伺服阀与比例阀(2)
比例阀控制系统传递函数

0 引言最近10年来发展起来的电液比例控制技术新成员——伺服比例阀,实际上是电液比例技术与电液伺服阀的进一步的“取长补短”式的融合。
伺服比例阀(闭环比例阀)装放大器,具有伺服阀的各种特性:零遮盖、高精度、高频响,但其对油液的清洁度要求比伺服阀低,具有更高的工作可靠性。
电液伺服控制系统多数具有良好的控制性能,并具有一定的鲁棒性,有广泛的应用。
电液伺服系统的动态特性是衡量一套电液伺服系统设计及调试水平的重要指标。
电液伺服系统由电信号处理装置和若干液压元件组成,元件的动态性能相互影响,相互制约及系统本身所包含的非线性,致使其动态性能复杂,因此,电液伺服控制系统的仿真受到越来越多的重视。
电液技术的不断发展和人们对电液系统性能要求的不断提高,了解电液伺服系统过程中的动态性能和部各参变量随时间的变化规律,已成为电液伺服系统设计和研究人员的首要任务在系统工作过程中,主要液压元件的动态响应、系统各部分的压力变化,执行元件的位移和速度等,都是人们非常关心的。
本文以电液伺服比例阀控液压缸为例,针对Matlab/Simulink 在电液伺服控制系统仿真分析中的局限性,采用AMESim 和Matlab/Simulink 联合仿真模型,取得了良好的效果。
1 系统组成及原理电液伺服控制系统根据被控物理量(即输出量)分为电液位置伺服系统,电液速度伺服系统,电液力伺服系统三类。
本文主要介绍电液位置伺服系统的仿真研究。
其中四通阀伺服比例阀控液压缸的原理如图所示。
图1 阀控缸-负载原理图系统组成图电液位置伺服控制系统是最为常见的液压控制系统,实际的伺服系统无论多么复杂,都是由一些基本元件组成的。
控制系统结构框图见图2所示。
图2 电液伺服控制系统的结构框图2 液压系统数学模型建立活塞杆径(直)d=45cm,活塞的行程H=40cm,油缸外径=80mm,查手册知径D=63mm,从伺服阀到油缸的长度=1-2m,管径=22mm,壁厚=4mm,供油压力Ps恒定为7MPa,MOOGD-633伺服比例阀,d=7.9mm 阀额定电流为10mA质量块(负载)=250 Kg液压缸有效工作面积。
费斯托比例阀工作原理 比例阀工作原理

费斯托比例阀工作原理比例阀工作原理FESTO比例阀在现代化工厂的自动掌控中,调整阀起着特别紧要的作用,这些工厂的生产取决于流动着的液体和气体的正确调配和掌控。
这些掌控无论是能量的交换、压力的降低或者是简单的容器加料,都需要*某些终掌控元件去完成。
终掌控元件可以认为是自动掌控的“体力”。
在调整器的低能量级和执行流动流体掌控所需的高能级功能之间,终掌控元件完成了必要的功率放大作用。
FESTO比例阀亦称自力式平衡阀、流量调整阀、流量掌控器、动态平衡阀、流量平衡阀,是一种直观简便的流量调整掌控装置,管网中应用自力式流量平衡阀可直接依据设计来设定流量,阀门可在水作用下,自动除去管线的剩余压头及压力波动所引起的流量偏差,无论系统压力怎样变化均保持设定流量不变,自力式流量平衡阀这些功能使管网流量调整一次完成,把调网工作变为简单的流量调配,有效的解决管网的水力失调。
自力式流量平衡阀紧要应用于:集中供热(冷)等水系统中,使管网流量按需调配,除去水系统水力失调,解决冷热不均问题,可节能、节电15%—20%。
FESTO比例阀是一个新的调整阀种类,相对于手动调整阀,它的优点是能够自动调整;相对于电动调整阀,它的优点是不需要外部动力,应用实践证明,在闭式水循环系统(如热水供暖系统,空调冷冻系统)中,正确使用这种阀门,可以很便利地实现系统的流量调配;可以实现系统的动态平衡;可以大大简化系统的调试工作;可以稳定泵的工作状态等。
