中考数学资料-经典例题剖析一次函数

合集下载

一次函数中考考点例析精品文档5页

一次函数中考考点例析精品文档5页

一次函数中考考点例析一次函数是初中数学的重要内容,也是每年中考数学的重点考查内容。

下面对一次函数的常见考点分类例析。

考点1一次函数关系式的确定例1正比例函数y=kx和一次函数y=ax+b的图像都经过点A(1,2),且一次函数的图像交x轴于点B(4,0)。

求正比例函数和一次函数的表达式。

解析由正比例函数y=kx的图像过点(1,2)得2=k。

所以正比例函数的表达式为y=2x。

由一次函数y=ax+b的图像经过点(1,2)和(4,0)得a+b=2,4a+b=0。

解得:a=-■,b=■。

所以一次函数的表达式为y=-■x+■。

考点2一次函数的图像及性质例2 如图1,一次函数y=(m-1)x-3的图像分别与x轴、y轴的负半轴相交于A、B两点,则m的取值范围是()A. m>1 B. m<1C. m<0 D. m>0解析因为函数图像经过二、四象限,所以m-1<0,解得m<1。

故答案选B。

例3 如图2,一次函数y=kx+b的图像与正比例函数y=2x的图像平行且经过点A(1,-2),则kb=_________。

解析因为y=kx+b的图像与正比例函数y=2x的图像平行,所以k=2。

因为y=kx+b的图像经过点A(1,-2),所以2+b=-2。

解得b=-4,所以kb=2×(-4)=-8。

考点3 一次函数与方程(组)、不等式(组)的综合问题例4 如图3,一次函数y=k1x+b1的图像l1与y=k2x+b2的图像l2相交于点P,则方程组y=k1x+b1y=k2x+b2的解是()A. x=-2y=3B. x=3y=-2C. x=2y=3D. x=-2y=-3解析由图3可知,P点坐标是(-2,3),所以方程组y=k1x+b1y=k2x+b2的解是x=-2y=3,故答案选A。

例5 如图4,直线y=kx+b经过A(3,1)和B(6,0)两点,则不等式0<kx+b<■x的解集为________。

解析过点A(3,1)和原点的直线表达式为y=■x,即直线y=kx+b和y=■x交点为A,由图像可知,当x<6时,y=kx+b的值大于0,即0<kx+b,当x>3时,y=kx+b的值小于y=■x的值,综上所述,3<x<6是不等式0<kx+b<■x的解集。

