高中物理竞赛解题方法之极限法例题

合集下载

物理竞赛极值问题解法例谈

物理竞赛极值问题解法例谈

物理竞赛极值问题解法例谈极值问题,是物理竞赛中较为常见的一类问题。

解答这类问题,除了用到相关的物理知识,一般都要借助一定的数学知识才能完成。

现将初中物理竞赛中,常见的几类极值问题的解答方法,举例介绍如下。

一.利用“三角形两边之和大于第三边”求解例1.某中学举办了一次别开生面的“物理体育比赛”。

比赛中有个项目:运动员从如图1(a)所示的A点起跑,到MN槽线上抱起一个实心球,然后跑到B点。

比赛时,谁用的时间最少谁胜。

试问运动员比赛时,应沿着什么路线跑最好?图1(a)图1(b)析与解:假设某运动员在槽线上抱起一个实心球所用的时间、运动员跑步的速度是一定的,那么,他跑过的路程如果最短,则他所用的时间最少。

因此,本题实际上是一道路程极值问题。

如图1(b)所示,作B关于槽线MN的对称点B′,图中、、等,都是可能的路线。

显然,、路线,分别与、、等长,而由“三角形两边之和大于第三边”的结论可知,图中的(直线段)最短,即路线最短。

故,运动员比赛时,应沿着路线跑最好。

二.利用“正弦函数sinθ的最大值为1”求解例2.如图2(a)所示,某人站在离平直公路垂直距离为60m的A处,发现公路上有一汽车,从B处以v0=10m/s的速度沿公路匀速行驶,B与人相距100m。

问此人最少要以多大的速度,沿什么方向奔跑才能与汽车相遇?析与解:设人以速度v,沿与AB成θ角的方向奔跑,如图2(b)所示,并在C处与汽车相遇,所用的时间为t。

则有BC=v0t,AC=vt。

作BE⊥AC,由三角形AOC与三角形BEC相似得:又:,故:BE=AB sinθ,所以:整理得:代入数值计算得:上式中,要使v最小,应使sinθ最大,即sinθ=1,θ=90°时,v最小为v min=6m/s。

故,此人最少要以6m/s的速度,沿与AB成90°的方向向公路奔跑,才能与汽车相遇。

三.利用“”求解例3.如图3所示,一根均匀杠杆,每米长重λ=30N,现以杆的A端为支点,在杆的B端施一竖直向上的力F,在距杆的A端a=0.2m处挂一个重G=300N的重物,要使杠杆在水平位置平衡,求:杠杆为多长时,加在B端的力F有最小值?最小力F是多大?图3析与解:如不考虑杆重,则杠杆越长,力F就越小。

高考物理选择题答题技巧教案 第4讲 极限分析法与情景建模法

高考物理选择题答题技巧教案  第4讲  极限分析法与情景建模法

第四讲 秒杀绝技4 极限分析法与情景建模法秒杀绝技 极限分析法[妙法解读]物理中体现的极限思维常见方法有极端思维法、微元法。

当题目所涉及的物理量随条件单调变化时,可用极限法是把某个物理量推向极端,即极大或极小,极左或极右,并据此做出科学的推理分析,从而给出判断或导出一般结论。

微元法是把物理过程或研究对象分解为众多细小的 “微元”,只需对这些“微元”进行必要的数学方法或物理思想处理,便可使问题得于求解。

【典例1】如图所示,一半径为R 的绝缘环上,均匀地分布着电荷量为Q 的电荷,在垂直于圆环平面的对称轴上有一点P,它与环心O 的距离OP =L 。

静电力常量为k,关于P 点的场强E,下列四个表达式中有一个是正确的,请你根据所学的物理知识,通过一定的分析,判断下列正确的表达式是( )A.E =22LR kQ + B.E =22L R kQL + C.E =322)(L R kQR + D.E =322)(L R kQL + 【解析】 当R =0时,带电圆环等同一点电荷,由点电荷电场强度计算式可知在P 点的电场强度为E =2LkQ ,将R =0代入四个选项,只有A 、D 选项满足;当L =0时,均匀带电圆环的中心处产生的电场的电场强度为0,将L =0代入选项A 、D,只有选项D 满足。

答案 D【方法感悟】 有的问题可能不容易直接求解,但是当你将题中的某物理量的数值推向极限时,就可以对这些问题的选项是否合理进行分析和判断。

【典例2】如图所示,竖直线MN∥P Q,MN 与PQ 间距离为a,其间存在垂直纸面向里的匀强磁场,磁感应强度为B,O 是MN 上一点,O 处有一粒子源,某时刻放出大量速率均为v(方向均垂直磁场方向)、比荷一定的带负电粒子(粒子重力及粒子间的相互作用力不计),已知沿图中与MN 成θ=60°角射入的粒子恰好垂直PQ 射出磁场,则粒子在磁场中运动的最长时间为( )A.πa 3vB.23πa 3vC.4πa 3vD.2πa v【解析】 当θ=60°时,粒子的运动轨迹如图甲所示,则a =Rsin30°,即R =2a 。

专题极值法-高中物理八大解题方法含解析

专题极值法-高中物理八大解题方法含解析

高中物理解题方法之极值法高中物理中的极值问题,是物理教学研究中的活跃话题。

本文通过例题归纳综合出极值问题的四种主要解法。

一、 二次函数求极值二次函数a ac b a b x a c bx ax y 44)2(222--+=++=,当ab x 2-=时,y 有极值ab ac y m 442-=,若a>0,为极小值,若a<0,为极大值。