因此,自力式调整阀在供热空调工程中有着广阔的应用前景。
德国FESTO比例阀,FESTO比例阀,费斯托比例阀,festo压力比例阀,费斯托压力比例阀的作用是在阀的进出口压差变化的情况下,维持通过阀门的流量恒定,从而维持与之串联的被控对象(如一个环路,一个用户,一台设备等,下同)的流量恒定,自力式流量掌控阀的名称较多,如自力式流量平衡阀,定流量阀,自平衡阀,动态流量平衡阀等,各种类型的自力式流量掌控阀,结构各有相异,但工作原理相像。
伺服阀的动作原理

电液伺服阀的工作原理∙电液伺服阀由力矩马达和液压放大器组成。
力矩马达工作原理磁铁把导磁体磁化成N、S极,形成磁场。
衔铁和挡板固连由弹簧支撑位于导磁体的中间。
挡板下端球头嵌放在滑阀中间凹槽内;线圈无电流时,力矩马达无力矩输出,挡板处于两喷嘴中间;当输入电流通过线圈使衔铁3左端被磁化为N极,右端为S极,衔铁逆时针偏转。
弹簧管弯曲产生反力矩,使衔铁转过θ角。
电流越大θ角就越大,力矩马达把输入电信号转换为力矩信号输出。
前置放大级工作原理压力油经滤油器和节流孔流到滑阀左、右两端油腔和两喷嘴腔,由喷嘴喷出,经阀9中部流回油箱力矩马达无输出信号时,挡板不动,滑阀两端压力相等。
当力矩马达有信号输出时,挡板偏转,两喷嘴与挡板之间的间隙不等,致使滑阀两端压力不等,推动阀芯移动。
功率放大级工作原理当前置放大级有压差信号使滑阀阀芯移动时,主油路被接通。
滑阀位移后的开度正比于力矩马达的输入电流,即阀的输出流量和输入电流成正比;当输入电流反向时,输出流量也反向。
滑阀移动的同时,挡板下端的小球亦随同移动,使挡板弹簧片产生弹性反力,阻止滑阀继续移动;挡板变形又使它在两喷嘴间的位移量减小,实现了反馈。
当滑阀上的液压作用力和挡板弹性反力平衡时,滑阀便保持在这一开度上不再移动。
电液伺服阀的分类∙ 1 按液压放大级数可分为单级电液伺服阀,两级电液伺服阀,三级电液伺服阀。
2 按液压前置级的结构形式,可分为单喷嘴挡板式,双喷嘴挡板式,滑阀式,射流管式和偏转板射流式。
3 按反馈形式可分为位置反馈式,负载压力反馈式,负载流量反馈式,电反馈式等。
4 按电机械转换装置可分为动铁式和动圈式。
5 按输出量形式可分为流量伺服阀和压力控制伺服阀。
电液伺服阀运转不良引起的故障∙ 1 油动机拒动在机组启动前做阀门传动试验时,有时出现个别油动机不动的现象,在排除控制信号故障的前提下,造成上述现象的主要原因是电液伺服阀卡涩。
尽管在机组启动前已进行油循环且油质化验也合格,但由于系统中的各个死角的位置不可能完全循环冲洗,所以一些颗粒可能在伺服阀动作过程中卡涩伺服阀。
伺服阀工作原理

(1)电液伺服阀的组成伺服阀由力矩马达、液压放大器、反馈机构三部分组成(2)力矩马达的工作原理力矩马达的作用是把输入的电气控制信号转换为力矩。
它由永久磁铁、上导磁体、下导磁体、衔铁、控制线圈、弹簧管等组成。
衔铁固定在弹簧管上端,由弹簧管支承在上、下导磁体的中间位置,可绕弹簧管的转动中心作微小的转动。
永久磁铁将上、下导磁体磁化,一个为N级,另一个为S级。
无信号电流时,衔铁在上、下导磁体的中间位置,由于力矩马达结构是对称的,使磁铁两端所受的电磁力相同,力矩马达无力矩输出。
当有信号电流通过线圈时,控制线圈产生控制磁通,其大小和方向取决于信号电流的大小和方向电磁力矩的大小与信号电流的大小成比例,衔铁的转角也与信号电流成比例。