中考数学真题专项汇编解析—平面直角坐标系与一次函数

中考数学真题专项汇编解析—平面直角坐标系与一次函数

中考数学真题专项汇编解析—平面直角坐标系与一次函数一.选择题1.(2022·浙江台州)如图是战机在空中展示的轴对称队形.以飞机B ,C 所在直线为x 轴、队形的对称轴为y 轴,建立平面直角坐标系.若飞机E 的坐标为(40,a ),则飞机D 的坐标为( )A .(40,)a -B .(40,)a -C .(40,)a --D .(,40)a -【答案】B 【分析】直接利用关于y 轴对称,纵坐标相同,横坐标互为相反数,进而得出答案.【详解】解:根据题意,点E 与点D 关于y 轴对称,∵飞机E 的坐标为(40,a ),∵飞机D 的坐标为(-40,a ),故选:B .【点睛】此题主要考查了关于y 轴对称点的性质,正确记忆横纵坐标的符号关系是解题关键.2.(2022·湖北宜昌)如图是一个教室平面示意图,我们把小刚的座位“第1列第3排”记为()1,3.若小丽的座位为()3,2,以下四个座位中,与小丽相邻且能比较方便地讨论交流的同学的座位是( )A .()1,3B .()3,4C .()4,2D .()2,4【答案】C【分析】根据小丽的座位坐标为()3,2,根据四个选项中的座位坐标,判断四个选项中与其相邻的座位,即可得出答案.【详解】解:∵只有()4,2与()3,2是相邻的,∵与小丽相邻且能比较方便地讨论交流的同学的座位是()4,2,故C 正确.故选:C .【点睛】本题主要考查坐标确定位置,关键是根据有序数对表示点的位置,根据点的坐标确定位置.3.(2022·四川眉山)一次函数(21)2y m x =-+的值随x 的增大而增大,则点(,)P m m -所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【分析】根据一次函数的性质求出m 的范围,再根据每个象限点的坐标特征判断P 点所处的象限即可.【详解】∵一次函数(21)2y m x =-+的值随x 的增大而增大,∵210m ->解得:12m >∵(,)P m m -在第二象限故选:B【点睛】本题考查了一次函数的性质和各个象限坐标特点,能熟记一次函数的性质是解此题的关键.4.(2022·浙江金华)如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,2)-,下列各地点中,离原点最近的是( )A .超市B .医院C .体育场D .学校【答案】A 【分析】根据学校和体育场的坐标建立直角坐标系,利用勾股定理求出各点到原点的距离,由此得到答案. 【详解】解:根据学校和体育场的坐标建立直角坐标系,超市到原点的距离为==A .【点睛】此题考查了根据点坐标确定原点,勾股定理,正确理解点坐标得到原点的位置及正确展望勾股定理的计算是解题的关键.5.(2022·江苏扬州)在平面直角坐标系中,点P(﹣3,a 2+1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B 【详解】∵a 2∵0,∵a 2+1∵1,∵点P(−3,a 2+1)所在的象限是第二象限.故选B. 6.(2022·湖南株洲)在平面直角坐标系中,一次函数51y x =+的图象与y 轴的交点的坐标为( )A .()0,1-B .1,05⎛⎫- ⎪⎝⎭C .1,05⎛⎫ ⎪⎝⎭D .()0,1 【答案】D【分析】令x =0,求出函数值,即可求解.【详解】解:令x =0, 1y =,∵一次函数51y x =+的图象与y 轴的交点的坐标为()0,1.故选:D【点睛】本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.7.(2022·陕西)在同一平面直角坐标系中,直线4y x =-+与2y x m =+相交于点(3,)P n ,则关于x ,y 的方程组4020x y x y m +-=⎧⎨-+=⎩的解为( ) A .15x y =-⎧⎨=⎩ B .13x y =⎧⎨=⎩C .31x y =⎧⎨=⎩D .95x y =⎧⎨=-⎩ 【答案】C【分析】先把点P 代入直线4y x =-+求出n ,再根据二元一次方程组与一次函数的关系求解即可;【详解】解:∵直线4y x =-+与直线2y x m =+交于点P (3,n ),∵34n =-+,∵1n =,∵()3,1P ,∵1=3×2+m ,∵m =-5,∵关于x ,y 的方程组40250x y x y +-=⎧⎨--=⎩的解31x y =⎧⎨=⎩;故选:C . 【点睛】本题主要考查了一次函数的性质,二元一次方程与一次函数的关系,准确计算是解题的关键.8.(2022·湖南娄底)将直线21y x =+向上平移2个单位,相当于( ) A .向左平移2个单位 B .向左平移1个单位 C .向右平移2个单位 D .向右平移1个单位【答案】B【分析】函数图象的平移规律:左加右减,上加下减,根据规律逐一分析即可得到答案.【详解】解:将直线21y x =+向上平移2个单位,可得函数解析式为:23,y x 直线21y x =+向左平移2个单位,可得22125,y x x 故A 不符合题意; 直线21y x =+向左平移1个单位,可得21123,y x x 故B 符合题意; 直线21y x =+向右平移2个单位,可得22123,y x x 故C 不符合题意; 直线21y x =+向右平移1个单位,可得21121,y x x 故D 不符合题意;故选B【点睛】本题考查的是一次函数图象的平移,掌握一次函数图象的平移规律是解本题的关键.9.(2022·浙江台州)吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m ,600m .他从家出发匀速步行8min 到公园后,停留4min ,然后匀速步行6min 到学校,设吴老师离公园的距离为y (单位:m ),所用时间为x (单位:min ),则下列表示y 与x 之间函数关系的图象中,正确的是( )A.B.C.D.【答案】C【分析】根据吴老师离公园的距离以及所用时间可判断.【详解】解:吴老师家出发匀速步行8min到公园,表示从(0,400)运动到(8,0);在公园,停留4min,然后匀速步行6min到学校,表示从(12,0)运动到(18,600);故选:C.【点睛】本题考查函数的图象,解题的关键是正确理解函数图象表示的意义,明白各个过程对应的函数图象.10.(2022·天津)如图,∵OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB∵x轴,若AB=6,OA=OB=5,则点A的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)【答案】D【分析】利用HL证明∵ACO∵∵BCO,利用勾股定理得到OC=4,即可求解.【详解】解:∵AB∵x轴,∵∵ACO=∵BCO=90°,AB=3,∵OA=OB,OC=OC,∵∵ACO∵∵BCO(HL),∵AC=BC=12∵OA=5,∵OC=4,∵点A的坐标是(4,3),故选:D.【点睛】本题考查了坐标与图形,全等三角形的判定和性质,勾股定理,解题的关键是灵活运用所学知识解决问题.11.(2022·四川乐山)甲、乙两位同学放学后走路回家,他们走过的路程s(千米)与所用的时间t(分钟)之间的函数关系如图所示.根据图中信息,下列说法错误的是()A.前10分钟,甲比乙的速度慢B.经过20分钟,甲、乙都走了1.6千米C.甲的平均速度为0.08千米/分钟D.经过30分钟,甲比乙走过的路程少【答案】D【分析】结合函数关系图逐项判断即可.【详解】A项,前10分钟,甲走了0.8千米,乙走了1.2千米,则甲比乙的速度慢,故A项正确;B项,前20分钟,根据函数关系图可知,甲、乙都走了1.6千米,故B正确;C项,甲40分钟走了3.2千米,则其平均速度为:3.2÷40=0.08千米/分钟,故C 项正确;D项,经过30分钟,甲走了2.4千米,乙走了2.0千米,则甲比乙多走了0.4千米,故D项错误;故选:D.【点睛】本题考查了一次函数的图像及其在行程问题中的应用,理解函数关系图是解答本题的关键.12.(2022·安徽)甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算.走得最快的是()A.甲B.乙C.丙D.丁【答案】A【分析】根据图象,先比较甲、乙的速度;然后再比较丙、丁的速度,进而在比较甲、丁的速度即可.【详解】乙在所用时间为30分钟时,甲走的路程大于乙走的路程,故甲的速度较快;丙在所用时间为50分钟时,丁走的路程大于丙走的路程,故丁的速度较快;又因为甲、丁在路程相同的情况下,甲用的时间较少,故甲的速度最快,故选A 【点睛】本题考查了从图象中获取信息的能力,正确的识图是解题的关键.13.(2022·江西)甲、乙两种物质的溶解度(g)t℃之间的对应关系如图y与温度()所示,则下列说法中,错误的是()A.甲、乙两种物质的溶解度均随着温度的升高而增大B.当温度升高至2t℃时,甲的溶解度比乙的溶解度大C.当温度为0℃时,甲、乙的溶解度都小于20gD.当温度为30℃时,甲、乙的溶解度相等【答案】D【分析】利用函数图象的意义可得答案.【详解】解:由图象可知,A、B、C都正确,当温度为t1时,甲、乙的溶解度都为30g,故D错误,故选:D.【点睛】本题主要考查了函数的图象,熟练掌握横纵坐标表示的意义是解题的关键.h随飞14.(2022·重庆)如图,曲线表示一只蝴蝶在飞行过程中离地面的高度()m行时间()s t的变化情况,则这只蝴蝶飞行的最高高度约为()A.5m B.7m C.10m D.13m【答案】D【分析】根据函数图象可直接得出答案.【详解】解:∵函数图象的纵坐标表示一只蝴蝶在飞行过程中离地面的高度()m h , ∵由函数图象可知这只蝴蝶飞行的最高高度约为13m ,故选:D .【点睛】本题考查了从函数图象获取信息的能力,准确识图是解题的关键. 15.(2022·浙江杭州)如图,在平面直角坐标系中,已知点P (0,2),点A (4,2).以点P 为旋转中心,把点A 按逆时针方向旋转60°,得点B .在1M ⎛⎫⎪ ⎪⎝⎭,()21M -,()31,4M ,4112,2M ⎛⎫⎪⎝⎭四个点中,直线PB 经过的点是( )A .1MB .2MC .3MD .4M【答案】B【分析】根据含30°角的直角三角形的性质可得B (2,,利用待定系数法可得直线PB 的解析式,依次将M 1,M 2,M 3,M 4四个点的一个坐标代入y x +2中可解答.【详解】解:∵点A (4,2),点P (0,2),∵P A ∵y 轴,P A =4,由旋转得:∵APB =60°,AP =PB =4, 如图,过点B 作BC ∵y 轴于C ,∵∵BPC =30°,∵BC =2,PC ∵B (2,, 设直线PB 的解析式为:y =kx +b ,则222k b b ⎧+=+⎪⎨=⎪⎩∵2k b ⎧=⎪⎨=⎪⎩∵直线PB 的解析式为:y +2,当y =0+2=0,x =∵点M 1(0)不在直线PB 上,当x =y =-3+2=1,∵M 2(-1)在直线PB 上,当x =1时,y ,∵M 3(1,4)不在直线PB 上,当x =2时,y ,∵M 4(2,112)不在直线PB 上.故选:B . 【点睛】本题考查的是图形旋转变换,待定系数法求一次函数的解析式,确定点B 的坐标是解本题的关键.16.(2022·湖南邵阳)在直角坐标系中,已知点3,2A m ⎛⎫⎪⎝⎭,点B n ⎫⎪⎪⎝⎭是直线()0y kx b k =+<上的两点,则m ,n 的大小关系是( )A .m n <B .m n >C .m n ≥D .m n ≤【答案】A【分析】因为直线()0y kx b k =+<,所以随着自变量的增大,函数值会减小,根据这点即可得到问题解答.【详解】解:∵因为直线()0y kx b k =+<,∵y 随着x 的增大而减小,∵32>2,∵32>∵m <n ,故选:A . 【点睛】此题考查了一次函数的图象和性质,解题的关键是正确判断一次函数的增减性并灵活运用.17.(2022·浙江绍兴)已知112233()()()x y x y x y ,,,,,为直线23y x =-+上的三个点,且123x x x <<,则以下判断正确的是( ).A .若120x x >,则130y y >B .若130x x <,则120y y >C .若230x x >,则130y y >D .若230x x <,则120y y >【答案】D【分析】根据一次函数的性质和各个选项中的条件,可以判断是否正确,从而可以解答本题.【详解】解:∵直线y =−2x +3∵y 随x 增大而减小,当y =0时,x =1.5∵(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =−2x +3上的三个点,且x 1<x 2<x 3 ∵若x 1x 2>0,则x 1,x 2同号,但不能确定y 1y 3的正负,故选项A 不符合题意; 若x 1x 3<0,则x 1,x 3异号,但不能确定y 1y 2的正负,故选项B 不符合题意; 若x 2x 3>0,则x 2,x 3同号,但不能确定y 1y 3的正负,故选项C 不符合题意; 若x 2x 3<0,则x 2,x 3异号,则x 1,x 2同时为负,故y 1,y 2同时为正,故y 1y 2>0,故选项D 符合题意. 故选:D .【点睛】本题考查一次函数图象上点的坐标特征,解题的关键是明确题意,利用一次函数的性质解答.18.(2022·浙江嘉兴)已知点(,)A a b ,(4,)B c 在直线3y kx =+(k 为常数,0k ≠)上,若ab 的最大值为9,则c 的值为( ) A .52B .2C .32D .1【答案】B【分析】把(,)A a b 代入3y kx =+后表示出ab ,再根据ab 最大值求出k ,最后把(4,)B c 代入3y kx =+即可.【详解】把(,)A a b 代入3y kx =+得:3b ka =+ ∵2239(3)3()24ab a ka ka a k a k k=+=+=+- ∵ab 的最大值为9∵0k <,且当32a k =-时,ab 有最大值,此时994ab k=-= 解得14k =-∵直线解析式为134=-+y x把(4,)B c 代入134=-+y x 得14324c =-⨯+=故选:B .【点睛】本题考查一次函数上点的特点、二次函数最值,解题的关键是根据ab 的最大值为9求出k 的值.19.(2022·安徽)在同一平面直角坐标系中,一次函数2y ax a =+与2y a x a =+的图像可能是( )A .B .C .D .【答案】D【分析】分为0a >和0a <两种情况,利用一次函数图像的性质进行判断即可. 【详解】解:当1x =时,两个函数的函数值:2y a a =+,即两个图像都过点()21,a a +,故选项A 、C 不符合题意;当0a >时,20a >,一次函数2y ax a =+经过一、二、三象限,一次函数2y a x a =+经过一、二、三象限,都与y 轴正半轴有交点,故选项B 不符合题意; 当0a <时,20a >,一次函数2y ax a =+经过一、二、四象限,与y 轴正半轴有交点,一次函数2y a x a =+经过一、三、四象限,与y 轴负半轴有交点,故选项D 符合题意.故选:D .【点睛】本题主要考查了一次函数的图像性质.理解和掌握它的性质是解题的关键.一次函数y kx b =+的图像有四种情况:∵当0k >,0b >时,函数y kx b =+的图像经过第一、二、三象限;∵当0k >,0b <时,函数y kx b =+的图像经过第一、三、四象限; ∵当0k <,0b >时,函数y kx b =+的图像经过第一、二、四象限; ∵当0k <,0b <时,函数y kx b =+的图像经过第二、三、四象限.20.(2022·四川凉山)一次函数y =3x +b (b ≥0)的图象一定不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】D【分析】根据一次函数的性质可得其经过的象限,进而可得答案. 【详解】解:一次函数()30y x b b =+≥, ∵30k =>∵图象一定经过一、三象限,∵当0b >时,函数图象一定经过一、二、三象限, 当0b =时,函数图象经过一、三象限,∵函数图象一定不经过第四象限,故D 正确.故选:D .【点睛】本题主要考查了一次函数的性质,属于基础题型,熟练掌握一次函数的性质是解题关键.21.(2022·甘肃武威)如图1,在菱形ABCD 中,60A ∠=︒,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为( )AB .C .D .【答案】B【分析】根据图1和图2判定三角形ABD 为等边三角形,它的面积为即可.