等腰三角形的轴对称(2)

合集下载

《轴对称——等腰三角形》数学教学PPT课件(3篇)

《轴对称——等腰三角形》数学教学PPT课件(3篇)
A
B
D
C
例9.如图,在△ABC中,AB=AC,点D是BC的中点,点E在AC上,AD=AE,若∠BAD=50°,则
A
∠CDE=________.
E
B
D
C
练习
1.若等腰三角形的周长为13 cm,其中一边长为3 cm,则该等腰三角形的底边长为 ______________. 2.若等腰三角形的一个内角为40°,则此等腰三角形的顶角为______________. 3.若等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,则此等腰三角形的顶角为 ______________. 4.等腰三角形的一个角是80°,它的另外两个角的度数是_____。等腰三角形的一个角是110°, 它的另外两个角的度数是_____。
重合的角 ∠B、∠C ,重合的线段 AB、AC .
1、通过操作可以得到等腰三角形的以下性质:
性质1 等腰三角形的两个_底___角___相等(简写“等边对等_角____”)
练习
5.已知:如图,在△ABC中,AB=AC,点D在△ABC外,CD⊥AD于点D,CD 1 BC
2
求证:∠ACD=∠B.
B
6.如图,点D,E在△ABC的边BC上,AB=AC,AD=AE,求证BD=CE
A D
C
04 作业布置
作业布置
1.若一个等腰三角形的两边长分别为2和5,则它的周长为( )
A. 12
B. 9 C. 12或9
D. 9或7
2.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角度数为( )
A. 60°
B. 120° C. 60°或150°
D. 60°或120°
3.等腰三角形的周长为12cm,其中一边长为5cm,则该等腰三角形的底边长为 __________cm.

等腰三角形有几条对称轴

等腰三角形有几条对称轴

等腰三⾓形有⼏条对称轴
等腰三⾓形的对称轴:除了等边三⾓形有三条对称轴之外,等腰三⾓形都只有⼀条对称轴。

等腰三⾓形性质
1.等腰三⾓形的两个底⾓度数相等(简写成“等边对等⾓”)。

2.等腰三⾓形的顶⾓平分线,底边上的中线,底边上的⾼相互重合(简写成“等腰三⾓形三线合⼀”)。

3.等腰三⾓形的两底⾓的平分线相等(两条腰上的中线相等,两条腰上的⾼相等)。

4.等腰三⾓形底边上的垂直平分线到两条腰的距离相等。

5.等腰三⾓形的⼀腰上的⾼与底边的夹⾓等于顶⾓的⼀半。

6.等腰三⾓形底边上任意⼀点到两腰距离之和等于⼀腰上的⾼(需⽤等⾯积法证明)。

7.⼀般的等腰三⾓形是轴对称图形,只有⼀条对称轴,顶⾓平分线所在的直线是它的对称轴。

但等边三⾓形(特殊的等腰三⾓形)有三条对称轴。

每个⾓的⾓平分线所在的直线,三条中线所在的直线,和⾼所在的直线就是等边三⾓形的对称轴。

8.等腰三⾓形中腰长的平⽅等于底边上⾼的平⽅加底的⼀半的平⽅(勾股定理)。

9.等腰三⾓形的腰与它的⾼的关系:腰⼤于⾼;腰的平⽅等于⾼的平⽅加底的⼀半的平⽅。

各个图形的对称轴数量
长⽅形有2条对称轴。

正⽅形有4条对称轴。

等腰梯形有1条对称轴。

圆有⽆数条对称轴。

五⾓星有5条对称轴。

菱形有2条对称轴。

简单的轴对称图形(二)-

简单的轴对称图形(二)-

按下面的步骤做一做
1、将长方形纸片对折
2、然后沿对角线折叠, 再沿折痕剪开
通过做一做,你有什么发现?
在等腰三角形中,画出顶角的平 分线、底边上的中线和高线,你 又发现了什么?
等腰三角形顶角的平分线、底边上的 中线、底边上的高重合(也称为“三 线合一”)
等腰三角形是轴对称图形, 请找出它的对称轴;
找出图中的对称轴:
有两条边相等的三角形叫做等腰三角形