例1试证明在非弹性碰撞中,完全非弹性碰撞(碰撞后两物体粘合在一起)动能损失最大。

设第一个物体的质量为1m ,速度为1V 。

第二个物体的质量为2m ,速度为2V 。

碰撞以后的速度分别为'1V 和'2V 。

假使这四个速度都在一条直线上。

根据动量守恒定律有:'+'=+22112211V m V m V m V m (1)如果是完全非弹性碰撞,两物体粘合在一起,(1)则变为V m m V m V m '+=+)(212211,即212211m m V m V m V ++=' (2)现在就是要证明,在满足(1)式的碰撞中,动能损失最大的情况是(2)式。

碰撞中动能损失为ΔE k =()22()22222211222211'+'-+vm v m v m v m (3) 转变为数学问题:ΔE k 为v 的二次函数:由(1)得:v 2ˊ=2112211)(m v m v m v m '-+ (4)将(4)代入(3)得:k =++++-'12221112'1211)(2)(v m v m v m m v m m m m [2222112222112)(22m v m v m v m v m +-+] 二次函数求极值,当v 1ˊ=)()(212211m m v m v m ++ (5) 时∆E k 有极大值。

回到物理问题,将(5)代入(4)得v 2ˊ=)()(212211m m v m v m ++此两式表明,m 1和m 2碰后速度相等,即粘合在一起,此时动能损失(ΔE k )最大。

(9)极限法(Word版,含答案解析)

(9)极限法(Word版,含答案解析)

化学解题技巧------------------------极限法极限判断是指从事物的极端上来考虑问题的一种思维方法。

该思维方法的特点是确定了事物发展的最大(或最小)程度以及事物发生的范围。

例1 :在120℃时分别进行如下四个反应:A.2H2S+O2=2H2O+2S B.2H2S+3O2=2H2O+2SO2C.C2H4+3O2=2H2O+2CO2D.C4H8+6O2=4H2O+4CO2(l)若反应在容积固定的容器内进行,反应前后气体密度(d)和气体总压强(P)分别符合关系式d前=d后和P前>P后的是;符合关系式d前=d后和P前=P后的是(请填写反应的代号)。

(2)若反应在压强恒定容积可变的容器内进行,反应前后气体密度(d)和气体体积(V)分别符合关系式d前>d后和V前<V后的是;符合d前>d后和V前>V后的是(请填写反应的代号)。

方法:从反应物全部变成生成物来作极限判断。

解析:(1)在容积固定的容器内,四个反应的反应物和生成物中除硫单质外均为气体,总结:解本题还应用了物理学中气态方程和化学中的阿伏加德罗定律。

这是一道物理和化学学科间综合试题,体现了当今的命题方向。

例2 :把含有某一种氯化物杂质的氯化镁粉末95mg溶于水后,与足量的硝酸银溶液反应,生成氯化银沉淀300mg,则该氯化镁中的杂质可能是()A.氯化钠B.氯化铝C.氯化钾D.氯化钙方法:采用极值法或平均分子量法。

解析:[解法一]:(极值法)假设95mg全为MgCl2,无杂质,则有:MgCl2 ~ 2AgCl95mg2×143.5mg生成沉淀为287mg,所以假设95mg全部为杂质时,产生的AgCl沉淀应大于300mg。

总结:极值法和平均分子量法本质上是相同的,目的都是求出杂质相对分子量的区间值,或者杂质中金属元素的原子量的区间值,再逐一与选项比较,筛选出符合题意的选项。

例3 :在一个容积固定的反应器中,有一可左右滑动的密封隔板,两侧分别进行如图所示的可逆反应.各物质的起始加入量如下:A、B和C均为4.0mol、D为6.5 mol、F为2.0 mol,设E为x mol.当x在一定范围内变化时,均可以通过调节反应器的温度,使两侧反应都达到平衡,并且隔板恰好处于反应器的正中位置.请填写以下空白:(1)若x=4.5,则右侧反应在起始时向(填“正反应”或“逆反应”)方向进行.欲使起始反应维持向该方向进行,则x的最大取值应小于.(2)若x分别为4.5和5.0,则在这两种情况下,当反应达平衡时,A的物质的量是否相等? (填“相等”、“不相等”或“不能确定”).其理由是:。

极限思维法在高考物理选择题中的妙用

极限思维法在高考物理选择题中的妙用

2013-08百花园地选择题是各种形式的考试中最为常见的一种题型。

物理选择题主要用于考查对物理概念、物理现象、物理过程和物理规律的认识、判断、辨析、理解和应用等。

对于提高考查知识的覆盖面,鉴别学生理解概念和规律的能力上,有其独到的和不可替代的作用。

笔者就其中部分题目,根据它们的不同特点现将其中一种解题方法———极限思维法总结如下。

[示例1]如右图所示,轻细绳的一端系在质量为m 的物体上,另一端系在一个轻质圆环上,圆环套在粗糙水平杆M N 上,现用水平力F 拉绳上一点,使物体处于图中实线位置,此时细绳与竖直方向的夹角为θ,然后改变F 的大小使其缓慢下降到图中虚线位置,圆环仍在原来的位置不动,则在这一过程中,水平拉力F ,环与杆的摩擦力F 摩和环对杆的压力F N 的变化情况是()A .F 逐渐增大,F 摩保持不变,F N 逐渐增大B .F 逐渐增大,F 摩逐渐增大,F N 保持不变C .F 逐渐减小,F 摩逐渐增大,F N 逐渐减小D .F 逐渐减小,F 摩逐渐减小,F N 保持不变[方法应用]在物体缓慢下降的过程中,细绳与竖直方向的夹角不断减小,可把这种θ减小状态推到无限小,即细绳与竖直方向的夹角θ=0;此时系统处于平衡状态,由平衡条件可知,当θ=0时,F =0,F 摩=0。