【详解】解:在菱形ABCD 中,∵A =60°,∵∵ABD 为等边三角形, 设AB =a ,由图2可知,∵ABD 的面积为∵∵ABD的面积2==解得:a = 故选B 【点睛】本题考查了动点问题的函数图象,根据菱形的性质和函数图象,能根据图形得出正确信息是解此题的关键. 二、填空题22.(2022·湖南湘潭)请写出一个y 随x 增大而增大的一次函数表达式_________. 【答案】y x =(答案不唯一)【分析】在此解析式中,当x 增大时,y 也随着增大,这样的一次函数表达式有很多,根据题意写一个即可.【详解】解:如y x =,y 随x 的增大而增大.故答案为:y x =(答案不唯一). 【点睛】此题属于开放型试题,答案不唯一,考查了一次函数的性质,熟练掌握一次函数的增减性是解题关键.23.(2022·山东泰安)将从1开始的连续自然数按以下规律排列:若有序数对(),n m 表示第n 行,从左到右第m 个数,如()3,2表示6,则表示99的有序数对是_______. 【答案】()10,18【分析】分析每一行的第一个数字的规律,得出第n 行的第一个数字为211n +-(),从而求得最终的答案.【详解】第1行的第一个数字:()2111=+-1 第2行的第一个数字:()22121=+- 第3行的第一个数字:()25131=+- 第4行的第一个数字:()210141=+- 第5行的第一个数字:()217151=+- …..,设第n 行的第一个数字为x ,得()211x n =+- 设第1n +行的第一个数字为z ,得21z n =+设第n 行,从左到右第m 个数为y 当99y =时221(1)991n n +-≤<+∵22(1)98n n -≤< ∵n 为整数 ∵10n =∵21182x n =+-=()∵9982118m =-+=故答案为:()10,18.【点睛】本题考查数字规律的性质,解题的关键是熟练掌握数字规律的相关性质. 24.(2022·山东泰安)如图,四边形ABCD 为平行四边形,则点B 的坐标为________.【答案】()2,1--【分析】根据平行四边形的性质以及点的平移即可得出结论. 【详解】解:四边形ABCD 为平行四边形,∴DA CB ∥,即将D 点平移到A 的过程与将C 点平移到B 的过程保持一致, 将D 点平移到A 的过程是::134x --=-(向左平移4各单位长度);:220y -=(上下无平移);∴将C 点平移到B 的过程按照上述一致过程进行得到()24,1B --,即()2,1B --,故答案为:()2,1--.【点睛】本题考查平行四边形的性质及点的平移,掌握点的平移的代数表示是解决问题的关键.25.(2022·浙江丽水)三个能够重合的正六边形的位置如图.已知B 点的坐标是(,则A 点的坐标是___________.【答案】3A【分析】如图,延长正六边形的边BM 与x 轴交于点E ,过A 作AN x ⊥轴于N ,连接AO ,BO ,证明,BOE AON 可得,,A O B 三点共线,可得,A B 关于O 对称,从而可得答案.【详解】解:如图,延长正六边形的边BM 与x 轴交于点E ,过A 作AN x ⊥轴于N ,连接AO ,BO ,∴ 三个正六边形,O 为原点, ,120,BMMO OHAH BMOOHA,BMO OHA ≌,OB OA11209030,18012030,2MOE BMOMOB60,90,BOE BEO同理:120303060,906030,AON OAN,BOE AON ,,A O B ∴三点共线,,A B ∴关于O 对称, 3,3.A故答案为:3.A【点睛】本题考查的是坐标与图形的性质,全等三角形的判定与性质,关于原点成中心对称的两个点的坐标特点,正多边形的性质,熟练的应用正多边形的性质解题是解本题的关键.26.(2022·江苏宿迁)甲、乙两位同学各给出某函数的一个特征,甲:“函数值y 随自变量x 增大而减小”;乙:“函数图像经过点(0,2)”,请你写出一个同时满足这两个特征的函数,其表达式是____.【答案】22y x =-+(答案不唯一)【分析】根据题意的要求,结合常见的函数,写出函数解析式即可,最好找有代表性的、特殊的函数,如一次函数、二次函数、反比例函数等.【详解】解:根据题意,甲:“函数值y 随自变量x 增大而减小”;可设函数为:2,y x b =-+又满足乙:“函数图像经过点(0,2)”,则函数关系式为22y x =-+,故答案为:22y x =-+(答案不唯一)【点睛】本题考查学生对函数图象的掌握程度与灵活运用的能力,属于开放性题.27.(2022·天津)若一次函数y x b =+(b 是常数)的图象经过第一、二、三象限,则b 的值可以是___________(写出一个..即可). 【答案】1(答案不唯一,满足0b >即可)【分析】根据一次函数经过第一、二、三象限,可得0b >,进而即可求解.【详解】解:∵一次函数y x b =+(b 是常数)的图象经过第一、二、三象限, ∵0b >故答案为:1答案不唯一,满足0b >即可)【点睛】本题考查了已知一次函数经过的象限求参数的值,掌握一次函数图象的性质是解题的关键.28.(2022·江苏扬州)如图,函数()0y kx b k =+<的图像经过点P ,则关于x 的不等式3kx b +>的解集为________.【答案】1x <-【分析】观察一次函数图象,可知当y >3时,x 的取值范围是1x <-,则3kx b +>的解集亦同.【详解】由一次函数图象得,当y >3时,1x <-,则y =kx+b >3的解集是1x <-.【点睛】本题考查了一次函数与不等式结合,深入理解函数与不等式的关系是解题的关键.29.(2022·浙江杭州)已知一次函数y=3x-1与y=kx(k是常数,k≠0)的图象的交点坐标是(1,2),则方程组31x ykx y-=⎧⎨-=⎩的解是_________.【答案】12 xy=⎧⎨=⎩【分析】根据一次函数的交点坐标即可确定以两个一次函数解析式组成的二元一次方程组的解.【详解】解:∵一次函数y=3x-1与y=kx(k是常数,k≠0)的图象的交点坐标是(1,2),∵联立y=3x-1与y=kx的方程组31y xy kx=-⎧⎨=⎩的解为:12xy=⎧⎨=⎩,即31x ykx y-=⎧⎨-=⎩的解为:12xy=⎧⎨=⎩,故答案为:12xy=⎧⎨=⎩.【点睛】本题考查了一次函数与二元一次方程组,熟练掌握一次函数的交点坐标与二元一次方程组的解的关系是解题的关键.30.(2022·甘肃武威)若一次函数y=kx−2的函数值y随着自变量x值的增大而增大,则k=_________(写出一个满足条件的值).【答案】2(答案不唯一)【分析】根据函数值y随着自变量x值的增大而增大得到k>0,写出一个正数即可.【详解】解:∵函数值y随着自变量x值的增大而增大,∵k>0,∵k=2(答案不唯一).故答案为:2(答案不唯一).【点睛】本题考查了一次函数的性质,掌握一次函数的性质:k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小是解题的关键.31.(2022·四川德阳)如图,已知点()2,3A -,()2,1B ,直线y kx k =+经过点()1,0P -.试探究:直线与线段AB 有交点时k 的变化情况,猜想k 的取值范围是______.【答案】13k ≥或3k ≤-##3k ≤-或13k ≥【分析】根据题意,画出图象,可得当x =2时,y ≥1,当x =-2时,y ≥3,即可求解.【详解】解:如图,观察图象得:当x =2时,y ≥1,即21k k +≥,解得:13k ≥,当x =-2时,y ≥3,即23k k -+≥,解得:3k ≤-,∵k 的取值范围是13k ≥或3k ≤-. 故答案为:13k ≥或3k ≤-【点睛】本题主要考查了一次函数的图象和性质,利用数形结合思想解答是解题的关键.32.(2022·湖北黄冈)如图1,在∵ABC 中,∵B =36°,动点P 从点A 出发,沿折线A →B →C 匀速运动至点C 停止.若点P 的运动速度为1cm/s ,设点P 的运动时间为t (s ),AP 的长度为y (cm ),y 与t 的函数图象如图2所示.当AP 恰好平分∵BAC 时,t 的值为________.【答案】2##【分析】根据函数图像可得AB =4=BC ,作∵BAC 的平分线AD ,∵B =36°可得∵B =∵DAC =36°,进而得到ADC BAC △△,由相似求出BD 的长即可.【详解】根据函数图像可得AB =4,AB +BC =8,∵BC =AB =4,∵∵B =36°,∵72BCA BAC ∠∠︒==,作∵BAC 的平分线AD ,∵∵BAD =∵DAC =36°=∵B ,∵AD =BD ,72BCA DAC ∠∠︒==,∵AD =BD =CD , 设AD BD CD x ===,∵∵DAC =∵B =36°,∵ADC BAC △△,∵AC DC BC AC =,∵x 4x 4x-=,解得: 12x =-+22x =--,∵2AD BD CD ===,此时21AB BD t +==(s),故答案为:2. 【点睛】此题考查了图形与函数图象间关系、相似三角形的判定与性质、解一元二次方程,关键是证明ADC BAC △△.三、解答题33.(2022·陕西)如图,ABC 的顶点坐标分别为(23)(30)(11)A B C ----,,,,,.将ABC平移后得到A B C ''',且点A 的对应点是(23)A ',,点B 、C 的对应点分别是B C '',.(1)点A 、A '之间的距离是__________;(2)请在图中画出A B C '''.【答案】(1)4(2)见解析【分析】(1)由(23)A -,,(23)A ',得,A 、A '之间的距离是2-(-2)=4; (2)根据题意找出平移规律,求出103-1B C ''(,),(,),进而画图即可.(1)解:由(23)A -,,(23)A ',得,A 、A '之间的距离是2-(-2)=4.故答案为:4.(2)解:由题意,得103-1B C ''(,),(,),如图,A B C '''即为所求.【点睛】本题考查了坐标系中两点之间的距离求解以及平移求点坐标画图,题目相对较简单,掌握平移规律是解决问题的关键.34.(2022·浙江湖州)某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/小时,轿车行驶的速度是60千米/小时.(1)求轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB ,AB 分别表示大巴、轿车离开学校的路程s (千米)与大巴行驶的时间t (小时)的函数关系的图象.试求点B 的坐标和AB 所在直线的解析式;(3)假设大巴出发a 小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a 的值.【答案】(1)轿车出发后2小时追上大巴,此时,两车与学校相距120千米(2)点B 的坐标是()3,120,s =60t -60(3)34小时【分析】(1)设轿车行驶的时间为x 小时,则大巴行驶的时间为()1x +小时,根据路程两车行驶的路程相等得到()60401x x =+即可求解;(2)由(1)中轿车行驶的时间求出点B 的坐标是()3,120,进而求出直线AB 的解析式;(3)根据大巴车行驶路程与小轿车行驶路程相等即可得到()40 1.560 1.5a +=⨯,进而求出a 的值(1)解:设轿车行驶的时间为x 小时,则大巴行驶的时间为()1x +小时. 根据题意,得:()60401x x =+,解得x =2.则60602120x =⨯=千米,∵轿车出发后2小时追上大巴,此时,两车与学校相距120千米.(2)解:∵轿车追上大巴时,大巴行驶了3小时,∵点B 的坐标是()3,120.由题意,得点A 的坐标为()1,0.设AB 所在直线的解析式为s kt b =+,则:3120,0,k b k b +=⎧⎨+=⎩解得k =60,b =-60.∵AB 所在直线的解析式为s =60t -60.(3)解:由题意,得()40 1.560 1.5a +=⨯, 解得:34a =,故a 的值为34小时.【点睛】本题考查了一次函数的实际应用、待定系数法求一次函数的解析式,解题的关键是读懂题意,明确图像中横坐标与纵坐标代表的含义.35.(2022·新疆)A ,B 两地相距300km ,甲、乙两人分别开车从A 地出发前往B 地,其中甲先出发1h ,如图是甲,乙行驶路程(km),(km)y y 甲乙随行驶时间(h)x 变化的图象,请结合图象信息.解答下列问题:(1)填空:甲的速度为___________km /h ;(2)分别求出,y y 甲乙与x 之间的函数解析式;(3)求出点C 的坐标,并写点C 的实际意义.【答案】(1)60(2) 60y x =甲, 100100y x =-乙(3)点C 的坐标为()2.5,150,点C 的实际意义为:甲出发2.5h 时,乙追上甲,此时两人距A 地150km【分析】(1)观察图象,由甲先出发1h 可知甲从A 地到B 地用了5h ,路程除以时间即为速度;(2)利用待定系数法分别求解即可;(3)将,y y 甲乙与x 之间的函数解析式联立,解二元一次方程组即可.(1)解:观察图象,由甲先出发1h 可知甲从A 地到B 地用了5h ,∵A ,B 两地相距300km ,∵甲的速度为3005=60 (km/h)÷,故答案为:60;(2)解:设y 甲与x 之间的函数解析式为11y k x b =+甲,将点()0,0,()5,300代入得11103005b k b =⎧⎨=+⎩,解得11060b k =⎧⎨=⎩, ∵y 甲与x 之间的函数解析式为60y x =甲,同理,设y 乙与x 之间的函数解析式为22y k x b =+乙,将点()1,0,()4,300代入得222203004k b k b =+⎧⎨=+⎩, 解得22100100b k =-⎧⎨=⎩, ∵y 乙与x 之间的函数解析式为100100y x =-乙;(3)解:将,y y 甲乙与x 之间的函数解析式联立得,60100100y x y x =⎧⎨=-⎩,解得 2.5150x y =⎧⎨=⎩,∵点C 的坐标为()2.5,150, 点C 的实际意义为:甲出发2.5h 时,乙追上甲,此时两人距A 地150km .【点睛】本题考查一次函数的实际应用,涉及到求一次函数解析式,求直线交点坐标等知识点,读懂题意,从所给图象中找到相关信息是解题的关键.36.(2022·浙江丽水)因疫情防控需婴,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是330km ,货车行驶时的速度是60km/h .两车离甲地的路程(km)s 与时间(h)t 的函数图象如图.(1)求出a 的值;(2)求轿车离甲地的路程(km)s 与时间(h)t 的函数表达式;(3)问轿车比货车早多少时间到达乙地?【答案】(1)1.5(2)s =100t -150(3)1.2【分析】(1)根据货车行驶的路程和速度求出a 的值;(2)将(a ,0)和(3,150)代入s =kt +b 中,待定系数法解出k 和b 的值即可; (3)求出汽车和货车到达乙地的时间,作差即可求得答案.(1)由图中可知,货车a 小时走了90km ,∵a =9060 1.5÷=;(2)设轿车离甲地的路程(km)s 与时间(h)t 的函数表达式为s =kt +b ,将(1.5,0)和(3,150)代入得,1.503150k b k b +=⎧⎨+=⎩,解得,100150k b =⎧⎨=-⎩, ∵轿车离甲地的路程(km)s 与时间(h)t 的函数表达式为s =100t -150;(3)将s =330代入s =100t -150,解得t =4.8,两车相遇后,货车还需继续行驶:()330150603-÷=h ,到达乙地一共:3+3=6h,6-4.8=1.2h,∵轿车比货车早1.2h时间到达乙地.【点睛】本题考查了一次函数的应用,主要利用待定系数法求函数解析式,路程、速度、时间三者之间的关系,从图中准确获取信息是解题的关键.37.(2022·浙江嘉兴)6月13日,某港口的潮水高度y(cm)和时间x(h)的部分数据及函数图象如下:(数据来自某海洋研究所)(1)数学活动:∵根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.∵观察函数图象,当4x 时,y的值为多少?当y的值最大时,x的值为多少?(2)数学思考:请结合函数图象,写出该函数的两条性质或结论.(3)数学应用:根据研究,当潮水高度超过260cm时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?。

中考数学专题十二:一次函数(含详细参考答案)

中考数学专题十二:一次函数(含详细参考答案)