腰角

底角 底角 底边
; 宠物DR 宠物DR ;
不少于800字。不得抄袭。 [写作提示]“钥匙”是开锁的工具,它熟悉事物的机理,最了解锁的“心”,所以能够灵活机动,只轻轻一转,就“轻而易举”地打开了锁。对于一般的事物、问题而言,这里的“心”是指事物的关键之处、问题的症结所在;对于人的思想、情感而言,“心” 是指隐秘之处的思想和情感。“铁棒”天生不是开锁的料,只会砸“锁”、撬“锁”。我们可以把它理解为没有抓住事物的关键或问题的症结,不讲科学、不讲技巧的蛮干。它也想开锁,只是采用的方式不正确,可见解决问题应追求合理的途径。参考拟题:开锁的启示、科学方法与科学 精神。 ? 25.阅读下面的文字,根据要求作文。 非洲加纳的库马西有一所寄宿学校。一天早上,一位老师走进教室,举起手里的一张画有一个黑点的白纸问学生:“同学们,你们看到什么了?”学生们齐声回答:“一个黑点。” 老师说:“不对!你们再看看,难道你们谁也没看到这是 一张白纸吗?”接着,老师语重心长地说:“在今后的生活中,你们可不要这样看人看事物啊!” 老师关于这张“白纸”的教导,一直铭刻在一个当时年仅17岁的学生的脑海深处。当年的这位学生就是现在的联合国秘书长科菲?安南。 请以“白纸与黑点”为话题写一篇文章。题目自拟, 文体自选,立意自定,不少于800字。 ? [写作提示]在这个硝烟不断,危机纷起,恐怖分子无孔不入,时刻都有意想不到的灾难发生的世界里,身为联合国秘书长的安南先生时时体味当年老师关于“白纸与黑点”的谆谆教诲,仍然乐观地看到这张虽有许多“黑点”的“白纸”的美丽。其 实,我们也常常遇到这样被染上了“黑点”的“白纸”。比如患过错误的同志,比如有许多毛病的同事……我们应该认真品味这位非洲老师的“黑点与白纸”的故事,从中领悟这样的道理:看人应当首先看“一张白纸”,即看人的主流,看人的优点,对别人的身上的“黑点”应当懂得宽 容、包涵,求同存异,不要只注意别人的“黑点”而刻意挑剔甚至吹毛求疵。 ? 26.阅读下面的文字,根据要求作文。 ? 比,是人人皆有的心态,所不同的是比的内容和方法因人而异:有的比吃比穿、比车比房,有的比成就、比贡献。比,又是我们认识事物的常用方法,拿中国古代的 文明和其他国家比,我们会比出自豪和勇气。拿我们现在的科技与发达国家比,我们比出了落后和清醒。但是,并不是人人都会正确运用比的。 请以“比”为话题,写一篇文章,文体自定,文题自拟,不少于800字。 ? [写作提示]这是一种提示性的话题作文,提示语中列举了一些常见 的“比”的内容和“比”的方法,目的是为了打开同学们的思路。你完全可以从中选择你熟悉的内容来写,但是也不必拘泥于提示的方面,还可以在更广阔的领域寻觅“比”的新鲜内容。但是值得注意的是:选择可比的事物必须是同一范畴的事物,要通过现象或形式异同的比较,概括出 可比点来;罗列差异不是目的,目的是通过差异来说明问题,所以,重点要放在对问题的分析上。 ? 27.阅读下面的文字,根据要求作文。 ? 一天,上帝带着一个教士来到地狱,教士发现地狱中的人们围着一口盛满粥的大锅端坐着。虽然他们每人都有一把长柄勺子,但由于勺柄太长, 他们谁也无法将食物送到自己的嘴里去,只能挨饿。上帝又带着教士来到天堂,这里的人们看上去既快乐又满足,虽然他们也是围着一口大锅,每人手里也拿一把长柄勺子。上帝见教士迷惑不解,便对他说:“难道你没看出来这里的人都学会喂对方了吗?” 请以“合作”为话题,写一 篇作文,所写内容必须在这个话题范围之内。 立意自定,题目自拟,写一篇不少于800字的议。 [写作提示] “合作”即互相配合做某事或共同完成某项任务。随着科学技术的突飞猛进和信息社会的高度发展,合作显得越来越重要。因为科技越发达,分支科学越繁多,社会分工就越精细, 而个人的智力、知识面是有限的,因此,加强合作,取长补短,优势互补,已越来越成为时代的要求。论重点应放在“为什么要进行合作”上,用摆事实,讲道理的方法来明合作的必要,可以引用名言阐述合作的必要,也可以举例明合作带来的各种好处,还可以从反面明不合作带来的弊 端,要用辩的方法,分析要全面,理由要充足,最后还要指出解决问题的办法,即合作的途径。如写议,论角度有“合作是成功的土壤”“合作是人类生存的必需”“个人离不开集体”“团结互助才能由弱变强”“协作就是力量”“团队精神”“优势互补、共同发展”等。 ? 28.阅读下 面的文字,按要求作文。 水,滋润万物,是生命之源; 暴雨倾盆,江河泛滥,也会带来灾难。 水,看似柔弱,却能把坚石滴穿; 汇成洪流,更可穿峡破谷,一往无前。 水,演绎出多少可歌可泣的故事, 流淌着古往今来多少悲欢…… 请以“水的联想”为题,写一篇文章。除诗歌外, 文体自选,不少于800字。 [写作提示]本题主要考查学生的联想、想象能力。具体的写作思路有:根据作文材料的提示,写水既可滋润万物、孕育生命,也会吞噬生灵、造成灾难;或者由水“能把坚石滴穿”“更可穿峡破谷”,阐发水的力量及水的精神;或者由人不能没有水,自然不能 没有水发挥开来,呼唤保护水资源。联想水的其他特点,比如,自己活动,并能推动别人的,是水;经常探求自己方向的,是水;以自己的清洁洗净他人的污浊,有容清纳浊的度量的,是水;能蒸发为云,变成雨、雪、雾,或凝结成晶莹如镜的冰,但不论变化如何,仍不失其本性的,还 是水……然后找到人与水的相似点,构思成篇。 ? 29.阅读下面一则材料,按要求作文。 林语堂先生说:中国人的脸,不但可以洗,可以刮,还可以争,可以留,有时好像争面子是人生的第一要义,甚至可以倾家荡产而为之。对此,你或许也有一些认识或经历。请以“面子”为话题, 写一篇文章,不少于800字,题目自拟,文体自选。 ? [写作提示]中国人爱争面子,在国人看来,面子是人们身份的标志,有面子是才干的表现。面子关系着人的尊严、荣誉。但是,为了面子而不顾实际,为了形象而不顾人的死活,却是当前某些人的一种通病。 面子关乎人们的尊严、 荣辱,当然要讲,特别是在大是大非面前,要面子就是讲尊严。但是,面子不等于虚荣心,不能“死要面子活受罪”,更不能为了所谓的政绩而劳民伤财、弄虚作假。有时候,勇于暴露自己的缺点,恰恰是给自己争来了面子。我们要的是表里如一、形式内容相统一的面子。 30.阅读下面 一则材料,按要求作文。 “美国宗教精神病学基金会”创始人之一的伯兰特医生曾录下他与几位患有不同程度心理疾病的病人的谈话,通过研究,他发现这些人总在不停地重复这类话:“如果当时那样多好”“只要我再如何如何,就不会如何如何”。他由此告诫人们说:“这些想法就 像毒药,它们会使你患上心理疾病。你必须学会说‘下次再来’。因为这句话指向未来,指向新的一天,它会让你受伤的心痊愈,会带给你健康的心灵。” 请以“着眼未来”为话题写一篇文章,自拟题目,自定文体,不少于800字。 [写作提示]“着眼未来”这个话题是要人们学会正确 对待现实生活中的各种困境、挫折等问题,学会摆脱不良情绪,拥有健康快乐的人生。它其实是在倡导一种积极乐观的人生态度。考生可据此展开联想:或儒或道,或穷或达、或成或败……人生其实不外乎积极有为和消极避世两种,在考虑选材时不必受“心理疾病”这个概念束缚,这样 难度就会减小。如果选取的视角新颖,对社会现象、现实人生的评判独特,自然会写出不一般的文章来。 ? 31.阅读下面材料,请以“人的价值”为话题写作文,立意自定,文体自选,题目自拟。不少于800字。 一个年轻人对智者说:“老师,我觉得自己什么事也干不好。没有人看重我, 我该怎么办呢?” 智者从手指上脱下一枚戒指交给年轻人说:“你到集市上把这枚戒指卖了,无论如何不能少于1个金币。” 年轻人到了集市上,到处兜售戒指,但没人肯出1个金币。 年轻人说:“老师,对不起,我没能达到你的要求。也许我可以卖到两个或3个银币,但我觉得那不应 该是这枚戒指的真正价值。” “年轻朋友,你说得太对了。”智者笑着说,“你再去一趟珠宝店,问他能出多少钱,但不要真卖戒指,问完价格你再带戒指回来。” 珠宝商仔细看了看戒指后说:“告诉你的老师,如果他想卖戒指,我最多可以给他58个金币。” “58个金币!”年轻人 惊呼。“对。”珠宝商说,“如果不着急的话,我可以出70个金币……” 年轻人兴奋地跑回去,将发生的一切告诉智者。智者说:“你就像这枚戒指,珍贵、独一无二,只有专家才能真正判定你的价值。你怎能期望生活中随便一个人就能发现你真正的价值呢。”智者说着将戒指套回手 上,“我们所有人都像这枚戒指,珍贵,独一无二;不过,我们进入生活的市场后却希望毫无经验的人肯定我们的价值。” [写作提示]人们都希望自己的价值被肯定,但几乎也都希望被别人肯定,特别是由此自己的感情就被别人左右了,直到自己终生一事无成,这是可悲的。人首先应 该有自知之明,清楚自己的能力和努力方向;然后排除干扰,一往无前。有掌声的人生是美丽的;没有掌声的人生,只要自觉无悔,也是美丽的。 32.阅读下面材料,根据要求作文。 那是上世纪70年代的一场比赛。 在比赛进行到第14个回合时,拳王阿里已经筋疲力尽,濒临崩溃,到了 如有一片羽毛落在他身上也能让他轰然倒地的地步。但阿里仍竭力保持坚毅的表情和势不低头的气势。这时,拳坛另一猛将弗雷泽支持不住,放弃了。裁判当即宣布阿里获胜,阿里再次获得“拳王”的美誉。 获胜的阿里还没走到台中央,便眼前一黑,双腿无力地跪倒在地。弗雷泽见此 后悔莫及。 这次比赛的结果告诉我们:很多人的失败,不是败在技术、智力和能力,而是败在意志力的丧失和最后一刻的自我放弃。 瞬间的放弃,导致了心中永恒的伤痛,生活中这类事例或教训难道还少吗?请以“瞬间与永恒”为话题写一篇作文。立意自定,文体自选,题目自拟,不 少于800字。 [写作提示]这一话题可以从两方面理解:其一,瞬间可以成就永恒。例如,“神六”上天的瞬间,航天员庄重而灿烂的微笑留在了历史的永恒之中。其二,瞬间也可以毁灭永恒。如果弗雷泽最后一刻没有坚持住,将给人们留下永远的遗憾。作文时应