力矩马达磁路原理图对于上图的磁路分析:对分支点A 和B 应用磁路基尔霍夫第一定律可得衔铁磁通12a φφφ=-整理后得到 g 2g2()2l 1()l g c a x x φφφ+=- 由于2g (x/l )1 《,上式化简a g 2l c g gx N i R φφ=+∆,考虑到x a θ≈,上式写成 a g 2l c gg a N i R φφθ=+∆由控制磁通和极化磁通的相互作用在衔铁上产生电磁力矩d 14=2a(F -F )T ,考虑到衔铁转角θ很小,故有,,x tg x a aθθθ=≈≈则上式可写成: 22222g 22g(1)(1)l (1)l c t m g d x K i K T x φθφ+∆++=-, 式中t K 为力矩马达的中位电磁力矩系数,g2l t c g a K N φ= m K 为力矩马达的中位磁弹簧刚度,22g4()l m g g a K R φ= 由上式可以看出,力矩马达的输出力矩具有非线性。
为了改善线性度和防止衔铁被永久磁铁吸附,力矩马达一般都设计成g x/l <1/3,即2g (x/l )1《和2(/) 1c g φφ《。
则接着化简成:t d m T K i K θ=∆+上式中,t i K ∆是衔铁在中位时,由控制电流i ∆产生的电磁力矩,称为中位电磁力矩。
第5章 电液伺服阀

3)按极化磁场产生的方式可分为:非激磁式、固定电 流激磁和永磁式三种。 2、对力矩马达的要求 作为阀的驱动装置,对它提出以下要求; 1)能够产生足够的输出力和行程,问时体积小、重 量轻。 2)动态性能好、响应速度快。 3)直线件好、死区小、灵敏度高和磁滞小。 4)在某些使用情况下,还要求它抗振、抗冲击、不 受环境温度和压力等影响。 二、永磁力矩马达
三、动压反馈伺服阀 压力—流量伺服阀虽然增加了系统的阻尼,但降低了 系统的静刚度,为了克服这个缺点.出现了功压反馈 伺服阀,与压力—流量伺服阀相比。它增加乐由出弹 簧活寒和液阻(固定节流孔)所组成的压力微分网络,负 载压力通过压力微分网络反馈到滑阀,此阀在动态 时,具有压力—流量伺服阀的持性,在稳态时具有流 量伺服阀的持性。
5.5 其它型式的电液伺服阀简介
一、弹簧对中式两级电液伺服阀
弹簧对中式伺服阀是早期伺服阀的结构型式,它的第—级是双 喷嘴挡板阀,第二级是滑阀,阀芯两端各有一根对中弹簧。当 控制电流输入时,阀芯在对中弹簧作用下处于中位。当有控制 电流输入时,对中弹簧力与喷嘴挡板阀输出的液压力相平衡, 使阀芯取得一个相应的位移,输出相应的流量。 这种伺服阀属于开环控制、其性能受温度、压力及阀内部结 构参数变化的影响较大;衔铁及挡板的位移都较大.对力矩马 达的线件要求较高;对中弹簧要求体积小、刚度大、抗疲劳 好,因此制造困难;两端对中弹簧由于制造和安装的误差.易 对阀芯产生侧向卡紧力.增加阀芯摩擦力.使阀的滞环增大, 分辨率降低。但由于结构简单、造价低,可适用于—般的、性 能要求不高的电液伺服系统。
二、基本方程与方框图
力矩马达的运动方程包括基本电压方程,衔铁和挡板 组件的运动方程,挡板位移于转角之间的关系,喷嘴 挡板至滑阀的传递函数,阀控液压缸的传递函数,以 及作用在挡板上的压力反馈方程,根据这些方程可以 画出电液伺服阀的方框图。
射流管伺服比例阀

摘要 :对伺服 阀与 比例阀的结构 、性能 、抗污染能力 及价格等特点进行 了 比较。介绍 了某研究所研制 的射流管伺服 比
例 阀。其采用 了前置独立式直杆型射 流放大器 、外接式滤油器及过滤模块 等新技术 ,进一步提高 了整 阀的抗污染性能并降 低 了生产成本 。安装接 口按 I0 4 1的有关标准设计 ,可方便 地替代 国外 同类 型的伺服 阀、伺服 比例 阀及 比例阀 ;该阀的 S40
20 0 8年 l 0月