的2的0的1的3的年的中的考的数的学的专的题的复的习的第的十的二的讲的:的一的次的函的数的的【的基的础的知的识的回的顾的】的一、的一的次的函的数的的的定的义的:的的的的的一的般的的的:的如的果的y的=的(的的的的的的)的即的y的叫的x的的的一的次的函的数的的特的别的的的:的当的b的=的时的,的一的次的函的数的就的变的为的y的-的k的x的(的k的≠的0的)的,的这的时的y的叫的x的的的的【的赵的老的师的提的醒的:的正的比的例的函的数的是的一的次的函的数的,的反的之的不的一的定的成的立的,的是的有的当的b的=的0的时的,的它的才的是的正的比的例的函的数的】的的二的、的一的次的函的数的的的同的象的及的性的质的:的的1的、的一的次的函的数的y的=的k的x的+的b的的的同的象的是的经的过的点的(的0的,的b的)的(的-的,的0的)的的的一的条的的正的比的例的函的数的y的=的的k的x的的的同的象的是的经的过的点的的和的的的的一的条的直的线的的【的赵的老的师的提的醒的:的同的为的一的次的函的数的的的同的象的是的一的条的直的线的,的所的以的函的数的同的象的是的需的返的取的的个的特的殊的的的点的过的这的两的个的点的画的一的条的直的线的即的可的】的的2的、的正的比的例的函的数的y的=的的k的x的(的k的≠的0的)的当的k的>的0的时的,的其的同的象的过的、的的象的限的,的时的y的随的x的的的增的大的而的的的的的的的的的的的的的的的的的的的的的的的的)的当的k的<的0的时的,的其的同的象的过的的、的的象的限的,的时的y的随的x的的的增的大的而的3、的一的次的函的数的y的=的的k的x的+的b的,的同的象的及的函的数的性的质的的①的、的k的>的0的b的>的0的过的象的限的的k的>的0的b的<的0的过的象的限的的k的<的0的b的>的0的过的象的限的的k的<的0的b的>的0的过的象的限的的4的、的若的直的线的y的=的的k的1的x的+的b的1的与的l的1的y的=的的k的2的x的+的b的2的平的解的,的则的k的1的k的2的,的若的k的1的≠的k的2的,的则的l的1的与的l的2的的的的的【的赵的老的师的提的醒的:的y的随的x的的的变的化的情的况的,的只的取的决的于的的的的符的号的与的的的无的关的,的而的直的线的的的平的移的,的只的改的变的的的值的的的的值的不的变的】的的三的、的用的系的数的法的求的一的次的函的数的解的析的式的:的的关的键的:的确的定的一的次的函的数的y的=的的k的x的+的b的中的的的字的母的与的的的的值的的的的步的骤的:的1的、的设的一的次的函的数的表的达的式的的的的的的的的的的2的、的将的x的,的y的的的对的应的值的或的点的的的坐的标的代的入的表的达的式的的的的的的的的的的3的、的解的关的于的系的数的的的方的程的或的方的程的组的的的的的的的的的的4的、的将的所的求的的的系的数的代的入的等的设的函的数的表的达的式的中的的四的、的一的次的函的数的与的一的元的一的次的方的程的,的一的元的一的次的不的等的式的和的二的元的一的次的方的程的组的的的的的1的、的一的次的函的数的与的一的元的一的次的方的程的:的一的般的地的将的x的=的或的y的解的一的元的一的次的方的程的求的直的线的与的坐的标的轴的的的交的点的坐的标的,的代的入的y的=的的k的x的+的b的中的的2的、的一的次的函的数的与的一的元的一的次的不的等的式的:的k的x的+的b的>的0的或的k的x的+的b的<的0的即的一的次的函的数的同的象的位的于的x的轴的上的方的或的下的方的时的相的应的的的x的的的取的值的范的围的,的反的之的也的成的立的的3的、的一的次的函的数的与的二的元的一的次的方的程的组的:的两的条的直的线的的的交的点的坐的标的即的为的两的个的一的次的函的数的列的二的元的一的次的方的程的组的的的解的,的反的之的根的据的方的程的组的的的解的可的求的两的条的直的线的的的交的点的坐的标的的【的赵的老的师的提的醒的:的1的、的一的次的函的数的与的三的者的之的间的的的关的系的问的题的一的定的要的结的合的同的象的去的解的决的的2的、的在的一的次的函的数的中的讨的论的交的点的问的题的即的是的讨的论的一的元的一的次的不的等的式的的的解的集的或的二的元的一的次的方的程的组的解的得的问的题的】的的五的、的一的次的函的数的的的应的用的的的一的般的步的骤的:的1的、的设的定的问的题的中的的的变的量的的的的的2的、的建的立的一的次的函的数的关的系的式的的的的的的的的3的、的确的定的取的值的范的围的的的的的的的的4的、的利的用的函的数的性的质的解的决的问的题的的的5的、的作的答的的【的赵的老的师的提的醒的:的一的次的函的数的的的应的用的多的与的二的元的一的次的方的程的组的或的一的元的一的次的不的等的式的(的组的)的相的联的系的,的经的常的涉的及的交的点的问的题的,的方的案的涉的及的问的题的等的】的的【的重的点的考的点的例的析的】的的的考的点的一的:的一的次的函的数的的的同的象的和的性的质的的例的1的的的(的2的0的1的2的•的黄的石的)的已的知的反的比的例的函的数的y的=的(的b的为的常的数的)的,的当的x的>的0的时的,的y的随的x的的的增的大的而的增的大的,的则的一的次的函的数的y的=的x 的+的b的的的图的象的不的经的过的第的几的象的限的.的(的的的)的的A的.的一的的B的.的二的的C的.的三的的D的.的四的的的思的路的分的析的:的先的根的据的反的比的例的函的数的的的增的减的性的判的断的出的b的的的符的号的,的再的根的据的一的次的函的数的的的图的象的与的系的数的的的关的系的判的断的出的次的函的数的y的=的x的+的b 的的的图的象的经的过的的的象的限的即的可的.的的解的:的∵的反的比的例的函的数的y的=的(的b的为的常的数的)的,的当的x的>的0的时的,的y的随的x 的的的增的大的而的增的大的,的的∴的b的<的0的,的的∵的一的次的函的数的y的=的x的+的b的中的k的=的1的>的0的,的b的<的0的,的的∴的此的函的数的的的图的象的经的过的一的、的三的、的四的限的,的的∴的此的函的数的的的图的象的不的经的过的第的二的象的限的.的的故的选的B的.的的点的评的:的本的题的考的查的的的是的一的次的函的数的的的图的象的与的系的数的的的关的系的及的反的比的例的函的数的的的性的质的,的一的次的函的数的y的=的k 的x的+的b的的的图的象的有的四的种的情的况的:的的①的当的k的>的0的,的b的>的0的,的函的数的y 的=的k的x的+的b的的的图的象的经的过的第的一的、的二的、的三的象的限的,的y的的的值的随的x的的的值的增的大的而的增的大的;的的②的当的k的>的0的,的b的<的0的,的函的数的y 的=的k的x的+的b的的的图的象的经的过的第的一的、的三的、的四的象的限的,的y的的的值的随的x的的的值的增的大的而的增的大的;的的③的当的k的<的0的,的b的>的0的时的,的函的数的y的=的k的x的+的b的的的图的象的经的过的第的一的、的二的、的四的象的限的,的y的的的值的随的x的的的值的增的大的而的减的小的;的的④的当的k的<的0的,的b的<的0的时的,的函的数的y的=的k的x的+的b的的的图的象的经的过的第的二的、的三的、的四的象的限的,的y的的的值的随的x的的的值的增的大的而的减的小的.的的例的2的的的(的2的0的1的2的•的上的海的)的已的知的正的比的例的函的数的y的=的k的x的(的k的≠的0的)的,的点的(的2的,的-的3的)的在的函的数的上的,的则的y的随的x的的的增的大的而的(的增的大的或的减的小的)的.的的思的路的分的析的:的首的先的利的用的待的定的系的数的法的确的定的正的比的例的函的数的解的析的式的,的再的根的据的正的比的例的函的数的的的性的质的:的k的>的0的时的,的y的随的x的的的增的大的而的增的大的,的k的<的0的时的,的y的随的x的的的增的大的而的减的小的确的定的答的案的.的的解的:的∵的点的(的2的,的-的3的)的在的正的比的例的函的数的y的=的k的x的(的k的≠的0的)的上的,的的∴的2的k的=的-的3的,的的解的得的:的k的=的-的,的的∴的正的比的例的函的数的解的析的式的是的:的y的=的-的x的,的的∵的k的=的-的<的0的,的的∴的y的随的x的的的增的大的而的减的小的,的的故的答的案的为的:的减的小的.的的点的评的:的此的题的主的要的考的查的了的正的比的例的函的数的的的性的质的,的以的及的待的定的系的数的法的确的定的正的比的例的函的数的解的析的式的,的关的键的是的掌的握的反的比的例的函的数的的的性的质的.的的对的应的训的练的的1的.的(的2的0的1的2的•的沈的阳的)的一的次的函的数的y的=的-的x的+的2的图的象的经的过的(的的的)的的A的.的一的、的二的、的三的象的限的的的的的的的的的的B的.的一的、的二的、的四的象的限的的C的.的一的、的三的、的四的象的限的的的的的的的的的的D的.的二的、的三的、的四的象的限的的的1的.的B的的2的.的(的2的0的1的2的•的贵的阳的)的在的正的比的例的函的数的y的=的-的3的m的x的中的,的函的数的y的的的值的随的x的值的的的增的大的而的增的大的,的则的P的(的m的,的5的)的在的第的象的限的.的的2的.的二的的2的.的解的:的∵的正的比的例的函的数的y的=的-的3的m的x的中的,的函的数的y的的的值的随的x的值的的的增的大的而的增的大的,的的∴的-的3的m的>的0的,的解的得的m的<的0的,的的∴的点的P的(的m的,的5的)的在的第的二的象的限的.的的故的答的案的为的:的二的.的的的考的点的二的:的一的次的函的数的解的析的式的的的确的定的的例的3的的的(的2的0的1的2的•的聊的城的)的如的图的,的直的线的A的B的与的x的轴的交的于的点的A的(的1的,的0的)的,的与的y的轴的交的于的点的B的(的0的,的-的2的)的.的的(的1的)的求的直的线的A的B的的的解的析的式的;的的(的2的)的若的直的线的A的B的上的的的点的C的在的第的一的象的限的,的且的S的△的B的O的C的=的2的,的求的点的C的的的坐的标的.的的思的路的分的析的:的(的1的)的设的直的线的A的B 的的的解的析的式的为的y的=的k的x的+的b的,的将的点的A的(的1的,的0的)的、的点的B的(的0的,的-的2的)的分的别的代的入的解的析的式的即的可的组的成的方的程的组的,的从的而的得的到的A的B的的的解的析的式的;的的(的2的)的设的点的C的的的坐的标的为的(的x的,的y的)的,的根的据的三的角的形的面的积的公的式的以的及的S的△的B的O的C的=的2的求的出的C的的的横的坐的标的,的再的代的入的直的线的即的可的求的出的y 的的的值的,的从的而的得的到的其的坐的标的.的的解的:的(的1的)的设的直的线的A的B的的的解的析的式的为的y的=的k的x的+的b的,的的∵的直的线的A的B的过的点的A的(的1的,的0的)的、的点的B的(的0的,的-的2的)的,的的∴的的k的+的b的=的0的的b的=的-的2的的的的,的的解的得的的k的=的2的的b的=的-的2的的的的,的的∴的直的线的A的B的的的解的析的式的为的y的=的2的x的-的2的.的的(的2的)的设的点的C的的的坐的标的为的(的x的,的y的)的,的的∵的S的△的B的O的C的=的2的,的的∴的•的2的•的x的=的2的,的的解的得的x的=的2的,的的∴的y的=的2的×的2的-的2的=的2的,的的∴的点的C的的的坐的标的是的(的2的,的2的)的.的的点的评的:的本的题的考的查的了的待的定的系的数的法的求的函的数的解的析的式的,的解的答的此的题的不的仅的要的熟的悉的函的数的图的象的上的点的的的坐的标的特的征的,的还的要的熟的悉的三的角的形的的的面的积的公的式的.的的对的应的训的练的的3的.的(的2的0的1的2的•的湘的潭的)的已的知的一的次的函的数的y的=的k的x的+的b的(的k的≠的0的)的图的象的过的点的(的0的,的2的)的,的且的与的两的坐的标的轴的围的成的的的三的角的形的面的积的为的2的,的求的此的一的次的函的数的的的解的析的式的.的的3的.的解的:的∵的一的次的函的数的y的=的k的x的+的b的(的k的≠的0的)的图的象的过的点的(的0的,的2的)的,的的∴的b的=的2的,的的令的y的=的0的,的则的x的=的-的2的的k的的,的的∵的函的数的图的象的与的两的坐的标的轴的围的成的的的三的角的形的面的积的为的2的,的的∴的×的2的×的|的|的=的2的,的即的|的|的=的2的,的的当的k的>的0的时的,的=的2的,的解的得的k的=的1的;的的当的k的<的0的时的,的-的=的2的,的解的得的k的=的-的1的.的的故的此的函的数的的的解的析的式的为的:的y的=的x的+的2的或的y的=的-的x的+的2的.的的的考的点的三的:的一的次的函的数的与的方的程的(的组的)的不的等的式的(的组的)的的的关的系的的例的4的的的(的2的0的1的2的•的恩的施的州的)的如的图的,的直的线的y的=的k的x的+的b的经的过的A的(的3的,的1的)的和的B的(的6的,的0的)的两的点的,的则的不的等的式的组的0的<的k的x的+的b 的<的x的的的解的集的为的.的的思的路的分的析的:的将的A的(的3的,的1的)的和的B的(的6的,的0的)的分的别的代的入的y的=的k的x的+的b的,的求的出的k的、的b的的的值的,的再的解的不的等的式的组的0的<的k的x的+的b的<的x的的的解的集的.的的解的:的将的A的(的3的,的1的)的和的B的(的6的,的0的)的分的别的代的入的y的=的k的x的+的b的得的,的的的的,的的解的得的的的,的的则的函的数的解的析的式的为的y的=的-的x的+的2的.的的可的得的不的等的式的组的,的的解的得的3的<的x的<的6的.的的故的答的案的为的3的<的x的<的6的.的的点的评的:的本的题的考的查的了的一的次的函的数的与的一的元的一的次的不的等的式的,的利的用的待的定的系的数的法的求的出的函的数的解的析的式的是的解的题的的的关的键的.的的例的5的的的(的2的0的1的2的•的贵的阳的)的如的图的,的一的次的函的数的y的=的k的1的x的+的b 的1的的的图的象的与的y的=的k的2的x的+的b的2的的的图的象的相的交的于的点的P的,的则的方的程的组的的的的解的是的(的的的)的的A的.的的的的的的B的.的的的的的C的.的的的的的的的D的.的的思的路的分的析的:的根的据的图的象的求的出的交的点的P的的的坐的标的,的根的据的点的P的的的坐的标的即的可的得的出的答的案的.的的解的:的∵的由的图的象的可的知的:的一的次的函的数的y的=的k的1的x的+的b的1的的的图的象的与的y的=的k的2的x的+的b的2的的的图的象的相的交的于的点的P的的的坐的标的是的(的-的2的,的3的)的,的的∴的方的程的组的的的解的是的,的的故的选的A的.的的点的评的:的本的题的考的查的了的对的一的次的函的数的与的二的元的一的次的方的程的组的的的关的系的的的理的解的和的运的用的,的主的要的考的查的学的生的的的观的察的图的形的的的能的力的和的理的解的能的力的,的题的目的比的较的典的型的,的但的是的一的道的比的较的容的易的出的错的的的题的目的.的的对的应的训的练的的4的.的(的2的0的1的2的•的桂的林的)的如的图的,的函的数的y的=的a的x的-的1的的的图的象的过的点的(的1的,的2的)的,的则的不的等的式的a的x的-的1的>的2的的的解的集的是的.的的4的.的x的>的1的的4的.的解的:的方的法的一的∵的把的(的1的,的2的)的代的入的y的=的a的x的-的1的得的:的2的=的a 的-的1的,的的解的得的:的a的=的3的,的的∴的y的=的3的x的-的1的>的2的,的的解的得的:的x的>的1的,的的方的法的二的:的根的据的图的象的可的知的:的y的=的a的x的-的1的>的2的的的x的的的范的围的是的x 的>的1的,的的即的不的等的式的a的x的-的1的>的2的的的解的集的是的x的>的1的,的的故的答的案的为的:的x的>的1的.的的点的评的:的本的题的考的查的了的一的次的函的数的与的一的元的一的次的不的等的式的的的应的用的,的主的要的考的查的学的生的的的观的察的图的形的的的能的力的和的理的解的能的力的,的能的把的一的次的函的数的与的一的元的一的次的不的等的式的结的合的起的来的是的解的此的题的的的关的键的.的的5的.的(的2的0的1的2的•的呼的和的浩的特的)的下的面的四的条的直的线的,的其的中的直的线的上的每的个的点的的的坐的标的都的是的二的元的一的次的方的程的x的-的2的y的=的2的的的解的是的(的的的)的的A的.的的的的的的的的的的的的的的的的的的B的.的的C的.的的的的的的的的的的的的的的的的的的D的.的的5的.的C的的解的:的∵的x的-的2的y的=的2的,的的∴的y的=的x的-的1的,的的∴的当的x的=的0的,的y的=的-的1的,的当的y的=的0的,的x的=的2的,的的∴的一的次的函的数的y的=的x的-的1的,的与的y的轴的交的于的点的(的0的,的-的1的)的,的与的x的轴的交的于的点的(的2的,的0的)的,的的即的可的得的出的C的符的合的要的求的,的的故的选的:的C的.的的考的点的四的:的一的次的函的数的的的应的用的的例的6的的的(的2的0的1的2的•的遵的义的)的为的了的促的进的节的能的减的排的,的倡的导的节的约的用的电的,的某的市的将的实的行的居的民的生的活的用的电的阶的梯的电的价的方的案的,的图的中的折的线的反的映的了的每的户的每的月的用的电的电的费的y的(的元的)的与的用的电的量的x的(的度的)的间的的的函的数的关的系的式的.的的(的1的)的根的据的图的象的,的阶的梯的电的价的方的案的分的为的三的个的档的次的,的填的写的下的表的:的的(的2的)的小的明的家的某的月的用的电的1的2的0的度的,的需的交的电的费的元的;的的(的3的)的求的第的二的档的每的月的电的费的y的(的元的)的与的用的电的量的x的(的度的)的之的间的的的函的数的关的系的式的;的的(的4的)的在的每的月的用的电的量的超的过的2的3的0的度的时的,的每的多的用的1的度的电的要的比的第的二的档的多的付的电的费的m的元的,的小的刚的家的某的月的用的电的2的9的0的度的,的交的电的费的1的5的3的元的,的求的m的的的值的.的的思的路的分的析的:的(的1的)的利的用的函的数的图的象的可的以的得的出的,的阶的梯的电的价的方的案的分的为的三的个的档的次的,的利的用的横的坐的标的可的得的出的:的第的二的档的,的第的三的档的中的x的的的取的值的范的围的;的的(的2的)的根的据的第的一的档的范的围的是的:的0的<的x的≤的1的4的0的,的利的用的图的象的上的点的的的坐的标的得的出的解的析的式的,的进的而的得的出的x的=的1的2的0的时的,的求的出的y的的的值的;的的(的3的)的设的第的二的档的每的月的电的费的y的(的元的)的与的用的电的量的x的(的度的)的之的间的的的函的数的关的系的式的为的:的y的=的a的x的+的c的,的将的(的1的4的0的,的6的3的)的,的(的2的3的0的,的1的0的8的)的代的入的得的出的即的可的;的的(的4的)的分的别的求的出的第的二的、的三的档的每的度的电的的的费的用的,的进的而的得的出的m的的的值的即的可的.的的解的:的(的1的)的利的用的函的数的图的象的可的以的得的出的,的阶的梯的电的价的方的案的分的为的三的个的档的次的,的利的用的横的坐的标的可的得的出的:的的第的二的档的:的1的4的0的<的x的≤的2的3的0的,的第的三的档的x的>的2的3的0的;的的(的2的)的根的据的第的一的档的范的围的是的:的0的<的x的≤的1的4的0的,的的根的据的图的象的上的点的的的坐的标的得的出的:的设的解的析的式的为的:的y的=的k的x的,的将的(的1的4的0的,的6的3的)的代的入的得的出的:的k的=的=的0的.的4的5的,的的故的y的=的0的.的4的5的x的,的的当的x的=的1的2的0的,的y的=的0的.的4的5的×的1的2的0的=的5的4的(的元的)的,的的故的答的案的为的:的5的4的;的的(的3的)的设的第的二的档的每的月的电的费的y的(的元的)的与的用的电的量的x的(的度的)的之的间的的的函的数的关的系的式的为的:的y的=的a的x的+的c的,的的将的(的1的4的0的,的6的3的)的,的(的2的3的0的,的1的0的8的)的代的入的得的出的:的的的的的,的的解的得的:的的,的的则的第的二的档的每的月的电的费的y的(的元的)的与的用的电的量的x的(的度的)的之的间的的的函的数的关的系的式的为的:的y的=的x的-的7的(的1的4的0的<的x的≤的2的3的0的)的;的的(的4的)的根的据的图的象的可的得的出的:的用的电的2的3的0的度的,的需的要的付的费的1的0的8的元的,的用的电的1的4的0的度的,的需的要的付的费的6的3的元的,的的故的,的1的0的8的-的6的3的=的4的5的(的元的)的,的2的3的0的-的1的4的0的=的9的0的(的度的)的,的的4的5的÷的9的0的=的0的.的5的(的元的)的,的的则的第的二的档的电的费的为的0的.的5的元的/的度的;的的∵的小的刚的家的某的月的用的电的2的9的0的度的,。