所以可得出结论:在物体缓慢下降过程中,F 逐渐减小,F 摩也随之减小,从而可判断出D 选项正确。

[示例2](2011,上海)如图所示电路中,闭合开关S ,当滑动变阻器的滑动触头P 从最高端向下滑动时()A .电压表V 读数先变大后变小,电流表A 读数变大B .电压表V 读数先变小后变大,电流表A 读数变小C .电压表V 读数先变大后变小,电流表A读数先变小后变大D .电压表V 读数先变小后变大,电流表A 读数先变大后变小[方法应用]电路的动态分析一直是高考的热点。

将滑片P 滑至最上端A ,短路示数为0,等效电路如图a ,R 总=R+r 。

【高中物理 极值问题的典型题】(带答案)

【高中物理  极值问题的典型题】(带答案)

【高中物理 极值问题的典型题】一、单项选择题1.(图解法求极值)如图所示,质量为m 的小球用细线拴住放在光滑斜面上,斜面足够长,倾角为α的斜面体置于光滑水平面上,用水平力F 推斜面体使斜面体缓慢地向左移动,小球沿斜面缓慢升高.当线拉力最小时,推力F 等于( )A .mg sin α B.12mg sin α C .mg sin 2α D.12mg sin 2α2.(三角函数法求极值)一个质量为1 kg 的物体放在粗糙的水平地面上,今用最小的拉力拉它,使之做匀速直线运动,已知这个最小拉力大小为6 N ,取g =10 m/s 2,则下列关于物体与地面间的动摩擦因数μ的取值,正确的是( )A .μ=916B.μ=43C .μ=34D.μ=353.(二次函数法求极值)如图,半圆形光滑轨道固定在水平地面上,半圆的直径与地面垂直.一小物块以速度v 从轨道下端滑入轨道,并从轨道上端水平飞出,小物块落地点到轨道下端的距离与轨道半径有关,此距离最大时,对应的轨道半径为(重力加速度为g )( )A.v 216gB.v 28gC.v 24gD.v 22g二、多项选择题4.(图解法求电场极值问题)如图,在竖直平面内有一匀强电场,一带电量为+q 、质量为m 的小球在力F (大小可以变化)的作用下沿图中虚线由A 至B 做竖直向上的匀速运动.已知力F 和AB 间夹角为θ,AB 间距离为d ,重力加速度为g .则( )A .力F 大小的取值范围只能在0~mgcos θB .电场强度E 的最小值为mg sin θqC .小球从A 运动到B 电场力可能不做功D .若电场强度E =mg tan θq 时,小球从A 运动到B 电势能变化量大小可能为2mgd sin 2 θ5.(三角函数求极值问题)如图甲所示,为测定物体冲上粗糙斜面能达到的最大位移x 与斜面倾角θ的关系,将某一物体每次以不变的初速率v 0沿足够长的斜面向上推出,调节斜面与水平方向的夹角θ,实验测得x 与斜面倾角θ的关系如图乙所示,g 取10 m/s 2,根据图象可求出( )A .物体的初速率v 0=3 m/sB .物体与斜面间的动摩擦因数μ=0.75C .取不同的倾角θ,物体在斜面上能达到的位移x 的最小值x min =1.44 mD .当θ=45°时,物体达到最大位移后将停在斜面上三、计算题6.(三角函数求极值)如图所示,水平地面上放置一个质量为m 的物体,在与水平方向成θ角、斜向右上方的拉力F 的作用下沿水平地面运动.物体与地面间的动摩擦因数为μ,重力加速度为g .求:(1)若物体在拉力F 的作用下能始终沿水平面向右运动且不脱离地面,拉力F 的大小范围.(2)已知m =10 kg ,μ=0.5,g =10 m/s 2,若F 的方向可以改变,求使物体以恒定加速度a =5 m/s 2向右做匀加速直线运动时,拉力F 的最小值.7.(二次函数求极值问题)如图所示,位于竖直平面上有14圆弧的光滑轨道,半径为R ,OB 沿竖直方向,圆弧轨道上端A 点距地面高度为H .当把质量为m 的钢球从A 点静止释放,最后落在了水平地面的C点处.若本地的重力加速度为g,且不计空气阻力.求:(1)钢球运动到B点的瞬间受到的支持力多大;(2)钢球落地点C距B点的水平距离s为多少;(3)比值RH为多少时,小球落地点C距B点的水平距离s最大?这个最大值是多少?8.(极限法求极值问题)如图所示,质量为m的物体,放在一固定斜面上,当斜面倾角为30°时恰能沿斜面匀速下滑.对物体施加一大小为F的水平向右恒力,物体可沿斜面匀速向上滑行.设最大静摩擦力等于滑动摩擦力,当斜面倾角增大并超过某一临界角θ0时,不论水平恒力F多大,都不能使物体沿斜面向上滑行,求:(1)物体与斜面间的动摩擦因数;(2)这一临界角θ0的大小.9.(物理过程分析求极值)如图所示,绝缘轨道CDGH位于竖直平面内,圆弧段DG的圆心角为θ=37°,DG与水平段CD、倾斜段GH分别相切于D点和G点,CD段粗糙,DGH 段光滑,在H处固定一垂直于轨道的绝缘挡板,整个轨道处于场强为E=1×104 N/C、水平向右的匀强电场中.一质量m=4×10-3 kg、带电量q=+3×10-6 C的小滑块在C处由静止释放,经挡板碰撞后滑回到CD段的中点P处时速度恰好为零.