机床与液压
MACHI NE TOOL & HYDRAUL CS I
Oc. 0 8 t2 0
Vo . 6 No 1 13 . 0
第3 6卷 第 l 期 0
射 流 管伺 服 比例 阀
金瑶 兰 ,方群 ,章敏 莹 ,渠立鹏 ,王亚鸿
( 中船 重 工集 团第七 O四研 究所伺服 阀产 业部 ,上海 207 ) 000
j iesiopo ot n l a eb sd o e p esroav e e p d b n is tt w s n o u e . T i sro po o i a v v e pp e rp r o a v l ae njt i ev vl d vl e y a ntue a t d c d h ev rp ro l a e t T i v p e o i ir s t n l u e pe o iv d p n e t e a pi r s a h fe b c pig e t n l l ra d ft — o ue mp vstea t c n m n t n s s rp s i i e e d n jt m l e , t i t e d a k sr , x ra ft n l r d l,i r e n -o t ia o te n i f rg n e e i ie m o h i a i c p blya d r u e s f te.T e ef m n eo te e pp ro rp ro a v v q a t s ̄oM e h w v r t c na a a it n e c s o ta h r h r r a c t ie ev o o i l a ei e u lo e v v , o ee s o t i d c r p o fh j s p t n l s i m—
第一章 电液比例与伺服控制系统概述

天津大学
机械工程学院
10
1.2 电液伺服控制系统工作原理及特点
1.2.2 电液伺服控制系统特点
(1)功率重量比、力矩惯量比或力质量比大
电动机10倍 10~20倍
(2)固有频率高(电机1s,液压马达1/10s) (3)负载刚度大(精度高,受外界影响小) (4)负反馈的随动系统,靠偏差工作 (5)油液精度高(一般系统10μm,高性能3~5μm) (6)阀加工精度高,工艺性差,公差与配合严格(间隙2μm) (7)油液中空气、温升对控制精度影响大 (8)理论描述近似
(4)按系统的控制方式分类
开环控制、闭环控制 定值控制、程序控制、伺服控制(随动控制)
天津大学
机械工程学院
16
1.4 电液比例与伺服控制系统的分类与组成
1.4.2 组成
天津大学
机械工程学院
17
1.4 电液比例与伺服控制系统的分类与组成
1.4.2 组成
(1)指令元件:给定控制信号的产生与输入的元件。可以是机械、电气或 气动式,如电位器、计算机、靠模等。 (2)检测反馈元件:检测被控量或中间量,反馈回输入端。各种传感器。 (3)比较元件:将输入与反馈信号进行比较,得出偏差输入信号的元件。 (4)放大、转换、控制元件:将偏差或输入信号放大、转换成液压信号 (流量或压力),以控制液压执行元件运动的元件。放大器、阀等 (5)液压执行元件:产生调节动作、加于被控对象,实现调节任务的元 件。如液压缸、液压马达等。 (6)控制对象:被控制的机械设备或其它物体。 (7)其它:校正装置,不包含在液压回路中的液压能源等。
天津大学
机械工程学院
14
1.3 电液比例控制系统工作原理及特点
1.3.2 电液比例控制系统特点
比例阀与其他普通阀的区别在哪?