初二数学复习资料4-全国历年中考题分类汇编-一次函数-含详细解析

初二数学复习资料4-全国历年中考题分类汇编-一次函数-含详细解析

初二数学复习资料4-全国历年中考题分类汇编一次函数一、选择题(本大题共16小题,共48.0分)1.均匀地向一个容器注水,最后将容器注满.在注水过程中,水的高度h随时间t的变化规律如图所示,这个容器的形状可能是()A. B. C. D.第1题图第3题图第4题图2.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校行驶路程s(单位:m)与时间t(单位:min)之间的关系的大致图象是()A. B. C. D.3.如图是王阿姨晚饭后步行的路程s(单位:m)与时间t(单位:min)的函数图象,其中曲线段AB是以B为顶点的抛物线一部分.下列说法不正确的是()A. 25min~50min,王阿姨步行的路程为800mB. 线段CD的函数解析式为s=32t+400(25≤t≤50)C. 5min~20min,王阿姨步行速度由慢到快D. 曲线段AB的函数解析式为s=−3(t−20)2+1200(5≤t≤20)4.如图,四边形ABCD的顶点坐标分别为A(−4,0),B(−2,−1),C(3,0),D(0,3),当过点B的直线l将四边形ABCD分成面积相等的两部分时,直线l所表示的函数表达式为()A. y=1110x+65B. y=23x+13C. y=x+1D. y=54x+325.一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6. 如图,已知正△ABC 的边长为2,E 、F 、G 分别是AB 、BC 、CA 上的点,且AE =BF =CG ,设△EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是( )A. B. C. D.第6题图 第9题图 第10题图7. 在平面直角坐标系中,任意两点A(x 1,y 1),B(x 2,y 2),规定运算:①A ⊕B =(x 1+x 2,y 1+y 2);②A ⊗B =x 1x 2+y 1y 2;③当x 1=x 2且y 1=y 2时,A =B ,有下列四个命题:(1)若A(1,2),B(2,−1),则A ⊕B =(3,1),A ⊗B =0;(2)若A ⊕B =B ⊕C ,则A =C ;(3)若A ⊗B =B ⊗C ,则A =C ;(4)对任意点A 、B 、C ,均有(A ⊕B)⊕C =A ⊕(B ⊕C)成立,其中正确命题的个数为( )A. 1个B. 2个C. 3个D. 4个8. 已知一次函数y =kx +b(k,b 为常数,k ≠0)的图象经过一、三、四象限,则下列结论正确的是( )A. kb >0B. kb <0C. k +b >0D. k +b <09. “漏壶”是一种古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用x 表示漏水时间,y 表示壶底到水面的高度,下列图象适合表示y 与x 的对应关系的是( )A. B. C. D.10. 矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),D 是OA 的中点,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为( )A. (3,1)B. (3,43)C. (3,53) D. (3,2)11.点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映面积S与x之间的函数关系式的图象是()A. B. C. D.12.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t 变化的函数图象大致是()A. B. C. D.第12题图第13题图第14题图13.如图,在平面直角坐标系中,已知A(−3,−2),B(0,−2),C(−3,0),M是线段AB上的一个动点,连接CM,过点M作MN⊥MC交y轴于点N,若点M、N在直线y=kx+b上,则b的最大值是()A. −78B. −34C. −1D. 014.如图,正方形ABCD的边长为2cm,动点P,Q同时从点A出发,在正方形的边上,分别按A→D→C,A→B→C的方向,都以1cm/s的速度运动,到达点C运动终止,连接PQ,设运动时间为xs,△APQ的面积为ycm2,则下列图象中能大致表示y与x的函数关系的是()A. B. C. D.15.某通讯公司提供了两种移动电话收费方式:方式1,收月基本费20元,再以每分钟0.1元的价格按通话时间计费;方式2,收月基本费20元,送80分钟通话时间,超过80分钟的部分,以每分钟0.15元的价格计费.下列结论:①如图描述的是方式1的收费方法;②若月通话时间少于240分钟,选择方式2省钱;③若月通讯费为50元,则方式1比方式2的通话时间多;④若方式1比方式2的通讯费多10元,则方式1比方式2的通话时间多100分钟.其中正确的是()A. 只有①②B. 只有③④C. 只有①②③D. ①②③④第15题图第16题图16.平面直角坐标系中,A(3,3)、B(0,5).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A. 3B. 4C. 5D. 7二、填空题(本大题共11小题,共33.0分)x时,x的取值范围为______.17.如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b<13第17题图第20题图18.已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为______.19.若点M(k−1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k−1)x+k的图象不经过第______象限.20.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是______.21.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为______.第21题图第22题图第23题图22.周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A地出发前往B地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的85继续骑行,经过一段时间,甲先到达B地,乙一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚______分钟到达B地.23.已知A、B、C、D是平面坐标系中坐标轴上的点,且△AOB≌△COD.设直线AB的表达式为y1=k1x+b1,直线CD的表达式为y2=k2x+b2,则k1⋅k2=______.24.如图所示,已知点C(1,0),直线y=−x+7与两坐标轴分别交于A,B两点,D,E分别是AB,OA上的动点,则△CDE周长的最小值是______.第24题图第25题图第26题图25.如图,在平面直角坐标系中,点O为坐标原点,△ABC是边长为16的正三角形,点A、B分别在x轴的正半轴、y轴的正半轴上滑动,点C在第一象限,连接OC,则线段OC的长的最大值是:________________.26.如图,A、B两点在坐标平面上,已知A(−127,0),B(0,−187),那么直线AB关于y轴对称的直线解析式为______________.27.如图,有一种动画程序,屏幕上正方形ABCD是黑色区域(含正方形边界),其中A(1,1)、B(2,1)、C(2,2)、D(1,2).用信号枪沿直线y=−2x+b发射信号.当信号遇到黑色区域时,区域便由黑变白,则能够使黑色区域变白的b的取值范围是___________.三、计算题(本大题共1小题,共6.0分)28.一汽车租赁公司拥有某种型号的汽车100辆.公司在经营中发现每辆车的月租金x(元)与每月租出的车辆数(y)有如下关系:x3O00320035004000y100969080(1)观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识求出每月租出的车辆数y(辆)与每辆车的月租金x(元)之间的关系式.(2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.用含x(x≥3000)的代数式填表:租出的车辆数______ 未租出的车辆数______租出每辆车的月收益______ 所有未租出的车辆每月的维护费______(3)若你是该公司的经理,你会将每辆车的月租金定为多少元,才能使公司获得最大月收益?请求出公司的最大月收益是多少元.四、解答题(本大题共8小题,共64.0分)29.某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元,平均月销售量为y件.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)当销售单价为多少元时,销售这种童装每月可获利1800元?(3)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?30.某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x之间的函数关系式和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?31.如图,一次函数y=kx+b(k≠0)的图象与x轴,y轴分别交于A(−9,0),B(0,6)两点,过点C(2,0)作直线l与BC垂直,点E在直线l位于x轴上方的部分.(1)求一次函数y=kx+b(k≠0)的表达式;(2)若△ACE的面积为11,求点E的坐标;(3)当∠CBE=∠ABO时,点E的坐标为______.32.如图:一次函数y=−34x+3的图象与坐标轴交于A、B两点,点P是函数y=−34x+3(0<x<4)图象上任意一点,过点P作PM⊥y轴于点M,连接OP.(1)当AP为何值时,△OPM的面积最大?并求出最大值;(2)当△BOP为等腰三角形时,试确定点P的坐标.33.在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=−k分别交于点A,B,直线x=k与直线y=−k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.34.A,B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发.图中l1,l2表示两人离A地的距离s(km)与时间t(ℎ)的关系,请结合图象解答下列问题:(1)表示乙离A地的距离与时间关系的图象是____(填l1或l2);甲的速度是____km/ℎ,乙的速度是____km/ℎ;(2)甲出发多少小时两人恰好相距5km?35.已知一次函数y=2x−4的图象与x轴、y轴分别相交于点A、B,点P在该函数的图象上,P到x轴、y轴的距离分别为d1、d2.(1)当P为线段AB的中点时,求d1+d2的值;(2)直接写出d1+d2的范围,并求当d1+d2=3时点P的坐标;(3)若在线段AB上存在无数个P点,使d1+ad2=4(a为常数),求a的值.36.如图,在平面直角坐标系中,边长为2的正方形ABCD在第一象限内,AD//y轴,点A的坐标为(5,3),已知x−2.直线l:y=12(1)将直线l向上平移m个单位,使平移后的直线恰好经过点A,求m的值;(2)在(1)的条件下,平移后的直线与正方形的边长BC交于点E,求△ABE的面积.答案和解析1.【答案】D【解析】解:注水量一定,从图中可以看出,OA 上升较快,AB 上升较慢,BC 上升最快,由此可知这个容器下面容积较大,中间容积最大,上面容积最小,故选D .根据每一段图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.本题考查利用图象反映变量间的关系,正确理解图象所表示的意义是解题的关键,注意容器粗细和水面高度变化的关系.2.【答案】B【解析】【解答】解:根据题意得:小刚从家到学校行驶路程s(单位:m)与时间t(单位:min)之间关系的大致图象是故选:B .【分析】此题考查了用图象反映变量之间的关系,由图象理解对应变量间的关系及其实际意义是解本题的关键. 根据小刚行驶的路程与时间的关系,确定出图象即可.3.【答案】C【解析】【分析】本题考查了二次函数的应用,一次函数的应用,正确的识别图象、数形结合是解题的关键.根据函数图象中的信息,利用数形结合求相关线段的解析式解答即可.【解答】解:A.25min ~50min ,王阿姨步行的路程为2000−1200=800m ,故A 正确;B .设线段CD 的函数解析式为s =kt +b ,把(25,1200),(50,2000)代入得,{1200=25k +b 2000=50k +b, 解得:{k =32b =400,∴线段CD的函数解析式为s=32t+400(25≤t≤50),故B正确;C.在A点的速度为5255=105m/min,在B点的速度为1200−52520−5=67515=45m/min,速度从快变慢,故C错误;D.当t=5,20时,由图象可得s=525,1200m,将t=5,20分别代入s=−3(t−20)2+1200(5≤t≤20)得s= 525,s=1200,故D正确.故选C.4.【答案】D【解析】【解答】解:由A(−4,0),B(−2,−1),C(3,0),D(0,3),∴AC=7,DO=3,∴四边形ABCD面积=12×AC×(|y B|+3)=12×7×4=14,可求CD的直线解析式为y=−x+3,设过B的直线l为y=kx+b,将点B代入解析式得y=kx+2k−1,∴直线CD与该直线的交点为(4−2kk+1,5k−1k+1),直线y=kx+2k−1与x轴的交点为(1−2kk,0),∴7=12×(3−1−2kk)×(5k−1k+1+1),∴k=54∴直线解析式为y=54x+32;故选:D.【分析】本题考查一次函数的解析式求法;掌握平面内点的坐标与四边形面积的关系,熟练待定系数法求函数解析式的方法是解题的关键.由已知点可求四边形ABCD的面积=12×AC×(|y B|+3)=12×7×4=14;求出CD的直线解析式为y=−x+3,设过B的直线l为y=kx+b,并求出两条直线的交点,直线l与x轴的交点坐标,根据面积有7=12×(3−1−2k k )×(5k−1k+1+1),即可求k;5.【答案】A【解析】【分析】本题考查了一次函数的性质.能够根据k,b的符号正确判断直线所经过的象限.根据y随x的增大而减小得:k< 0,又kb>0,则b<0.再根据k,b的符号判断直线所经过的象限.【解答】解:根据y随x的增大而减小得:k<0,又kb>0,则b<0,故此函数的图象经过第二、三、四象限,即不经过第一象限.故选:A.6.【答案】D【解析】【分析】本题考查动点问题的函数图象问题,用图象解决问题时,要理清图象的含义即会识图.根据题意,易得△AEG、△BEF、△CFG三个三角形全等,且在△AEG中,AE=x,AG=2−x;可得△AEG的面积y与x的关系;进而可判断出y关于x的函数的图象的大致形状.【解答】解:根据题意,有AE=BF=CG,且正三角形ABC的边长为2,故BE=CF=AG=2−x;故△AEG、△BEF、△CFG三个三角形全等.在△AEG中,AE=x,AG=2−x.则S△AEG=12AE×AG×sinA=√34x(2−x);故y=S△ABC−3S△AEG=√3−3×√34x(2−x)=√34(3x2−6x+4).故可得其大致图象应类似于抛物线,且抛物线开口方向向上;故选:D.7.【答案】C【解析】【分析】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理,也考查了阅读理解能力.(1)根据新定义可计算出A⊕B=(3,1),A⊗B=0;(2)设C(x3,y3),根据新定义得A⊕B=(x1+x2,y1+y2),B⊕C=(x2+x3,y2+y3),则x1+x2=x2+x3,y1+ y2=y2+y3,于是得到x1=x3,y1=y3,然后根据新定义即可得到A=C;(3)由于A⊗B=x1x2+y1y2,B⊗C=x2x3+y2y3,则x1x2+y1y2=x2x3+y2y3,不能得到x1=x3,y1=y3,所以A≠C;(4)根据新定义可得(A⊕B)⊕C=A⊕(B⊕C)=(x1+x2+x3,y1+y2+y3).【解答】解:(1)A⊕B=(1+2,2−1)=(3,1),A⊗B=1×2+2×(−1)=0,所以(1)正确;(2)设C(x3,y3),A⊕B=(x1+x2,y1+y2),B⊕C=(x2+x3,y2+y3),而A⊕B=B⊕C,所以x1+x2=x2+x3,y1+y2=y2+y3,则x1=x3,y1=y3,所以A=C,所以(2)正确;(3)A⊗B=x1x2+y1y2,B⊗C=x2x3+y2y3,而A⊗B=B⊗C,则x1x2+y1y2=x2x3+y2y3,不能得到x1=x3,y1=y3,所以A≠C,所以(3)不正确;(4)因为(A⊕B)⊕C=(x1+x2+x3,y1+y2+y3),A⊕(B⊕C)=(x1+x2+x3,y1+y2+y3),所以(A⊕B)⊕C=A⊕(B⊕C),所以(4)正确.故选:C.8.【答案】B【解析】解:y=kx+b的图象经过一、三、四象限,∴k>0,b<0,∴kb<0;故选:B.根据一次函数经过一、三、四象限,可知k>0,b<0,即可求得答案;本题考查一次函数的图象与系数的关系;熟练掌握函数图象及性质是解题的关键.9.【答案】A【解析】解:∵不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,x表示漏水时间,y表示壶底到水面的高度,∴y随x的增大而减小,符合一次函数图象,故选:A.根据题意,可知y随x的增大而减小,符合一次函数图象,从而可以解答本题.本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.【解析】【分析】本题考查矩形的性质、坐标与图形的性质、轴对称−最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.如图,作点D关于直线AB的对称点H,连接CH 与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.,0),A(3,0),∵D(32,0),∴H(92x+4,∴直线CH解析式为y=−89∴x=3时,y=4,3).∴点E坐标是(3,43故选B.11.【答案】C【解析】解:∵点P(x,y)在第一象限内,且x+y=6,∴y=6−x(0<x<6,0<y<6).∵点A的坐标为(4,0),×4×(6−x)=−2x+12(0<x<6),∴S=12∴C符合.故选:C.先用x表示出y,再利用三角形的面积公式即可得出结论.本题考查的是一次函数的图象,在解答此题时要注意x,y的取值范围.【解析】解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;故选:B.根据点P在AD、DE、EF、FG、GB上时,△ABP的面积S与时间t的关系确定函数图象.本题考查的是动点问题的函数图象,正确分析点P在不同的线段上△ABP的面积S与时间t的关系是解题的关键.13.【答案】A【解析】解:连接AC,则四边形ABOC是矩形,∴∠A=∠ABO=90°,又∵MN⊥MC,∴∠CMN=90°,∴∠AMC=∠MNB,∴△AMC∽△BNM,∴ACMB =AMBN,设BN=y,AM=x.则MB=3−x,ON=2−y,∴23−x =xy,即:y=−12x2+32x∴当x=−b2a =−322×(−12)=32时,y最大=−12×(32)2+32×32=98,∵直线y=kx+b与y轴交于N(0,b)当BN最大,此时ON最小,点N(0,b)越往上,b的值最大,∴ON=OB−BN=2−98=78,此时,N(0,−78)b 的最大值为−78. 故选:A .当点M 在AB 上运动时,MN ⊥MC 交y 轴于点N ,此时点N 在y 轴的负半轴移动,定有△AMC∽△BNM ;只要求出ON 的最小值,也就是BN 最大值时,就能确定点N 的坐标,而直线y =kx +b 与y 轴交于点N(0,b),此时b 的值最大,因此根据相似三角形的对应边成比例,设未知数构造二次函数,通过求二次函数的最值得以解决. 本题综合考查相似三角形的性质、二次函数的性质、二次函数的最值以及一次函数的性质等知识;构造相似三角形、利用二次函数的最值是解题的关键所在. 14.【答案】A【解析】【分析】根据题意结合图形,分情况讨论:①0≤x ≤2时,根据S △APQ =12AQ ⋅AP ,列出函数关系式,从而得到函数图象;②2≤x ≤4时,根据S △APQ =S 正方形ABCD −S △CP′Q′−S △ABQ′−S △AP′D 列出函数关系式,从而得到函数图象,再结合四个选项即可得解.本题考查了动点问题的函数图象,根据题意,分别求出两个时间段的函数关系式是解题的关键.【解答】解:①当0≤x ≤2时,∵正方形的边长为2cm ,∴y =S △APQ =12AQ ⋅AP =12x 2; ②当2≤x ≤4时,y =S △APQ=S 正方形ABCD −S △CP′Q′−S △ABQ′−S △AP′D ,=2×2−12(4−x)2−12×2×(x −2)−12×2×(x −2) =−12x 2+2x 所以,y 与x 之间的函数关系可以用两段二次函数图象表示,纵观各选项,只有A 选项图象符合.故选:A .15.【答案】C【解析】解:根据题意得:方式1的函数解析式为y =0.1x +20,方式2的函数解析式为y ={y =20 (x ≤80)y =20+0.15⋅(x −80) (x >80),①方式1的函数解析式是一条直线,方式2的函数解析式是分段函数,所以如图描述的是方式1的收费方法,另外,当x=80时,方式1是28元,方式2是20元,故①说法正确;②0.1x+20>20+0.15×(x−80),解得x<240,故②的说法正确;③当y=50元时,方式1:0.1x+20=50,解得x=300分钟,方式2:20+0.15×(x−80)=50,解得x=280分钟,故③说法正确;④(1)当方式2:x≤80,y2=0;方式1:x≤180,y1=0.1x1+20;若方式1比方式2的通讯费多10元,则方式1比方式2的通话时间多100分钟,则y1=20+10=30,x1=100,∴x1−x2=100−x2<100,(2)当方式2:x2>80,y2=20+0.15×(x2−80),则x2=203y2−1603,方式1:y1=0.1x1+20,若方式1比方式2的通讯费多10元,则y1=y2+10,∴x1=10y2−100,∴x1−x2=10y2−100−203y2−1603=103y2−4603,令x1−x2=100,∴y2=76,y1=86;∴有且只有方式1费用为86元,方式2费用为76元时,方式1比方式2的通话时间多100分钟;故④错误;故选:C.根据收费标准,可得相应的函数解析式,根据函数解析式的比较,可得答案.本题考查了一次函数的应用,根据题意得出函数解析式是解题关键.16.【答案】D【解析】【分析】本题考查等腰三角形的性质,解题的关键是根据等腰三角形的性质分三种情况进行讨论,本题属于中等题型.由于没有说明△ABC的腰长,故需要分三种情况进行讨论,分别是AB=AC,AB=BC,AC=BC.【解答】解:如图,当AC=CB时,作AB的垂直平分线,交x轴于C1,交y轴于点C2,当AB=AC时,以点A为圆心,AB为半径作圆A,交y轴于C3,交x轴于C4、C5,当AB=BC时,以点B为圆心,AB为半径作圆B,交y轴于点C6、C7,故选D.17.【答案】x>3x也经过点A,【解析】解:∵正比例函数y=13x的解集为x>3,∴kx+b<13故答案为:x>3.x也经过点A从而确定不等式的解集.根据直线y=kx+b(k<0)经过点A(3,1),正比例函数y=13本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.利用数形结合是解题的关键.18.【答案】y=−5x+5【解析】解:∵点P(1,2)关于x轴的对称点为P′,∴P′(1,−2),∵P′在直线y=kx+3上,∴−2=k+3,解得:k=−5,则y=−5x+3,∴把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=−5x+5.故答案为:y=−5x+5.直接利用关于x轴对称点的性质得出P′点坐标,再求出k的值,再利用一次函数平移的性质得出答案.此题主要考查了一次函数图形与几何变换,正确掌握平移规律是解题关键.19.【答案】一【解析】解:∵点M(k−1,k+1)关于y轴的对称点在第四象限内,∴点M(k−1,k+1)位于第三象限,∴k−1<0且k+1<0,解得:k<−1,∴k<0,k−1<0,∴y=(k−1)x+k经过第二、三、四象限,不经过第一象限,故答案为:一.首先确定点M所处的象限,然后确定k和k−1的符号,从而确定一次函数所经过的象限,得到答案.本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0,b<0时,函数图象经过二、三、四象限.20.【答案】x=2【解析】解:∵一次函数y=ax+b的图象与x轴相交于点(2,0),∴关于x的方程ax+b=0的解是x=2.故答案为x=2.一次函数y=ax+b的图象与x轴交点横坐标的值即为方程ax+b=0的解.本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.21.【答案】(2,4)或(3,4)或(8,4)【解析】解:由题意,当△ODP是腰长为5的等腰三角形时,有三种情况:(1)如答图①所示,PD=OD=5,点P在点D的左侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理得:DE=√PD2−PE2=√52−42=3,∴OE=OD−DE=5−3=2,∴此时点P坐标为(2,4);(2)如答图②所示,OP=OD=5.过点P作PE⊥x轴于点E,则PE=4.在Rt△POE中,由勾股定理得:OE=√OP2−PE2=√52−42=3,∴此时点P坐标为(3,4);(3)如答图③所示,PD=OD=5,点P在点D的右侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理得:DE=√PD2−PE2=√52−42=3,∴OE=OD+DE=5+3=8,∴此时点P坐标为(8,4).综上所述,点P的坐标为:(2,4)或(3,4)或(8,4);故答案为:(2,4)或(3,4)或(8,4);当△ODP是腰长为5的等腰三角形时,有三种情况,需要分类讨论.本题考查了分类讨论思想在几何图形中的应用,符合题意的等腰三角形有三种情形,注意不要遗漏.22.【答案】12【解析】解:由题意乙的速度为1500÷5=300(米/分),设甲的速度为x米/分.则有:7500−20x=2500,解得x=250,25分钟后甲的速度为250×85=400(米/分).由题意总里程=250×20+61×400=29400(米),86分钟乙的路程为86×300=25800(米),∴29400−25800300=12(分钟).故答案为12.首先确定甲乙两人的速度,求出总里程,再求出甲到达B地时,乙离B地的距离即可解决问题.本题考查一次函数的应用,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考填空题中的压轴题.23.【答案】1【解析】解:设点A(0,a)、B(b,0),∴OA=a,OB=−b,∵△AOB≌△COD,∴OC=a,OD=−b,∴C(a,0),D(0,b),∴k1=OAOB =a−b,k2=ODOC=−ba,∴k1⋅k2=1,故答案为:1.根据A(0,a)、B(b,0),得到OA=a,OB=−b,根据全等三角形的性质得到OC=a,OD=−b,得到C(a,0),D(0,b),求得k1=a−b ,k2=−ba,即可得到结论.本题考查了两直线相交与平行,全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.24.【答案】10【解析】解:如图,点C 关于OA 的对称点C′(−1,0),点C 关于直线AB 的对称点C″,∵直线AB 的解析式为y =−x +7,∴直线CC″的解析式为y =x −1,由{y =−x +7y =x −1解得{x =4y =3, ∴直线AB 与直线CC″的交点坐标为K(4,3),∵K 是CC″中点,∴可得C″(7,6).连接C′C″与AO 交于点E ,与AB 交于点D ,此时△DEC 周长最小,△DEC 的周长=DE +EC +CD =EC′+ED +DC″=C′C″=√82+62=10.故答案为10.点C 关于OA 的对称点C′(−1,0),点C 关于直线AB 的对称点C″(7,6),连接C′C″与AO 交于点E ,与AB 交于点D ,此时△DEC 周长最小,可以证明这个最小值就是线段C′C″.本题考查轴对称−最短问题、两点之间距离公式等知识,解题的关键是利用对称性在找到点D 、点E 位置,属于中考常考题型.25.【答案】8+8√3【解析】【分析】本题考查了直角三角形斜边上的中线、等边三角形的性质以及三角形的三边关系,解题的关键是找出当点O 、C 、D 三点共线时OC 的长取最大值.本题属于基础题,难度不大,解决该题型题目时,利用数形结合解决问题是关键.取AB 的中点D ,连接OD 、CD ,根据直角三角形斜边上的中线以及等边三角形的性质,即可得出OD 、CD 的长度,再根据三角形的三边关系即可得出OC <OD +CD ,由此即可得出当点O 、C 、D 三点共线时,OC =OD =CD 的值最大,代入数据即可得出结论.【解答】解:取AB 的中点D ,连接OD 、CD ,如图所示.∵△AOB 为直角三角形,D 为AB 的中点,∴OD =12AB =8,∵△ABC 是边长为16的正三角形,D 为AB 的中点,∴CD =√32AB =8√3.在△OCD 中,OC <OD +CD .当点O 、C 、D 三点共线时,OC =OD +CD 最大,此时OC =8+8√3.故答案为8+8√3.26.【答案】y =32x −187【解析】【分析】本题考查了一次函数图象与几何变换.解答该题时,也可以先求得直线AB 的解析式,然后求直线AB 关于y 轴对称的直线的解析式.先求得关于y 轴对称的点A′、B′的坐标;然后由待定系数法求得函数解析式.【解答】解:点A(−127,0),B(0,−187)关于y 轴对称的点的坐标分别是A′(127,0),B′(0,−187), 设直线A′B′的解析式为y =kx −187(k ≠0). 则0=127k −187 解得k =32.所以故所求的函数解析式为:y =32x −187. 故答案为y =32x −187.27.【答案】3≤b ≤6【解析】解:由题意可知当直线y =−2x +b 经过A(1,1)时b 的值最小,即−2×1+b =1,b =3;当直线y =−2x +b 过C(2,2)时,b 最大即2=−2×2+b ,b =6,故能够使黑色区域变白的b 的取值范围为3≤b ≤6.根据题意确定直线y =−2x +b 经过哪一点b 最大,哪一点b 最小,然后代入求出b 的取值范围.本题是一次函数在实际生活中的运用,解答此类题目时一定要注意数形结合的运用.28.【答案】(1)由表格数据可知y 与x 是一次函数关系,设其解析式为y =kx +b .由题:{3000k +b =1003200k +b =96解之得:{k =−150b =160∴y与x间的函数关系是y=−150x+160.(2)−150x+160;150x−60;x−150;x−3000;(3)设租赁公司获得的月收益为W元,依题意可得:W=(−150x+160)(x−150)−(x−3000)=(−150x2+163x−24000)−(x−3000)=−150x2+162x−21000=−150(x−4050)2+307050当x=4050时,Wmax=307050,即:当每辆车的月租金为4050元时,公司获得最大月收益307050元.【解析】解:见答案.(2)如下表:故答案为:−150x+160;150x−60;x−150;x−3000;(3)见答案.(1)判断出y与x的函数关系为一次函数关系,再根据待定系数法求出函数解析式;(2)根据题意可用代数式求出出租车的辆数和未出租车的辆数即可.(3)租出的车的利润减去未租出车的维护费,即为公司最大月收益.本题考查了二次函数应用和一次函数应用,表示出(2)中的表达式是解题的关键.29.【答案】解:(1)由题意得:y=80+20×60−x10∴函数的关系式为:y=−2x+200(30≤x≤60)(2)由题意得:(x−30)(−2x+200)−450=1800−2x2+200x+60x−6000−450=1800−x2+130x−4125=0(x−55)(x−75)=0解得x1=55,x2=75(不符合题意,舍去)答:当销售单价为55元时,销售这种童装每月可获利1800元.。

中考复习——平面直角坐标系、一次函数、反比例函数及其图象 知识点汇总及典例分析

中考复习——平面直角坐标系、一次函数、反比例函数及其图象 知识点汇总及典例分析

中考复习——平面直角坐标系、一次函数、反比例函数【知识梳理】一、平面直角坐标系1. 坐标平面上的点与 有序实数对 构成一一对应;2. 各象限点的坐标的符号;3. 坐标轴上的点的坐标特征.4. 点P (a ,b )关于x 轴对称的点的坐标为 ;关于y 轴对称的点的坐标为 ;关于原点对称的点的坐标为5.两点之间的距离二、函数的概念1.概念:在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有 的值与它对应,那么就说x 是自变量,y 是x 的函数.2.自变量的取值范围: (1)使解析式 (2)实际问题具有 意义3.函数的表示方法; (1) (2) (3) 三、一次函数的概念、图象、性质1.正比例函数的一般形式是 ( ),一次函数的一般形式是 (k≠0). 2. 一次函数y kx b =+的图象是经过( , )和( , )两点的一条直线.4.若两个一次函数解析式中,k 相等,表示两直线 ;若两直线垂直,则 。