人教版八年级上册数学课件 第十三章轴对称 等腰三角形 等腰三角形 第1课时 等腰三角形的性质 (2)

人教版八年级上册数学课件 第十三章轴对称 等腰三角形 等腰三角形 第1课时 等腰三角形的性质 (2)
(3)结论:∠BAD=2∠EDC. 理由:∵AE=AD,AB=AC, ∴∠B=∠ACB=∠DCE,∠E=∠ADE=∠ADC+∠EDC. ∵∠B+∠BAD+∠ADB=∠ECD+∠E+∠EDC=180°,∴∠B+ ∠BAD+∠ADB=∠ECD+∠ADB+∠EDC+∠EDC, ∴∠BAD=2∠EDC
A.∠B=∠C
B.AD⊥BC
C.AD平分∠BAC D.AB=2BD
(2)若∠BAD=35°,则∠C的度数为( C )
A.35° B.45° C.55° D.65°
7.(4分)如图,△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD =4,则△ABC的周长是__2_0_.
8.(8分)如图,在△ABC中,AB=AC,D为BC边的中点,DE⊥AB. (1)求证:∠BAD=∠BDE; (2)若AC=6,DE=2,求△ABC的面积.
16.(15分)如图,在△ABC中,AB=AC,D是射线BC上一点,E是射 线AC上一点,且AD=AE.
(212).如5°图 ① , 若 ∠ BAC = 90° , D 是 BC 中 点 , 则 ∠ EDC 的 度 数 为 _________;
(2)如图②,当点D在线段BC上时,若∠BAD=40°,求∠EDC的度数; (3)如图③,当点D在线段BC延长线上时,试判断∠BAD和∠EDC的数 量关系,并证明.
13.(易错题)(青海中考)等腰三角形的一个内角为70°,则另外两个内 角的度数分别为____5_5_°__,__5_5_°__或__7_0_°__,__4_0_°____________________.
【变式】等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三
角形的底角的度数为___6_3_°__或__2_7_°________.