已知CD段长度L=0.8 m,圆弧DG的半径r=0.2 m,不计滑块与挡板碰撞时的动能损失,滑块可视为质点.求:(1)滑块与CD段之间的动摩擦因数μ;(2)滑块在CD段上运动的总路程;(3)滑块与绝缘挡板碰撞时的最大动能和最小动能.10.(二次函数法求极值)如图所示,质量为km小球a,用l1=0.4 m的细线悬挂于O1点,质量为m小球b,用l2=0.8 m的细线悬挂于O2点,且O1、O2两点在同一条竖直线上.让小球a静止下垂,将小球b向右拉起,使细线水平,从静止释放,两球刚好在最低点对心相碰.相碰后,小球a向左摆动,细线与竖直方向最大偏角为60°,两小球可视为质点,空气阻力忽略不计,仅考虑首次碰撞.取g=10 m/s2.求:(1)两球相碰前小球b的速度大小;(2)讨论k可能的取值范围;(3)所有满足题干要求的碰撞情形中,k取何值时?机械能损失最多.11.(不等式法求极值)如图所示,在粗糙水平台阶上静止放置一质量m=0.5 kg的小物块,它与水平台阶表面间的动摩擦因数μ=0.5,且与台阶边缘O点的距离s=5 m.在台阶右侧固定了一个以O点为圆心的圆弧形挡板,现用F=5 N的水平恒力拉动小物块,一段时间后撤去拉力,小物块最终水平抛出并击中挡板.(g取10 m/s2)(1)若小物块恰能击中挡板的上边缘P点,P点的坐标为(1.6 m,0.8 m),求其离开O点时的速度大小;(2)为使小物块击中挡板,求拉力F作用的距离范围;(3)改变拉力F的作用时间,使小物块击中挡板的不同位置,求击中挡板时小物块动能的最小值.(结果可保留根式)【高中物理极值问题的典型题】【高中物理 极值问题的典型题】答案解析1.D 以小球为研究对象.小球受到重力mg 、斜面的支持力N 和细线的拉力T ,在小球缓慢上升过程中,小球受的合力为零,则N 与T 的合力与重力大小相等、方向相反,根据平行四边形定则作出三个力的合成图如图,则当T 与N 垂直,即线与斜面平行时T 最小,则得线的拉力最小值为:T min =mg sin α,再对小球和斜面体组成的整体研究,根据平衡条件得:F =T min cos α=(mg sinα)cos α=12mg sin 2α,故A 、B 、C 错误,D 正确.2.C 物体在水平面上做匀速直线运动,可知拉力在水平方向的分力与滑动摩擦力相等.以物体为研究对象,受力分析如图所示,因为物体处于平衡状态.水平方向有F cos α=μF N ,竖直方向有F sin α+F N =mg .联立可解得:F =μmg cos α+μsin α=μmg1+μ2sin α+φ,当α+φ=90°时,sin(α+φ)=1,F 有最小值,F min =μmg 1+μ2,代入数值得μ=34. 3.B 据机械能守恒定律有12mv 2=mg ·2R +12mv 2x ,物块从轨道上端水平飞出做平抛运动,有2R =12gt 2和x =v x t ,联立x =-16R 2+4v2gR ,解得水平距离最大时,对应的轨道半径为v 28g,故选B. 4.BCD 因为小球做匀速直线运动,合力为零,则F 与qE 的合力与重力mg 大小相等、方向相反,作出F 与qE 的合力,如图所示,拉力F 的取值随着电场强度方向的变化而变化,如果电场强度方向斜向右下方,则F 的值将大于mgcos θ,故A 错误;由图可知,当电场力qE 与F 垂直时,电场力最小,此时场强也最小,则qE =mg sin θ,解得电场强度的最小值为E =mg sin θq,故B 正确;当电场力qE 与AB 方向垂直时,小球从A 运动到B 电场力不做功,故C 正确;若电场强度E =mg tan θq时,即qE =mg tan θ时,电场力qE 可能与AB 方向垂直,如图位置1,电场力不做功,电势能变化量为0,电场力的方向也可能位于位置2方向,则电场力做功为W =qE sin 2θ·d =q ·mg tan θqsin 2θ·d =2mgd sin 2θ,故D 正确.5.BC 由图可知,当θ=90°时,物体做竖直上抛运动,位移为1.80 m ,则由动能定理得-mgh =0-12mv 20,解得v 0=2gh =2×10×1.80 m/s =6 m/s ,故A 错误;当θ=0°时,位移为2.40 m ,由动能定理得-μmgx =0-12mv 20,解得μ=v 202gx =622×10×2.4=0.75,故B 正确;由动能定理得-mgx sin θ-μmgx cos θ=0-12mv 20,解得x =v 202g sin θ+μcos θ=622×10sin θ+0.75cos θ= 1.854sin θ+α,当θ+α=90°时,sin(θ+α)=1,此时位移最小,解得x min =1.44 m ,故C 正确;若θ=45°时,由于mg sin 45°>μmg cos 45°,故物体到达最大位移后会下滑,故D 错误.6.