比例阀与其他普通阀的区别在哪?比例控制阀是一种按输入的电信号连续、按比例地控制液压系统的流量、压力和方向的控制阀,其输出的流量和压力可以不受负载变化的影响。
电液比例阀简称比例阀。
普通液压阀只能通过预调的方式对液流的压力、流量进行定值控制。
但是当设备机构在工作过程中要求对液压系统的压力、流量参数进行调节或连续控制,例如.要求工作台在工作进给时按慢、快、慢连续变化的速度实现进给,或按一定精度模拟某个控制曲线实现旅力控制.普通液压阀则实现不了。
这时可以用电液比例阀对液压系统进行控制。
比例阀与普通液压元件相比,有如下特点:(1)电信号便于传递,能简单地实现远距离控制。
(2)能连续、按比例地控制液压系统的压力和流量,实现对执行机构的位置、速度、力量的控制,并能减少压力变换时的冲击。
(3)减少了元件数量,简化了油路。
同时电液比例阀的使用条件和保养与一般液压元件相同,比伺服阀的抗污染性能强,工作可靠。
与普通阀的其他区别呢?1、普通阀是不能按比例进行连续阶跃控制,是纯粹的单一动作式开关阀,其阀开口方向、开口量或弹簧设定力都是一定的,不能根据实际情况变化而变化。
2、比例阀是按比例进行连续阶跃控制,根据实际情况变化采集回的信息对目标进行自动补偿控制,其阀开口方向、开口量或弹簧设定力都是随动的,实现一系列连续可控的随动变化的动作。
阀对流量的控制可以分为两种:一种是开关控制:要么全开、要么全关,流量要么、要么小,没有中间状态,如普通的电磁直通阀、电磁换向阀、电液换向阀。
另一种是连续控制:阀口可以根据需要打开任意一个开度,由此控制通过流量的大小,这类阀有手动控制的,如节流阀,也有电控的,如比例阀、伺服阀。
比例控制阀的输出量(流量、压力)可以按照输入信号的变化规律连续成比例地进行调节。
通常是采用比例电磁铁将输入的电信号转换成力或者阀的机械位移量进行控制。
主要用于成比例的控制液压系统中的压力或者流量。
比例阀。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电液伺服阀是一种比电液比例阀的精度更高、响应更快的液压控制阀,其输出流量或压力受输入的电气信号控制,主要用于高速闭环液压控制系统,而比例阀多用于响应速度相对较低的开环控制系统中,伺服阀价格高且对过滤精度要求也高,比例阀广泛用于要求对液压参数进行连续控制或程序控制但对控制精度和动态特性要求不太高的液压系统中。
另外,1.伺服阀中位没有死区,比例阀有中位死区;
2.伺服阀的频响(响应频率)更高,可以高达200Hz左右,比例阀一般最高几十Hz;
3.伺服阀对液压油液的要求更高,需要精过滤才行,否则容易堵塞,比例阀要求低一些。
比例伺服阀性能介于伺服阀和比例阀之间。
比例换向阀属于比例阀的一种,用来控制流量和流向。
伺服阀跟比例阀的本质区别就是他有两横
1、伺服阀和比例阀上下都有两横;
2、比例阀两边都有比例电磁铁,而且有比例电磁铁的符号上都箭头。
但是伺服阀确是只有一边有力马达,要强调的是只有一边有。
比例阀多为电气反馈,当有信号输入时,主阀芯带动与之相连的位移传感器运动,当反馈的位移信号与给定信号相等时,主阀芯停止运动,比例阀达到一个新的平衡位置伺服阀,阀保持一定的输出;
伺服阀有机械反馈和电气反馈两种,一般电气反馈的伺服阀的频响高,机械反馈的伺服阀频响稍低,动作过程与比例阀基本相同。