八年级数学上册 2.5《等腰三角形的轴对称性》等腰三角形要点全析素材 (新版)苏科版

八年级数学上册 2.5《等腰三角形的轴对称性》等腰三角形要点全析素材 (新版)苏科版

要点全析:等腰三角形1.等腰三角形(isosceles triangle)有两条边相等的三角形叫做等腰三角形.如图14-3-1,△ABC中,AB=AC,则△ABC是等腰三角形.相等的两条边叫腰,另一条边BC叫底边,两腰所夹的角叫顶角,如∠BAC,底边和腰的夹角∠ABC和∠ACB叫底角.如图14-3-2中,∠C=90°,AC=BC,那么,AC、BC为腰,AB边为底,∠A、∠B为底角,∠C为顶角.【说明】要理解等腰三角形的定义,需注意以下几点:(1)等腰三角形的底不一定在下方,而顶角不一定在上方,如图14-3-2中,AB为底,∠C为顶角.它是根据两腰的位置来确定的.(2)等腰三角形的三边仍要满足条件:任意两边之和大于第三边(或任意两边之差小于第三边).若图14-3-1中,AB=AC=m,BC=a,则2m>a,即m>a/2时,才能构成三角形,否则不成立.如边长分别为2,2.5的三条线段不能构成三角形,因为2+2<5.例如:(1)下列各组数据为边长时,能否组成三角形?①a=2,b=3,c=5;②a=4,b=3,c=2;③a=1,b=2,c=2;④a=2 005,b=2 004,c=2 008.(2)已知等腰三角形的两边为6 cm,7 cm,求其周长.(3)已知等腰三角形的两边长为2 cm,7 cm,求其周长.解:(1)①由于2+3=5,即a+b=c,而不满足a+b>c,∴不能组成三角形.②由于2+3=5>4,即b+c>a,所以a、b、c可以组成三角形.③由于1+2>2,即a+b>c,所以a、b、c可以组成三角形.④由于a+b>c,因此a、b、c可以组成三角形.(2)因等腰三角形的两边长分别为6 cm、7 cm当腰长为6 cm时,周长为6+6+7=19(cm)当腰长为7 cm时,周长为6+7+7=20(cm).∴等腰三角形的周长为19 cm或20 cm.(3)因等腰三角形的两边长分别为2 cm,7 cm,所以腰长为7 cm,而不能是2 cm.若为2 cm,则2+2=4<7,不能组成三角形.因此周长为7+7+2=16(cm),∴等腰三角形的周长为16 cm.2.等腰三角形的性质1等腰三角形的两个底角相等(简写成“等边对等角”)如图14-3-3,△ABC中,AB=AC,则∠B=∠C证法一:(利用轴对称)过点A作△ABC的对称轴AD.∵AB=AC,∴点A在BC的垂直平分线上.又∵AD为△ABC的对称轴,∴△ABD≌△ACD(轴对称性质).∴∠B=∠C证法二:(作顶角平分线)过点A作AD平分∠BAC交BC于D,如图14-3-3,在△ABD和△ACD中⎪⎩⎪⎨⎧∠∠ADADCADBADACAB===∴△ABD≌△ACD(SAS).∴∠B=∠C【说明】还可以作底边BC的中线和高来证明.3.等腰三角形的性质2(简称“三线合一”)等腰三角形的顶角平分线、底边上的中线、底边上的高线相互重合.如图14-3-6,在△ABC中,AB=AC,AD为顶角的平分线,那么AD既是中线,又是高线,这三条线重合.在使用时,在这三条线段中,只要作出其中一条,另外两条也就可以认为作出来了.即△ABC中,AB=AC,若AD平分∠BAC,则AD⊥BC,BD=CD;若BD=CD,则AD⊥BC,∠BAD=∠CAD;若AD⊥BC,则BD=DC,∠BAD=∠CAD.因此,等腰三角形中的这条线非常重要,一旦作出,边、角的等量关系就都有了.【说明】(1)“三线合一”仅限于等腰三角形中才有,其他三角形中没有.(2)在一般三角形中,这三条线是不会重合的.如图14-3-7,在△ABC中,AD为高,AE为中线,AF平分∠BAC,因此,这三条线不重合.只有等腰时,三条线才会重合;反过来,若某一三角形中三线重合,则该三角形为等腰三角形.(3)在今后的证明题中,经常会使用“三线合一”进行证明.例如:△ABC中,AB=AC,BD⊥AC交AC于D,如图14-3-8.求证:∠BAC=2∠DBC证法一:在△BCD中,∵BD⊥AC,∴∠BDC=90°.∴∠DBC=90°-∠C.在△ABC中,∵AB=AC,∴∠ABC=∠ACB.∴∠BAC=180°-(∠ABC+∠ACB)=180°-2∠ACB=2(90°-∠C).∴∠BAC=2∠DBC证法二:借助于三线合一的性质,过A作AM⊥BC于M,则AM平分∠BAC,∴∠BAC=2∠BAM=2∠CAM.又∵BD⊥AC交AC于D,AM⊥BC交BC于M,∴∠DBC=90°-∠C又∵AM⊥BC,∴∠CAM=90°-∠C,∴∠DBC=∠CAM4.等腰三角形的性质3(轴对称性)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在的直线就是它的对称轴.如图14-3-9,△ABC中,AB=AC,AD平分∠BAC,则△ABC的对称轴为AD所在的直线,△ABD≌△ACD.过D作DE⊥AB,交AB于E,作DF⊥AC,交AC于F.由△ABD≌△ACD可知DE=DF.同理,过D分别作AB、AC边上的中线和角平分线,它们都相等.因此,得到等腰三角形的一个重要结论.重要结论:过等腰三角形底边的中点向两腰所作的高线、中线以及角平分线,其与两腰所截得的线段都分别对应相等.5.等腰三角形的性质4(两腰上的对应线段相等)等腰三角形两腰上的中线、高线和两底角平分线对应相等.例如:如图14-3-10,△ABC中,AB=AC,若BD、CE分别为AC、AB边上的高线,则BD =CE.证明:∵AB=AC,∴∠ABC=∠ACB(等边对等角).又∵BD⊥AC,CE⊥AB,∴∠BDC=∠CEB=90°.在△BCD和△CBE中,⎪⎩⎪⎨⎧∠∠∠∠,=,=,=CBBCCEBBDCCBEBCD∴△BCD≌△CBE(AAS).∴BD=CE.或S△ABC=0.5×AB·CE=0.5×AC·BD.∵ AB=AC,∴BD=CE.此法较为简便.同样道理,可分别作出两腰上的中线,两底角的平分线,也分别对应相等.6.等腰三角形的判定定理(等角对等边)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).