解析 (1)要使物体运动时不离开地面, 应有:F sin θ≤mg 要使物体能一直向右运动, 应有:F cos θ≥μ(mg -F sin θ) 联立解得:μmg cos θ+μsin θ≤F ≤mgsin θ(2)根据牛顿第二定律得F cos θ-μ(mg -F sin θ)=ma 解得:F =μmg +macos θ+μsin θ上式变形得F =μmg +ma1+μ2sin θ+α其中α=arcsin11+μ2当sin(θ+α)=1时,F 有最小值 解得:F min =μmg +ma1+μ2代入相关数据解得:F min =40 5 N答案 (1)μmg cos θ+μsin θ≤F ≤mgsin θ(2)40 5 N7.解析 (1)钢球由A 到B 过程由机械能守恒定律得:mgR =12mv 2在B 点对钢球由牛顿第二定律得:F N -mg =m v 2R解得:F N =3mg(2)钢球离开B 点后做平抛运动,则有:H -R =12gt 2 s =vt解得:s =2H -R R (3)s =2H -R R =2-⎝ ⎛⎭⎪⎫R -H 22+H 24根据数学知识可知,当R =12H ,即R H =12时,s 有最大值,s 最大=H答案 (1)3mg (2)2H -R R (3)12H8.解析 (1)对物体受力分析,由平衡条件得:mg sin 30°-μmg cos 30°=0解得:μ=tan 30°=33(2)设斜面倾角为α时,受力情况如图所示:由平衡条件得:F cos α=mg sin α+F fF N =mg cos α+F sin α F f =μF N解得:F =mg sin α+μmg cos αcos α-μsin α当cos α-μsin α=0,即tan α=3时,F →∞,即“不论水平恒力F 多大,都不能使物体沿斜面向上滑行”,此时,临界角θ0=α=60°答案 (1)33(2)60° 9.解析 (1)滑块由C 处释放,经挡板碰撞后第一次滑回P 点的过程中,由动能定理得:qE ·L 2-μmg ⎝ ⎛⎭⎪⎫L +L 2=0解得:μ=0.25(2)滑块在CD 段上受到的滑动摩擦力μmg =0.01 N ,电场力qE =0.03 N ,滑动摩擦力小于电场力,故不可能停在CD 段,滑块最终会在DGH 间来回往复运动,到达D 点的速度为0,全过程由动能定理得:qE ·L -μmgs =0解得:s =2.4 m(3)滑块在GH 段运动时:qE cos θ-mg sin θ=0故滑块与绝缘挡板碰撞的最大动能为滑块第一次运动到G 点的动能 对C 到G 过程,由动能定理得:Eq (L +r sin θ)-μmgL -mgr (1-cos θ)=E kmax -0解得:E kmax =0.018 J滑块最终在DGH 间来回往复运动,碰撞绝缘挡板有最小动能 对D 到G 过程由动能定理得:Eqr sin θ-mgr (1-cos θ)=E kmin -0 E kmin =0.002 J答案 (1)0.25 (2)2.4 m (3)0.018 J 0.002 J 10.解析 (1)对小球b 下摆过程:mgl 2=12mv 2b ,得出碰前v b =4 m/s ,(2)小球a 上摆过程:kmgl 1(1-cos 60°)=12kmv 2a ,碰后v a =2 m/s ,对两球碰撞过程有mv b =mv b ′+kmv a ,得出v b ′=4-2k .由碰撞过程动能不增加有:12mv 2b ≥12mv b ′2+12kmv 2a ,得出k ≤3,此外由碰撞中合理性原则得:v b ′=4-2k ≤v a =2,得出k ≥1.综上所述1≤k ≤3. (3)碰撞中动能损失ΔE =12mv 2b -12mv b ′2-12kmv 2a =2m (3k -k 2)可以得出当k =1.5时,动能损失最大. 答案 (1)4 m/s (2)1≤k ≤3 (3)1.511.解析 (1)设小物块离开O 点时的速度为v 0,由平抛运动规律,水平方向:x =v 0t 竖直方向:y =12gt 2解得:v 0=4 m/s(2)为使小物块击中挡板,小物块必须能运动到O 点,设拉力F 作用的最短距离为x 1,由动能定理:Fx 1-μmgs =0解得x 1=2.5 m为使小物块击中挡板,小物块的平抛初速度不能超过4 m/s ,设拉力F 作用的最长距离为x 2,由动能定理:Fx 2-μmgs =12mv 20解得x 2=3.3 m则为使小物块击中挡板,拉力作用的距离范围为 2.5 m <x ≤3.3 m(3)设小物块击中挡板的任意一点坐标为(x ,y ),则有x =v 0′t ′,y =12gt ′2由机械能守恒定律得E k =12mv 0′2+mgy又x 2+y 2=R 2由P 点坐标可求R 2=3.2 m 2化简得E k =mgR 24y +3mgy 4=4y +154y =⎝ ⎛⎭⎪⎫2y -15y 22+215(式中物理量均取国际单位制的单位)由数学方法求得E kmin =215 J答案 (1)4 m/s (2)2.5 m <x ≤3.3 m (3)215 J。

