷偷向我领海开来,便立即通知正在MN线上巡逻的我国反走私艇B密切注意.反走私艇A和走私艇C的距离是13海里,A、B两艇的距离是5海里;反走私艇B 测得距离C艇12海里,若走私艇C的速度不变,最早会在什么时候进入我国领海?25.已知在中,,,.(1)判断△ABC的形状,并说明理由;(2)试在下面的方格纸上补全△ABC,使它的顶点都在方格的顶点上。
北师大版八年级数学上册第一章《勾股定理》章末练习题含答案解析 (50)

一、选择题1.下列各组数中,以a,b,c为边的三角形不是直角三角形的是( )A.a=1,b=2,c=3B.a=7,b=24,c=25C.a=6,b=8,c=10D.a=3,b=4,c=52.如图1,动点K从△ABC的顶点A出发,沿AB−BC匀速运动到点C停止.在动点K运动过程中,线段AK的长度y与运动时间x的函数关系如图2所示,其中点Q为曲线部分的最低点,若△ABC的面积是5√5,则图2中a的值为( )A.√30B.5C.7D.3√53.如图,设小方格的面积为1,则图中以格点为端点且长度为√13的线段有( )A.2条B.3条C.4条D.5条4.如图,一块直角三角形的纸片,两直角边AC=6cm,BC=8cm.现将直角边AC沿直线AD折叠,使点C落在斜边AB上的点E处,则CD等于( )A.2cm B.3cm C.4cm D.5cm5.长方体敝口玻璃罐,长、宽、高分别为16cm,6cm和6cm,在罐内E处有一小块饼干碎末,此时一只蚂蚁正好在罐外壁,在长方形ABCD中心的正上方2cm处,则蚂蚁到达饼干的最短距离是多少 cm ( )A . 7√5B . √233C . 24D . √2326. 正方形 ABCD 的边长为 1,其面积记为 S 1,以 CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积记为 S 2,⋯ 按此规律继续下去,则 S 2019 的值为 ( )A . (12)2019B . (12)2018C .(√22)2019 D .(√22)20187. 如图所示,有一“工”字形的机器零件,它是轴对称图形,图中所有的角都是直角,图中数据单位:cm ,那么 A ,B 两点之间的距离为 ( )A . 8 cmB . 8√2 cmC . 16 cmD . 16√2 cm8. 如图,小明(视为小黑点)站在一个高为 10 米的高台 A 上,利用旗杆 OM 顶部的绳索,划过 90∘ 到达与高台 A 水平距离为 17 米,高为 3 米的矮台 B .那么小明在荡绳索的过程中离地面的最低点的高度 MN 是 ( )A . 2 米B . 2.2 米C . 2.5 米D . 2.7 米9. △ABC 是锐角三角形,若 AB =2,∠A =45∘,则 AC 的长可能是 ( ) A . 1 B . 2 C . 3 D . 410.若△ABC的边长a,b,c满足a2+b2+c2+50=6a+8b+10c,那么△ABC是( )A.等腰三角形B.直角三角形C.等边三角形D.锐角三角形二、填空题11.直角三角形的两边为3和4,则该三角形的第三边为.12.如图,将一张长方形纸片ABCD沿AC折起,重叠部分为△ACE,若AB=6,BC=4,则重叠部分△ACE的面积为.13.如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为m(容器厚度忽略不计).14.《九章算术》中一道“引葭赴岸”问题:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一个池塘,其地面是边长为10尺的正方形,一棵芦苇AC生长在它的中央,高出水面部分BC为1尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部C恰好碰到岸边的Cʹ处(如图),水深和芦苇长各多少尺?则该问题的水深是尺.15.在每个小正方形的边长为1的网格中,点A,B,C,D均在格点上,点E,F分别为线段BC,DB上的动点,且BE=DF.时,计算AE+AF的值等于;(1)如图①,当BE=52(2)当AE+AF的值取得最小时,请在图② 的网格中,用无刻度的直尺画出线段AE或AF.16.如图,∠BAC=90度,AB=AC,AE⊥AD,且AE=AD,AF平分∠DAE交BC于F,若BD=6,CF=8,则线段AD的长为.17.如图,Rt△ABC,∠ACB=90∘,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将BC沿CF翻折,使点B落在CD的延长线上的点Bʹ处,两条折痕与斜边AB分别交于点E,F,则线段BʹF的长为.三、解答题18.如图,在Rt△ABC中,∠ACB=90∘,AD,BE,CF分别是三边上的中线.(1) 若AC=1,BC=√2.求证:AD2+CF2=BE2;(2) 是否存在这样的Rt△ABC,使得它三边上的中线AD,BE,CF的长恰好是一组勾股数?请说明理由.(提示:满足关系a2+b2=c2的3个正整数a,b,c称为勾股数.)19.如图,车高4m(AC=4m),货车卸货时后面支架AB弯折落在地面A1处,经过测量A1C=2m,求弯折点B与地面的距离.20.利用勾股定理可以在数轴上画出表示√20的点,请依据以下思路完成画图,并保留画图痕迹:(1) 第一步:(计算)尝试满足√20=√a2+b2,使其中a,b都为正整数.你取的正整数a=,b=.(2) 第二步:(画长为√20的线段)以第一步中你所取的正整数a,b为两条直角边长画Rt△OEF,使O为原点,点E落在数轴的正半轴上,∠OEF=90∘,则斜边OF的长即为√20.请在下面的数轴上画图:(第二步不要求尺规作图,不要求写画法)(3) 第三步:(画表示√20的点)在下面的数轴上画出表示√20的点M,并描述第三步的画图步骤:.21.如图,在四边形ABFC中,AC2=AB2+BC2,CD⊥AD,AD2=2AB2−CD2,连接EF.(1) 找出图中所有的直角三角形;(2) 求证:AB=AC.22.如图,一架长为5米的梯子的顶端斜靠在墙上的点A处,梯子的底端落在离墙脚3米的点C处,如果梯子的顶端下滑到了离A点2米的点Aʹ处,那么梯子的底端在水平方向滑动了几米?23.如图,一架长为5米的梯子AB斜靠在与地面OM垂直的墙ON上,梯子底端距离墙ON有3米.(1) 求梯子顶端与地面的距离OA的长.(2) 若梯子顶点A下滑1米到C点,求梯子的底端向右滑到D的距离.24.如图1,在△ABC中,AB=AC,以AB为直角边作等腰直角三角形ABD,与BC边交于点E.(1) 若∠ACE=18∘,则∠ECD=;(2) 探索:∠ACE与∠ACD有怎样的数量关系?猜想并证明.(3) 如图2,作△ABC的高AF并延长,交BD于点G,交CD延长线于点H,求证:CH2+DH2=2AD2.25.在Rt△ABC中,∠C=90∘,∠A,∠B,∠C的对边分别为a,b,c.(1) 若a:b=3:4,c=75cm,求a,b;(2) 若a:c=15:17,b=24,求△ABC的面积.答案一、选择题1. 【答案】A【解析】A.由于a+b=c,故此选项的三条线段不能构成三角形,符合题意;B.由a2+b2=49+576=625=c2,能构成直角三角形,不符合题意;C.由a2+b2=36+64=100=c2,能构成直角三角形,不符合题意;D.由a2+b2=9+16=25=c2,能构成直角三角形,不符合题意.【知识点】勾股逆定理2. 【答案】A【解析】由图象的曲线部分看出直线部分表示K点在AB上,且AB=a,曲线开始AK=a,结束时AK=a,所以AB=AC.当AK⊥BC时,在曲线部分AK最小为5.BC×5=5√5,解得BC=2√5.∴12∴AB=√52+(√5)2=√30.【知识点】用函数图象表示实际问题中的函数关系、勾股定理3. 【答案】C【解析】∵√22+32=√13,∴√13是直角边长为2,3的直角三角形的斜边,如图所示,AB,CD,BE,DF的长都等于√13.【知识点】勾股定理4. 【答案】B【知识点】勾股定理之折叠问题5. 【答案】B【知识点】平面展开-最短路径问题6. 【答案】B【解析】在图中标上字母E,如图所示.∵正方形ABCD的边长为1,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S 2+S 2=S 1.观察,发现规律:S 1=12=1,S 2=12S 1=12,S 3=12S 2=14,S 4=12S 3=18,⋯,∴S n =(12)n−1,当 n =2019 时,S 2019=(12)2019−1=(12)2018,故选:B .【知识点】勾股定理、用代数式表示规律7. 【答案】D【解析】作 BC ⊥AC 于点 C ,如图所示.由图可得,BC =5+6+5=16 cm ,AC =20−(20−12)÷2=20−8÷2=20−4=16 cm , ∴AB =√AC 2+BC 2=√162+162=16√2 cm , 即 A ,B 两点之间的距离为 16√2 cm .【知识点】勾股定理的实际应用8. 【答案】A【解析】作 AE ⊥OM 于 E ,BF ⊥OM 于 F ,如图所示: 则 ∠OEA =∠BFO =90∘,因为 ∠AOE +∠BOF =∠BOF +∠OBF =90∘, 所以 ∠AOE =∠OBF .在 △AOE 和 △OBF 中,{∠OEA =∠BFO,∠AOE =∠OBF,OA =OB,所以 △AOE ≌△OBF (AAS ), 所以 OE =BF ,AE =OF ,所以 OE +OF =AE +BF =CD =17(米), 因为 EF =EM −FM =AC −BD =10−3=7(米), 因为 OE +OF =2EO +EF =17 米,所以 2OE =17−7=10(米), 所以 BF =OE =5 米,OF =12 米,所以 CM =CD −DM =CD −BF =17−5=12(米), OM =OF +FM =12+3=15(米),由勾股定理得:ON =OA =√AE 2+OE 2=√122+52=13(米), 所以 MN =OM −OF =15−13=2(米).【知识点】勾股定理的实际应用9. 【答案】B【解析】如图,过点 C 作 CD ⊥AB 于点 D . 设 AD =x ,则 BD =2−x . ∵∠A =45∘,∴∠ACD =45∘,CD =x , ∴AC 2=2x 2, 在 Rt △BDC 中,BC 2=BD 2+CD 2=(2−x )2+x 2=2x 2−4x +4, ∵△ABC 是锐角三角形, ∴{AB 2+BC 2>AC 2,AC 2+BC 2>AB 2,即 {22+2x 2−4x +4>2x 2,2x 2+2x 2−4x +4>22, 解得 1<x <2,∴2<2x 2<8,2<AC 2<8, ∴√2<AC <2√2.【知识点】勾股定理10. 【答案】B【解析】a2+b2+c2+50=6a+8b+10c变形为(a−3)2+(b−4)2+(c−5)2=0,解之得:a=3,b=4,c=5,符合勾股定理的逆定理,故选:B.【知识点】勾股逆定理二、填空题11. 【答案】5或√7【解析】设第三边为x,(1)若4是直角边,则第三边x是斜边,由勾股定理得:32+42=x2,所以x=5;(2)若4是斜边,则第三边x为直角边,由勾股定理得:32+x2=42,所以x=√7;所以第三边的长为5或√7.【知识点】勾股定理12. 【答案】263【解析】∵长方形纸片ABCD按图中那样折叠,由折叠的性质可知,∠BAC=∠BʹAC,∵DC∥AB,∴∠BAC=∠ECA,∴∠EAC=∠ECA,∴EA=EC,在Rt△ADE中,AD2+DE2=AE2,即42+(6−EC)2=EC2,解得EC=133∴重叠部分的面积=12×133×4=263.【知识点】勾股定理之折叠问题13. 【答案】1.3【解析】因为壁虎在容器外壁,蚊子在容器内壁,所以将容器侧面展开,建立A关于容器口的对称点Aʹ连接AʹB与容器口交于点F,由对称性可知AʹF=AF,所以壁虎捕捉蚊子的最短距离为AʹB的长,在Rt△AʹDB中,AʹB=√AʹD2+BD2=√0.52+1.22=1.3.【知识点】轴对称、勾股定理14. 【答案】12【解析】依题意画出图形,设芦苇长AC=ACʹ=x尺,则水深AB=(x−1)尺,∵CʹE=10尺,∴CʹB=5尺,在Rt△ACʹB中,52+(x−1)2=x2,解得x=13,即芦苇长13尺,水深为12尺.【知识点】勾股定理的实际应用;如图,取格点H,K,连接BH,CK,相交于点P.15. 【答案】5+√612连接AP,与BC相交,得点E.取格点M,N,连接DM,CN,相交于点G.连接AG,与BD相交,得点F.线段AE,AF即为所求.【知识点】勾股定理16. 【答案】6√5【解析】如图,连接EF,过点A作AG⊥BC于点G,∵AE⊥AD,∴∠DAE=∠DAC+∠2=90∘,又∵∠BAC=∠DAC+∠1=90∘,∴∠1=∠2,在△ABD和△ACE中{AB=AC,∠1=∠2, AD=AE,∴△ABD≌△ACE(SAS).∴BD=CE,∠4=∠B∵∠BAC=90∘,AB=AC,∴∠B=∠3=45∘∴∠4=∠B=45∘,∴∠ECF=∠3+∠4=90∘,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中{AD=AE,∠DAF=∠EAF, AF=AF,∴△DAF≌△EAF(SAS).∴DF=EF.∴BD2+FC2=DF2.