例如:如图14-3-11,△ABC中,若∠B=∠C,则AB=AC证明:过点A作AD平分∠BAC,交BC于点D,则∠BAD=∠CAD.在△ABD和△ACD中,∴△ABD≌△ACD(AAS).∴AB=AC因此,这一结论可直接利用.【说明】(1)在使用“等边对等角”或“等角对等边”时,一定要注意是在同一个三角形中才有这一对应关系,不在同一三角形中的边、角没有这一对应关系.(2)有了这一结论,为今后证明线段相等又添了一种重要的解题途径.例如:如图14-3-12,△ABC中,AB=AC,BD、CE相交于O点.且BE=CD求证:OB=OC.证明:∵AB=AC,∴∠ABC=∠ACB(等边对等角).在△BCE和△CBD中⎪⎩⎪⎨⎧∠∠,=,=,=CBBCDCBEBCCDBE∴△BCE≌△CBD(SAS).∴∠BCE=∠CBD,即∠OBC=∠BCO∴OB=OC(等角对等边).【说明】证两条线段相等,若这两条线段在同一个三角形中,可利用等腰三角形的判定定理来证明.7.已知底边和底边上的高,求作等腰三角形已知线段a、b,求作等腰三角形ABC,使底边BC=a,高为b.作法:(1)作线段BC=a;(2)作线段BC的垂直平分线MN与BC交于点D;(3)在MN上截取AD=b;(4)连接AB、AC,△ABC就是所求的等腰三角形.【说明】(1)由作法知MN为BC的垂直平分线,∴AB=AC∴△ABC为等腰三角形,如图14-3-13.(2)以前所作的三角形分别为:已知三边,两边夹角,两角夹边和已知斜边、直角边求作三角形,今天又学习了已知底边和底边上的高求作等腰三角形,共有五种情况,今后还将学习一些更为复杂的作法,都是以这五种为基础进行作图的.8.等边三角形(equilateral triangle)(1)定义:三条边都相等的三角形,叫等边三角形.如图14-3-14,△ABC中,AB=BC =CA,则△ABC为等边三角形.(2)性质:①等边三角形的三个内角都相等,并且每一个角都等于60°.如图14-3-14中,若△ABC 为等边三角形,则∠A=∠B=∠C=60°.②除此之外,还具有等腰三角形的一切性质,如三线合一,轴对称等.(3)判定:①三个角都相等的三角形是等边三角形.②有一个角是60°的等腰三角形是等边三角形.下面证明以上两条判定.判定①:如图14-3-15,已知△ABC中,∠A=∠B=∠C求证:△ABC是等边三角形.证明:∵∠B=∠C,∴AB=AC又∵∠A=∠B∴AC=BC∴AB=AC=BC,∴△ABC是等边三角形.判定②:如图14-3-15,已知△ABC中,AB=AC,∠B=60°.求证:△ABC是等边三角形.证明:∵AB=AC,∴∠B=∠C.又∵∠B=60°,∴∠B=∠C=60°.又∵∠A+∠B+∠C=180°,∴∠A=180°-(∠B+∠C)=60°.∴∠A=∠B=∠C,∴AB=BC=AC.∴△ABC为等边三角形.(4)应用:例如:如图14-3-16,△ABC为等边三角形,D、E为直线BC上的两点,且BD=BC=CE,求∠DAE的度数.分析:要求∠DAE的度数,需分开求,先求∠BAC,再求∠DAB和∠CAE,由△ABC为等边三角形知∠BAC=60°,又∵BD=BC,而BC=BA,则BD=BA,∴△ABD为等腰三角形,∴∠D=∠DAB=0.5×∠ABC=30°.同理可知,∠CAE=30°.解:∵△ABC为等边三角形,∴AB=BC=AC,∠BAC=∠ABC=∠ACB=60°.又∵BD=BC,∴BD=BC=AB.∴∠DAB=∠D,又∵∠ABC=∠D+∠DAB,∴∠ABC=2∠DAB=60°,∴∠DAB=30°.同理,∠CAE=30°.∴∠DAE=∠DAB+∠BAC+∠CAE=30°+60°+30°=120°.【说明】本题中用到了等边三角形的性质.再如:如图14-3-17,已知△ABC为等边三角形,D、E、F分别为△ABC三边上的点,且BD=CE=AF,直线AD、BE、CF两两相交于点R、Q、P.求证:△PQR是等边三角形.分析:本题既用到了等边三角形的性质,又用到了其判定.要证△PQR为等边三角形,证三边相等难度较大,可考虑证其三角相等.也可先证∠PQR=60°,而∠PQR=∠ACQ+∠QAC,又因为∠ACQ+∠BCF =60°,只需证∠BCF=∠DAC,由此可联想证△BCF与△CAD全等.证明:∵△ABC为等边三角形,∴∠BAC=∠ABC=∠BCA=60°,AB=BC=CA.又∵BD=CE=AF,∴BF=DC=AE在△ABE和△BCF和△CAD中,⎪⎩⎪⎨⎧∠∠∠,==,==,==CDBFAEDCAFBCBAECABCAB∴△ABE≌△BCF≌△CAD(SAS).∴∠ABE=∠BCF=∠CAD.∵∠ACQ+∠BCF=60°,∴∠ACQ+∠CAQ=60°.∴∠AQF=∠ACQ+∠CAQ=60°,即∠PQR=60°.同理,∠RPQ=∠PRQ=60°.∴△PQR为等边三角形.【说明】(1)此题证明思路比较清晰,只是步骤书写较繁,书写应认真;(2)在证明过程中用到了三个三角形全等的连等形式,可仿照两个三角形全等的方式使用.9.含30°角的直角三角形的性质在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.如图14-3-18,在Rt△ABC中,∠C=90°,∠A=30°,则BC=0.5×AB,这一性质反过来也成立.即在Rt△ABC中,∠C=90°,若BC=0.5×AB,则∠A=30°.因此Rt△ABC 中,∠C=90°,∠A=30° BC=AB/2这一性质在解题中经常用到.例如:如图14-3-19,在Rt△ABC中,∠BAC为直角,高AD交BC于D,∠B=30°,BC =12米,求CD,BD的长.解:∵在Rt△ABC中,∠BAC=90°,∠B=30°,∴∠C=60°,BC=2AC∴AC=BC/2=6(米).在Rt△ACD中,∵AD⊥BC,∠C=60°,∴∠CAD=30°.∴DC=AC/2=0.5××6=3(米).∴BD=BC-DC=9-6=12-3=9(米).【说明】在本题中两次用到直角三角形的这一性质,并且用的方式都一样.。

