初中数学找规律常见公式

合集下载

初中数学公式表,初一到初三都能用

初中数学公式表,初一到初三都能用

初中数学公式表,初一到初三都能用以下是一些初中数学中常用的公式,从初一到初三都适用:1. 乘法分配律:a × (b + c) = a × b + a × c2. 乘法结合律:(a × b) × c = a × (b × c)3. 乘法交换律:a × b = b × a4. 除法运算性质:a ÷ (b × c) = a ÷ b ÷ c5. 平方差公式:(a + b)² = a² + 2ab + b²6. 完全平方公式:(a - b)² = a² - 2ab + b²7. 平方和公式:(a + b)² = a² + 2ab + b²8. 正弦、余弦、正切的定义:sinA=对边/斜边,cosA=邻边/斜边,tanA=对边/邻边9. 同角三角函数的基本关系式:sin²A + cos²A = 1,tanA = sinA/cosA10. 二次函数的一般式:y = ax² + bx + c (a ≠ 0)11. 二次函数的顶点式:y = a(x - h)² + k (a ≠ 0)12. 二次函数的交点式:y = a(x - x1)(x - x2) (a ≠ 0)13. 等腰三角形的性质:等腰三角形的两腰相等,底角相等14. 等腰三角形的判定:有两个角相等的三角形是等腰三角形15. 等边三角形的性质:等边三角形的三边相等,三个角都等于60°16. 等边三角形的判定:三个角都相等的三角形是等边三角形以上是一些初中数学中常用的公式,希望对你有所帮助。

初中数学规律题的总结归纳

初中数学规律题的总结归纳

初中数学规律题的总结归纳数学规律题是初中数学中的重要内容,它不仅能够锻炼学生的逻辑思维能力,也能够帮助学生发现数学中的一些重要规律。

在这篇文章中,我将对初中数学规律题进行总结归纳,以帮助学生更好地掌握和应用这一知识点。

一、基本概念在学习数学规律题之前,我们首先要了解一些基本概念。

数学规律题是指通过观察一系列数字或图形,寻找其中的规律并进行总结归纳的问题。

在解决规律题时,我们需要注意以下几个方面:1. 观察数据的增减规律:我们可以通过观察数列中的数字或图形的变化规律来推断出下一个数字或图形是什么样的。

2. 寻找通项公式:当我们找到了数列中数字的增减规律时,可以进一步列出通项公式,以求出任意一项的值。

3. 推广运用:数学规律题并不限于数列问题,还包括图形和数学运算中的规律。

我们需要将所学的规律应用到不同的场景中,扩展思维。

二、数列规律题数列规律题是初中数学中常见且重要的一类题型。

它要求我们观察数列中数字的增减规律,并根据规律填写缺失的数字或预测下一个数字。

以下是几种常见的数列规律:1. 等差数列规律:等差数列是指数列中相邻两项之间的差恒定的数列。

通过观察数列中数字之间的差值,我们可以得出等差数列的公差,并进一步求解其通项公式。

2. 等比数列规律:等比数列是指数列中相邻两项之间的比值恒定的数列。

同样地,通过观察数列中数字之间的比值,我们可以得出等比数列的公比,并进一步求解其通项公式。

3. 奇偶数规律:有些数列中的数字可以按照奇偶性进行分组,我们可以通过观察奇数项和偶数项之间的规律来解答问题。

4. 平方数规律:部分数列中的数字可以分解为平方数的形式,我们可以通过寻找平方数的规律来预测下一个数字。

三、图形规律题除了数列规律题,图形规律题也是初中数学中的重点。

图形规律题要求我们观察一系列图形的变化规律,并根据规律填写缺失的图形或预测下一个图形。

以下是几种常见的图形规律:1. 平移规律:某些图形可以通过在平面上的平移来得到下一个图形。

初中数学找规律中的等差和等比数列

初中数学找规律中的等差和等比数列

「初中数学」探索规律——等差与二阶等差数列和等比数列初中常见的规律有符号规律,等差数列规律,二阶等差数列规律,等比数列规律、循环规律 等。

一、 等差数列【定义】等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。

如:1,4,7,10,13,。

后面的数始终比它前一项的数大3,这样的数列就是等差数列, 其中3叫公差。

【性质】小升初应当了解下列两条性质: ① 和=(首项+末项)×项数÷2; ②项数=(末项-首项)÷公差+1;【规律求法】 由于等差数列的通项公式为An=a1+(n-1)d ,这里 an 代表第n 个数,a1代表第1个数,d 表 示公差。