∴DF2=BD2+FC2=62+82=100,∴DF=10∴BC=BD+DF+FC=6+10+8=24,∵AB=AC,AG⊥BC,∴BG=AG=12BC=12,∴DG=BG−BD=12−6=6,∴AD=√AG2+DG2=6√5.【知识点】勾股定理、边角边17. 【答案】45【知识点】图形成轴对称、勾股定理之折叠问题、等腰直角三角形三、解答题18. 【答案】(1) 如图,连接FD.∵AD ,BE ,CF 分别是三边上的中线,∴CD =12BC =√22,CE =12AC =12,FD =12AC =12, 由勾股定理得 AD 2=AC 2+CD 2=12+(√22)2=32, CF 2=CD 2+FD 2=(√22)2+(12)2=34, BE 2=BC 2+CE 2=(√2)2+(12)2=94,∵32+34=94, ∴AD 2+CF 2=BE 2.(2) 设两直角边分别为 a ,b ,∵AD ,BE ,CF 分别是三边上的中线,∴CD =12a ,CE =12b ,FD =12AC =12a ,由勾股定理得 AD 2=AC 2+CD 2=b 2+(12a)2=14a 2+b 2, CF 2=CD 2+FD 2=(12a)2+(12b)2=14a 2+14b 2,BE 2=BC 2+CE 2=a 2+(12b)2=a 2+14b 2, ∵AD 2+CF 2=BE 2,∴14a 2+b 2+14a 2+14b 2=a 2+14b 2,整理得 a 2=2b 2,∴AD =√62b ,CF =√32b ,BE =32b , ∴CF:AD:BE =1:√2:√3,∵ 没有整数是 √2 和 √3 的倍数,∴ 不存在这样的 Rt △ABC .【知识点】勾股数、勾股定理19. 【答案】由题意得,AB =A 1B ,∠BCA =90∘,设 BC =x m ,则 AB =A 1B =(4−x ) m ,在 Rt △A 1BC 中,A 1C 2+BC 2=A 1B 2,即:22+x 2=(4−x )2,解得:x =32,答:弯折点B与地面的距离为3米.2【知识点】勾股定理的实际应用20. 【答案】(1) 4;2(2) 如图1:(3) 如图1,在数轴上画出点M.第三步的画图步骤:以原点O为圆心,OF长为半径作弧,弧与数轴正半轴的交点即为点M.【解析】(1) 第一步:a=4,b=2(或a=2,b=4).【知识点】勾股定理21. 【答案】(1) ∵AC2=AB2+BC2,∴△ABC是直角三角形,AB⊥BC,∵CD⊥AD,AB⊥BC,∴△ADC,△EDC,△EDF,△ABC,△ABE是直角三角形.(2) ∵CD⊥AD,∴△ADC是直角三角形,∴AC2=AD2+DC2,∵AC2=AB2+BC2,AD2=2AB2−CD2,∴AB2+BC2=2AB2−DC2+DC2,即AB2=BC2,∴AB=BC.【知识点】勾股定理、勾股逆定理22. 【答案】由题意得AC=AʹCʹ=5,BC=3,AAʹ=2,Rt△ABC中,AB2+BC2=AC2,∴AB=√AC2−BC2=√52−32=4,∴AʹB=AB−AAʹ=4−2=2,Rt△AʹBʹCʹ中,AʹB2+BCʹ2=AʹCʹ2,∴BCʹ2=√AʹC2−AʹB2=√52−22=√21,∴CCʹ=BCʹ−BC=√21−3,∴梯子的底端在水平方向滑动了√21−3米.【知识点】勾股定理的实际应用23. 【答案】(1) AO=√52−32=4米.(2) OD=√52−(4−1)2=4米,BD=OD−OB=4−3=1米.【知识点】勾股定理的实际应用24. 【答案】(1) 45∘(2) ∠ACE=∠ACD−45∘;理由如下:由(1)得:∠BAC=180∘−2∠ACE,∴∠DAC=∠BAC−90∘=90∘−2∠ACE,∵AC=AD,∴∠ACD=12(180∘−∠DAC)=12[180∘−(90∘−2∠ACE)]=45∘+∠ACE,∴∠ACE=∠ACD−45∘.(3) 连接BH,如图2所示:由(2)得:∠ECD=45∘,∵AB=AC,AF⊥BC,∴BF=CF,∴BH=CH,∴∠HBC=∠BCD=45∘,∴∠BHC=90∘,∴BH2+DH2=BD2.∵△ABD是等腰直角三角形,∴BD2=2AD2,∴CH2+DH2=2AD2.【解析】(1) AB=AC,∴∠ABC=∠ACE=18∘,∴∠BAC=180∘−18∘−18∘=144∘,∵以AB为直角边作等腰直角三角形ABD,∴∠BAD=90∘,AB=AD,∴∠DAC=144∘−90∘=54∘,∵AB=AC,∴AC=AD,∴∠ACD=12(180∘−54∘)=63∘,∴∠DCE=∠ACD−∠ACE=63∘−18∘=45∘.【知识点】勾股定理、等腰三角形的性质25. 【答案】(1) a=45cm,b=60cm.(2) 540.【知识点】勾股定理。
第一章 勾股定理数学八年级上册-单元测试卷-北师大版(含答案)

第一章勾股定理数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,数轴上的点A表示的数是-1,点B表示的数是1,CB⊥AB于点B,且BC=2,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为()A.2.8B. -C.D.2、如图,在Rt△ABC中,∠ACB=90°,以点A为圆心,AC长为半径作圆弧交边AB于点D.若 AC=3,BC=4.则BD的长是()A.2B.3C.4D.53、如图,在四边形ABCD中,,,,.分别以点A,C为圆心,大于长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()4、如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cmB.4cmC.5cmD.6cm5、如图,在平行四边形中,对角线与相交于点,则的长为()A.8B.4C.3D.56、如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是( )A. B. C. D.7、如图,已知正方形ABCD的边长为3,E为CD上一点,DE=1,以点A为中心,把△ADE 顺时针旋转90°得△ABE',连接EE',则EE'的长度为( )8、如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+3;⑤S△AOC+S△=6+.其中正确的结论是()AOBA.①②③⑤B.①②③④C.①②③④⑤D.①②③9、下列四组数中,不能构成直角三角形边长的一组是( )A. B. C. D.10、如图,在ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则ΔCEF的周长等于A.8B.9.5C.10D.11.511、满足下列条件的,不是直角三角形的是()A. B. C.D.12、图1为一个长方体,AD=AB=10,AE=6,M,N为所在棱的中点,图2为图1的表面展开图,则图2中MN的长度为()A.11B.10C.10D.813、已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2)﹣CD2,其中结论正确的个数是()A.1B.2C.3D.414、将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC 的长为()A. B.2 C.1.5 D.15、在直角三角形中,自锐角顶点引的两条中线为和,则这个直角三角形的斜边长是( )A.3B.2C.2D.6二、填空题(共10题,共计30分)16、《九章算术》是我国古代重要的数学著作之一,在“勾股”中记载了一道“折竹抵地”问题:“今有竹高一丈,未折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的长,如果设AC=x,则可列方程求出AC的长为________.17、如图,正方形ABCD中,AB=2,对角线AC,BD相交于点O,将△OBC绕点B逆时针旋转得到△O′BC′,当射线O′C′经过点D时,线段DC′的长为________.18、在中,若,,,则________.19、如图,在矩形中,,,对角线相交于点O,点P为边上一动点,连接,以为折痕,将折叠,点A的对应点为点E,线段与相交于点F.若为直角三角形,则的长________.20、如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,D为线段AC上一动点,连接BD,过点C作CH⊥BD于H,连接AH,则AH的最小值为________.21、在△ABC中,AB=4,AC=3,BC=5,则△ABC的面积是________.22、如图,平面直角坐标系内有一点A(3,4),O为坐标原点.点B在x轴上,若△AOB 为等腰三角形,则点B的坐标为________.23、如图,长方形ABCD中,AB=3,BC=4,点E是BC边上任一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处,当CE的长为________时,△CEB′恰好为直角三角形.24、在《九章算术》中有一个问题(如图):今有竹高一丈,末折抵地,去本三尺,问折者高几何?它的意思是:一根竹子原高一丈(尺),中部一处折断,竹梢触地面处离竹根尺,试问折断处离地面________尺.25、在直角三角形ABC中,∠C=90º,如果c=13,a=5,那么b=________.三、解答题(共5题,共计25分)26、如图,在Rt△ABC中,∠C=90°,BC=8,tanB= ,点D在BC上,且BD=AD,求AC 的长和cos∠ADC的值.27、如图,在四边形ABCD中,AB=BC=2,CD=3,AD=1,且∠ABC=90°,试求∠A的度数.28、已知:如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,AD=1,求∠DAB的度数.29、如图,学校有一块空地ABCD,准备种草皮绿化已知∠ADC=90°,AD=4米,CD=3米,AB=13米,BC=12米,求这块地的面积.30、如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,求树高AB多少米.(结果保留根号)参考答案一、单选题(共15题,共计45分)1、B2、A3、A4、C5、B6、B7、A8、A9、B10、A11、C12、A13、D14、D15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、。
第一章 勾股定理数学八年级上册-单元测试卷-北师大版(含答案)

第一章勾股定理数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,在边长为1的正方形ABCD中,将射线AC绕点A按顺时针方向旋转度(< ≤)得到射线AE,点M是点D关于射线AE的对称点,则线段CM长度的最小值为()A. B.0.5 C.1 D.2、勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,已知∠BAC=90°,AB=6,AC=8,点D、E、F、G、H、I都在矩形KLMJ的边上,则矩形KLMJ的周长为()A.40B.44C.84D.883、“用长分别为5cm、12cm、13cm的三条线段可以围成直角三角形”这一事件是( )A.必然事件B.不可能事件C.随机事件D.以上都不是4、菱形的两条对角线的分别为60cm和80cm,那么边长是()A.100cmB.80cmC.60cmD.50cm5、三角形三边长分别是3,4,5,则它的最短边上的高为()A.3B.2.4C.4D.4.86、一根竹子高9尺,折断后竹子顶端落在离竹子底端3尺处,折断处离地面高度是()A.3尺B.4尺C.5尺D.6尺7、如图,正方形ABCD的对角线交于点O ,以AD为边向外作Rt△ADE ,∠AED=90°,连接OE , DE=6,OE=,则另一直角边AE的长为().A. B.2 C.8 D.108、如图①所示,有一个由传感器A控制的灯,要装在门上方离地高4.5m的墙上,任何东西只要移至该灯5m及5m以内时,灯就会自动发光.请问一个身高1.5m的学生要走到离墙多远的地方灯刚好发光?()A.4米B.3米C.5米D.7米9、如图,由四个全等的直角三角形和一个小正方形拼成一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13.则小正方形的面积为()A.3B.4C.5D.610、如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的半径为()A.8B.10C.16D.2011、下列命题不成立的是A.三个角的度数之比为1:3:4的三角形是直角三角形B.三个角的度数比为1::2的三角形是直角三角形C.三边长度比为1::的三角形是直角三角形D.三边长度之比为::2的三角形是直角三角形12、三角形的三边为a、b、c,由下列条件不能判断它是直角三角形的是()A.a:b:c =13∶5∶12B.a 2-b 2=c 2C.a 2=(b+c)(b-c) D.a:b:c=8∶16∶1713、如图,已知Rt△ABC中,∠C=90°,BC=3, AC=4,则sinA的值为()..A. B. C. D.14、如图,∠ACB=90°,CD是斜边上的高,AC=3,BC=4,则CD的长为()A.1.6B.2.4C.2D.2.115、下列长度的三条线段能组成直角三角形的是( )A.2,3,4B.4,6,8C.6,8,10D.5,11,12二、填空题(共10题,共计30分)16、将等腰直角△ABC按如图方法放置在数轴上,点A和C分别对应的数是﹣2和1.