第08讲 图形的轴对称 等腰三角形(原卷版)

第08讲 图形的轴对称 等腰三角形(原卷版)

第08讲图形的轴对称等腰三角形一、轴对称图形轴对称图形的定义一个图形沿着某直线折叠,直线两旁的部分能完全重合,这个图形就叫做轴对称图形,该直线就是它的对称轴.要点:轴对称图形是指一个图形,图形被对称轴分成的两部分能够互相重合.一个轴对称图形的对称轴不一定只有一条,也可能有两条或多条,因图形而定.二、轴对称1.轴对称定义把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称(或说这两个图形成轴对称),这条直线叫做对称轴.折叠后重合的点是对应点,也叫做对称点.要点:轴对称指的是两个图形的位置关系,两个图形沿着某条直线对折后能够完全重合.成轴对称的两个图形一定全等.2.轴对称与轴对称图形的区别与联系轴对称与轴对称图形的区别主要是:轴对称是指两个图形,而轴对称图形是一个图形;轴对称图形和轴对称的关系非常密切,若把成轴对称的两个图形看作一个整体,则这个整体就是轴对称图形;反过来,若把轴对称图形的对称轴两旁的部分看作两个图形,则这两个图形关于这条直线(原对称轴)对称.三、轴对称与轴对称图形的性质轴对称、轴对称图形的性质在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等.要点:(1)若两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;(2)轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.四、等腰三角形的定义1.等腰三角形有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.如图所示,在△ABC中,AB=AC,则它叫等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角.2.等腰三角形的作法已知线段a,b(如图).用直尺和圆规作等腰三角形ABC,使AB=AC=b,BC=a.作法:1.作线段BC=a;2.分别以B,C 为圆心,以b 为半径画弧,两弧相交于点A;3.连接AB,AC.△ABC 为所求作的等腰三角形.3.等腰三角形的对称性(1)等腰三角形是轴对称图形(2)∠B=∠C(3)BD=CD,AD 为底边上的中线.(4)∠ADB=∠ADC=90°,AD 为底边上的高线.结论:等腰三角形是轴对称图形,顶角平分线(底边上的高线或中线)所在的直线是它的对称轴.4.等边三角形三条边都相等的三角形叫做等边三角形.也称为正三角形.等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴.要点:(1)等腰直角三角形的两个底角相等,且都等于45°,等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A=180°-2∠B,∠B=∠C=1802A ︒-∠.(2)用尺规作图时,画图的痕迹一定要保留,这些痕迹一般是画的轻一些,能看清就可以了,题目中要求作的图要画成实线,最后一定要点题,即“xxx 即为所求”.(3)等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形.等边三角形是中考中常考的知识点,并且有关它的计算也很常见,因此对于等边三角形的特殊数据要熟记于心,比如边长为a 的等边三角形它的高是32a ,面积是234a .例1.下列说法中正确的是()①对称轴上没有对称点;②如果ABC ∆与△A B C '''关于直线L 对称,那么ABC A B C S S ∆'''= ;③如果线段AB A B ='',直线L 垂直平分AA ',则AB 和A B ''关于直线L 对称;④射线不是轴对称图形.A .②B .①④C .②④D .②③例2.下列说法中,正确的是()A .有一条公共边的两个全等三角形关于公共边所在的直线对称B .全等三角形是关于某直线对称的C .两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧D .关于某直线对称的两个三角形是全等三角形例3.等腰三角形的对称轴是()A .底边上的中线B .顶角平分线C .底边上的高D .底边的垂直平分线例4.列四个图案中,不是轴对称图案的是()A .B .C .D .例5.有下列图形:角,线段,直角三角形,等边三角形,长方形.其中一定是轴对称图形的有()A .2个B .3个C .4个D .5个例6.如图,ABC ∆中,D 点在BC 上,将D 点分别以AB 、AC 为对称轴,画出对称点E 、F ,并连接AE 、AF .根据图中标示的角度,求EAF ∠的度数为何?()A .113︒B .124︒C .129︒D .134︒例7.如图,将ABC 沿直线DE 折叠后,使得点B 与点A 重合.已知10AC cm =,ADC 的周长为34cm ,则BC 的长为()A .14cmB .20cmC .24cmD .44cm例8.如图,ABC 与A B C '''V 关于直线MN 对称,P 为MN 上任一点(P 不与AA '共线),下列结论中错误的是()A .AA P '△是等腰三角形B .MN 垂直平分AA 'C .//AA CC ''D .A P AC'⊥例9.等边三角形是特殊的___________三角形,因此它也是___________图形,有_______条对称轴.例10.等腰三角形的一腰上的中线将三角形的周长分成9和15两部分,则该等腰三角形的腰长是______.一、单选题1.下列图案中是轴对称图形的有()A .1个B .2个C .3个D .4个2.如图,若ABC 与A B C ''' 关于直线MN 对称,BB '交MN 于点O ,则下列说法中不一定正确的是()A .AC A C ''=B .AB BC ''∥C .AA MN '⊥D .BO B O'=3.如图,点P 在锐角AOB ∠的内部,连接OP ,3OP =,点P 关于OA 、OB 所在直线的对称点分别是1P 、2P ,则1P 、2P 两点之间的距离可能是()A .8B .7C .6D .54.如图,AC 是四边形ABCD 的对称轴,若AD ∥BC ,则下列结论中正确的有()①AB ∥CD ;②AB =CD ;③AB =BC ;④AO =OC .A .