极限思维法、特殊值法、量纲法、等解高中物理选择题【范本模板】

极限思维法、特殊值法、量纲法、等解高中物理选择题【范本模板】

高中物理“超纲”选择题解题方法1.有一些问题你可能不会求解,但是你仍有可能对这些问题的解是否合理进行分析和判断。

例如从解的物理量的单位,解随某些已知量变化的趋势,解在一定特殊条件下的结果等方面进行分析,并与预期结果、实验结论等进行比较,从而判断解的合理性或正确性.举例如下:如图所示,质量为M 、倾角为θ的滑块A 放于水平地面上.把质量为m 的滑块B 放在A 的斜面上.忽略一切摩擦,有人求得B 相对地面的加速度a = 错误! gsinθ,式中g 为重力加速度。

对于上述解,某同学首先分析了等号右侧量的单位,没发现问题。

他进一步利用特殊条件对该解做了如下四项分析和判断,所得结论都是“解可能是对的"。

但是,其中有一项是错误..的。

请你指出该项.( )A .当θ=0︒时,该解给出a =0,这符合常识,说明该解可能是对的B .当θ=90︒时,该解给出a =g ,这符合实验结论,说明该解可能是对的C .当M ≥m 时,该解给出a =gsinθ,这符合预期的结果,说明该解可能是对的D .当m ≥M 时,该解给出a =sin gθ,这符合预期的结果,说明该解可能是对的 2.某个由导电介质制成的电阻截面如图所示。

导电介质的电阻率为ρ、制成内、外半径分别为a和b 的半球壳层形状(图中阴影部分),半径为a 、电阻不计的球形电极被嵌入导电介质的球心为一个引出电极,在导电介质的外层球壳上镀上一层电阻不计的金属膜成为另外一个电极。

设该电阻的阻值为R 。

下面给出R 的四个表达式中只有一个是合理的,你可能不会求解R ,但是你可以通过一定的物理分析,对下列表达式的合理性做出判断。

根据你的判断,R 的合理表达式应为 ( ) A .R=aba b πρ2)(+B .R=aba b πρ2)(-C .R=)(2a b ab-πρ D .R=)(2a b ab+πρ3.图示为一个半径为R 的均匀带电圆环,其单位长度带电量为η.取环面中心O 为原点,以垂直于环面的轴线为x 轴。

高三物理巧用极限法分析临界问题

高三物理巧用极限法分析临界问题

高三物理巧用极限法分析临界问题临界问题的分析是中学物理中较为常见:也是很多同学感到困难的问题之一:这就要求我们在教学中能不断探索这类问题的分析方法。

极限法分析临界问题:是通过分析把关键物理量同时推向极大和极小时的物理现象:从而找出解决问题的突破口的一种方法。

下面通过几种情况的分析来体会:一、关键物理量“力F ”【例1】如图1所示:物体A 的质量为2kg :两轻绳AB 和AC(L AB =2L AC )的一端连接在竖直墙上:另一端系在物体A 上:今在物体A 上另施加一个与水平方向成α=600角的拉力F 。

要使两绳都能伸直:试求拉力F 的大小范围。

(g=10m/s 2)分析与解 如果F 很小:由竖直方向平衡知轻绳AB中必有张力:当AC 中张力恰为零时:F 最小:如果F 很大:由竖直方向平衡知轻绳AC 中必有张力:当AB 中张 力恰好为零时:F 最大。

设物体的质量为m :轻绳AB 中的张力为T AB :AC 中的张力为T AC :F 的最小值为F 1:最大值为F 2 L AB =2L AC :有∠CAB=600由平衡条件有:F 1sin600+T AB sin600=mg , F 1cos600=T AB cos600F 2sin600=mg以上各式代入数据得:F 1=20√3/3N :F 2=40√3/3N因此:拉力F 的大小范围:20√3/3N <F <40√3/3N此题也可由平衡条件直接列方程:结合不等式关系T AB >0:T AC >0求解。

二、关键物理量“加速度a ”【例2】质量为0.2kg 的小球用细绳吊在倾角θ=600的斜面体的顶端:斜面体静止时:小球紧靠在斜面上:线与斜面平行:如图2所示:不计摩擦:求当斜面体分别以(1)2√3m/s 2:(2)4√3m/s 2的加速度向右加速时:线对小球的拉力。

分析与解 很多同学看到题目就会不加分析的列方程 求解:从而出现解出的结果不符合实际。

其实:如果我们仔细审题就会发现题目设问的着眼点是加速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五、极限法方法简介极限法是把某个物理量推向极端,即极大和极小或极左和极右,并依此做出科学的推理分析,从而给出判断或导出一般结论。

极限法在进行某些物理过程的分析时,具有独特作用,恰当应用极限法能提高解题效率,使问题化难为易,化繁为简,思路灵活,判断准确。

因此要求解题者,不仅具有严谨的逻辑推理能力,而且具有丰富的想象能力,从而得到事半功倍的效果。

赛题精讲例1:如图5—1所示, 一个质量为m 的小球位于一质量可忽略的直立弹簧上方h 高度处,该小球从静止开始落向弹簧,设弹簧的劲度系数为k ,则物块可能获得的最大动能为 。