5.的大小决定直线的倾斜程度,越大,直线越 ;四、反比例函数的概念、图象、性质1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 或 (k 为常数,k≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质k >0,b >0k >0,b <0k <0,b >0k <0,21212211P P )0()0()2(y y y P y P -=, ,,,21212211P P )0()0()1(x x x P x P -=, , ,, 3.k 的几何含义:反比例函数y =k x(k≠0)中比例系数k 的几何意义,即过双曲线y =k x(k≠0)上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 。

【例题精讲】 例1.函数22y x =-中自变量x 的取值范围是 ;函数y =x 的取值范围是 .例2.已知点(13)A m -,与点(21)B n +,关于x 轴对称,则m = ,n = . 例3.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的 坐标为(8,0),点C 、D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,点C 的坐标为例4.一次函数y=(3a+2)x -(4-b),求满足下列条件的a 、b 的取值范围。

中考数学精选例题解析:一次函数(2)

中考数学精选例题解析:一次函数(2)

2 013中考数学精选例题解析:一次函数(2)知识考点:1、掌握抛物线解析式的三种常用形式,并会根据题目条件灵活运用,使问题简捷获解;2、会利用图像的对称性求解有关顶点、与x 轴交点、三角形等问题。

精典例题:【例1】已知抛物线c bx ax y ++=2与抛物线732+--=x x y 的形状相同,顶点在直线1=x 上,且顶点到x 轴的距离为5,则此抛物线的解析式为 。

解析:1±=a ,顶点(1,5)或(1,-5)。

因此5)1(2+-=x y 或5)1(2--=x y 或5)1(2+--=x y 或5)1(2---=x y 展开即可。

评注:此题两抛物线形状相同,有1-=a ,一般地,已知抛物线上三个点的坐标,选用一般式;已知抛物线的顶点坐标(或对称轴和最值),选顶点式;已知抛物线与x 轴两交点的坐标,选交点式。

【例2】如图是抛物线型的拱桥,已知水位在AB 位置时,水面宽64米,水位上升3米就达到警戒水位线CD ,这时水面宽34米,若洪水到来时,水位以每小时0.25米的速度上升,求水过警戒线后几小时淹到拱桥顶?解析:以AB 所在直线为x 轴,AB 的中点为原点,建立直角坐标系,则抛物线的顶点M 在y 轴上,且A (62-,0),B (62,0),C (32-,3),D (32,3),设抛物线的解析式为)62)(62(-+=x x a y ,代入D 点得6412+-=x y ,顶点M (0,6),所以1225.0)36(=÷-(小时)xy例2图 D CB AO x y 问题图 C B A O评注:本题是函数知识的实际应用问题,解决的关键是学会“数学模型”,并合理建立直角坐标系来解决实际问题。

探索与创新:【问题】如图,开口向上的抛物线c bx ax y ++=2与x 轴交于A (1x ,0)和B (2x ,0)两点,1x 和2x 是方程0322=-+x x 的两个根(21x x <),而且抛物线交y 轴于点C ,∠ACB 不小于900。

中考数学重难点专题13 一次函数的实际应用中最值问题(学生版)

中考数学复习重难点与压轴题型专项突围训练(全国通用版)专题13一次函数的实际应用中最值问题【典型例题】1.(2022·河南汝阳·九年级期末)为满足市场需求,某超市在新年来临前夕,购进一款商品,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,如果每盒售价每提高1元,则每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)要使每天销售的利润为6000元,且让顾客得到最大的实惠.售价应定为多少元?(3)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?【专题训练】一、解答题1.(2022·山东青岛·模拟预测)“菊润初经雨,橙香独占秋”,如图,橙子是一种甘甜爽口的水果,富含丰维生素C.某水果商城为了了解两种橙子市场销售情况,购进了一批数量相等的“血橙”和“脐橙”供客户对比品尝,其中购买“脐橙”用了420元,购买“血橙”用了756元,已知每千克“血橙”进价比每千克“脐橙”贵8元.(1)求每千克“血橙”和“脐橙”进价各是多少元?(2)若该水果商城决定再次购买同种“血橙”和“脐橙”共40千克,且再次购买的费用不超过600元,且每种橙子进价保持不变.若“血橙”的销售单价为24元,“脐橙”的销售单价为14元,则该水果商城应如何进货,使得第二批的“血橙”和“脐橙”售完后获得利润最大?最大利润是多少?2.(2022·山东莱芜·九年级期末)2022年冬奥会即将在北京召开,某网络经销商购进了一批以冬奥会为主题的文化衫进行销售,文化衫的进价每件40元,每月销售量y(件)与销售单价x(元)之间的函数关系如图所示,设每月获得的利润为W(元).(1)求出每月的销售量y(件)与销售单价x(元)之间的函数关系式;(2)这种文化衫销售单价定为多少元时,每月的销售利润最大?最大利润是多少元?(3)为了扩大冬奥会的影响,物价部门规定这种文化衫的销售单价不高于60元,该商店销售这种文化衫每月要获得最大利润,销售单价应定为多少元?每月的最大利润为多少元?3.(2022·河南·郑州中学九年级期末)冰墩墩(Bing Dwen Dwen),是2022年北京冬季奥运会的吉祥物.将熊猫形象与富有超能量的冰晶外壳相结合,头部外壳造型取自冰雪运动头盔,装饰彩色光环,整体形象酷似航天员.冬奥会来临之际,冰墩墩玩偶非常畅销.小冬在某网店选中A,B两款冰墩墩玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如表:(1)第一次小冬550元购进了A,B两款玩偶共30个,求两款玩偶各购进多少个.(2)第二次小冬进货时,网店规定A款玩偶进货数量不得超过B款玩偶进货数量的一半.小冬计划购进两款玩偶共30个,应如何设计进货方案才能获得最大利润,最大利润是多少?(3)小冬第二次进货时采取了(2)中设计的方案,并且两次购进的玩偶全部售出,请从利润率的角度分析,对于小冬来说哪一次更合算?(注:利润率=(利润÷成本)×100%).4.(2021·山东青岛·一模)某学校为进一步做好疫情防控工作,计划购进A,B两种口罩.已知每箱A种口罩比每箱B种口罩多10包,每箱A种口罩和每箱B种口罩的价格分别是630元和600元,而每包A种口罩和每包B种口罩的价格分别是这一批口罩平均每包价格的0.9倍和1.2倍.(1)求这一批口罩平均每包的价格是多少元.(2)如果购进A,B两种口罩共5500包,最多购进3500包A种口罩,为了使总费用最低,应购进A种口罩和B种口罩各多少包?总费用最低是多少元?5.(2022·江苏滨湖·八年级期末)小李在某网店选中A、B两款玩偶,确定从该网店进货并销售.两款玩偶的进货价和销售价如表:(1)第一次小李用1100元购进了A、B两款玩偶共30个,求两款玩偶各购进多少个?(2)第二次小李进货时,网店规定A款玩偶进货数量不得超过B款玩偶进货数量的一半,小李计划购进两款玩偶60个.设小李购进A款玩偶m个,售完两款玩偶共获得利润W元,问应如何设计进货方案才能获得最大利润?并求W的最大值.6.(2021·山东北区·一模)六一前夕,某商场采购A、B两种品牌的卡通笔袋,已知每个A品牌笔袋的进价,比每个B品牌笔袋的进价多2元;若用3000元购进A品牌笔袋的数量,与用2400元购进B品牌笔袋的数量相同.(1)求每个A品牌笔袋和每个B品牌笔袋的进价分别是多少元;(2)该商场计划用不超过7220元采购A、B两种品牌的笔袋共800个,且其中B品牌笔袋的数量不超过400个,求该商场共有几种进货方式;(3)若每个A品牌笔袋售价16元,每个B品牌笔袋售价12元,在第(1)(2)问的前提下,不计其他因素,将所采购的A、B两种笔袋全部售出,求该商场可以获得的最大利润为多少元.7.(2022·四川简阳·八年级期末)某校准备组织八年级280名学生和5名老师参加研学活动,已知用1辆小客车和2辆大客车每次可运送120人;用3辆小客车和1辆大客车每次可运送135人.(1)每辆小客车和每辆大客车各能坐多少人?(2)若学校计划租用小客车m辆,大客车n辆,一次送完,且恰好每辆车都坐满.①请你设计出所有的租车方案;②若小客车每辆需租金6000元,大客车每辆需租金7500元,总租金为W元,写出W与m的关系式,根据关系式选出最省钱的租车方案,并求出最少租金.8.(2022·山东城阳·八年级期末)七月份河南暴雨,鸿星尔克因捐款5000万爆红网络,为表达对品牌的支持,国人掀起购物潮.我区一家鸿星尔克门店有库存上衣和裤子共1450件,若上衣按每件获利50元卖,裤子按每件获利80元卖,则售完这些库存共可获利92000元.(1)该门店库存有上衣、裤子各多少件?。

中考数学专题复习《一次函数与反比例函数的综合》经典题型讲解

中考数学专题复习《一次函数与反比例函数的综合》经典题型讲解【经典母题】如图Z6-1是一个光学仪器上用的曲面横截面示意图,图中的曲线是一段反比例函数的图象,端点A的纵坐标为80,另一端点B的坐标为B(80,10).求这段图象的函数表达式和自变量的取值范围.【解析】利用待定系数法设出反比例函数的表达式后,代入点B的坐标即可求得反比例函数的表达式.解:设反比例函数的表达式为y=k x ,∵一个端点B的坐标为(80,10),∴k=80×10=800,∴反比例函数的表达式为y=800x.∵端点A的纵坐标为80,∴80=800x,x=10,∴点A的横坐标为10,∴自变量的取值范围为10≤x≤80.【思想方法】求反比例函数的表达式宜用待定系数法,设y=kx,把已知一点代入函数表达式求出k的值即可.【中考变形】1.已知正比例函数y=ax与反比例函数y=bx的图象有一个公共点A(1,2).(1)求这两个函数的表达式;图Z6-1(2)在图Z6-2中画出草图,根据图象写出正比例函数值大于反比例函数值时x 的取值范围.图Z6-2中考变形1答图解:(1)把A (1,2)代入y =ax ,得2=a , 即y =2x ;把A (1,2)代入y =b x ,得b =2,即y =2x ; (2)画草图如答图所示.由图象可知,当x >1或-1<x <0时,正比例函数值大于反比例函数值. 2.如图Z6-3,已知一次函数y =k 1x +b 与反比例函数y =k 2x 的图象交于第一象限内P ⎝ ⎛⎭⎪⎫12,8,Q (4,m )两点,与x 轴交于A 点.(1)分别求出这两个函数的表达式; (2)写出点P 关于原点的对称点P ′的坐标; (3)求∠P ′AO 的正弦值.图Z6-3【解析】①将P 点坐标代入反比例函数关系式,即可求出反比例函数表达式;将Q 点代入反比例函数关系式,即可求出m 的值;将P ,Q 两个点的坐标分别代入一次函数关系式,即可求出一次函数的表达式.②根据平面直角坐标系中,两点关于原点对称,则横、纵坐标互为相反数,可以直接写出点P ′的坐标;③过点P ′作P ′D ⊥x 轴,垂足为D ,可构造出′AD ,又∵点A 在一次函数的图象上,∴可求出点A 坐标,得到OA 长度,利用P ′ 点坐标,可以求出P ′D ,P ′A ,即可得到∠P ′AO 的正弦值. 解:(1)∵点P 在反比例函数的图象上,∴把点P ⎝ ⎛⎭⎪⎫12,8代入y =k 2x ,得k 2=4,∴反比例函数的表达式为y =4x ,∴Q 点坐标为(4,1).把P ⎝ ⎛⎭⎪⎫12,8,Q (4,1)分别代入y =k 1x +b 中,得⎩⎨⎧8=12k 1+b ,1=4k 1+b ,解得⎩⎪⎨⎪⎧k 1=-2,b =9.∴一次函数的表达式为y =-2x +9; (2)P ′⎝ ⎛⎭⎪⎫-12,-8;(3)如答图,过点P ′作P ′D ⊥x 轴,垂足为D . ∵P ′⎝ ⎛⎭⎪⎫-12,-8,中考变形2答图∴OD =12,P ′D =8.∵点A 在y =-2x +9的图象上,∴点A 坐标为⎝ ⎛⎭⎪⎫92,0,即OA =92,∴DA =5,∴P ′A =P ′D 2+DA 2=89. ∴sin ∠P ′AD =P ′D P ′A =889=88989.∴sin ∠P ′AO =88989.3.[2017·成都]如图Z6-4,在平面直角坐标系xOy 中,已知正比例函数y =12x与反比例函数y =kx 的图象交于A (a ,-2),B 两点. (1)求反比例函数表达式和点B 的坐标;(2)P 是第一象限内反比例函数图象上一点,过点P 作y 轴的平行线,交直线AB 于点C ,连结PO ,若△POC 的面积为3,求点P 的坐标.图Z6-4 中考变形3答图解:(1)∵点A (a ,-2)在正比例函数y =12x 图象上, ∴-2=12a ,∴a =-4, ∴点A 坐标为(-4,-2).又∵点A 在反比例函数y =kx 的图象上, ∴k =xy =-4×(-2)=8, ∴反比例函数的表达式为y =8x .∵A ,B 既在正比例函数图象上,又在反比例函数图象上, ∴A ,B 两点关于原点O 中心对称, ∴点B 的坐标为(4,2);(2)如答图,设点P 坐标为⎝ ⎛⎭⎪⎫a ,8a (a >0),∵PC ∥y 轴,点C 在直线y =12x 上,∴点C 的坐标为⎝ ⎛⎭⎪⎫a ,12a ,∴PC =⎪⎪⎪⎪⎪⎪12a -8a =⎪⎪⎪⎪⎪⎪a 2-162a , ∴S △POC =12PC ·a =12⎪⎪⎪⎪⎪⎪a 2-162a ·a =⎪⎪⎪⎪⎪⎪a 2-164=3, 当a 2-164=3时,解得a =28=27, ∴P ⎝⎛⎭⎪⎫27,477. 当a 2-164=-3时,解得a =2,∴P (2,4).综上所述,符合条件的点P 的坐标为⎝⎛⎭⎪⎫27,477,(2,4). 4.如图Z6-5,一次函数y =kx +b 与反比例函数y =mx 的图象交于A (1,4),B (4,n )两点.(1)求反比例函数的表达式; (2)求一次函数的表达式;(3)P 是x 轴上的一个动点,试确定点P 并求出它的坐标,使得P A +PB 最小.图Z6-5解:(1)∵点A (1,4)在函数y =mx 上, ∴m =xy =4,∴反比例函数的表达式为y =4x ; (2)把B (4,n )代入y =4x ,4=xy =4n ,得n =1, ∴B (4,1),∵直线y =kx +b 经过A ,B , ∴⎩⎪⎨⎪⎧4=k +b ,1=4k +b ,解得⎩⎪⎨⎪⎧k =-1,b =5, ∴一次函数的表达式为y =-x +5; (3)点B 关于x 轴的对称点为B ′(4,-1), 设直线AB ′的表达式为y =ax +q , ∴⎩⎪⎨⎪⎧4=a +q ,-1=4a +q ,解得⎩⎪⎨⎪⎧a =-53,q =173,∴直线AB ′的表达式为y =-53x +173, 令y =0,解得x =175,∴当点P 的坐标为⎝ ⎛⎭⎪⎫175,0时,P A +PB 最小.5.[2017·广安]如图Z6-6,一次函数y =kx +b 的图象与反比例函数y =mx 的图象在第一象限交于点A (4,2),与y 轴的负半轴交于点B ,图Z6-6且OB =6.(1)求函数y =mx 和y =kx +b 的表达式.(2)已知直线AB 与x 轴相交于点C .在第一象限内,求反比例函数y =mx 的图象上一点P ,使得S △POC =9.解:(1)∵点A (4,2)在反比例函数y =mx 的图象上, ∴m =4×2=8,∴反比例函数的表达式为y =8x . ∵点B 在y 轴的负半轴上,且OB =6, ∴点B 的坐标为(0,-6),把点A (4,2)和点B (0,-6)代入y =kx +b 中, 得⎩⎪⎨⎪⎧4k +b =2,b =-6,解得⎩⎪⎨⎪⎧k =2,b =-6. ∴一次函数的表达式为y =2x -6; (2)设点P 的坐标为⎝ ⎛⎭⎪⎫n ,8n (n >0).在直线y =2x -6上,当y =0时,x =3, ∴点C 的坐标为(3,0),即OC =3, ∴S △POC =12×3×8n =9,解得n =43. ∴点P 的坐标为⎝ ⎛⎭⎪⎫43,6.6.[2017·黄冈]如图Z6-7,一次函数y =-2x +1与反比例函数y =kx 的图象有两个交点A (-1,m )和B ,过点A 作AE ⊥x 轴,垂足为E ;过点B 作BD ⊥y 轴,垂足为D ,且点D 的坐标为(0,-2),连结DE . (1)求k 的值;(2)求四边形AEDB 的面积.图Z6-7 中考变形6答图解:(1)将点A (-1,m )代入一次函数y =-2x +1, 得-2×(-1)+1=m ,解得m =3.∴A 点的坐标为(-1,3).将A (-1,3)代入y =kx ,得k =(-1)×3=-3;(2)如答图,设直线AB 与y 轴相交于点M ,则点M 的坐标为(0,1), ∵D (0,-2),则点B 的纵坐标为-2,代入反比例函数,得DB =32, ∴MD =3.又∵A (-1,3),AE ∥y 轴, ∴E (-1,0),AE =3. ∴AE ∥MD ,AE =MD .∴四边形AEDM 为平行四边形. ∴S 四边形AEDB =S ▱AEDM +S △MDB =3×1+12×32×3=214.7.[2016·金华]如图Z6-8,直线y =33x -3与x ,y 轴分别交于点A ,B ,与反比例函数y =kx (k >0)的图象交于点C ,D ,过点A 作x 轴的垂线交该反比例函数图象于点E . (1)求点A 的坐标;(2)若AE =AC ,①求k 的值;②试判断点E 与点D 是否关于原点O 成中心对称?并说明理由.图Z6-8中考变形7答图解:(1)当y =0时,得0=33x -3,解得x =3. ∴点A 的坐标为(3,0);(2)①如答图,过点C 作CF ⊥x 轴于点F .设AE =AC =t ,点E 的坐标是(3,t ),则反比例函数y =k x 可表示为y =3tx . ∵直线y =33x -3交y 轴于点B , ∴B (0,-3).在Rt △AOB 中,tan ∠OAB =OB OA =33, ∴∠OAB =30°.在Rt △ACF 中,∠CAF =30°, ∴CF =12t ,AF =AC ·cos30°=32t ,∴点C 的坐标是⎝⎛⎭⎪⎫3+32t ,12t .∴⎝⎛⎭⎪⎫3+32t ×12t =3t ,解得t 1=0(舍去),t 2=2 3. ∴k =3t =6 3.②点E 的坐标为()3,23,设点D 的坐标是⎝ ⎛⎭⎪⎫x ,33x -3,∴x ⎝ ⎛⎭⎪⎫33x -3=63,解得x 1=6(舍去),x 2=-3, ∴点D 的坐标是()-3,-23, ∴点E 与点D 关于原点O 成中心对称. 【中考预测】如图Z6-9,一次函数y =kx +b (k ,b 为常数,k ≠0)的图象与x 轴,y 轴分别交于A ,B 两点,且与反比例函数y =nx (n 为常数且n ≠0)的图象在第二象限交于点C ,CD ⊥x 轴,垂足为D ,若OB =2OA =3OD =6. (1)求一次函数与反比例函数的表达式; (2)求两函数图象的另一个交点的坐标;(3)直接写出不等式kx +b ≤nx 的解集.图Z6-9解:(1)∵OB =2OA =3OD =6, ∴OB =6,OA =3,OD =2, ∵CD ⊥DA ,∴DC ∥OB , ∴OB DC =AO AD ,∴6DC =35, ∴DC =10,∴C (-2,10),B (0,6),A (3,0), 代入一次函数y =kx +b , 得⎩⎪⎨⎪⎧b =6,3k +b =0,解得⎩⎪⎨⎪⎧k =-2,b =6, ∴一次函数的表达式为y =-2x +6. ∵反比例函数y =nx 经过点C (-2,10), ∴n =-20,∴反比例函数的表达式为y =-20x ;(2)由⎩⎨⎧y =-2x +6,y =-20x ,解得⎩⎪⎨⎪⎧x =-2,y =10或⎩⎪⎨⎪⎧x =5,y =-4, ∴另一个交点坐标为(5,-4);(3)由图象可知kx +b ≤nx 的解集为-2≤x <0或x ≥5.。