以点A为圆心,AB长为半径画弧,交数轴的正半轴于点D,则点D对应的实数为________.17、一根高9m的旗杆在离地4m高处折断,折断处仍相连,此时在3.9m远处耍的身高为1m的小明________危险.(填有或无)18、如图,正方形ABCD的顶点C,A分别在x轴,y轴上,BC是菱形BDCE的对角线.若BC=6,BD=5,则点D的坐标是________.19、我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知,则的长度是________.20、菱形的面积为24,其中的一条对角线长为6,则此菱形的周长为________.21、已知菱形的周长为,两条对角线的和为6,则菱形的面积为________22、如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为________m223、已知a、b、c是△ABC三边的长,且满足关系式,则△ABC的形状为________24、如图,在高3米,坡面线段AB长为5米的楼梯表面铺地毯,已知楼梯宽1.5米,地毯售价为40元/平方米,若将楼梯表面铺满地毯,则至少需________元.25、如图,已知以点A(0,1)、C(1,0)为顶点的△ABC中,∠BAC=60°,∠ACB=90°,在坐标系内有一动点P(不与A重合),以P、B、C为顶点的三角形和△ABC全等,则P点坐标为________.三、解答题(共5题,共计25分)26、在 Rt△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分别为a、b、c.若a∶c=15∶17,b=24,求a.27、有一块直角三角形的绿地,量得两直角边长分别为6m和8m,现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.28、小锤和豆花要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边BC上有水池及建筑遮挡,没有办法直接测量其长度。
八年级上册数学第一章勾股定理单元试题(北师大版含答案)

八年级上册数学第一章勾股定理单元试题(北师大版含答案)第一章勾股定理检测题本检测题满分:100分,时间:90分钟一、选择题(每小题3分,共30分)1.在△中,,,,则该三角形为()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形2.如果把直角三角形的两条直角边长同时扩大到原来的2倍,那么斜边长扩大到原来的()A.1倍B.2倍C.3倍D.4倍3.下列说法中正确的是()A.已知是三角形的三边,则B.在直角三角形中,两边的平方和等于第三边的平方C.在Rt△中,∠°,所以D.在Rt△中,∠°,所以4.如图,已知正方形的面积为144,正方形的面积为169时,那么正方形的面积为()A.313B.144C.169D.255.如图,在Rt△中,∠°,cm,cm,则其斜边上的高为()A.6cmB.8.5cmC.cmD.cm6.下列满足条件的三角形中,不是直角三角形的是()A.三内角之比为B.三边长的平方之比为C.三边长之比为D.三内角之比为7.如图,在△中,∠°,,,点在上,且,,则的长为()A.6B.7C.8D.98.如图,一圆柱高8cm,底面半径为cm,一只蚂蚁从点爬到点处吃食,要爬行的最短路程是()A.6cmB.8cmC.10cmD.12cm9.如果一个三角形的三边长满足,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形10.在△中,三边长满足,则互余的一对角是()A.∠与∠B.∠与∠C.∠与∠D.∠、∠、∠二、填空题(每小题3分,共24分)11.已知两条线段的长分别为5cm、12cm,当第三条线段长为________时,这三条线段可以构成一个直角三角形.12.在△中,cm,cm,⊥于点,则_______.13.在△中,若三边长分别为9、12、15,则以两个这样的三角形拼成的长方形的面积为__________.14.如图,在Rt△中,,平分,交于点,且,,则点到的距离是________.15.有一组勾股数,知道其中的两个数分别是17和8,则第三个数是.16.若一个直角三角形的一条直角边长是,另一条直角边长比斜边长短,则该直角三角形的斜边长为________.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形的面积之和为___________cm2.18.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了________步路(假设2步为1m),却踩伤了花草.三、解答题(共46分)19.(6分)若△三边长满足下列条件,判断△是不是直角三角形,若是,请说明哪个角是直角.(1);(2).20.(6分)在△中,,,.若,如图①,根据勾股定理,则.若△不是直角三角形,如图②和图③,请你类比勾股定理,试猜想与的关系,并证明你的结论.21.(6分)若三角形的三个内角的比是,最短边长为1,最长边长为2.求:(1)这个三角形各内角的度数;(2)另外一条边长的平方.22.(7分)如图,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8m处,已知旗杆原长16m,你能求出旗杆在离底部多少米的位置断裂吗?23.(7分)观察下表:列举猜想3,4,55,12,137,24,25…………请你结合该表格及相关知识,求出的值.24.(7分)如图,折叠长方形的一边,使点落在边上的点处,cm,cm,求:(1)的长;(2)的长.25.(7分)如图,长方体中,,,一只蚂蚁从点出发,沿长方体表面爬到点,求蚂蚁怎样走最短,最短路程是多少?第一章勾股定理检测题参考答案1.B解析:在△中,由,,,可推出.由勾股定理的逆定理知此三角形是直角三角形,故选B.2.B解析:设原直角三角形的三边长分别是,且,则扩大后的三角形的斜边长为,即斜边长扩大到原来的2倍,故选B.3.C解析:A.不确定三角形是不是直角三角形,故A选项错误;B.不确定第三边是否为斜边,故B选项错误;C.∠C=90°,所以其对边为斜边,故C选项正确;D.∠B=90°,所以,故D选项错误.4.D解析:设三个正方形的边长依次为,由于三个正方形的三边组成一个直角三角形,所以,故,即.5.C解析:由勾股定理可知cm,再由三角形的面积公式,有,得.6.D解析:在A选项中,求出三角形的三个内角分别是30°,60°,90°;在B,C选项中,都符合勾股定理的条件,所以A,B,C选项中都是直角三角形.在D选项中,求出三角形的三个角分别是所以不是直角三角形,故选D.7.C解析:因为Rt△中,,所以由勾股定理得.因为,,所以.8.C解析:如图为圆柱的侧面展开图,∵为的中点,则就是蚂蚁爬行的最短路径.∵,∴.∵,∴,即蚂蚁要爬行的最短路程是10cm.9.B解析:由,整理,得,即,所以,符合,所以这个三角形一定是直角三角形.10.B解析:由,得,所以△是直角三角形,且是斜边,所以∠B=90°,从而互余的一对角是∠与∠.11.cm或13cm解析:根据勾股定理,当12为直角边长时,第三条线段长为;当12为斜边长时,第三条线段长为.12.15cm解析:如图,∵等腰三角形底边上的高、中线以及顶角的平分线三线合一,∴.∵,∴.∵,∴(cm).13.108解析:因为,所以△是直角三角形,且两条直角边长分别为9、12,则以两个这样的三角形拼成的长方形的面积为.14.3解析:如图,过点作于.因为,,,所以.因为平分,,所以点到的距离.15.15解析:设第三个数是,①若为最长边,则,不是整数,不符合题意;②若17为最长边,则,三边是整数,能构成勾股数,符合题意,故答案为:15.16.解析:设直角三角形的斜边长是,则另一条直角边长是.根据勾股定理,得,解得,则斜边长是.17.49解析:正方形A,B,C,D的面积之和是最大的正方形的面积,即49.18.4解析:在Rt△ABC中,,则,少走了(步).19.解:(1)因为,根据三边长满足的条件,可以判断△是直角三角形,其中∠为直角. (2)因为,所以,根据三边长满足的条件,可以判断△是直角三角形,其中∠为直角. 20.解:如图①,若△是锐角三角形,则有.证明如下:过点作,垂足为,设为,则有.在Rt△ACD中,根据勾股定理,得AC2CD2=AD2,即b2x2=AD2.在Rt△ABD中,根据勾股定理,得AD2=AB2BD2,即AD2=c2(ax)2,即,∴.∵,∴,∴.如图②,若△是钝角三角形,为钝角,则有.证明如下:过点作,交的延长线于点.设为,在Rt△BCD中,根据勾股定理,得,在Rt△ABD中,根据勾股定理,得AD2+BD2=AB2,即.即.∵,∴,∴.21.解:(1)因为三个内角的比是,所以设三个内角的度数分别为.由,得,所以三个内角的度数分别为.(2)由(1)知三角形为直角三角形,则一条直角边长为1,斜边长为2.设另外一条直角边长为,则,即.所以另外一条边长的平方为3.22.分析:旗杆折断的部分,未折断的部分和旗杆顶部离旗杆底部的部分构成了直角三角形,运用勾股定理可将折断的位置求出.解:设旗杆未折断部分的长为m,则折断部分的长为m,根据勾股定理,得,解得:m,即旗杆在离底部6m处断裂.23.分析:根据已知条件可找出规律;根据此规律可求出的值.解:由3,4,5:;5,12,13:;7,24,25:.故,,解得,,即.24.分析:(1)由于△翻折得到△,所以,则在Rt△中,可求得的长,从而的长可求;(2)由于,可设的长为,在Rt△中,利用勾股定理求解直角三角形即可.解:(1)由题意,得(cm),在Rt△中,∵,∴(cm),∴(cm).(2)由题意,得,设的长为,则.在Rt△中,由勾股定理,得,解得,即的长为5cm.25.分析:要求蚂蚁爬行的最短路程,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.解:如图(1),把长方体剪开,则成长方形,宽为,长为,连接,则构成直角三角形,由勾股定理,得.如图(2),把长方体剪开,则成长方形,宽为,长为,连接,则构成直角三角形,同理,由勾股定理,得.∴蚂蚁从点出发穿过到达点路程最短,最短路程是5.。
(北师大版)济南市八年级数学上册第一单元《勾股定理》测试卷(答案解析)

一、选择题1.三个正方形的面积如图所示,则S的值为()A.3 B.4 C.9 D.122.如图,动点P从点A出发,沿着圆柱的侧面移动到BC的中点S,若8BC=,点P移动的最短距离为5,则圆柱的底面周长为()A.6 B.4πC.8 D.103.一根竹竿插到水池中离岸边1.5m远的水底,竹竿高出水面0.5m,若把竹竿的顶端拉向岸边,则竿顶刚好接触到岸边,并且和水面一样高,问水池的深度为()A.2m B.2.5cm C.2.25m D.3m4.如图,在Rt△ABC中,∠BAC=90°,以Rt△ABC各边为斜边分别向外作等腰Rt△ADB、等腰Rt△AFC、等腰Rt△BEC,然后将等腰Rt△ADB和等腰Rt△AFC按如图方式叠放到等腰Rt△BEC中,其中BH=BA,CI=CA,已知,S四边形GKJE=1,S四边形KHCJ=8,则AC的长为()A.2 B.52C.4 D.65.如图,已知正方体纸盒的高为1,已知一只蚂蚁从其中一个顶点A,沿着纸盒的外部表面爬行至另一个顶点B,则蚂蚁爬行的最短距离是()A.3B.2 C.5D.21+6.下列数组是勾股数的是()A.2,3,4 B.0.3,0.4,0.5 C.5,12,13 D.8,12,157.一个长方体盒子长24cm,宽10cm,在这个盒子中水平放置一根木棒,那么这根木棒最长(不计木棒粗细)可以是()A.10cm B.24cm C.26cm D.28cm8.如图所示的是2002年在北京召开的国际数学家大会的会标,这个图案是由“弦图”演变而来.“弦图”最早是由三国时期数学家赵爽在注解一部数学著作时给出的,它标志着中国古代的数学成就.这部中国古代数学著作是()A.《周髀算经》B.《几何原本》C.《九章算术》D.《孙子算经》9.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几.”此问题可理解为:如图,有一架秋千,当它静止时,踏板离地距离AB长度为1尺.将它往前水平推送10尺时,即A C'=10尺,则此时秋千的踏板离地距离A D'就和身高5尺的人一样高.若运动过程中秋千的绳索始终拉得很直,则绳索OA长为()A .13.5尺B .14尺C .14.5尺D .15尺 10.如图,在ABC ∆中,90C ∠=︒,4AC =,2BC =.以AB 为一条边向三角形外部作正方形,则正方形的面积是( )A .8B .12C .18D .2011.如图,在矩形OABC 中,点B 的坐标是(2,5),则,A C 两点间的距离是( )A .26B .33C .29D .5 12.下列各组数是勾股数的是( ) A .4,5,6 B .5,7,9C .6,8,10D .10,11,12 二、填空题13.