解析:球跟弹簧接触后,先做变加速运动,后做变减速运动,据此推理,小球所受合力为零的位置速度、动能最大。

所以速最大时有mg = kx ①由机械能守恒有:mg (h + x) = E k +12kx 2 ②联立①②式解得:E k = mgh -22m g 2k例2:如图5—2所示,倾角为α的斜面上方有一点O ,在O 点放一至斜面的光滑直轨道,要求一质点从O 点沿直轨道到达斜面P 点的时间最短。

求该直轨道与竖直方向的夹角β 。

解析:质点沿OP 做匀加速直线运动,运动的时间t 应该与β角有关,求时间t 对于β角的函数的极值即可。

由牛顿运动定律可知,质点沿光滑轨道下滑的加速度为: a = gcos β该质点沿轨道由静止滑到斜面所用的时间为t ,则:12at 2=OP 所以:t =2OPg cos β① 由图可知,在ΔOPC 中有:o OP sin(90)-α=o OCsin(90)+α-β图5—1图5—2所以:OP =OCcos cos()αα-β ②将②式代入①式得:t =2OCcos g cos cos()αβα-β=[]4OCcos cos cos(2)g αα+α-β显然,当cos(α-2β) = 1 ,即β =2α时,上式有最小值。

所以当β =2α时,质点沿直轨道滑到斜面所用的时间最短。

此题也可以用作图法求解。

例3:从底角为θ的斜面顶端,以初速度v 0水平抛出一小球,不计空气阻力,若斜面足够长,如图5—3所示,则小球抛出后,离开斜面的最大距离H 为多少?解析:当物体的速度方向与斜面平行时,物体离斜面最远。

以水平向右为x 轴正方向,竖直向下为y 轴正方向,则由:v y = v 0tan θ = gt ,解得运动时间为t =0vgtan θ该点的坐标为:x = v 0t =20v g tan θ ,y =12gt 2 =20v 2g tan 2θ由几何关系得:Hcos θ+ y = xtan θ 解得小球离开斜面的最大距离为:H =20v 2gtan θ⋅sin θ这道题若以沿斜面方向和垂直于斜面方向建立坐标轴,求解则更加简便。

例4:如图5—4所示,一水枪需将水射到离喷口的水平距离为3.0m 的墙外,从喷口算起,墙高为4.0m 。

若不计空气阻力,取g = 10m/s 2 ,求所需的最小初速及对应的发射仰角。

解析:水流做斜上抛运动,以喷口O 为原点建立如图所示的直角坐标,本题的任务就是水流能通过点A (d 、h )的最小初速度和发射仰角。

根据平抛运动的规律,水流的运动方程为:020x v cos t 1y v sin t gt 2=α⋅⎧⎪⎨=α⋅-⎪⎩ 把A 点坐标(d 、h )代入以上两式,消去t ,得:20v =-22gd 2(h d tan )cos -αα=2gd d sin 2h(cos 21)α-α+图5—图5—4=2222222gd d hd h sin 2cos 2hd h d h ⎡⎤+⋅α-⋅α-⎢⎥++⎣⎦令hd = tan θ ,则22d d h += cos θ ,22h d h+= sin θ ,上式可变为:2v =222gd d h sin(2)h+α-θ- 显然,当sin (2α-θ) = 1时,即2α-θ = 90°,亦即发射角α = 45°+2θ= 45°+12arctanh d = 45°+ arctan 43= 71.6°时,v 0最小,且最小速度为: v 0 =22g(d h h)++= 310= 9.5m/s例5:如图5—5所示,一质量为m 的人,从长为l 、质量为M 的铁板的一端匀加速跑向另一端,并在另一端骤然停止。

铁板和水平面间摩擦因数为μ ,人和铁板间摩擦因数为μ′,且μ′μ 。

这样,人能使铁板朝其跑动方向移动的最大距离L 是多少?解析:人骤然停止奔跑后,其原有动量转化为与铁板一起向前冲的动量,此后,地面对载人铁板的阻力是地面对铁板的摩擦力f ,其加速度a 1 =fM m+=(M m)g M m μ++= μg 。

由于铁板移动的距离L =21v 2a ',故v ′越大,L 越大。

v ′是人与铁板一起开始地运动的速度,因此人应以不会引起铁板运动的最大加速度奔跑。

人在铁板上奔跑但铁板没有移动时,人若达到最大加速度,则地面与铁板之间的摩擦力达到最大静摩擦μ (M + m)g ,根据系统的牛顿第二定律得:F = ma 2 + M ⋅0所以:a 2 =F m = μM m m+g ① 设v 、v ′分别是人奔跑结束及人和铁板一起运动时的速度:因为:mv = (M + m) v ′ ② 且:v 2 = 2a 2l ,2v '= 2a 1L并将a 1 、a 2代入②式解得铁板移动的最大距离: L =mM m+l 例6:设地球的质量为M ,人造卫星的质量为m ,地球的半径为R 0 ,人造卫星环绕地球做圆周运动的半径为r 。