所以从 通项公式可以看出,an 是n 的一次函数(d≠0)或常数函数(d=0),即等差数列具有 kn+b 的形式,这里K=公差,b=首项-公差。

等差数列的基本公式①通项公式:1(1)n a a n d =+- (从第1项1a 开始为等差)()n m a a n m d =+- (从第m 项m a 开始为等差)()n m n m n m a a nda a n m d a a d n m -=⎧⎪=+-⇒⎨-=⎪-⎩②前n 项和公式:11()(1)22n n n a a n n S na d +-==+ 二、 二阶等差数列 【定义】二阶等差数列是指后项与前项的差值是等差数列。

例如:1,3,7,13,21,31, …,后项与前项的差值依次为:2,4,6,8,10,…,这些差值是等差数列,我们称数列1,3, 7,13,21,31,…为二阶等差数列。

a n = a 1 +(n-1)b 1 +dn n 2)2)(1(--,(●)三、等比数列等比数列的基本公式①通项公式:11n n a a q -= (从第1项1a 开始为等比)n m n m a a q -= (从第m 项m a 开始为等差)②前n 项和公式:1(1),(1)1n n a q S q q-=≠-,1,(1)n S na q ==几种中学数学中常用数列及其简化计算方法——待定系数法。

初一年级数学找规律方法初一年级数学找规律方法,初一年级数学找规律的一些窍门

初一年级数学找规律方法初一年级数学找规律方法,初一年级数学找规律的一些窍门

初一数学找规律方法初一数学找规律方法,初一数学找规律的一些窍门导读:就爱阅读网友为大家分享的“初一数学找规律方法,初一数学找规律的一些窍门”资料,内容精辟独到,非常感谢网友的分享,希望这篇资料对您有所帮助。