区别:一般比例阀的输入功率较大,基本在几百毫安到1安培以上,而伺服阀的输入功率较小,基本在几十毫安;
比例阀的控制精度稍低,滞环较伺服阀大,伺服阀的控制精度高,但对油液的要求也高
一个粗液压缸一个细液压缸长短样怎么同步升起
最简单的就是在细油缸的进油口加一个节流阀,控制一下进入油缸的流量使细油缸慢下来。
但节流阀的节流效果受负载和液压油粘度的影响比较大,如果负载变化大,你得经常调整。
不用节流阀,用调速阀也可以,不受负载影响,但有发热的趋势。
也可以用分流阀,但分流阀的分流比是确定的,通常是1:1或1:2。
粗细油缸的面积比不一定合适。
最贵的方案就是带有长度传感器的伺服缸和比例阀或者伺服阀,在计算机控制下,能达到液压系统能达到的最高精度。
但价格很难接受。
|评论
同步精度要求不高的话,直接用个同步分流阀就行了。
有负载补偿的
建议用分流集流阀,好一些的阀,精度可以达到正负3%
尽可能用机械同步。
分流阀不用试,一定失败。
原因是流量太小,形成不了压差。
马达式同步有机会成功,但要选排量非常小的。
算手泵流量时把人算100瓦的功率。
如果能做到机械式同步,那是最好不过的了,如果没条件,在同步精度要求较低的情况下,可以用同步阀(分流-集流阀),精度要求再高点的话,可以用同步马达。
再高点,就无法达到了,因为要用伺服阀,但现场无法用电
分流阀在负载相同时效果非常好,但负载偏差严重时同步效果大打折扣,建议用同步马达或
同步缸,同步精高时不妨用传感器
油缸不大的话用同步缸要好点,油缸大的话用同步马达应该可以满足
齿轮马达串联在一起,转速一致,按一定比例分配液压泵提供来的油液供执行元件使用,不受执行元件压力高低的影响。
齿轮式液压同步分流马达(液压同步马达)是由一系列相互耦合的齿轮泵或齿轮马达组成。
每一片具有泵或马达的功能。
整个元件有一个共同的进油通道和各自独立的出油口。
高压油由油泵提供给分流马达,分流马达只对流入其进油通道的液压油起分配作用,不能向油液提供能量,如果分流马达每片的尺寸相同,则进油口的高压油将被分流马达等量分流,如果分流马达的每片尺寸不同,则根据每片的几何排量的不同,输出流量也会不同,排量越大的分流马达,输出的流量也越大,即几何排量与其输出流量成正比。
液压同步分流马达应用
液压同步分流马达应用主要有以下三个方面:
1、作为流量平衡装置,同步操作多个油缸或马达。
如果几台马达或液压缸并联工作,由同一个油源供油,并且各支路上没有任何方式的控制,那么承受最小负载的首先开始工作循环,它的行程完成后。
第二小负载的开始工作,依次类推。
但这种工况模式通常不是需要的模式,因此需要把总的泵流量分成一系列部分流量,使几台并联工作的马达或液压缸同时开启,同时到达指定位置,液压同步马达就担当了这一重要角色。
2、作为流量分配装置,按照系统要求分配泵的输出流量。
例如:装有多套滑动轴承的轴要求确保给每个轴承供应相同量或按比例供应润滑油。
齿轮式液压马达没有任何的外泄漏,如果其中一部分齿轮在旋转,其它部分中也会通过相同或成比例的流量。
3、作为增压装置,使分流器的某一输出口压力超过泵的输出压力。
液压同步分流马达,除了作为“同步元件”外,也可以作为“增压器”,使马达的某一输出口压力超过液压泵的输出压力。
液压同步分流马达优势
作为分(集)流阀升级换代产品,液压同步分流马达同步精度更精确(液压同步马达1.5~2.5%,分集流阀4~5%),效率更高,对油品粘度不敏感,抗污染能力强。