如图,在平面直角坐标系xOy 中,以点A (﹣5,0)为圆心,13为半径作弧,交y 轴的正半轴于点B ,则点B 的坐标为_____.14.如图,在四边形ABCD 中,B D 90∠∠==︒,AD=CD ,AB+BC=8,则四边形ABCD 的面积是_________.15.已知:如图在△ABC ,△ADE 中,∠BAC=∠DAE=90°,AB=AC ,AD=AE ,点C ,D ,E 三点在同一条直线上,连接BD ,BE ,以下四个结论:①BD=CE ;②BD ⊥CE ;③∠ACE+∠DBC=45°;④BE 2=2(AD 2+AB 2),其中结论正确的是________________.16.已知一个直角三角形三边长的平方和是50,则斜边长为________.17.如图,一个蚂蚁要在一个长、宽、高分别为2、3、1分米的长方体的表面从A 点爬到B 点,那么最短的路径是_______________分米.(结果保留根号)18.如图,为修通铁路凿通隧道AC ,量出40A ∠=︒,50B ∠=︒,5AB =公里,4BC =公里,若每天凿通隧道0.3公里,问_________天才能把隧道AC 凿通.19.如图,AD 是ABC 的中线,45,ADC ∠=︒把ADC 沿AD 折叠,使点C 落在点'C 处,'BC 与BC 的长度比是_______________________.20.若一个直角三角形的两条直角边长分别是4和6,则斜边长为__________.三、解答题21.如图,这是一个供滑板爱好者使用的U型池的示意图,该U型池可以看成是长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是直径为40mπ的半圆,其边缘20m==AB CD,点E在CD上,5mCE=,一滑板爱好者从A点滑到E点,则他滑行的最短距离为多少米?(边缘部分的厚度忽略不计)22.《九章算术》中有“折竹抵地”问题:今有竹高一丈,末折抵地,去根七尺,问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹稍恰好抵地,抵地处距竹子底端7尺远,问折断处离地面的高度是多少尺?23.如图,在△ABC中,AD⊥BC于点D,且AC+AD=32,BD=5,CD=16,试确定AB的长.24.如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连接CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)若BE=5,DE=7,则△ACD的周长是.25.《九章算术》中有一道“引葭赴岸”问题:“今有池一丈,葭生其中夹,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一个池塘,其底面是边长是10尺的正方形,一根芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B'(如图).水深和芦苇长各多少尺?26.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙脚的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,求小巷的宽度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由题可知,已知正方形的面积,利用面积公式,即可求解边长;三个正方形的边长恰好构成直角三角形,由勾股定理可求解.【详解】由题可知三个正方形,利用正方形面积公式可得:面积为16的正方形的边长为:4;面积为25的正方形的边长为:5;如图:又三个正方形边长恰好构成直角三角形,∴第三个正方形的边长为:22543-=;∴第三个正方形面积为:9;故选C.【点睛】本题主要考查正方形及直角三角形的性质;重点在于面积和边长之间的转换和对图形的分析.2.A解析:A【分析】根据圆柱的侧面展开图,利用勾股定理求出AB即可求解.【详解】解:圆柱的侧面展开图如图,点P移动的最短距离为AS=5,根据题意,BS=12BC=4,∠ABS=90°,∴AB=22AS BS-=2254-=3,∴圆柱的底面周长为2AB=6,故选:A.【点睛】本题考查圆柱的侧面展开图、最短路径问题、勾股定理,熟练掌握圆柱的侧面展开图,得出点P移动的最短距离是AS是解答的关键.3.A解析:A【分析】设水池的深度BC=xm,则AB=(0.5+x)m,根据勾股定理列出方程,进而即可求解.【详解】解:在直角△ABC中,AC=1.5m.AB﹣BC=0.5m.设水池的深度BC=xm,则AB=(0.5+x)m.根据勾股定理得出:∵AC2+BC2=AB2,∴1.52+x2=(x+0.5)2,解得:x=2.故选:A.【点睛】本题主要考查勾股定理的实际应用,根据勾股定理,列出方程,是解题的关键.4.D解析:D【分析】设AD=DB=a,AF=CF=b,BE=CE=c,由勾股定理可求a2+b2=c2,由S四边形GHCE=S四边形GKJE+S四边形KHCJ=9,可求b=2,即可求解.【详解】解:设AD=DB=a,AF=CF=b,BE=CE=c,∴AB2=,BC2=,=,AC2∵∠BAC=90°,∴AB2+AC2=BC2,∴2a2+2b2=2c2,∴a2+b2=c2,∵将等腰Rt△ADB和等腰Rt△AFC按如图方式叠放到等腰Rt△BEC,∴BG=GH=a,∵S四边形GHCE=S四边形GKJE+S四边形KHCJ=9,∴1(a+c)(c﹣a)=9,2∴c2﹣a2=18,∴b2=18,∴b=2∴AC2==6,故选:D.【点睛】本题考查了勾股定理,折叠的性质,利用整体思想解决问题是本题的关键.5.C解析:C【分析】从正方体外部可分三类走法直接走AB对角线,先走折线AD-DB,或走三条棱,求出其长度,比较大小即可【详解】方法一:走两个正方形两接的面展开成日字形的对角线在三角形ABC 中,由勾股定理AB=2222AC +BC =2+1=5;方法二:走一面折线AD-BD ,由勾股定理221+1=22+1;方法三折线AE-ED-DB 即AE+ED+DB=3;在正方体外部表面走有这三类走法,∵5<9, ∴53, ∵2>1, ∴21>, ∴222>, ∴22+32+3>, ∴)22+15>, ∴2+15>5故选择:C .【点睛】本题考查蚂蚁爬行最短路径问题是考查勾股定理的应用,掌握勾股定理的应用方法,会利用图形分析行走路径是解题关键.6.C解析:C【分析】勾股数就是可以构成一个直角三角形三边的一组正整数,再利用勾股定理的逆定理逐一判断各选项即可得到答案.【详解】解:22223134,+=≠ 故A 不符合题意;0.3,0.4,0.5首先不是正整数,故B 不符合题意;22251216913,+== 故C 符合题意; 2228126414420815,+=+=≠ 故D 不符合题意;故选:.C【点睛】本题考查的是勾股数的含义,勾股定理的逆定理的应用,掌握以上知识是解题的关键.7.C解析:C【分析】根据题意可知木棒最长是底面长方形的对角线的长,利用勾股定理求解即可.【详解】解:长方体的底面是长方形,水平放置木棒,当木棒为该正方形的对角线时木棒最长,=,26则最长木棒长为26cm,故选:C.【点睛】本题考查立体图形、勾股定理,由题意得出木棒最长是底面长方形的对角线的长是解答的关键.8.A解析:A【分析】根据在《周髀算经》中赵爽提过“赵爽弦图”即可解答.【详解】解:根据在《周髀算经》中赵爽提过“赵爽弦图”,故选:A.【点睛】本题考查勾股定理,知道“赵爽弦图”是赵爽在《周髀算经》提到过是解答的关键.9.C解析:C【分析】设绳索有x尺长,此时绳索长,向前推出的10尺,和秋千的上端为端点,垂直地面的线可构成直角三角形,根据勾股定理可求解.【详解】解:设绳索有x尺长,则102+(x+1-5)2=x2,解得:x=14.5.故绳索长14.5尺.故选:C.【点睛】本题考查勾股定理的应用,理解题意能力,关键是能构造出直角三角形,用勾股定理来解.10.D解析:D【分析】根据勾股定理解得2AB 的值,再结合正方形的面积公式解题即可.【详解】在ABC ∆中,90C ∠=︒,4AC =,2BC =,222224220AB AC BC ∴=+=+=∴以AB 为一条边向三角形外部作的正方形的面积为220AB =,故选:D .【点睛】本题考查勾股定理的应用,是重要考点,难度较易,掌握相关知识是解题关键. 11.C解析:C【分析】根据矩形的性质可得OB =AC ,根据勾股定理即可求出答案.【详解】在矩形OABC 中,OB =AC ,∵B (2,5), ∴OB ==AC OB ==故选:C .【点睛】本题考查矩形的性质,解题的关键是熟练运用矩形的性质以及勾股定理.12.C解析:C【分析】根据勾股数的定义:满足222+=a b c 的三个正整数a 、b 、c 叫做勾股数,逐一进行判断即可.【详解】解:A. 222456+≠,故此选项错误;B. 222579+≠,故此选项错误;C. 2226810+=,故此选项正确;D. 222101112+≠,故此选项错误.故选:C .【点睛】本题考查了勾股数的概念,熟记勾股数的概念是解题的关键.二、填空题13.【分析】连接AB 由题意知:OA=5AB=13利用勾股即可求得OB 的长本题即可求解【详解】解:如图连接AB 由题意知:OA=5AB=13∴OB=∴B 故答案为:【点睛】本题考查的圆的半径以及勾股定理添加辅解析:()0,12.【分析】连接AB ,由题意知:OA=5,AB=13,利用勾股即可求得OB 的长,本题即可求解.【详解】解:如图,连接AB ,由题意知:OA=5,AB=13,∴2213512, ∴B ()0,12.故答案为:()0,12.【点睛】本题考查的圆的半径以及勾股定理,添加辅助线AB 以及正确利用勾股定理进行计算是解题的关键.14.16【分析】求不规则四边形的面积可以转化为两个三角形的面积由题意可知:求出与的面积即为四边形ABCD 的面积【详解】连接AC ∵∴∴∵AB+BC=8∴∴∴故答案为:16【点睛】本题主要考查的是四边形面积解析:16【分析】求不规则四边形的面积,可以转化为两个三角形的面积,由题意B D 90∠∠==︒,可知:求出Rt ABC 与Rt ADC 的面积,即为四边形ABCD 的面积.【详解】连接AC ,∵B D 90∠∠==︒,∴222AB BC AC +=,222AD DC AC +=,∴11=22ABC ADC ABCD S S S BC AB CD AD +=⋅+⋅四边形21122BC AB AD =⋅+ ()2221111=2224BC AB CD AB BC AB BC ⋅+=⋅++, ∵AB+BC=8, ∴222=64AB BC BC AB ++⨯,∴4464ABC ADCS S +=, ∴=16ABC ADC ABCD S SS +=四边形故答案为:16.【点睛】本题主要考查的是四边形面积的求解,三角形面积以及勾股定理,熟练运用三角形面积公式以及勾股定理是解答本题的关键.15.①②③【分析】①由条件证明△ABD ≌△ACE 就可以得到结论;②由△ABD ≌△ACE 就可以得出∠ABD=∠ACE 就可以得出∠BDC=90°而得出结论;③由条件知∠ABC=∠ABD+∠DBC=45°由∠解析:①②③【分析】①由条件证明△ABD ≌△ACE ,就可以得到结论;②由△ABD ≌△ACE 就可以得出∠ABD=∠ACE ,就可以得出∠BDC=90°而得出结论; ③由条件知∠ABC=∠ABD+∠DBC=45°,由∠DBC+∠ACE=90°,就可以得出结论; ④△BDE 为直角三角形就可以得出BE 2=BD 2+DE 2,由△DAE 和△BAC 是等腰直角三角形就有DE 2=2AD 2,BC 2=2AB 2,就有BC 2=BD 2+CD 2≠BD 2就可以得出结论.【详解】解:①∵∠BAC=∠DAE ,∴∠BAC+∠DAC=∠DAE+∠DAC ,即∠BAD=∠CAE .在△ABD 和△ACE 中,AD AE BAD CAE AB AC ⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△ACE (SAS ),∴BD=CE .故①正确;∵△ABD ≌△ACE ,∴∠ABD=∠ACE .∵∠CAB=90°,∴∠ABD+∠DBC+∠ACB=90°,∴∠DBC+∠ACE+∠ACB=90°,∴∠BDC=180°-90°=90°.∴BD ⊥CE ;故②正确;③∵∠BAC=90°,AB=AC ,∴∠ABC=45°,∴∠ABD+∠DBC=45°.∴∠ACE+∠DBC=45°,故③正确;④∵BD ⊥CE ,∴BE 2=BD 2+DE 2.∵∠BAC=∠DAE=90°,AB=AC ,AD=AE ,∴DE 2=2AD 2,BC 2=2AB 2.∵BC 2=BD 2+CD 2≠BD 2,∴2AB 2=BD 2+CD 2≠BD 2,∴BE 2≠2(AD 2+AB 2).故④错误.故答案为:①②③.【点睛】本题考查了全等三角形的性质和判定的应用,垂直的性质和判定的应用,等腰直角三角形的性质的应用,勾股定理的应用,能利用全等三角形的性质和判定求解是解此题的关键. 16.5【分析】设两直角边长分别为ab 斜边长为c 则根据题意列得即可求出答案【详解】设两直角边长分别为ab 斜边长为c 则∵三边长的平方和是∴∴解得c=5(负值舍去)故答案为:5【点睛】此题考查勾股定理正确掌握解析:5【分析】设两直角边长分别为a 、b ,斜边长为c ,则222+=a b c ,根据题意列得2250c =即可求出答案.