初中数学考试中,经常出现数列的找规律题,今天小编就此类题的解题方法为大家介绍。

初一数学找规律方法一、基本方法看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅.然后再简化代数式a+(n-1)b.例:4、10、16、22、28,求第n位数.分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)6=6n-2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列).如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n位的数也有一种通用求法.基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数.举例说明:2、5、10、17,求第n位数.分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加.那么,数列的第n-1位到第n位的增幅是:3+2(n-2)=2n-1,总增幅为:[3+(2n-1)](n-1)÷2=(n+1)(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘.例如,观察下列各式数:0,3,8,15,24,.试按此规律写出的第100个数是 .解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数.我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,.序列号: 1,2,3, 4, 5,.容易发现,已知数的每一项,都等于它的序列号的平方减1.因此,第n项是n2-1,第100项是1002-1.(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关.例如:1,9,25,49,(),(),的第n为(2n-1)2 (三)看例题:A: 2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18 答案与3有关且.即:n3+1B:2、4、8、16.增幅是2、4、8.. .答案与2的乘方有关即:2n(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来.例:2、5、10、17、26,同时减去2后得到新数列:0、3、8、15、24,序列号:1、2、3、4、5分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来.例: 4,16,36,64,?,144,196, ?(第一百个数)同除以4后可得新数列:1、4、9、16,很显然是位置数的平方.(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3).当然,同时加、或减的可能性大一些,同时乘、或除的不太常见.(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律.三、基本步骤1、先看增幅是否相等,如相等,用基本方法(一)解题.2、如不相等,综合运用技巧(一)、(二)、(三)找规律3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例1:一道初中数学找规律题0,3,8,15,24,2,5,10,17,26,0,6,16,30,48(1)第一组有什么规律?(2)第二、三组分别跟第一组有什么关系?(3)取每组的第7个数,求这三个数的和?2、观察下面两行数 2,4,8,16,32,64, (1)5,7,11,19,35,67 (2)根据你发现的规律,取每行第十个数,求得他们的和.(要求写出最后的计算结果和详细解题过程.)3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?4、 3-1=81 5-3=82 7-5=83 用含有N的代数式表示规律写出两个连续技术的平方差为888的等式五、对于数表1、先看行的规律,然后,以列为单位用数列找规律方法找规律2、看看有没有一个数是上面两数或下面两数的和或差有关找规律的初中数学题1) 4,16,36,64,,144,196, (第一百个数)2) 2,6,18,,162,486,3) 白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?4) 3-1=81 5-3=82 7-5=83用含有N的代数式表示规律写出两个连续技术的平方差为888的等式解答:1)2的平方,4的平方,6的平方,8的平方,(10的平方),12的平方,.(第一百个)(2*100)的平方=400002)2,2*3=6,2*3*3=18,(2*3*3*3=54),2*3*3*3*3=162,486,1 4583)18894)(N+2)-N=4N+4=888,再算出N223的平方-221的平方=888最全初中数学公式和规律最简根式的条件:最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点.特殊点的坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;x 轴上y为0,x为0在y轴.象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反.平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行x轴,纵坐标相等横不同;直线平行于y轴,点的横坐标仍照旧.对称点的坐标:对称点坐标要记牢,相反数位置莫混淆,x轴对称y相反,y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号.自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行.函数图象的移动规律:若把一次函数解析式写成y=k(x+0)+b,二次函数的解析式写成y=a(x+h)2+k的形式,则可用下面的口诀左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了.一次函数的图象与性质的口诀:一次函数是直线,图象经过三象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远.二次函数的图象与性质的口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见.若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换.反比例函数的图象与性质的口诀:反比例函数有特点,双曲线相背离得远;k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减.图在二、四正相反,两个分支分别增;线越长越近轴,永远与轴不沾边.巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是直角三角形的边的比值,可以把两个字用/隔开,再用下面的.一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:正对鱼磷(余邻)直刀切.正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边.三角函数的增减性:正增余减特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀123,321,三九二十七既可.平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行.对角线,是个宝,互相平分跑不了,对角相等也有用,两组对角才能成.梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在△现;延长两腰交一点,△中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线.添加辅助线歌:辅助线,怎么添?找出规律是关键,题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形两边中点,连接则成中位线;三角形中有中线,延长中线翻一番.圆的证明歌:圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连.同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦.圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,平行线,转比例,两端各自找联系.正多边形诀窍歌:份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前.经过分点做切线,切线相交n个点.n个交点做顶点,外切正n边形便出现.正n 边形很美观,它有内接、外切圆,内接、外切都唯一,两圆还是同心圆,它的图形轴对称,n条对称轴都过圆心点,如果n值为偶数,中心对称很方便.正n边形做计算,边心距、半径是关键,内切、外接圆半径,边心距、半径分别换,分成直角三角形2n个整,依此计算便简单.函数学习口决:正比例函数是直线,图象一定过原点,k的正负是关键,决定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键.以上关于“[读书技巧]初一数学找规律方法,初一数学找规律的一些窍门”的信息由网友上传分享,希望对您有所帮助,感谢您对就爱阅读网的支持!。