特别是在实现多路分流方面,液压同步马达有分(集)流阀不可比拟的优势。
同步误差
无论是齿轮式还是柱塞式液压同步马达,其同步误差主要取决于以下一些参数:
·介质油的粘度和温度;
·负载的均衡性;
·系统的压力等级;
·流量的连续性;
只有在得到以上各参数的具体数值后才有可能精确计算出系统的同步水平。
为了获得高的同步性能,建议设计时满足下列要求:
·马达的转速不得低于1000r/min;
·所有被驱动油缸或马达的负载尽可能均匀;
·在某一恒定温度下,工作压力范围100bar~250bar情况下,保证介质粘度在40cst左右。
内部压降
液压同步分流马达在液压回路中作为一种待命元件,只有在系统需要时才自动工作,且输出与输入的功率(流量、压力)非常接近(效率通常在98%以上),微小的功率损失作用于内部的传动,而非发热。
最小流量
液压同步马达不是一种低速运转的元件,请注意各型号马达所允许的最小转速。
工作介质
一般情况下,无论是齿轮式还是柱塞式液压同步马达都可以使用普通矿物油或者其它工作介质。
但是为了确保液压同步马达的正常工作,在使用除矿物油以外的其它介质时,请事先同优科公司联络以获得技术确认。
同步误差的消除
作为一个独立的流量控制机构,液压同步马达对于必然发生的同步误差不具备直接的测量手段,所以一般情况下同步误差只能在液压缸到达行程末端时进行调整。
建议在液压同步马达和液压缸之间用最短的油管或对所有的液压缸用相同长度的油管来消除误差。
各液压缸的负载尽可能均匀,如果负载误差无法改变,那么可以通过适当使用溢流阀来修正或消除油液压缩同步误差。
液压同步分流马达的进口/出口阀块
为了使排出管与管路之间连接最简化,同时保证液压回路中各重要阀类零件的正常工作,我们建议您为各系列分流马达订购进口/出口阀块。
进出口阀块必须同分流马达一起订货,因为一般情况下,出厂后阀块同液压同步马达的装配是不可靠的,而且会产生一些问题。
优科同步分流马达的出口阀块对应每腔流道都有一个溢流阀和单向补油阀。
分流马达的溢流阀压力设定必须高出驱动液压缸负载所需压力20bar。
典型结构图
液压同步分流马达安装与调试
同步回路连续运动会造成累计误差,这种误差在液压缸到达行程终点可以进行同步误差平衡。
但是,当负载压力不同时,由于油液的压缩所产生的误差,液压同步马达不能予以平衡。
此时,液压同步马达尽可能安装在执行机构的旁边,对通往液压同步马达各腔的管路尽可能进行相同的选择。
如果单个液压缸或者液压同步马达负载压力极端不同,并且负载在整个工作行程内基本不发生变动,也就是较低的压力始终在同一个液压缸或者液压马达上出现时,则可通过背压阀来减少差别。
通过这一方法可以减少或者消除由于油压压缩而产生的误差。
液压同步马达系列
优科齿轮式同步马达,根据流量大小主要有UD、UW、UL、UG四个系列;其中UD、UW 系列有铝合金和铸铁两种材质,UL、UG系列为铸铁材质。
铝合金液压同步马达主要特点是轻便。
相比铝合金液压同步马达,铸铁液压同步马达有如下优点:
·许多工业领域不接受铝合金液压同步马达,如船舶工业。
·低速运转时,铸铁同步马达的噪音要比铝合金同步分流马达低。
·铸铁同步分流马达有更好的刚性。
·在使用除矿物油以外的其它介质时,必须使用铸铁同步马达。
·铸铁同步马达热膨胀系数小。
除非特别要求外,优科齿轮式液压同步马达都采用铸铁材质。