【详解】设两直角边长分别为a 、b ,斜边长为c ,则222+=a b c ,∵三边长的平方和是50,∴22250a b c ++=,∴2250c =,解得c=5(负值舍去),故答案为:5.【点睛】此题考查勾股定理,正确掌握勾股定理的计算公式是解题的关键.17.【分析】有三种展开方式一种是正面和右侧面展开如图(1)一种是正面和上面展开如图(2)另外一种是底面和右侧面展开如图(3)分别根据勾股定理求AB 的长度即可判断【详解】正面和右侧面展开如图(1)根据勾股 解析:32 【分析】 有三种展开方式,一种是正面和右侧面展开如图(1),一种是正面和上面展开如图(2),另外一种是底面和右侧面展开如图(3),分别根据勾股定理求AB 的长度即可判断.【详解】正面和右侧面展开如图(1)根据勾股定理()2223126AB =++=;正面和上面展开如图(2)根据勾股定理()2213225AB =++=;底面和右侧面展开如图(3)根据勾股定理AB ==∵<<∴最短的路径是故答案为【点睛】本题考察了几何图形的展开图形,勾股定理的实际应用,容易漏掉正面和上面的展开图是本题的易错点,在做题的过程中要注意考虑全面.18.10【分析】根据勾股定理可求出BC 的长度然后除以每天凿隧道的长度可求出需要的天数【详解】解:∵∠A=40°∠B=50°∴∠C=90°即△ABC 为直角三角形∵AB=5kmAC=4km ∴故:所需天数==解析:10【分析】根据勾股定理可求出BC 的长度,然后除以每天凿隧道的长度,可求出需要的天数.【详解】解:∵∠A=40°,∠B=50°,∴∠C=90°,即△ABC 为直角三角形∵AB=5km ,AC=4km∴3BC km ==,故:所需天数=30.3=10天. 故答案为:10.【点睛】 本题主要是运用勾股定理求出所需凿隧道的长度.19.【分析】设BD=CD=x 由题意可知∠ADC=45°且将ADC 沿AD 折叠故则可运用勾股定理将用x 进行表示即可得出的值【详解】解:∵点D 是BC 的中点设BD=CD=x 则BC=2x 又∵∠ADC=45°将AD2【分析】 设BD=CD=x ,由题意可知∠ADC=45°,且将ADC 沿AD 折叠,故ADC'=45∠︒,则Rt C'DB △可运用勾股定理,将BC'用x 进行表示,即可得出BC':BC 的值.【详解】解:∵点D 是BC 的中点,设BD=CD=x ,则BC=2x ,又∵∠ADC=45°,将ADC 沿AD 折叠,故ADC'=45∠︒,C'D =x ,∴C'DC=C'DB=90∠∠︒,C'DB △是直角三角形,根据勾股定理可得:, ∴2:,故答案为:2:2. 【点睛】本题主要考察了折叠问题与勾股定理,解题的关键在于通过折叠的性质,得出直角三角形,并运用勾股定理.20.【分析】直接根据勾股定理求解可得【详解】解:∵直角三角形的两条直角边长分别是4和6∴斜边长为故答案为:【点睛】本题考查勾股定理在任何一个直角三角形中两条直角边长的平方之和一定等于斜边长的平方即如果直 解析:213【分析】直接根据勾股定理求解可得.【详解】解:∵直角三角形的两条直角边长分别是4和6,∴斜边长为224+6=213,故答案为:213.【点睛】本题考查勾股定理,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.即如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.三、解答题21.25米【分析】要求滑行的最短距离,需将该U 型池的侧面展开,进而根据“两点之间线段最短”得出结果.【详解】解:如图是其侧面展开图:A D=π•20π=20,AB=CD=20.DE=CD-CE=20-5=15,在Rt △ADE 中,22AD DE +222015+.故他滑行的最短距离约为25米.【点睛】本题考查了平面展开-最短路径问题,U 型池的侧面展开图是一个矩形,此矩形的宽等于半径为20π的半圆的弧长,矩形的长等于AB=CD=20.本题就是把U型池的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.22.55尺.【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(10﹣x)尺,利用勾股定理解题即可.【详解】解:设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+72=(10﹣x)2,解得:x=2.55,∴折断处离地面的高度为2.55尺.【点睛】此题考查勾股定理的实际应用,正确理解题意构建直角三角形利用勾股定理求解是解题的关键.23.13【分析】设AD=x,则AC=32﹣x,根据勾股定理可求出x的值,在直角三角形ABD中,再利用勾股定理即可求出AB的长.【详解】解:设AD=x,则AC=32﹣x,∵AD⊥BC于点D,∴△ADC和△ADB是直角三角形,∵CD=16,∴x2+162=(32﹣x)2,解得:x=12,∴AD=12,在直角三角形ABD中,AB=13.【点睛】本题考查了勾股定理解直角三角形,解题的关键是设出未知数,利用勾股定理列出方程求解.24.(1)见解析;(2)30.【分析】(1)根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC;(2)利用(1)中结论,根据全等三角形的性质即可解决问题;【详解】(1)证明:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD =90°,∴∠EBC =∠DCA .在△BCE 和△CAD 中,E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△CAD (AAS );(2)解:∵△BCE ≌△CAD ,BE =5,DE =7,∴BE =DC =5,CE =AD =CD+DE =5+7=12.∴由勾股定理得:AC =13,∴△ACD 的周长为:5+12+13=30,故答案为:30.【点睛】本题主要考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.也考查了余角的性质和勾股定理.25.水深12尺,芦苇长13尺【分析】依题意画出图形,设芦苇长AB =AB '=x 尺,则水深AC =(x -1)尺,因为B 'E =10尺,所以B 'C =5尺,利用勾股定理求出x 的值即可得到答案.【详解】解:依题意画出图形,如下图,设芦苇长AB =AB '=x 尺,则水深AC =(x -1)尺,因为B 'E =10尺,所以B 'C =5尺,在Rt △ACB '中,52+(x -1)2=x 2,解得:x =13,即水深12尺,芦苇长13尺.【点睛】此题考查勾股定理的实际应用,正确理解题意,构建直角三角形利用勾股定理解决问题是解题的关键.26.2米【分析】先根据勾股定理求出AB 的长,同理可得出BD 的长,进而可得出结论.【详解】解:在Rt ACB ∆中,90ACB ∠=︒,0.7BC =米, 2.4AC =米,2220.7 2.4 6.25AB ∴=+=.在Rt △A BD '中,90A DB ∠'=︒,2A D '=米,222BD A D A B +'=',222 6.25BD ∴+=,2 2.25BD ∴=,0BD >,1.5BD ∴=米,0.7 1.5 2.2CD BC BD ∴=+=+=米,答:小巷的宽度为2.2米.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.。
北师大版八年级数学上册第一章勾股定理章节训练试题(详解版)

北师大版八年级数学上册第一章勾股定理章节训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为()B.C.D.A2、若a,b为直角三角形的两直角边,c为斜边,下列选项中不能..用来证明勾股定理的是()A.B.C.D.3、如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么△ABC中BC边上的高是()A B C D4、如图,嘉嘉在A时测得一棵4米高的树的影长DF为8m,若A时和B时两次日照的光线互相垂直,则B时的影长DE为()A.2m B.C.4m D.5、《九章算术》被尊为古代数学“群经之首”,其卷九勾股定理篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?如图,大意是,今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这个木材,锯口深CD等于1寸,锯道AB长1尺,则圆形木材的直径是()(1尺=10寸)A .12寸B .13寸C .24寸D .26寸6、如图,所有阴影四边形都是正方形,所有三角形都是直角三角形,已知正方形A ,B ,C 的面积依次为2,4,3,则正方形D 的面积为( )A .9B .8C .27D .457、下列各组数据为三角形的三边,能构成直角三角形的是( )A .4,8,7B .2,2,2C .2,2,4D .13,12,58、如图,Rt ABC 中,90ACB ∠=︒,一同学利用直尺和圆规完成如下操作:①以点C 为圆心,以CB 为半径画弧,交AB 于点G ;分别以点G 、B 为圆心,以大于12GB 的长为半径画弧,两弧交点K ,作射线CK ;②以点B为圆心,以适当的长为半径画弧,交BC于点M,交AB的延长线于N,分别以M、N为圆心,以大于12MN的长为半径画弧,两弧交于点P,作直线BP交AC的延长线于点D,交射线CK于点E.请你观察图形,根据操作结果解答下列问题;过点D作DF AB⊥交AB的延长线于点F,若12AC=,5BC=,则CE的长为()A.13 B.132C.52D.1529、两只小鼹鼠在地下打洞,一只朝正北方向挖,每分钟挖8cm,另一只朝正东方向挖,每分钟挖6cm,10分钟之后两只小鼹鼠相距()A.50cm B.120cm C.140cm D.100cm10、如图,正方体盒子的棱长为2,M为BC的中点,则一只蚂蚁从A点沿盒子的表面爬行到M点的最短距离为()A.BC D第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是_______尺.2、在△ABC中,∠C=90°,AB=10,AC=8,则BC的长为_____.3、如图,在网格中,每个小正方形的边长均为1.点A、B,C都在格点上,若BD是△ABC的高,则BD的长为__________.4、如图,台风过后,某希望小学的旗杆在离地某处断裂,且旗杆顶部落在离旗杆底部8m处,已知旗杆原长16m,你能求出旗杆在离底部________m位置断裂.5、如图,折叠直角三角形纸片ABC,使得两个锐角顶点A、C重合,设折痕为DE,若AB=4,BC=3,则△ADC的周长是__________三、解答题(5小题,每小题10分,共计50分)1、如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,AD=1,BC=2,求AB、CD的长.2、2020年春季“新冠肺炎”在武汉全面爆发,蔓延全国,危及到人民生命安全,为了积极响应国家防控政策,双流区某镇政府采用了移动宣讲的形式进行宣传防控措施,如图,笔直公路MN的一侧点A处有一村庄,村庄A到公路MN的距离为600米,假设宣讲车P周围1000米以内能听到广播宣传,宣讲车P在公路MN上沿PN方向行驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200米/分钟,那么村庄总共能听到多长时间的宣传?3、我方侦查员小王在距离东西向公路400米处侦查,发现一辆敌方汽车在公路上疾驶.他赶紧拿出红外线测距仪,测得汽车与他相距400米,10秒后,汽车与他相距500米,你能帮小王计算敌方汽车的速度吗?4、勾股定理被誉为“几何明珠”,在数学的发展历程中占有举足轻重的地位.它是初中数学中的重要知识点之一,也是初中学生以后解决数学问题和实际问题中常常运用到的重要知识,因此学好勾股定理非常重要.学习数学“不仅要知其然,更要知其所以然”,所以,我们要学会勾股定理的各种证明方法.请你利用如图图形证明勾股定理:已知:如图,四边形ABCD中,BD⊥CD,AE⊥BD于点E,且△ABE≌△BCD.求证:AB2=BE2+AE2.5、某海上有一小岛,为了测量小岛两端A,B的距离,测量人员设计了一种测量方法,如图,已知B 是CD的中点,E是BA延长线上的一点,且∠CED=90°,测得AE=16.6海里,DE=60海里,CE=80海里.(1)求小岛两端A,B的距离.(2)过点C作CF⊥AB交AB的延长线于点F,求BFBC值.-参考答案-一、单选题1、A【解析】【分析】把要求的最大值的两条线段经过平移后形成一条线段,然后再根据垂线段最短来进行计算即可.【详解】解:如图,过点C作CK⊥l于点K,过点A作AH⊥BC于点H,在Rt△AHB中,∵∠ABC=60°,AB=2,∴BH=1,AH在Rt△AHC中,∠ACB=45°,=∵点D为BC中点,∴BD=CD,在△BFD与△CKD中,90BFD CKDBDF CDKBD CD∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△BFD≌△CKD(AAS),∴BF=CK,延长AE,过点C作CN⊥AE于点N,可得AE+BF=AE+CK=AE+EN=AN,在Rt△ACN中,AN<AC,当直线l⊥AC综上所述,AE+BF故选:A .