初中数学之10大找规律方法总结

初中数学之10大找规律方法总结

初中数学之10大找规律方法总结
找规律是数学研究过程中十分重要的一个环节,下面总结了初
中数学中常用的10种找规律方法,希望能够对同学们的研究有所
帮助。

1. 相邻两项间的关系:找出相邻两个数之间的规律,如公差、
倍数关系等。

2. 累加法:将所求的数字列出来累加,看其和与第几项相关。

3. 累乘法:将所求的数字列出来累乘,看其积与第几项相关。

4. 因式分解法:将数字进行因式分解,观察其因子,找出规律。

5. 奇偶性法:观察数字的奇偶性和结尾数字的规律。

6. 交错相加法:在一串数字中,用加减交替的方法,找出数字
之间的规律。

7. 格式法:观察数字的表达方式,如小数、分数等,找到其规律。

8. 取整型列举法:将数字取整后列举出来进行分析找规律。

9. 归纳法:根据前几项找出规律,得到通项公式,推导出后面
的答案。

10. 逆向思维法:找出已知答案与所求数的关系。

以上10种方法可以根据题目的不同特点和难度灵活组合使用,既可以单独使用其中一种方法,也可以多种方法结合使用,找出有
用的部分,最终得出正确答案。

希望以上总结能够帮助同学们更好地理解并掌握找规律的方法,提高数学解题能力。

初中数学规律题的公式和解题技巧

初中数学规律题的公式和解题技巧

文章标题:深度探讨初中数学规律题的公式和解题技巧目录1. 前言2. 初中数学规律题的特点3. 常见的数学规律题类型4. 公式和解题技巧的应用5. 个人观点和总结## 1. 前言在初中数学学习过程中,学生常常会遇到各种规律题,这些题目的解答往往是考验学生对数学知识的掌握以及逻辑推理能力的好机会。