中考数学压轴题揭秘专题06一次函数问题试题(附答案)

中考数学压轴题揭秘专题06一次函数问题试题(附答案)中考数学压轴题揭秘专题06一次函数问题试题(附答案)专题06一次函数的应用问题[典例分析][考点1]行程问题[例1](·浙江中考真题)某校的甲、乙两位老师同住一小区,该小区与学校相距2400米. 甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,途经学校义骑行若干米到达还车点后,立即步行走回学校. 已知甲步行的速度比乙步行的速度每分钟快5米. 设甲步行的时间为(分),图1中线段和折线分别表示甲、乙的距离(米)与甲步行时间(分)的函数关系的图象(不完整).根据图1和图2中所给信息,解答下列问题:(1)求甲步行的速度和乙出发时甲离开小区的路程;(2)求乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;(3)在图2中,画出当时关于的函数的大致图象. (温馨提示:请画在答题卷相对应的图上)[答案](1)甲步行的速度是80 米/分,乙出发时甲离开小区的路程是800 米;(2)乙到达还车点时,甲、乙两人之间的距离是700 米;(3)图象如图所示见解析.[解析](1)根据函数图象中的数据可以求得甲步行的速度和乙出发时甲离开小区的路程;(2)根据函数图象中的数据可以求得OA的函数解析式,然后将x=18代入OA 的函数解析式,即可求得点E的纵坐标,进而可以求得乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;(3)根据题意可以求得乙到达学校的时间,从而可以函数图象补充完整.[详解](1)由题意,得:甲步行的速度是(米/分),∴乙出发时甲离开小区的路程是(米).(2)设直线的解析式为: ,∵直线过点,∴ ,解得,∴直线的解析式为: .∴当时,,∴乙骑自行车的速度是(米/分). ∵乙骑自行车的时间为(分),∴乙骑自行车的路程为(米). 当时,甲走过的路程是(米),∴乙到达还车点时,甲、乙两人之间的距离是(米).(3)乙步行的速度为:80-5=75(米/分),乙到达学校用的时间为:25+(2700-2400)÷75=29(分),当25≤x≤30时s关于x的函数的大致图象如图所示.[点睛]本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.[变式1-1](·山东中考真题)小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离与小王的行驶时间之间的函数关系.请你根据图象进行探究:(1)小王和小李的速度分别是多少?(2)求线段所表示的与之间的函数解析式,并写出自变量的取值范围.[答案](1)小王和小李的速度分别是、;(2).[解析] 根据题意和函数图象中的数据可以分别求得王和小李的速度;根据中的结果和图象中的数据可以求得点C的坐标,从而可以解答本题.[详解]解:(1)由图可得,小王的速度为:,小李的速度为:,答:小王和小李的速度分别是、;(2)小李从乙地到甲地用的时间为:,当小李到达甲地时,两人之间的距离为:,∴点的坐标为,设线段所表示的与之间的函数解析式为,,解得,即线段所表示的与之间的函数解析式是.[点睛]本题考查一次函数的应用,解答本题的关键是明确坐标轴中xy所表示的对象量,利用一次函数的性质和数形结合的思想解答.[变式1-2](·江苏中考真题)“低碳生活,绿色出行”是一种环保,健康的生活方式,小丽从甲地出发沿一条笔直的公路骑车前往乙地,她与乙地之间的距离y(km)与出发时间之间的函数关系式如图1中线段AB所示,在小丽出发的同时,小明从乙地沿同一条公路骑车匀速前往甲地,两人之间的距离S(km)与出发时间x(h)之间的函数关系式如图2中折线段CD-DE-EF所示.(1)小丽和小明骑车的速度各是多少?(2)求E点坐标,并解释点的实际意义.[答案](1),;(2)E( , ) .[解析](1)观察图1可知小丽骑行36千米用了2.25小时,根据速度=路程÷时间可求出小丽的速度,观察图2可知小丽与小明1小时机遇,由此即可求得小明的速度;(2)观察图2,结合两人的速度可知点E为小明到达甲地,根据相关数据求出坐标即可.[详解](1)V小丽=36÷2.25=16(km/h),V小明=36÷1-16=20(km/h);(2)36÷20= (h),16× = (km),所以点E的坐标为( ,),实际意义是小明到达了甲地.[点睛]本题考查了一次函数的应用——行程问题,弄清题意,正确分析图象,得出有用的信息是解题的关键.[考点2]方案选择问题[例2](·天津中考真题)甲、乙两个批发店销售同一种苹果.在甲批发店,不论一次购买数量是多少,价格均为6元/kg.在乙批发店,一次购买数量不超过元50kg时,价格为7元/kg;一次购买数量超过50kg时,其中有50kg的价格仍为7元/kg,超出50kg部分的价格为5元/kg.设小王在同一个批发店一次购买苹果的数量为.一次购买数量/kg 30 50 150 …甲批发店花费/元 300 …乙批发店花费/元 350 …(Ⅱ)设在甲批发店花费元,在乙批发店花费元,分别求,关于的函数解析式;(Ⅲ)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为____________kg;②若小王在同一个批发店一次购买苹果的数量为120kg,则他在甲、乙两个批发③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的________批发店购买数量多.[答案](Ⅰ)180,900,210,850;(Ⅱ);当时,;当时,.(Ⅲ)①100;②乙;③甲.[解析](Ⅰ)根据在甲批发店,不论一次购买数量是多少,价格均为6元/kg.在乙批发店,一次购买数量不超过元50kg时,价格为7元/kg;一次购买数量超过50kg 时,其中有50kg的价格仍为7元/kg,超出50kg部分的价格为5元/kg.可以分别把表一和表二补充完整;(Ⅱ)根据所花费用=每千克的价格一次购买数量,可得出关于x的函数关系式,注意进行分段;(Ⅲ)①根据得出x的值即可;②把x=120分别代入和的解析式,并比较和的大小即可;③分别求出当和时x的值,并比较大小即可.[详解]解:(Ⅰ)当x=30时,,当x=150时,,故答案为:180,900,210,850.(Ⅱ).当时,;当时,,即.(Ⅲ)①∵∴6x∴当时,即6x=5x+100∴x=100故答案为:100②∵x=120,∴ ;∴乙批发店购买花费少;故答案为:乙③∵当x=50时乙批发店的花费是:350∵一次购买苹果花费了360元,∴x 50∴当时,6x=360,∴x=60∴当时,5x+100=360, ∴x=52∴甲批发店购买数量多.故答案为:甲[点睛]本题考查一次函数的应用—方案选择问题,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.[变式2-1](·山西中考真题)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).(1)请分别写出y1,y2与x之间的函数表达式.(2)小亮一年内在此游泳馆游泳的次数x在什么范围时,选择方式一比方式二省钱.[答案](1) ;(2)当时选择方式一比方式二省钱.[解析](1)根据题意列出函数关系式即可;(2)根据题意,列出关于x的不等式进行解答即可.[详解](1) ,;(2)由得:,解得:,∴当时选择方式一比方式2省钱,即一年内来此游泳馆的次数超过20次时先择方式一比方式二省钱.[点睛]本题考查了一次函数的应用,解答本题的关键是弄清题意,找准各量间的关系,正确运用相关知识解答.[变式2-2](·湖南中考真题)某生态体验园推出了甲、乙两种消费卡,设入园次数问题(1)分别求出选择这两种卡消费时,y关于x的函数表达式;(2)请根据入园次数确定选择哪种卡消费比较合算.[答案](1),(2)见解析[解析](1)运用待定系数法,即可求出y与x之间的函数表达式;(2)解方程或不等式即可解决问题,分三种情形回答即可.[详解](1)设,根据题意得,解得,∴ ;设,根据题意得:,解得,∴ ;(2)① ,即,解得,当入园次数小于10次时,选择甲消费卡比较合算;② ,即,解得,当入园次数等于10次时,选择两种消费卡费用一样;③ ,即,解得,当入园次数大于10次时,选择乙消费卡比较合算.[点睛]此题主要考查了一次函数的应用、学会利用方程组求两个函数图象的解得坐标,正确由图象得出正确信息是解题关键,属于中考常考题型.[考点3]最大利润问题[例3](·辽宁中考真题)某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x 元,平均月销售量为y件.(2)当销售单价为多少元时,销售这种童装每月可获利1800元?(3)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?[答案](1)y=﹣2x+200 (30≤x≤60);(2)当销售单价为55元时,销售这种童装每月可获利1800元;(3)当销售单价为60元时,销售这种童装每月获得利润最大,最大利润是1950元.[解析](1)当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.从而用60减去x,再除以10,就是降价几个10元,再乘以20,再把80加上就是平均月销售量;(2)利用(售价﹣进价)乘以平均月销售量,再减去每月需要支付的其他费用,让其等于1800,解方程即可;的自变量取值范围,可求得取最大利润时的x值及最大利润.[详解]解:(1)由题意得:y=80+20×∴函数的关系式为:y=﹣2x+200 (30≤x≤60)(2)由题意得:(x﹣30)(﹣2x+200)﹣450=1800解得x1=55,x2=75(不符合题意,舍去)答:当销售单价为55元时,销售这种童装每月可获利1800元.(3)设每月获得的利润为w元,由题意得:w=(x﹣30)(﹣2x+200)﹣450=﹣2(x﹣65)2+2000∵﹣2<0∴当x≤65时,w随x的增大而增大∵30≤x≤60∴当x=60时,w最大=﹣2(60﹣65)2+2000=1950答:当销售单价为60元时,销售这种童装每月获得利润最大,最大利润是1950元.[点睛]本题综合考查了一次函数、一元二次方程、二次函数在实际问题中的应用,具有较强的综合性.[变式3-1](·四川中考真题)某水果商计划购进甲、乙两种水果进行销售,经了解,甲种水果的进价比乙种水果的进价每千克少4元,且用800元购进甲种水果的数量与用1000元购进乙种水果的数量相同.(1)求甲、乙两种水果的单价分别是多少元?(2)该水果商根据该水果店平常的销售情况确定,购进两种水果共200千克,其中甲种水果的数量不超过乙种水果数量的3倍,且购买资金不超过3420元,购回后,水果商决定甲种水果的销售价定为每千克20元,乙种水果的销售价定为每千克25元,则水果商应如何进货,才能获得最大利润,最大利润是多少?[答案](1)甲、乙两种水果的单价分别是16元、20元;(2)水果商进货甲种水果145千克,乙种水果55千克,才能获得最大利润,最大利润是855元.。

中考数学复习----《一次函数之定义、图像与性质》知识点总结与专项练习题(含答案解析)

中考数学复习----《一次函数之定义、图像与性质》知识点总结与专项练习题(含答案解析)知识点总结1. 一次函数的定义:一般地,形如()0≠+=k b k b kx y 是常数且,的函数叫做一次函数。