【考点】本题主要考查了全等三角形的判定定理和性质定理及平移的性质,构建全等三角形是解答此题的关键.2、A【解析】【分析】由题意根据图形的面积得出,,a b c 的关系,即可证明勾股定理,分别分析即可得出答案【详解】解:A 、不能利用图形面积证明勾股定理;B 、根据面积得到()2222142c ab a b a b =⨯+-=+; C 、根据面积得到()22142a b ab c +=⨯+,整理得222+=a b c ; D 、根据面积得到22111()2222a b c ab +=+⨯,整理得222+=a b c . 故选:A.【考点】本题考查勾股定理的证明,熟练掌握利用图形的面积得出,,a b c 的关系,即可证明勾股定理.3、A【解析】【详解】先用勾股定理耱出三角形的三边,再根据勾股定理的逆定理判断出△ABC 是直角三角形,最后设BC 边上的高为h ,利用三角形面积公式建立方程即可得出答案.解:由勾股定理得:AC =AB 221310BC ,222(5)+= ,即222AB AC BC += ∴△ABC 是直角三角形,设BC 边上的高为h ,则1122ABCS AB AC h BC =⋅=⋅,∴AB AC h BC ⋅=故选A.点睛:本题主要考查勾股理及其逆定理.借助网格利用勾股定理求边长,并用勾股定理的逆定理来判断三角形是否是直角三角形是解题的关键.4、A 【解析】【分析】根据勾股定理,求出FC=DE =x ,在Rt CDE △中,EC 2=22DE CD +,在Rt CFE 中,EC 2=22FE CF -=22DE CD +,代入求解即可.【详解】解:由题意,得∠ECF =∠CDF =∠CDE =90°,CD =4m ,DF =8m ,由勾股定理,得FC=EC 2=22DE CD +,EC 2=22FE CF -,∴22FE CF -=22DE CD +,令DE =x ,则EF =x +8,∴222816x x +-=+(), 整理,得16x =32,解得x =2.故选:A .【考点】本题考查利用勾股定理求线段长,拓展一元一次方程,正确的运算能力是解决问题的关键.5、D【解析】【分析】连接OA 、OC ,由垂径定理得AC =BC =12AB =5寸,连接OA ,设圆的半径为x 寸,再在Rt △OAC 中,由勾股定理列出方程,解方程可得半径,进而直径可求.【详解】解:连接OA 、OC ,如图:由题意得:C 为AB 的中点,则O 、C 、D 三点共线,OC ⊥AB ,AB=5(寸),∴AC=BC=12设圆的半径为x寸,则OC=(x﹣1)寸.在Rt△OAC中,由勾股定理得:52+(x﹣1)2=x2,解得:x=13.∴圆材直径为2×13=26(寸).故选:D【考点】本题主要考查了垂径定理的应用,勾股定理的应用,熟练掌握垂径定理,由勾股定理得出方程是解题的关键.6、A【解析】【分析】设正方形D的面积为x,根据图形得出方程2+4=x-3,求出即可.【详解】∵正方形A、B、C的面积依次为2、4、3,∴根据图形得:2+4=x−3.解得:x=9.故选A.【考点】本题考查了勾股定理,根据图形推出四个正方形的关系是解决问题的关键.7、D【解析】【分析】根据勾股定理的逆定理,看较小的两边的平方和是否等于最大的边的平方即可进行判断.【详解】A、42+72≠82,故不能构成直角三角形;B、22+22≠22,故不能构成直角三角形;C、2+2=4,故不能构成三角形,不能构成直角三角形;D、52+122=132,故能构成直角三角形,故选D.【考点】本题考查的是用勾股定理的逆定理判断三角形的形状,即若三角形的三边符合a2+b2=c2,则此三角形是直角三角形.8、D【解析】【分析】先证明CE=CD=DF,BC=BF=5,利用勾股定理求出AB,设CE=CD=DF=x,在Rt△ADF中,利用勾股定理构建方程求解即可.【详解】解:由作图知CE⊥AB,BD平分∠CBF,∴∠1=∠2=∠3,∵∠CEB +∠3=∠2+∠CDE =90°,∴∠CEB =∠CDE ,∴CD =CE ,在△DBC 和△DBF 中,21BCD BFD BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BDC ≌△BDF (AAS ),∴CD =DF ,BC =BF =5,∵∠ACB =90°,AC =12,BC =5,∴AB13,设EC =CD =DF =x ,在Rt △ADF 中,则有(12+x )2=x 2+182,∴x =152, ∴CE =152,【考点】本题考查作图-复杂作图,全等三角形的判定和性质,等腰三角形的判定,以及勾股定理等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.9、D【解析】【分析】画出图形,利用勾股定理即可求解.【详解】解:如图,81080OA =⨯=cm ,61060OB =⨯=cm ,∴在Rt AOB ∆中,100AB ===cm ,故选:D【考点】本题考查了勾股定理的应用,理解题意,画出图形是解题的关键.10、B【分析】先利用展开图确定最短路线,再利用勾股定理求解即可.【详解】解:如图,蚂蚁沿路线AM 爬行时距离最短;∵正方体盒子棱长为2,M 为BC 的中点,∴23AD MD ==,,∴AM =故选:B .【考点】本题考查了蚂蚁爬行的最短路径为题,涉及到了正方形的性质、正方体的展开图、勾股定理、两点之间线段最短等知识,解题关键是牢记相关概念与灵活应用.二、填空题1、25.【解析】【详解】 解:这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是直角三角形求斜边的问题.=(尺).25故答案为:25.2、6【解析】【分析】根据勾股定理求解即可.【详解】∵Rt△ABC中,∠C=90°,AB=10,AC=8,∴BC故答案为:6.【考点】本题考查勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.3【解析】【分析】根据勾股定理计算AC的长,利用面积差可得三角形ABC的面积,由三角形的面积公式即可得到结论.【详解】】解:由勾股定理得:AC=∵S △ABC =3×4-12×1×2-12×3×2-12×2×4=4, ∴12AC •BD =4,∴12=4,∴BD【考点】本题考查了勾股定理,三角形的面积的计算,掌握勾股定理是解题的关键.4、6【解析】【分析】设AC x =,则16AB x =-,在Rt ACB △中,利用勾股定理列方程,即可求解.【详解】解:如图,由题意知,90C ∠=︒,8BC =,设AC x =,则16AB x =-,在Rt ACB △中,222AB AC BC =+,即222(16)8x x -=+,解得6x =,因此旗杆在离底部6m 位置断裂.故答案为:6.【考点】本题考查勾股定理的实际应用,读懂题意,根据勾股定理列出方程是解题的关键.5、454【解析】【分析】首先根据勾股定理设DB x =,求出AD 、CD ,再求出AB ,相加即可.【详解】解:∵折叠直角三角形ABC 纸片,使两个锐角顶点A 、C 重合,∴AD DC =,设DB x =,则4AD x =-,故4DC x =-,∵90DBC ∠=︒,∴222DB BC DC +=,即2223(4)x x +=-, 解得78x =,∴78 BD=.则725488 AD CD==-=在Rt ABC中,由勾股定理得222AB BC AC+=∴AC=5∴ADC周长为AD+CD+AB=454.故答案为:454.【考点】本题考查了勾股定理的应用以及折叠的性质,掌握勾股定理和折叠的性质是解题的关键.三、解答题1、AB=2,CD=4【解析】【分析】此题为几何题,看题目只是一个四边形,要求两条未知边,那肯定要添辅助线.过点D作DH⊥BA延长线于H,作DM⊥BC于M.构建矩形HBMD.利用矩形的性质和解直角三角形来求AB、CD的长度.【详解】如图,过点D作DH⊥BA延长线于H,作DM⊥BC于点M.∵∠B=90°,∴四边形HBMD 是矩形.∴HD=BM ,BH =MD ,∠ABM=∠ADC=90°,又∵∠C=60°,∴∠ADH=∠MDC=30°,∴在Rt△AHD 中,AD =1,∠ADH=30°,则AH =12AD =12,DH∴MC=BC -BM =BC -DH =2∴在Rt△CMD 中,CD =2MC =4DM CD .∴AB=BH -AH =DM -AH 12=2 【考点】 本题考查了勾股定理和矩形的判定与性质.此题的关键是根据题意作出辅助线,构建矩形.2、(1)村庄能听到宣传,理由见解析;(2)村庄总共能听到8分钟的宣传.【解析】【分析】(1)直接比较村庄A 到公路MN 的距离和P 广播宣传距离即可;(2)过点A 作AB MN ⊥于点B ,利用勾股定理运算出广播影响村庄的路程,再除以速度即可得到时间.【详解】解:(1)村庄能听到宣传,理由:∵村庄A 到公路MN 的距离为600米<1000米,∴村庄能听到宣传;(2)如图:过点A 作AB MN ⊥于点B ,假设当宣讲车行驶到P 点开始影响村庄,行驶Q 点结束对村庄的影响,则1000AP AQ ==米,600AB =米,∴800BP BQ ==(米),∴1600PQ =米,∴影响村庄的时间为:16002008÷=(分钟),∴村庄总共能听到8分钟的宣传.【考点】本题主要考查了垂线的性质,勾股定理,仔细审题获取相关信息合理作出图形是解题的关键.3、速度为30米每秒【解析】【分析】根据勾股定理求得BC 的长度,再根据速度等于路程除以时间即可求得敌方汽车的速度.【详解】400,500,90AB AC B ==∠=︒,300BC ∴,3001030÷=米每秒,答:敌方汽车的速度为30米每秒.【考点】本题考查了勾股定理的应用,掌握勾股定理是解题的关键.4、证明见解析【解析】【分析】连接AC ,根据四边形ABCD 面积的两种不同表示形式,结合全等三角形的性质即可求解.【详解】解:连接AC ,∵△ABE ≌△BCD ,∴AB =BC ,AE =BD ,BE =CD ,∠BAE =∠CBD ,∵∠ABE +∠BAE =90°,∴∠ABE +∠CBE =90°,∴∠ABC =90°,∴S 四边形ABCD =2111111222222ABD BDC S S BD AE BD CD AE AE BD BE AE BD BE ∆∆+=⋅+⋅=⋅+⋅=+⋅, 又∵S 四边形ABCD =2111111222222ABC ADC S S AB BC CD DE AB AB BE DE AB BE DE ∆∆+=⋅+⋅=⋅+⋅=+⋅, 2211112222AE BD BE AB BE DE +⋅=+⋅,∴AB 2=AE 2+BD •BE -BE •DE ,∴AB 2=AE 2+(BD -DE )•BE ,即AB 2=BE 2+AE 2.【考点】本题考查了勾股定理的证明,解题时,利用了全等三角形的对应边相等,对应角相等的性质.5、 (1)33.4海里 (2)725【解析】【分析】(1)利用勾股定理求出CD ,再根据斜边的中线等于斜边的一半求出BE ,则AB 可求;(2)设BF =x 海里.利用勾股定理先表示出CF 2,在Rt △CFE 中,∠CFE =90°,利用勾股定理有CF 2+EF 2=CE 2,即222500-(50)6400x x ++=,解方程即可得解.(1)在△DCE 中,∠CED =90°,DE =60海里,CE =80海里,由勾股定理可得100CD =(海里),∵B 是CD 的中点, ∴1502BE CD ==(海里),∴AB =BE -AE =50-16.6=33.4(海里)答:小岛两端A 、B 的距离是33.4海里;(2)设BF =x 海里.在Rt △CFB 中,∠CFB =90°,∴CF 2=CB 2-BF 2=502-x 2=2500-x 2,在Rt △CFE 中,∠CFE =90°,∴CF 2+EF 2=CE 2,即222500-(50)6400x x ++=,解得x =14, ∴725BF BC 答:BF BC 值为725. 【考点】本题主要考查了勾股定理的实际应用的知识,在直角三角形中灵活利用勾股定理是解答本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章勾股定理一、选择题(共11小题)1.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米2.下列各组线段能构成直角三角形的一组是()A.30,40,50 B.7,12,13 C.5,9,12 D.3,4,63.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是()A.13cm B.2cm C. cm D.2cm4.△ABC中,a、b、c分别是∠A、∠B、∠C的对边,如果a2+b2=c2,那么下列结论正确的是()A.csinA=a B.bcosB=c C.atanA=b D.ctanB=b5.一圆锥体形状的水晶饰品,母线长是10cm,底面圆的直径是5cm,点A为圆锥底面圆周上一点,从A点开始绕圆锥侧面缠一圈彩带回到A点,则彩带最少用多少厘米(接口处重合部分忽略不计)()A.10πcm B.10cm C.5πcm D.5cm6.