对于初中生来说,掌握一些公式和解题技巧是非常重要的。

在本文中,我将从深度和广度的角度出发,探讨初中数学规律题的公式和解题技巧。

## 2. 初中数学规律题的特点初中数学规律题是一种融合了数学知识和逻辑推理的题型,它要求学生通过观察、总结和归纳,找出其中隐藏的规律,然后运用所学的数学知识来解答问题。

这类题目不仅考验学生的记忆和理解能力,更加重视他们的逻辑思维和分析能力,因此是数学学习中非常重要的一环。

## 3. 常见的数学规律题类型初中数学规律题有很多种类型,比如数字规律、图形规律、字母规律等。

其中,数字规律是最为常见的类型之一。

在数字规律题中,往往能够看到一系列的数字排列,要求学生找出其中的规律并推断出下一个或缺失的数字。

图形规律题则要求学生观察一组图形的排列规律,找到规律并推断下一个或缺失的图形。

而字母规律题则是通过字母的排列规律来考察学生。

## 4. 公式和解题技巧的应用在面对初中数学规律题时,掌握一些公式和解题技巧是非常重要的。

要掌握数字的基本性质和运算规律,比如奇数和偶数的性质、倍数的规律等。

要熟练掌握一些常见的数列和等差数列的公式,以及一些简单的代数式的展开和因式分解。

对于图形规律题,要熟练掌握各种基本的图形的面积和周长的计算公式,以及图形的对称性质。

在解题过程中,要注意观察、总结和归纳,通过多加练习来提升自己的解题能力。

## 5. 个人观点和总结对于初中数学规律题的解题过程,我认为关键在于观察和逻辑推理能力。

通过不断地练习和总结,慢慢地培养自己的思维和分析能力,这样才能在考试中游刃有余地解答各种规律题。

2017初中数学考试规律题公式

2017初中数学考试规律题公式

2017初中数学考试规律题公式 初中是学习好数学,锻炼数学思维能力的关键时期,此时一定要掌握好初中数学考试规律题常用的公式,避免在数学考试中丢分,下面是店铺整理的初中数学考试规律题公式,欢迎阅读! 初中数学规律题公式 一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。然后再简化代数式a+(n-1)b。例:4、10、16、22、28……,求第n位数。 分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。如增幅分别为3、5、7、9,说明增幅以同等幅度增加。此种数列第n位的数也有一种通用求法。 基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。举例说明:2、5、10、17……,求第n位数。 分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。 (三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8. 三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。 二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。找出的规律,通常包序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。 例如,观察下列各式数:0,3,8,15,24,……。试按此规律写出的第100个数是 。解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,……。序列号: 1,2,3, 4, 5,……。容易发现,已知数的每一项,都等于它的序列号的平方减1。因此,第n项是n2-1,第100项是1002-1。 (二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关。例如:1,9,25,49,(),(),的第n为(2n-1)2 (三)看例题:A: 2、9、28、65.....增幅是7、19、37....,增幅的增幅是12、18 答案与3有关且............即:n3+1B:2、4、8、16.......增幅是2、4、8.. .....答案与2的乘方有关 即:2n(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系。再在找出的规律上加上第一位数,恢复到原来。例:2、5、10、17、26……,同时减去2后得到新数列: 0、3、8、15、24……,序列号:1、2、3、4、5分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来。例 : 4,16,36,64,?,144,196,… ?(第一百个数)同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方。(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3)。当然,同时加、或减的可能性大一些,同时乘、或除的不太常见。(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律。三、基本步骤1、 先看增幅是否相等,如相等,用基本方法(一)解题。2、 如不相等,综合运用技巧(一)、(二)、(三)找规律3、 如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律4、 最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例1:一道初中数学找规律题0,3,8,15,24,······ 2,5,10,17,26,····· 0,6,16,30,48······(1)第一组有什么规律?(2)第二、三组分别跟第一组有什么关系?(3)取每组的第7个数,求这三个数的和?2、观察下面两行数 2,4,8,16,32,64,...(1)5,7,11,19,35,67...(2)根据你发现的规律,取每行第十个数,求得他们的和。(要求写出最后的计算结果和详细解题过程。)3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑 排列的珠子,前2002个中有几个是黑的?4、 3^2-1^2=8×1 5^2-3^2=8×2 7^2-5^2=8×3 ……用含有N的代数式表示规律 写出两个连续技术的平方差为888的等式五、对于数表1、先看行的规律,然后,以列为单位用数列找规律方法找规律2、看看有没有一个数是上面两数或下面两数的和或差 初中数学必考公式 乘法与因式分解 a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a| 一元二次方程的解 -b+√(b2-4ac)/2a-b-√(b2-4ac)/2a 根与系数的关系 X1+X2=-b/aX1*X2=c/a注:韦达定理 判别式 b2-4ac=0注:方程有两个相等的实根 b2-4ac>0注:方程有两个不等的实根 b2-4ac0 抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py 直棱柱侧面积S=c*h 斜棱柱侧面积S=c‘*h 正棱锥侧面积S=1/2c*h’ 正棱台侧面积S=1/2(c+c‘)h’ 圆台侧面积S=1/2(c+c‘)l=pi(R+r)l 球的表面积S=4pi*r2 圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l 弧长公式l=a*ra是圆心角的弧度数r>0 扇形面积公式s=1/2*l*r 锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h 斜棱柱体积V=S’L注:其中,S‘是直截面面积,L是侧棱长 柱体体积公式V=s*h 圆柱体V=pi*r2h 初中数学实数知识点 1.基本运算: 实数可实现的基本运算有加、减、乘、除、平方等,对非负数还可以进行开方运算。 实数加、减、乘、除(除数不为零)、平方后结果还是实数。 任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。 有理数范围内的运算律、运算法则在实数范围内仍适用: 交换律:a+b=b+a , ab=ba 结合律:(a+b)+c=a+(b+c) 分配律:a(b+c)=ab+ac 2.实数的相反数: 实数的相反数的意义和有理数的相反数的意义相同。 实数只有符号不同的两个数,它们的和为零,我们就说其中一个是另一个的相反数。 实数a的相反数是-a,a和-a在数轴上到原点0的距离相等。 3.实数的绝对值: 实数的绝对值的意义和有理数的绝对值的意义相同。一个正实数的绝对值等于它本身; 一个负实数的绝对值等于它的相反数,0的绝对值是0,实数a的绝对值是 :|a| ①a为正数时,|a|=a(不变) ②a为0时, |a|=0 ③a为负数时,|a|= a(为a的相反数) (任何数的绝对值都大于或等于0,因为距离没有负的。) 4实数的倒数: 实数的倒数与有理数的倒数一样,如果a表示一个非零的实数,那么实数a的倒数是:1/a (a≠0)

初中数学公式定律

初中数学公式定律

初中数学公式定律首先,让我们来回顾一下一些初中数学中经常用到的公式和定律。

这些公式和定律对于解决数学问题和做数学运算都非常有用。

1. 二次方程的求根公式: 对于二次方程 ax^2 + bx + c = 0,其根可以通过以下公式求得:x = (-b ± √(b^2 - 4ac)) / 2a2. 定比数列的通项公式: 对于一个定比数列 a, ar, ar^2,ar^3, ...,其通项公式为an = a * r^(n-1),其中a是首项,r是公比,n是项数。