试证明:从地面上将卫星发射至运行轨道,发射速度v =00R gR (2)r-,并用该式求出这个发射速度的最小值和最大值。

(取R 0 = 6.4×106m ),设 图5—5大气层对卫星的阻力忽略不计,地面的重力加速度为g )解析:由能量守恒定律,卫星在地球的引力场中运动时总机械能为一常量。

设卫星从地面发射的速度为v 发 ,卫星发射时具有的机械能为:E 1 =12m 2v 发-G 0Mm R ①进入轨道后卫星的机械能为:E 2 =12m 2v 轨-GMmr② 由E 1 = E 2 ,并代入v 轨 =GMr,解得发射速度为: v 发 =00R GM(2)R r- ③ 又因为在地面上万有引力等于重力,即:G2MmR = mg ,所以: 0GMR = gR 0 ④ 把④式代入③式即得:v 发 =00R gR (2)r-(1)如果r = R 0 ,即当卫星贴近地球表面做匀速圆周运动时,所需发射速度最小为:v min =0gR = 7.9×103m/s 。

(2)如果r →∞,所需发射速度最大(称为第二宇宙速度或脱离速度)为:v max =02gR = 11.2×103m/s 。

例7:如图5—6所示,半径为R 的匀质半球体,其重心在球心O 点正下方C 点处,OC =38R , 半球重为G ,半球放在水平面上,在半球的平面上放一重为G8的物体,它与半球平在间的动摩擦因数μ = 0.2 ,求无滑动时物体离球心O 点最大距离是多少? 解析:物体离O 点放得越远,根据力矩的平衡,半球体转过的角度θ越大,但物体在球体斜面上保持相对静止时,θ有限度。

设物体距球心为x 时恰好无滑动,对整体以半球体和地面接触点为轴,根据平衡条件有:G ⋅3R 8sin θ =G8⋅xcos θ ,得到:x = 3Rtan θ 可见,x 随θ增大而增大。

临界情况对应物体所受摩擦力为最大静摩擦力,则:tan θm =mf N= μ = 0.2 ,所以 x = 3μR = 0.6R 。

图5—6例8:有一质量为m = 50kg 的直杆,竖立在水平地面上,杆与地面间静摩擦因数μ = 0.3 ,杆的上端固定在地面上的绳索拉住,绳与杆的夹角θ = 30°,如图5—7所示。

(1)若以水平力F 作用在杆上,作用点到地面的距离h 1 =25L(L 为杆长),要使杆不滑倒,力F 最大不能越过多少?(2)若将作用点移到h 2 =45L 处时,情况又如何?解析:杆不滑倒应从两方面考虑,杆与地面间的静摩擦力达到极限的前提下,力的大小还与h 有关,讨论力与h 的关系是关键。

杆的受力如图5—7—甲所示,由平衡条件得: F -Tsin θ-f = 0 N -Tcos θ-mg = 0 F(L -h)-fL = 0另由上式可知,F 增大时,f 相应也增大,故当f 增大到最大静摩擦力时,杆刚要滑倒,此时满足:f = μN解得:F max =mgL tan tan (L h)h θθ--μ由上式又可知,当[tan θμ(L -h)-h ]→∞ ,即当h 0 = 0.66L 时,对F 就没有限制了。

(1)当h 1 =25L <h 0 ,将有关数据代入F max 的表达式得:F max = 385N(2)当h 2 =45L >h 0 ,无论F 为何值,都不可能使杆滑倒,这种现象即称为自锁。

例9:放在光滑水平面上的木板质量为M ,如图5—8所示,板上有质量为m 的小狗以与木板成θ角的初速度v 0(相对于地面)由A 点跳到B 点,已知AB 间距离为s 。

求初速度的最小值。

解析:小狗跳起后,做斜上抛运动,水平位移向右,由于水平方向动量守恒,木板向左运动。

小狗落到板上的B 点时,小狗和木板对地位移的大小之和,是小狗对木板的水平位移。

由于水平方向动量守恒,有:mv 0cos θ = Mv ,即:v =0mv sin Mθ① 小狗在空中做斜抛运动的时间为:t =02v sin gθ② 又:s + v 0cos θ⋅t = vt ③ 将①、②代入③式得:v 0 =Mgs(M m)sin 2+θ图5—7图5—7—甲图5—8当sin2θ = 1 ,即θ =4π时,v 0有最小值,且v 0min =Mgs M m+。

例10:一小物块以速度v 0 = 10m/s 沿光滑地面滑行,然后沿光滑 曲面上升到顶部水平的高台上,并由高台上飞出,如图5—9所示。

当高台的高度h 多大时,小物块飞行的水平距离s 最大?这个距离是多少?(g 取10m/s 2)解析:依题意,小物块经历两个过程。

在脱离曲面顶部之前,小物块受重力和支持力,由于支持力不做功,物块的机械能守恒,物块从高台上飞出后,做平抛运动,其水平距离s 是高度h 的函数。

设小物块刚脱离曲面顶部的速度为v ,根据机械能守恒定律:12m 20v =12m v 2 + mgh ①小物块做平抛运动的水平距离s 和高度h 分别为: s = vt ② h =12gt 2 ③以上三式联立解得:s =202h v 2gh g-= 2222200v v ()(h )4g 4g --当h =20v 4g = 2.5m 时,s 有最大值,且s max =20v 2g= 5m 。

相关文档
最新文档