下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1,,37.a、b、c是△ABC的∠A、∠B、∠C的对边,且a:b:c=1::,则cosB的值为()A.B.C.D.8.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为(滑轮上方的部分忽略不计)为()A.12m B.13m C.16m D.17m9.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,,B.1,,C.6,7,8 D.2,3,410.如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=.试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的长度和最短,则此时AM+NB=()A.6 B.8 C.10 D.1211.如图,在6个边长为1的小正方形及其部分对角线构成的图形中,如图从A点到B点只能沿图中的线段走,那么从A点到B点的最短距离的走法共有()A.1种B.2种C.3种D.4种二、填空题(共11小题)12.已知A,B,C三地位置如图所示,∠C=90°,A,C两地的距离是4km,B,C两地的距离是3km,则A,B两地的距离是km;若A地在C地的正东方向,则B地在C地的方向.13.太原市公共自行车的建设速度、单日租骑量等四项指标稳居全国首位.公共自行车车桩的截面示意图如图所示,AB⊥AD,AD⊥DC,点B,C在EF上,EF∥HG,EH⊥HG,AB=80cm,AD=24cm,BC=25cm,EH=4cm,则点A到地面的距离是cm.14.如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O,古塔位于点A(400,300),从古塔出发沿射线OA方向前行300m是盆景园B,从盆景园B向左转90°后直行400m到达梅花阁C,则点C的坐标是.15.如图,小明从A地沿北偏东60°方向走2千米到B地,再从B地正南方向走3千米到C地,此时小明距离A地千米(结果可保留根号).16.如图,一只蚂蚁沿着边长为2的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则AC的长为.17.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行米.18.如图,小聪用一块有一个锐角为30°的直角三角板测量树高,已知小聪和树都与地面垂直,且相距3米,小聪身高AB为1.7米,则这棵树的高度= 米.19.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为米(结果精确到0.1米,参考数据:=1.41, =1.73).20.在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为cm.(结果保留π)21.图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为cm.22.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=度.三、解答题(共8小题)23.如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若已知重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.24.“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)25.校车安全是近几年社会关注的热点问题,安全隐患主要是超速和超载.某中学九年级数学活动小组进行了测试汽车速度的实验,如图,先在笔直的公路l旁选取一点A,在公路l上确定点B、C,使得AC⊥l,∠B AC=60°,再在AC上确定点D,使得∠BDC=75°,测得AD=40米,已知本路段对校车限速是50千米/时,若测得某校车从B到C匀速行驶用时10秒,问这辆车在本路段是否超速?请说明理由(参考数据: =1.41, =1.73)26.如图,一根长6米的木棒(AB),斜靠在与地面(OM)垂直的墙(ON)上,与地面的倾斜角(∠ABO)为60°.当木棒A端沿墙下滑至点A′时,B端沿地面向右滑行至点B′.(1)求OB的长;(2)当AA′=1米时,求BB′的长.27.小明、小华在一栋电梯楼前感慨楼房真高.小明说:“这楼起码20层!”小华却不以为然:“20层?我看没有,数数就知道了!”小明说:“有本事,你不用数也能明白!”小华想了想说:“没问题!让我们来量一量吧!”小明、小华在楼体两侧各选A、B两点,测量数据如图,其中矩形CDEF表示楼体,AB=150米,CD=10米,∠A=30°,∠B=45°,(A、C、D、B四点在同一直线上)问:(1)楼高多少米?(2)若每层楼按3米计算,你支持小明还是小华的观点呢?请说明理由.(参考数据:≈1.73,≈1.41,≈2.24)28.如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量∠ABD=135°,BD=800米,求直线L上距离D 点多远的C处开挖?(≈1.414,精确到1米)29.小明听说“武黄城际列车”已经开通,便设计了如下问题:如图,以往从黄石A坐客车到武昌客运站B,现在可以在A坐城际列车到武汉青山站C,再从青山站C坐市内公共汽车到武昌客运站B.设AB=80km,BC=20km,∠ABC=120°.请你帮助小明解决以下问题:(1)求A、C之间的距离;(参考数据=4.6)(2)若客车的平均速度是60km/h,市内的公共汽车的平均速度为40km/h,城际列车的平均速度为180km/h,为了最短时间到达武昌客运站,小明应该选择哪种乘车方案?请说明理由.(不计候车时间)30.在△ABC中,BC=a,AC=b,AB=c,设c为最长边,当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).(1)当△ABC三边分别为6、8、9时,△ABC为三角形;当△ABC三边分别为6、8、11时,△ABC为三角形.(2)猜想,当a2+b2c2时,△ABC为锐角三角形;当a2+b2c2时,△ABC为钝角三角形.(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.第1章勾股定理参考答案与试题解析一、选择题(共11小题)1.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米【考点】勾股定理的应用.【专题】应用题.【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解答】解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,在Rt△AEC中,AC==10m,故选B.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.2.下列各组线段能构成直角三角形的一组是()A.30,40,50 B.7,12,13 C.5,9,12 D.3,4,6【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:A、∵302+402=502,∴该三角形符合勾股定理的逆定理,故是直角三角形,故正确;B、∵72+122≠132,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;C、∵52+92≠122,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;D、∵32+42≠62,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;故选A.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是()A.13cm B.2cm C. cm D.2cm【考点】平面展开-最短路径问题.【分析】将容器侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【解答】解:如图:∵高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm与饭粒相对的点A处,∴A′D=5cm,BD=12﹣3+AE=12cm,∴将容器侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===13(Cm).故选:A.【点评】本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.4.△ABC中,a、b、c分别是∠A、∠B、∠C的对边,如果a2+b2=c2,那么下列结论正确的是()A.csinA=a B.bcosB=c C.atanA=b D.ctanB=b【考点】勾股定理的逆定理;锐角三角函数的定义.【分析】由于a2+b2=c2,根据勾股定理的逆定理得到△ABC是直角三角形,且∠C=90°,再根据锐角三角函数的定义即可得到正确选项.【解答】解:∵a2+b2=c2,∴△ABC是直角三角形,且∠C=90°.A、sinA=,则csinA=a.故本选项正确;B、cosB=,则cosBc=a.故本选项错误;C、tanA=,则=b.故本选项错误;D、tanB=,则atanB=b.故本选项错误.故选A.【点评】本题考查了锐角三角函数的定义和勾股定理的逆定理.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.5.一圆锥体形状的水晶饰品,母线长是10cm,底面圆的直径是5cm,点A为圆锥底面圆周上一点,从A点开始绕圆锥侧面缠一圈彩带回到A点,则彩带最少用多少厘米(接口处重合部分忽略不计)()A.10πcm B.10cm C.5πcm D.5cm【考点】平面展开-最短路径问题;圆锥的计算.【专题】计算题.【分析】利用圆锥侧面展开图的弧长等于底面圆的周长,进而得出扇形圆心角的度数,再利用勾股定理求出AA′的长.【解答】解:由两点间直线距离最短可知,圆锥侧面展开图AA′最短,由题意可得出:OA=OA′=10cm,==5π,解得:n=90°,∴∠AOA′=90°,∴AA′==10(cm),故选:B.【点评】此题主要考查了平面展开图的最短路径问题,得出∠AOA′的度数是解题关键.6.下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1,,3【考点】勾股定理的逆定理.【专题】计算题.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、42+52=41≠62,不可以构成直角三角形,故A选项错误;B、1.52+22=6.25=2.52,可以构成直角三角形,故B选项正确;C、22+32=13≠42,不可以构成直角三角形,故C选项错误;D、12+()2=3≠32,不可以构成直角三角形,故D选项错误.故选:B.【点评】本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.7. a、b、c是△ABC的∠A、∠B、∠C的对边,且a:b:c=1::,则cosB的值为()A.B.C.D.【考点】勾股定理的逆定理;锐角三角函数的定义.【专题】计算题.【分析】先由勾股定理的逆定理判定△ABC是直角三角形,再利用余弦函数的定义即可求解.【解答】解:∵a:b:c=1::,∴b=a,c=a,∴a2+b2=a2+(a)2=3a2=c2,∴△ABC是直角三角形,∠C=90°,∴cosB===.故选:B.【点评】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形,同时考查了余弦函数的定义:锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA.8.(•济南)如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为(滑轮上方的部分忽略不计)为()A.12m B.13m C.16m D.17m【考点】勾股定理的应用.【专题】应用题.【分析】根据题意画出示意图,设旗杆高度为x,可得AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.【解答】解:设旗杆高度为x,则AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2,即(x﹣2)2+82=x2,解得:x=17,即旗杆的高度为17米.故选:D.【点评】本题考查了勾股定理的应用,解答本题的关键是构造直角三角形,构造直角三角形的一般方法就是作垂线.9.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,,B.1,,C.6,7,8 D.2,3,4【考点】勾股定理的逆定理.