①②③④B .①②③C .②③④D .②③A.10︒6.等腰三角形的周长为A.3cm7.若等腰三角形有一个角等于A.50°8.如图,AD是∆度为()A.12B.1310.如图所示,45MON∠=︒,点A .45︒B .90︒C .135︒D .150︒二、填空题11.等边三角形的边长为a ,则它的周长为______,等边三角形共有________条对称轴.12.等腰三角形周长为35,其中两边长之比为3∶1,则底边长为______.13.等腰三角形一腰上的高与另一腰的夹角为60︒,那么这个等腰三角形的顶角的度数为_______.14.如图所示,点P 为AOB ∠内一点,分别作出P 点关于OA OB 、的对称点12P P 、,连接12PP交OA 于M ,交OB 于N ,1215PP =,则PMN 的周长为_______.15.已知等腰三角形的底边长为6,一条腰上的中线把三角形的周长分为两部分,其中一部分比另外一部分长2,则三角形的腰长是______.16.如图,在△ABC 中,AC =BC ,∠B =42°,点D 是边AB 上一点,点B 关于直线CD 的对称点为B ',当B D AC '∥时,则∠BCD 的度数为_____.17.定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰△ABC 是“倍长三角形”,底边BC 的长为3,则腰AB 的长为______.18.如图,点P 是AOB ∠内一点,点P 关于OA 的对称点为C ,点P 关于OB 的对称点为D ,连结CD 交OA 、OB 于点M 和点N ,连结PM 、PN .若70AOB ∠=︒,则MPN ∠的大小为______度.三、解答题19.如图所示的每个图形是轴对称图形吗?如果是,指出它的对称轴.20.燕子风筝的骨架如图所示,它是以直线L 为对称轴的轴对称图形.已知∠1=∠4=45°,求∠2和∠5的度数.21.(1)已知等腰三角形的一边等于2cm ,另一边等于4cm ,求它的周长;(2)一个等腰三角形的周长为18,若腰长的3倍比底边的2倍多6,求各边长;(3)一个等腰三角形的周长为20cm ,一边长为6cm ,求其它两边的长;(4)一个等腰三角形的周长为12cm ,一边与另一边的差是3cm ,求三边的长;(5)等腰三角形的腰长是整数,周长是8,求它的各边长.22.已知一个等腰三角形的周长为24cm .(1)若一条边的长为10cm ,求其余两条边的长;(2)若一条边的长为4cm ,求其余两条边的长.23.如图,点P 为AOB 内一点,分别作出点P 关于OA ,OB 的对称点1P ,2P ,连接12PP,交OA 于点M ,交OB 于点N ,则PMN 的周长等于图中哪一条线段的长?说明理由.24.已知等腰三角形一腰上的中线将这个三角形的周长分为9cm 和15cm 的两个部分,求这个等腰三角形底边的长.25.已已知a 、b 、c 为△ABC 的三边长,且b 、c 满足(b -5)2+(c -7)2=0,a 为方程|a -3|=2的解,求△ABC 的周长,并判断△ABC 的形状.26.如图,点D 在AC 上,AB AC =,AD BD =.你能在图中找到几个等腰三角形?分别说出每个等腰三角形的腰、底边和顶角.27.如图,ABC 的顶点A ,B ,C 都在小正方形的顶点上,利用网格线按下列要求画图.(1)画111A B C △,使它与ABC 关于直线l 成轴对称;(2)在直线l 上找一点P ,使点P 到点A ,点B 的距离之和最短;(3)在直线l 上找一点Q ,使点Q 到边AC BC ,的距离相等.28.如图,ABC 与DEF △关于直线MN 对称,其中90C ∠=︒,8cm AC =,10cm DE =,6cm BC =.(1)连接AD,线段AD与MN的关系是什么?(1)图中点C的对应点是点,∠B的对应角是(2)若DE=5,BF=2,则CF的长为;(3)若∠BAC=108°,∠BAE=30°,求∠EAF30.【定义】如图1,OM平分∠AOB,则称射线(1)【理解题意】如图1,射线OB,OA关于OM对称且∠AOB=45°,则∠AOM=度;(2)【应用实际】如图2,若∠AOB=45°,OP在∠AOB内部,OP,OP1关于OB对称,OP,对称,求∠P1OP2的度数;(3)如图3,若∠AOB=45°,OP在∠AOB外部,且0°<∠AOP<45°,OP,OP1关于OB对称,于OA对称,求∠P1OP2的度数;(4)【拓展提升】如图4,若∠AOB=45°,OP,OP1关于∠AOB的OB边对称,∠AOP1=4∠BOP (直接写出答案).一、单选题1.(2023·浙江嘉兴·统考中考真题)美术老师写的下列四个字中,为轴对称图形的是()A .B .C .D .2.(2022·西藏·统考中考真题)下列图形中是轴对称图形的是()A .B .C .D .3.(2007·河南·中考真题)如图,ΔABC 与ΔA’B’C’关于直线l 对称,则∠B 的度数为()A .30°B .50°C .90°D .100°4.(2022·山东威海·统考中考真题)图1是光的反射规律示意图.其中,PO 是入射光线,OQ 是反射光线,法线KO ⊥MN ,∠POK 是入射角,∠KOQ 是反射角,∠KOQ =∠POK .图2中,光线自点P 射入,经镜面EF 反射后经过的点是()A .A 点B .B 点C .C 点D .D 点5.(2022秋·八年级课时练习)如图,将ABC ∆沿着过BC 的中点D 的直线折叠,使点B 落在AC 边上的1B 处,称为第一次操作,折痕DE 到AC 的距离为1h ;还原纸片后,再将BDE ∆沿着过BD 的中点1D 的直线折叠,使点B 落在DE 边上的2B 处,称为第二次操作,折痕11D E 到AC 的距离记为2h ;按上述方法不断操作下去……经过第n 次操作后得到折痕11n n D E --,到AC 的距离记为n h .若11h =,则n h 的值为()二、填空题三、解答题9.(2019·湖北省直辖县级单位·统考中考真题)请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图①,四边形ABCD中,AB=AD,∠B=∠D,画出四边形ABCD的对称轴m;(2)如图②,四边形ABCD中,AD∥BC,∠A=∠D,画出边BC的垂直平分线n.。