2. 一次函数的图像:是不经过原点的一条直线。

3. 一次函数的图像与性质:一次函数与x 轴的交点坐标公式为:⎪⎭⎫ ⎝⎛−0 ,k b;与y 轴的交点坐标公式为:()b ,0。

专项练习题1.(2022•沈阳)在平面直角坐标系中,一次函数y =﹣x +1的图像是( )A .B .C .D .【分析】依据一次函数y =x +1的图像经过点(0,1)和(1,0),即可得到一次函数y =﹣x +1的图像经过一、二、四象限.【解答】解:一次函数y =﹣x +1中,令x =0,则y =1;令y =0,则x =1, ∴一次函数y =﹣x +1的图像经过点(0,1)和(1,0), ∴一次函数y =﹣x +1的图像经过一、二、四象限, 故选:C .2.(2022•安徽)在同一平面直角坐标系中,一次函数y =ax +a 2与y =a 2x +a 的图像可能是( )A .B .C .D .【分析】利用一次函数的性质进行判断.【解答】解:∵y=ax+a2与y=a2x+a,∴x=1时,两函数的值都是a2+a,∴两直线的交点的横坐标为1,若a>0,则一次函数y=ax+a2与y=a2x+a都是增函数,且都交y轴的正半轴,图像都经过第一、二、三象限;若a<0,则一次函数y=ax+a2经过第一、二、四象限,y=a2x+a经过第一、三、四象限,且两直线的交点的横坐标为1;故选:D.3.(2022•辽宁)如图,在同一平面直角坐标系中,一次函数y=k1x+b1与y=k2x+b2的图像分别为直线l1和直线l2,下列结论正确的是()A.k1•k2<0B.k1+k2<0C.b1﹣b2<0D.b1•b2<0【分析】根据一次函数y=k1x+b1与y=k2x+b2的图像位置,可得k1>0,b1>0,k2>0,b2<0,然后逐一判断即可解答.【解答】解:∵一次函数y=k1x+b1的图像过一、二、三象限,∴k1>0,b1>0,∵一次函数y=k2x+b2的图像过一、三、四象限,∴k2>0,b2<0,∴A、k1•k2>0,故A不符合题意;B、k1+k2>0,故B不符合题意;C、b1﹣b2>0,故C不符合题意;D、b1•b2<0,故D符合题意;故选:D.4.(2022•六盘水)如图是一次函数y=kx+b的图像,下列说法正确的是()A.y随x增大而增大B.图像经过第三象限C.当x≥0时,y≤b D.当x<0时,y<0【分析】根据一次函数的图像和性质进行判断即可.【解答】解:由图像得:图像过一、二、四象限,则k<0,b>0,当k<0时,y随x的增大而减小,故A、B错误,由图像得:与y轴的交点为(0,b),所以当x≥0时,从图像看,y≤b,故C正确,符合题意;当x<0时,y>b>0,故D错误.故选:C.5.(2022•兰州)若一次函数y=2x+1的图像经过点(﹣3,y1),(4,y2),则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1≤y2D.y1≥y2【分析】先根据一次函数的解析式判断出函数的增减性,再根据﹣3<4即可得出结论.【解答】解:∵一次函数y=2x+1中,k=2>0,∴y随着x的增大而增大.∵点(﹣3,y1)和(4,y2)是一次函数y=2x+1图像上的两个点,﹣3<4,∴y1<y2.故选:A.6.(2022•凉山州)一次函数y=3x+b(b≥0)的图像一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的图像与系数的关系即可得出结论.【解答】解:∵函数y=3x+b(b≥0)中,k=3>0,b≥0,∴当b=0时,此函数的图像经过一、三象限,不经过第四象限;当b>0时,此函数的图像经过一、二、三象限,不经过第四象限.则一定不经过第四象限.故选:D.7.(2022•济宁)已知直线y1=x﹣1与y2=kx+b相交于点(2,1).请写出一个b值(写出一个即可),使x>2时,y1>y2.【分析】由题意可知,当b>﹣1时满足题意,故b可以取0.【解答】解:直线y1=x﹣1与y2=kx+b相交于点(2,1).∵x>2时,y1>y2.∴b>﹣1,故b可以取0,故答案为:0(答案不唯一).8.(2022•上海)已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:.【分析】根据一次函数的性质,写出符合条件的函数关系式即可.【解答】解:∵直线y=kx+b过第一象限且函数值随着x的增大而减小,∴k<0,b>0,∴符合条件的函数关系式可以为:y=﹣x+1(答案不唯一).故答案为:y=﹣x+1(答案不唯一).9.(2022•无锡)请写出一个函数的表达式,使其图像分别与x轴的负半轴、y轴的正半轴相交:.【分析】设函数的解析式为y=kx+b(k≠0),再根据一次函数的图像分别与x轴的负半轴、y轴的正半轴相交可知k>0,b>0,写出符合此条件的函数解析式即可.【解答】解:设一次函数的解析式为y=kx+b(k≠0),∵一次函数的图像分别与x轴的负半轴、y轴的正半轴相交,∴k>0,b>0,∴符合条件的函数解析式可以为:y=x+1(答案不唯一).故答案为:y=x+1(答案不唯一).10.(2022•湘潭)请写出一个y随x增大而增大的一次函数表达式.【分析】根据y随着x的增大而增大时,比例系数k>0即可确定一次函数的表达式.【解答】解:在y=kx+b中,若k>0,则y随x增大而增大,∴只需写出一个k>0的一次函数表达式即可,比如:y=x﹣2,故答案为:y=x﹣2(答案不唯一).11.(2022•宿迁)甲、乙两位同学各给出某函数的一个特征,甲:“函数值y随自变量x增大而减小”;乙:“函数图像经过点(0,2)”,请你写出一个同时满足这两个特征的函数,其表达式是.【分析】根据甲、乙两位同学给出的函数特征可判断出该函数为一次函数,再利用一次函数的性质,可得出k<0,b=2,取k=﹣1即可得出结论.【解答】解:∵函数值y随自变量x增大而减小,且该函数图像经过点(0,2),∴该函数为一次函数.设一次函数的表达式为y=kx+b(k≠0),则k<0,b=2.取k=﹣1,此时一次函数的表达式为y=﹣x+2.故答案为:y=﹣x+2(答案不唯一).12.(2022•甘肃)若一次函数y=kx﹣2的函数值y随着自变量x值的增大而增大,则k=(写出一个满足条件的值).【分析】根据函数值y随着自变量x值的增大而增大得到k>0,写出一个正数即可.【解答】解:∵函数值y随着自变量x值的增大而增大,∴k>0,∴k=2(答案不唯一).故答案为:2(答案不唯一).13.(2022•柳州)如图,直线y1=x+3分别与x轴、y轴交于点A和点C,直线y2=﹣x+3分别与x轴、y轴交于点B和点C,点P(m,2)是△ABC内部(包括边上)的一点,则m的最大值与最小值之差为()A.1B.2C.4D.6【分析】由于P的纵坐标为2,故点P在直线y=2上,要求符合题意的m值,则P点为直线y=2与题目中两直线的交点,此时m存在最大值与最小值,故可求得.【解答】解:∵点P(m,2)是△ABC内部(包括边上)的一点,∴点P 在直线y =2上,如图所示,当P 为直线y =2与直线y 2的交点时,m 取最大值, 当P 为直线y =2与直线y 1的交点时,m 取最小值, ∵y 2=﹣x +3中令y =2,则x =1, y 1=x +3中令y =2,则x =﹣1, ∴m 的最大值为1,m 的最小值为﹣1.则m 的最大值与最小值之差为:1﹣(﹣1)=2. 故选:B .14.(2022•遵义)若一次函数y =(k +3)x ﹣1的函数值y 随x 的增大而减小,则k 值可能是( ) A .2B .23C .﹣21 D .﹣4【分析】根据一次项系数小于0时,一次函数的函数值y 随x 的增大而减小列出不等式求解即可.【解答】解:∵一次函数y =(k +3)x ﹣1的函数值y 随着x 的增大而减小, ∴k +3<0, 解得k <﹣3.所以k 的值可以是﹣4, 故选:D .15.(2022•包头)在一次函数y =﹣5ax +b (a ≠0)中,y 的值随x 值的增大而增大,且ab >0,则点A (a ,b )在( ) A .第四象限B .第三象限C .第二象限D .第一象限【分析】根据一次函数的增减性,确定自变量x 的系数﹣5a 的符号,再根据ab >0,确定b 的符号,从而确定点A (a ,b )所在的象限.【解答】解:∵在一次函数y =﹣5ax +b 中,y 随x 的增大而增大, ∴﹣5a >0,∴a <0. ∵ab >0, ∴a ,b 同号, ∴b <0.∴点A (a ,b )在第三象限. 故选:B .16.(2022•眉山)一次函数y =(2m ﹣1)x +2的值随x 的增大而增大,则点P (﹣m ,m )所在象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据一次函数的性质求出m 的范围,再根据每个象限点的坐标特征判断P 点所处的象限即可.【解答】解:∵一次函数y =(2m ﹣1)x +2的值随x 的增大而增大, ∴2m ﹣1>0, 解得:m >,∴P (﹣m ,m )在第二象限, 故选:B .17.(2022•天津)若一次函数y =x +b (b 是常数)的图像经过第一、二、三象限,则b 的值可以是 (写出一个即可).【分析】根据一次函数的图像可知b >0即可.【解答】解:∵一次函数y =x +b (b 是常数)的图像经过第一、二、三象限, ∴b >0, 可取b =1,故答案为:1.(答案不唯一,满足b >0即可) 18.(2022•邵阳)在直角坐标系中,已知点A (23,m ),点B (27,n )是直线y =kx +b(k <0)上的两点,则m ,n 的大小关系是( ) A .m <nB .m >nC .m ≥nD .m ≤n【分析】根据k <0可知函数y 随着x 增大而减小,再根>即可比较m 和n 的大小.【解答】解:点A (,m ),点B (,n )是直线y =kx +b 上的两点,且k <0,∴一次函数y 随着x 增大而减小, ∵>,∴m <n , 故选:A .19.(2022•株洲)在平面直角坐标系中,一次函数y =5x +1的图像与y 轴的交点的坐标为( ) A .(0,﹣1)B .(﹣51,0) C .(51,0) D .(0,1)【分析】一次函数的图像与y 轴的交点的横坐标是0,当x =0时,y =1,从而得出答案. 【解答】解:∵当x =0时,y =1,∴一次函数y =5x +1的图像与y 轴的交点的坐标为(0,1), 故选:D .20.(2022•绍兴)已知(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =﹣2x +3上的三个点,且x 1<x 2<x 3,则以下判断正确的是( ) A .若x 1x 2>0,则y 1y 3>0 B .若x 1x 3<0,则y 1y 2>0C .若x 2x 3>0,则y 1y 3>0D .若x 2x 3<0,则y 1y 2>0【分析】根据一次函数的性质和各个选项中的条件,可以判断是否正确,从而可以解答本题.【解答】解:∵直线y =﹣2x +3,∴y 随x 的增大而减小,当y =0时,x =1.5,∵(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =﹣2x +3上的三个点,且x 1<x 2<x 3, ∴若x 1x 2>0,则x 1,x 2同号,但不能确定y 1y 3的正负,故选项A 不符合题意; 若x 1x 3<0,则x 1,x 3异号,但不能确定y 1y 2的正负,故选项B 不符合题意; 若x 2x 3>0,则x 2,x 3同号,但不能确定y 1y 3的正负,故选项C 不符合题意;若x 2x 3<0,则x 2,x 3异号,则x 1,x 2同时为负,故y 1,y 2同时为正,故y 1y 2>0,故选项D 符合题意; 故选:D .21.(2022•盘锦)点A (x 1,y 1),B (x 2,y 2)在一次函数y =(a ﹣2)x +1的图像上,当x 1>x 2时,y 1<y 2,则a 的取值范围是 . 【分析】根据一次函数的性质,建立不等式计算即可.【解答】解:∵当x1>x2时,y1<y2,∴a﹣2<0,∴a<2,故答案为:a<2.22.(2022•永州)已知一次函数y=x+1的图像经过点(m,2),则m=.【分析】由一次函数y=x+1的图像经过点(m,2),利用一次函数图像上点的坐标特征可得出2=m+1,解之即可求出m的值.【解答】解:∵一次函数y=x+1的图像经过点(m,2),∴2=m+1,∴m=1.故答案为:1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学资料 第十一章 一次函数复习课

知识点1 一次函数和正比例函数的概念 若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.例如:y=2x+3,y=-x+2,y=21x等都是一次函数,y=21x,y=-x都是正比例函数. 【说明】 (1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定. (2)一次函数y=kx+b(k,b为常数,b≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x的次数为1,一次项系数k必须是不为零的常数,b可为任意常数. (3)当b=0,k≠0时,y= kx仍是一次函数. (4)当b=0,k=0时,它不是一次函数. 知识点2 函数的图象 把一个函数的自变量x与所对应的y的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线. 知识点 3一次函数的图象 由于一次函数y=kx+b(k,b为常数,k≠0)的图象是一条直线,所以一次函数y=kx+b的图象也称为直线y=kx+b. 由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y轴的交点(0,b),直线与x轴的交点(-kb,0).但也不必一定选取这两个特殊点.画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可. 知识点4 一次函数y=kx+b(k,b为常数,k≠0)的性质 (1)k的正负决定直线的倾斜方向; ①k>0时,y的值随x值的增大而增大; ②k﹤O时,y的值随x值的增大而减小. (2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x轴相交的锐角度数越大(直线陡),|k|越小,直线与x轴相交的锐角度数越小(直线缓); (3)b的正、负决定直线与y轴交点的位置; ①当b>0时,直线与y轴交于正半轴上; ②当b<0时,直线与y轴交于负半轴上; ③当b=0时,直线经过原点,是正比例函数. (4)由于k,b的符号不同,直线所经过的象限也不同; ①如图11-18(l)所示,当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限); ②如图11-18(2)所示,当k>0,b﹥O时,直线经过第一、三、四象限(直线不经过第二象限); ③如图11-18(3)所示,当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限); ④如图11-18(4)所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限). (5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的. 知识点3 正比例函数y=kx(k≠0)的性质 (1)正比例函数y=kx的图象必经过原点; (2)当k>0时,图象经过第一、三象限,y随x的增大而增大; (3)当k<0时,图象经过第二、四象限,y随x的增大而减小. 知识点4 点P(x0,y0)与直线y=kx+b的图象的关系 (1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b; (2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上. 例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上. 知识点5 确定正比例函数及一次函数表达式的条件 (1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值. (2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值. 知识点6 待定系数法 先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数. 知识点7 用待定系数法确定一次函数表达式的一般步骤 (1)设函数表达式为y=kx+b; (2)将已知点的坐标代入函数表达式,解方程(组); (3)求出k与b的值,得到函数表达式. 例如:已知一次函数的图象经过点(2,1)和(-1,-3)求此一次函数的关系式. 解:设一次函数的关系式为y=kx+b(k≠0), 由题意可知,

,3,21bkbk

解.35,34bk ∴此函数的关系式为y=3534x. 【说明】 本题是用待定系数法求一次函数的关系式,具体步骤如下:第一步,设(根据题中要求的函数“设”关系式y=kx+b,其中k,b是未知的常量,且k≠0);第二步,代(根据题目中的已知条件,列出方程(或方程组),解这个方程(或方程组),求出待定系数k,b);第三步,求(把求得的k,b的值代回到“设”的关系式y=kx+b中);第四步,写(写出函数关系式). 思想方法小结 (1)函数方法. 函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题. (2)数形结合法. 数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用. 知识规律小结 (1)常数k,b对直线y=kx+b(k≠0)位置的影响. ①当b>0时,直线与y轴的正半轴相交; 当b=0时,直线经过原点; 当b﹤0时,直线与y轴的负半轴相交. ②当k,b异号时,即-kb>0时,直线与x轴正半轴相交; 当b=0时,即-kb=0时,直线经过原点; 当k,b同号时,即-kb﹤0时,直线与x轴负半轴相交. ③当k>O,b>O时,图象经过第一、二、三象限; 当k>0,b=0时,图象经过第一、三象限; 当b>O,b<O时,图象经过第一、三、四象限; 当k﹤O,b>0时,图象经过第一、二、四象限; 当k﹤O,b=0时,图象经过第二、四象限; 当b<O,b<O时,图象经过第二、三、四象限. (2)直线y=kx+b(k≠0)与直线y=kx(k≠0)的位置关系. 直线y=kx+b(k≠0)平行于直线y=kx(k≠0) 当b>0时,把直线y=kx向上平移b个单位,可得直线y=kx+b; 当b﹤O时,把直线y=kx向下平移|b|个单位,可得直线y=kx+b. (3)直线b1=k1x+b1与直线y2=k2x+b2(k1≠0 ,k2≠0)的位置关系. ①k1≠k2y1与y2相交; ②2121bbkky1与y2相交于y轴上同一点(0,b1)或(0,b2);

③2121,bbkky1与y2平行; ④2121,bbkky1与y2重合.

典例剖析 基本概念题 本节有关基本概念的题目主要是一次函数、正比例函数的概念及它们之间的关系,以及构成一次函数及正比例函数的条件. 例1 下列函数中,哪些是一次函数?哪些是正比例函数? (1)y=-21x; (2)y=-x2; (3)y=-3-5x; (4)y=-5x2; (5)y=6x-21 (6)y=x(x-4)-x2. [分析] 本题主要考查对一次函数及正比例函数的概念的理解. 解:(1)(3)(5)(6)是一次函数,(l)(6)是正比例函数.

例2 当m为何值时,函数y=-(m-2)x32m+(m-4)是一次函数? [分析] 某函数是一次函数,除应符合y=kx+b外,还要注意条件k≠0. 解:∵函数y=(m-2)x32m+(m-4)是一次函数,

∴,0)2(,132mm∴m=-2. ∴当m=-2时,函数y=(m-2)x32m+(m-4)是一次函数. 小结 某函数是一次函数应满足的条件是:一次项(或自变量)的指数为1,系数不为0.而某函数若是正比例函数,则还需添加一个条件:常数项为0. 基础知识应用题 本节基础知识的应用主要包括:(1)会确定函数关系式及求函数值;(2)会画一次函数(正比例函数)图象及根据图象收集相关的信息;(3)利用一次函数的图象和性质解决实际问题;(4)利用待定系数法求函数的表达式. 例3 一根弹簧长15cm,它所挂物体的质量不能超过18kg,并且每挂1kg的物体,弹簧就伸长0.5cm,写出挂上物体后,弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系式,写出自变量x的取值范围,并判断y是否是x的一次函数. [分析] (1)弹簧每挂1kg的物体后,伸长0.5cm,则挂xkg的物体后,弹簧的长度y为(l5+0.5x)cm,即y=15+0.5x. (2)自变量x的取值范围就是使函数关系式有意义的x的值,即0≤x≤18. (3)由y=15+0.5x可知,y是x的一次函数. 解:(l)y=15+0.5x. (2)自变量x的取值范围是0≤x≤18. (3)y是x的一次函数. 学生做一做 乌鲁木齐至库尔勒的铁路长约600千米,火车从乌鲁木齐出发,其平均速度为58千米/时,则火车离库尔勒的距离s(千米)与行驶时间t(时)之间的函数关系式是 . 老师评一评 研究本题可采用线段图示法,如图11-19所示.

相关文档
最新文档