【分析】知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【解答】解:A、()2+()2≠()2,不能构成直角三角形,故错误;B、12+()2=()2,能构成直角三角形,故正确;C、62+72≠82,不能构成直角三角形,故错误;D、22+32≠42,不能构成直角三角形,故错误.故选:B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.10.(•鄂州)如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B 到直线b的距离为3,AB=.试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的长度和最短,则此时AM+NB=()A.6 B.8 C.10 D.12【考点】勾股定理的应用;线段的性质:两点之间线段最短;平行线之间的距离.【专题】压轴题.【分析】MN表示直线a与直线b之间的距离,是定值,只要满足AM+NB的值最小即可,作点A关于直线a的对称点A′,并延长AA′,过点B作BE⊥AA′于点E,连接A′B交直线b于点N,过点N作NM⊥直线a,连接AM,则可判断四边形AA′NM是平行四边形,得出AM=A′N,由两点之间线段最短,可得此时AM+NB的值最小.过点B作BE⊥AA′,交AA′于点E,在Rt△ABE中求出BE,在Rt△A′BE中求出A′B即可得出AM+NB.【解答】解:作点A关于直线a的对称点A′,并延长AA′,过点B作BE⊥AA′于点E,连接A′B交直线b于点N,过点N作NM⊥直线a,连接AM,∵A到直线a的距离为2,a与b之间的距离为4,∴AA′=MN=4,∴四边形AA′NM是平行四边形,∴AM+NB=A′N+NB=A′B,过点B作BE⊥AA′,交AA′于点E,易得AE=2+4+3=9,AB=2,A′E=2+3=5,在Rt△AEB中,BE==,在Rt△A′EB中,A′B==8.故选:B.【点评】本题考查了勾股定理的应用、平行线之间的距离,解答本题的关键是找到点M、点N的位置,难度较大,注意掌握两点之间线段最短.11.如图,在6个边长为1的小正方形及其部分对角线构成的图形中,如图从A点到B点只能沿图中的线段走,那么从A点到B点的最短距离的走法共有()A.1种B.2种C.3种D.4种【考点】勾股定理的应用.【专题】计算题.【分析】如图所示,找出从A点到B点的最短距离的走法即可.【解答】解:根据题意得出最短路程如图所示,最短路程长为+1=2+1,则从A点到B点的最短距离的走法共有3种,故选:C.【点评】此题考查了勾股定理的应用,弄清题意是解本题的关键.二、填空题(共11小题)12.(•厦门)已知A,B,C三地位置如图所示,∠C=90°,A,C两地的距离是4km,B,C两地的距离是3km,则A,B两地的距离是 5 km;若A地在C地的正东方向,则B地在C地的正北方向.【考点】勾股定理的应用;方向角.【分析】根据勾股定理来求AB的长度.由于∠C=90°,A地在C地的正东方向,则B地在C地的正北方向.【解答】解:∵∠C=90°,A,C两地的距离是4km,B,C两地的距离是3km,∴AB===5(km).又∵A地在C地的正东方向,则B地在C地的正北方向.故答案是:5;正北.【点评】本题考查了勾股定理的应用和方向角.勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.13.太原市公共自行车的建设速度、单日租骑量等四项指标稳居全国首位.公共自行车车桩的截面示意图如图所示,AB⊥AD,AD⊥DC,点B,C在EF上,EF∥HG,EH⊥HG,AB=80cm,AD=24cm,BC=25cm,EH=4cm,则点A到地面的距离是cm.【考点】勾股定理的应用.【分析】分别过点A作AM⊥BF于点M,过点C作CN⊥AB于点N,利用勾股定理得出BN的长,再利用相似三角形的判定与性质得出即可.【解答】解:过点A作AM⊥BF于点M,过点C作CN⊥AB于点N,∵AD=24cm,则NC=24cm,∴BN===7(cm),∵∠AMB=∠CNB=90°,∠ABM=∠CBN,∴△BNC∽△BMA,∴=,∴=,则:AM==,故点A到地面的距离是: +4=(m).故答案为:.【点评】此题主要考查了勾股定理的应用以及相似三角形的判定与性质,得出△BNC∽△BMA是解题关键.14.如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O,古塔位于点A(400,300),从古塔出发沿射线OA方向前行300m是盆景园B,从盆景园B向左转90°后直行400m到达梅花阁C,则点C的坐标是(400,800).【考点】勾股定理的应用;坐标确定位置;全等三角形的应用.【分析】根据题意结合全等三角形的判定与性质得出△AOD≌△ACB(SAS),进而得出C,A,D也在一条直线上,求出CD的长即可得出C点坐标.【解答】解:连接AC,由题意可得:AB=300m,BC=400m,在△AOD和△ACB中∵,∴△AOD≌△ACB(SAS),∴∠CAB=∠OAD,∵B、O在一条直线上,∴C,A,D也在一条直线上,∴AC=AO=500m,则CD=AC=AD=800m,∴C点坐标为:(400,800).故答案为:(400,800).【点评】此题主要考查了全等三角形的判定与性质以及勾股定理,得出C,A,D也在一条直线上是解题关键.15.如图,小明从A地沿北偏东60°方向走2千米到B地,再从B地正南方向走3千米到C地,此时小明距离A地千米(结果可保留根号).【考点】勾股定理的应用;方向角.【分析】根据题意利用锐角三角函数得出BD,AD的长,再利用勾股定理得出AC的长.【解答】解:如图所示,由题意可得:AB=2,∠B=60°,则BD=ABcos60°=1(km),AD=ABsin60°=(km),故DC=2km,则AC===(km).故答案为:.【点评】此题主要考查了勾股定理的应用以及解直角三角形的应用,得出AD,DC的长是解题关键.16.如图,一只蚂蚁沿着边长为2的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则AC的长为.【考点】平面展开-最短路径问题.【专题】计算题.【分析】将正方体展开,右边与后面的正方形与前面正方形放在一个面上,此时AB最短,根据三角形MCB与三角形ACN相似,由相似得比例得到MC=2NC,求出CN的长,利用勾股定理求出AC的长即可.【解答】解:将正方体展开,右边与后面的正方形与前面正方形放在一个面上,展开图如图所示,此时AB最短,∵△BCM∽△ACN,∴=,即==2,即MC=2NC,∴CN=MN=,在Rt△ACN中,根据勾股定理得:AC==,故答案为:.【点评】此题考查了平面展开﹣最短路径问题,涉及的知识有:相似三角形的判定与性质,勾股定理,熟练求出CN的长是解本题的关键.17.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行10 米.【考点】勾股定理的应用.【专题】几何图形问题;转化思想.【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解答】解:如图,设大树高为AB=12m,小树高为CD=6m,过C点作CE⊥AB于E,则四边形EBDC是矩形,连接AC,∴EB=6m,EC=8m,AE=AB﹣EB=12﹣6=6(m),在Rt△AEC中,AC==10(m).故小鸟至少飞行10m.故答案为:10.【点评】本题考查了勾股定理的应用,根据实际得出直角三角形,培养学生解决实际问题的能力.18.如图,小聪用一块有一个锐角为30°的直角三角板测量树高,已知小聪和树都与地面垂直,且相距3米,小聪身高AB为1.7米,则这棵树的高度= 4.7 米.【考点】勾股定理的应用.【分析】先根据题意得出AD的长,在Rt△ACD中利用锐角三角函数的定义求出CD的长,由CE=CD+DE即可得出结论.【解答】解:由题意,易知∠CAD=30°,∠CDA=90°,AD=3,CE⊥BE,DE=AB=1.7米,∴tan∠CAD=,∴CD=×3=3,∴CE=3+1.7=4.7(米).即这棵树的高度为4.7米.故答案为:4.7.【点评】本题考查的是解直角三角形在实际生活中的应用,难度适中,熟知锐角三角函数的定义是解答此题的关键.19.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为 2.9 米(结果精确到0.1米,参考数据: =1.41, =1.73).【考点】勾股定理的应用.【分析】首先根据等腰直角三角形的性质可得DM=AM=4m,再根据勾股定理可得MC2+MB2=(2MC)2,代入数可得答案.【解答】解:由题意可得:∵AM=4米,∠MAD=45°,∴DM=4m,∵AM=4米,AB=8米,∴MB=12米,∵∠MBC=30°,∴BC=2MC,∴MC2+MB2=(2MC)2,MC2+122=(2MC)2,∴MC=4,则DC=4﹣4≈2.9(米),故答案为:2.9.【点评】此题主要考查了勾股定理得应用,关键是掌握直角三角形中,两直角边的平方和等于斜边的平方.20.在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为3cm.(结果保留π)【考点】平面展开-最短路径问题.【专题】压轴题.【分析】根据绕两圈到C,则展开后相当于求出直角三角形ACB的斜边长,并且AB的长为圆柱的底面圆的周长的1.5倍,BC的长为圆柱的高,根据勾股定理求出即可.【解答】解:如图所示,∵无弹性的丝带从A至C,绕了1.5圈,∴展开后AB=1.5×2π=3πcm,BC=3cm,由勾股定理得:AC===3cm.故答案为:3.【点评】本题考查了平面展开﹣最短路线问题和勾股定理的应用,能正确画出图形是解此题的关键,用了数形结合思想.21.图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为(3+3)cm.【考点】平面展开-最短路径问题;截一个几何体.【专题】压轴题;数形结合.【分析】要求蚂蚁爬行的最短距离,需将图②的几何体表面展开,进而根据“两点之间线段最短”得出结果.【解答】解:如图所示:△BCD是等腰直角三角形,△ACD是等边三角形,在Rt△BCD中,CD==6cm,∴BE=CD=3cm,在Rt△ACE中,AE==3cm,∴从顶点A爬行到顶点B的最短距离为(3+3)cm.故答案为:(3+3).【点评】考查了平面展开﹣最短路径问题,本题就是把图②的几何体表面展开成平面图形,根据等腰直角三角形的性质和等边三角形的性质解决问题.22.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=135 度.【考点】勾股定理的逆定理;正方形的性质;旋转的性质.【专题】压轴题.【分析】首先根据旋转的性质得出,△EBE′是直角三角形,进而得出∠BEE′=∠BE′E=45°,即可得出答案.【解答】解:连接EE′∵△ABE绕点B顺时针旋转90°到△CBE′∴∠EBE′是直角,∴△EBE′是直角三角形,∵△ABE与△CE′B全等∴BE=BE′=2,∠AEB=∠BE′C∴∠BEE′=∠BE′E=45°,∵EE′2=22+22=8,AE=CE′=1,EC=3,∴EC2=E′C2+EE′2,∴△EE′C是直角三角形,∴∠EE′C=90°,∴∠AEB=135°.故答案为:135.【点评】此题主要考查了旋转的性质,根据已知得出△EBE′是直角三角形是解题关键.三、解答题(共8小题)23.如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若已知重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.【考点】勾股定理的应用;垂径定理的应用.【分析】(1)直接利用直角三角形中30°所对的边等于斜边的一半求出即可;(2)根据题意可知,图中AB=50m,AD⊥BC,且BD=CD,∠AOD=30°,OA=80m;再利用垂径定理及勾股定理解答即可.【解答】解:(1)过点A作AD⊥ON于点D,∵∠NOM=30°,AO=80m,∴AD=40m,即对学校A的噪声影响最大时卡车P与学校A的距离为40米;(2)由图可知:以50m为半径画圆,分别交ON于B,C两点,AD⊥BC,BD=CD=BC,OA=80m,∵在Rt△AOD中,∠AOB=30°,∴AD=OA=×80=40m,在Rt△ABD中,AB=50,AD=40,由勾股定理得:BD===30m,故BC=2×30=60米,即重型运输卡车在经过BC时对学校产生影响.∵重型运输卡车的速度为18千米/小时,即=300米/分钟,∴重型运输卡车经过BC时需要60÷300=0.2(分钟)=12(秒).答:卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间为12秒.【点评】此题考查的是垂径定理与勾股定理在实际生活中的运用,解答此题的关键是卡车在哪段路上运行时对学校产生影响.24.“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)【考点】勾股定理的应用.【分析】根据题意结合锐角三角函数关系得出BH,CH,AB的长进而求出汽车的速度,进而得出答案.【解答】解:此车没有超速.理由:过C作CH⊥MN,∵∠CBN=60°,BC=200米,。