等腰三角形的教学设计(9篇)

等腰三角形的教学设计(9篇)

等腰三角形的教学设计(9篇)等腰三角形篇一2.5等腰三角形的轴对称性(2)教学目标1.掌握等腰三角形的判定定理。

2.知道等边三角形的性质以及等边三角形的判定定理。

3.经历折纸、画图、观察、推理等操作活动的合理性进行证明的过程,不断感受合情推理和演绎推理都是人们正确认识事物的重要途径。

4.会用“因为……所以……理由是……”或“根据……因为……所以……”等方式来进行说理,进一步发展有条理地思考和表达,提高演绎推理的能力。

教学重点熟练地掌握等腰三角形的判定定理。

教学难点正确熟练地运用定理解决问题及简洁地逻辑推理。

教学过程(教师活动)学生活动设计思路前面我们学习了等腰三角形的轴对称性,说说你对等腰三角形的认识。

本节课我们将继续学习等腰三角形的轴对称性。

一、创设情境如图所示△abc是等腰三角形,ab=ac,它的一部分被墨水涂没了,只留下一条底边bc 和一个底角△c.请同学们想一想,有没有办法把原来的等腰三角形abc重新画出来?大家试试看。

1.学生观察思考,提出猜想。

2.小组交流讨论。

一方面回忆等边对等角及其研究方法,为学生研究等角对等边提供研究的方法,另一方面通过创设情境,自然地引入课题。

二、探索发现一请同学们分别拿出一张半透明纸,做一个实验,按以下方法进行操作:(1)在半透明纸上画一条长为6cm的线段bc.(2)以bc为始边,分别以点b和点c为顶点,在bc的同侧用量角器画两个相等的锐角,两角终边的交点为a.(3)用刻度尺找出bc的中点d,连接ad,然后沿ad对折。

问题1:ab与ac有什么数量关系?问题2:请用语言叙述你的发现。

1.根据实验要求进行操作。

2.画出图形、观察猜想。

3.小组合作交流、展示学习成果。

演示折叠过程为进一步的说理和推理提供思路。

通过动手操作、演示、观察、猜想、体验、感悟等学习活动,获得知识为今后学生进行探索活动积累数学活动经验。

三、分析证明思考:我们利用了折叠、度量得到了上述结论,那么如何证明这些结论呢?问题3:已知如图,在△abc中,△b=△c.求证:ab=ac.引导学分析问题,综合证明。

三角形的判定定理及轴对称知识点

三角形的判定定理及轴对称知识点

三角形判断及轴对称知识点一.轴对称图形1.定义:如果一个平面图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.2.定义:如果两个平面图形沿一条直线对折后能够完全重合,那么称这两个图形“成轴对称”,这条直线叫做这两个图形的对称轴,折叠后重合的点是对应点,叫做对称点.“成轴对称”的定义包含两层含义:(1)有两个图形,且形状、大小完全相同.(2)两个图形的位置必须满足沿一条直线对折后能完全重合3.成轴对称的性质:(1)成轴对称的两个图形全等(即对应角相等,对应边相等);(2)成轴对称的两个图形中,对应点连线被对称轴垂直平分;(3)成轴对称的两个图形,对称点所连的线段平行(或在同一条直线上)二.等腰三角形的性质:(1)等腰三角形的两个底角相等。

(简写成“等边对等角”)(2)等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(简写成“三线合一”)(3)等腰三角形是轴对称图形,顶角平分线所在的直线是它的对称轴二.等腰三角形的判定:(1)有两条边相等的三角形是等腰三角形(2)有两个角相等的三角形是等腰三角形(简称:等角对等边)三.等边三角形等边三角形的定义:有三边都相等的三角形是等边三角形。

等边三角形是特殊的等腰三角形。

四.等边三角形的性质:(1)等边三角形的内角都相等,且为60度;(2)等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)(3)等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线五.等边三角形的判定:(首先考虑判断三角形是等腰三角形)(1)三边相等的三角形是等边三角形(定义)(2)三个内角都相等的三角形是等边三角形(3)有一个角是60度的等腰三角形是等边三角形六.线段垂直平分线:(1)定理:在平面内,线段垂直平分线上的点到线段两端的距离相等.(2)逆定理:在平面内,到线段两端距离相等的点在线段垂直平分线上.七.角平分线(1)定理:角平分线上的任意一点到角两边的距离相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
A
B
C

E
D

A
F
E
D

B
C
(第2题)
M

A
E
F

C
B
(第3题)

等腰三角形的轴对称⑵
一、练习反馈
⒈有下列长度的三条线段,能组成等腰三角形的是 ( )
A.2cm,2cm,4cm B.3cm,8cm,3cm
C.3cm,4cm,6cm D.5cm,4cm,4cm
2、如图,在△ABC中,AB=AC,∠A=36°,角平分线BE与CD相交于点F,那么图中等腰三角
形有 ( )
A.6个 B.7个 C.8个 D.9个

3、如图,在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点,EF=5,BC=8,
则△EFM的周长是 ( )
A.21 B.18 C.13 D.15
4、等腰三角形的三个内角中,大角是小角的2倍,
则三个内角分别是 .
5、等腰三角形底边上的高是底边的一半,
则其顶角的大小为___________.

6、如图,在△ABC中,∠ACB=90°,D是AB的中点,CE⊥AB,且AC=6,BC=8,
EC=4.8,则CD的长度是 .
7、、若等腰三角形的腰长为8,那么底边长的范围是__________________;若等腰三角形的底边
长为8,那么腰长的范围是____________________。
8、、等腰三角形一腰上的高与另一腰的夹角为20°,则顶角为___________。
9、在下列各图中,AD是∠BAC的平分线,根据各图其他的条件,找出等腰三角形.

(1)如图①,CE∥AB,CE交AD的延长线于E点,则 是等腰三角形.
A A A A B C C C C B B B D D D D E E E
E

G
F
2

(2)如图②,DE∥AC,DE交AB于E点,则 是等腰三角形.
(3)如图③,CE∥AD,CE交BA的延长线于E点,则 是等腰三角形.
(4)如图④,EF∥AD,EF与AB相交于G点,与CA的延长线相交于点E与BC相交于点F, 是
等腰三角形.

10、已知等腰三角形ABC的周长为32,AD是底边BC上的中线,AD:AB=4:5,且△ABD的周长为
24,求△ABC的各边及AD的长。

二、拓展提高
11如图,在△ABC中,AC⊥BC,D、E为AB上的点,且AD=AC,BE=BC,求∠ECD的度数.

12、如图,在正方形ABCD所在的平面内,画出与正方形各边均构成等腰三角形的点P,并指出这
样的点有几个.

13、在两个三角形中,它们的内角分别为:(1)20°,40°,120°;(2)20°,60°,100°,
怎样把每个三角形分成两个等腰三角形?试画出图形.

A D
C B

A
E

D

C
B

相关文档
最新文档