3.等差数列的通项公式:对于一个等差数列a,a+d,a+2d,a+3d,...,其通项公式为an = a + (n-1)d,其中a是首项,d是公差,n是项数。

4. 平方差公式: (a + b)^2 = a^2 + b^2 + 2ab5. 平方根公式: √ab = √a * √b6. 相反数的乘积为负数: -a * -b = ab7.负数的平方为正数:(-a)^2=a^28. 一元一次方程的解法: 对于形如 ax + b = 0 的方程,可以通过如下步骤求解x的值:x=-b/a9.三角形的面积公式:对于已知三角形底边长为b,高为h的情况,其面积可以通过以下公式求得:A=(1/2)*b*h10.三角形的勾股定理:对于直角三角形,直角边长分别为a和b,斜边长为c,满足以下关系:a^2+b^2=c^211.三角形的正弦定理:对于任意三角形ABC,其三个边长分别为a,b,c,对应的角度为A,B,C,满足以下关系:a / sinA =b / sinB =c / sinC12.三角形的余弦定理:对于任意三角形ABC,其三个边长分别为a,b,c,对应的角度为A,B,C,满足以下关系:c^2 = a^2 + b^2 - 2ab * cosC13. 立方和公式: a^3 + b^3 = (a + b)(a^2 - ab + b^2)14. 立方差公式: a^3 - b^3 = (a - b)(a^2 + ab + b^2)15.二项式展开公式(二项式定理):对于任意非负整数n以及实数a和b,我们有:(a+b)^n=C(n,0)*a^n*b^0+C(n,1)*a^(n-1)*b^1+...+C(n,n)*a^0*b^n 其中C(n,r)表示从n个元素中选取r个元素的组合数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学找规律常见公式
一、基本方法——看增幅
(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅.然后再简化代数式a+(n-1)b.
例:4、10、16、22、28……,求第n位数.
分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2 (二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列).如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n位的数也有一种通用求法.
基本思路是:1、求出数列的第n-1位到第n位的增幅;
2、求出第1位到第第n位的总增幅;
3、数列的第1位数加上总增幅即是第n位数.
举例说明:2、5、10、17……,求第n位数.
分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加.那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1
所以,第n位数是:2+n2-1=n2+1
此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.
(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.
(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.
二、基本技巧
(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系
列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘.
例如,观察下列各式数:0,3,8,15,24,…….试按此规律写出的第100个数是.
解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数.我们把有关的量放在一起加以比较:
给出的数:0,3,8,15,24,…….
序列号:1,2,3,4,5,…….
容易发现,已知数的每一项,都等于它的序列号的平方减1.因此,第n 项是n2-1,第100项是1002-1.
(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关.
例如:1,9,25,49,(),(),的第n为(2n-1)2(三)看例题:
A:2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18答案与3有关且.即:n3+1
B:2、4、8、16.增幅是2、4、8...答案与2的乘方有关即:2n
(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来.
例:2、5、10、17、26……,同时减去2后得到新数列:
0、3、8、15、24……,
序列号:1、2、3、4、5
分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1
(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来.
例:4,16,36,64,?,144,196,…?(第一百个数)
同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方.
(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3).当然,同时加、或减的可能性大
一些,同时乘、或除的不太常见.
(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律.
三、基本步骤
1、先看增幅是否相等,如相等,用基本方法(一)解题.
2、如不相等,综合运用技巧(一)、(二)、(三)找规律
3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律
4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题
四、练习题
例1:一道初中数学找规律题
0,3,8,15,24,······
2,5,10,17,26,·····
0,6,16,30,48······
(1)第一组有什么规律?
(2)第二、三组分别跟第一组有什么关系?
(3)取每组的第7个数,求这三个数的和?
2、观察下面两行数2,4,8,16,32,64,...(1)
5,7,11,19,35,67...(2)
根据你发现的规律,取每行第十个数,求得他们的和.(要求写出最后的计算结果和详细解题过程.)
3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?
4、3^2-1^2=8×15^2-3^2=8×27^2-5^2=8×3……用含有N 的代数式表示规律写出两个连续技术的平方差为888的等式
五、对于数表
1、先看行的规律,然后,以列为单位用数列找规律方法找规律
2、看看有没有一个数是上面两数或下面两数的和或差。

相关文档
最新文档