辽宁省丹东七中2016届中考数学一模试题(含解析)
北师大版七年级数学上丹东七中 2015—2016期中考试.docx

初中数学试卷马鸣风萧萧丹东七中 2015—2016学年度上学期七年级期中考试数学试卷考试时间:90分钟 试题满分:100分 出题人:宁桐梅一、选择题(本大题共8个小题,每小题2分,共16分.)题号 1 2 3 4 5 6 78 答案1. 下列计算正确的是( )A . ﹣34=81 B .﹣(﹣6)2=36 C . =﹣ D . (﹣)3=2.计算|﹣|﹣的结果是( ) A . ﹣B .C .﹣1 D . 13.化简5(2x ﹣3)+4(3﹣2x )结果为( )A . 2x ﹣3B . 2x+9C . 8x ﹣3D . 18x ﹣34. 下列各组中互为相反数的是( ) A . ﹣2与B . |﹣2|和2C . ﹣2.5与|﹣2|D .与5. 下表是淮河某河段今年雨季一周内水位变化情况,(其中0表示警戒水位)那么水位最高是( ) 星期 一 二 三 四 五 六 日 水位变化/米 +0.03 +0.41 +0.25 +0.10 0 ﹣0.13 ﹣0.2A . 周一B . 周二C . 周三D . 周五6.下列运算正确的是( )A . ﹣2(3x ﹣1)=﹣6x ﹣1B . ﹣2(3x ﹣1)=﹣6x+1C . ﹣2(3x ﹣1)=﹣6x ﹣2D . ﹣2(3x ﹣1)=﹣6x+27. 有理数a ,b 在数轴上的位置如图所示,下面结论正确的( )A.b﹣a<0 B.ab>0 C.a+b>0 D.|a|>|b|8.如图给定的是纸盒的外表面,下面能由它折叠而成的是()A.B.C.D.二、填空题(本大题每题3分,共24分.)9.在﹣|﹣5|,﹣(﹣3),﹣(﹣3)2,(﹣5)2中,负数有个.10.计算:(1)﹣24=,(2)﹣3的倒数是,(3)|﹣|的相反数是.11.南海是我国固有领海,它的面积超过东海、黄海、渤海面积的总和,约为360万平方千米,360万用科学记数法可表示为.12.定义运算“※”的运算法则为:x※y=xy+6,则﹣2※3=.13.已知|a﹣3|+|b+2|=0,则b a=.14.一个自然数的立方,可以分裂成若干个连续奇数的和.例如:23,33和43分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即23=3+5;33=7+9+11;43=13+15+17+19;…;若63也按照此规律来进行“分裂”,则63“分裂”出的奇数中,最大的奇数是.15.如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中由个基础图形组成.16.观察下面点阵图和相应的等式,探究其中的规律:按此规律1+3+5+7+…+(2n﹣1)=.三、解答题:(共60分)17.计算:(每题4分,共16分)(1)﹣20+(﹣15)﹣(﹣28)﹣17(2)(3)﹣32÷(﹣3)2+3×(﹣2)+|﹣4|(4)(﹣1)﹣(﹣5)×+(﹣8)÷[(﹣3)+5].18.化简(每题4分,共16分)(1)2a+5a﹣6a(2)x﹣(5x+2y)﹣(x﹣2y)(3)a﹣2(2a+b)+3(a﹣b)(4)先化简,再求值:2ab+3a2b﹣2(a2b﹣ab),其中a=﹣1,b=﹣2.19.(4分)如图是有几个小立方体块搭建成的几何体的俯视图,小正方体中的数字表示在该位置小立方体块的个数,请画出这个几何体的主视图和左视图.20.(6分)为了有效控制酒后驾车,吉安市城管的汽车在一条东西方向的公路上巡逻,如果规定向东为正,向西为负,从出发点开始所走的路程为:+2,﹣3,+2,+1,﹣2,﹣1,﹣2(单位:千米)(1)此时,这辆城管的汽车司机如何向队长描述他的位置?(2)如果队长命令他马上返回出发点,这次巡逻(含返回)共耗油多少升?(已知每千米耗油0.2升)21.(6分)某空调器销售商,今年四月份销出空调(a﹣1)台,五月份销售空调比四月份的2倍少1台,六月份销售空调比前两个月的总和的4倍还多5台.(1)用代数式表示该销售商今年第二季度共销售空调多少台?(2)若a=220,求第二季度销售的空调总数.22.(6分)学校需要到印刷厂印刷x份材料,甲印刷厂提出:每份材料收0.2元印刷费,另收500元制版费;乙印刷厂提出:每份材料收0.4元印刷费,不收制版费.(1)两印刷厂的收费各是多少元?(用含x的代数式表示)(2)学校要印刷2400份材料,若不考虑其他因素,选择哪家印刷厂比较合算?试说明理由.23.(6分)请先阅读下列一组内容,然后解答问题:因为:,所以:===.计算:(1)(2).丹东七中2015—2016学年度上学期七年级期中考试数学答案考试时间:90分钟试题满分:100分出题人:宁桐梅一、选择题(本大题共8个小题,每小题2分,共16分.)题号 1 2 3 4 5 6 7 8答案 C A A D B D A B二、填空题(本大题每题3分,共24分.)9、2 ;10、-16,-3/10,-1/3 ;11、3.6×10612、0 ;13、-8 ;14、41;15、3n+1 ;16、n2三、解答题:(共60分)17.计算:(每题4分,共16分)(1) -24; (2)25; (3)-3; (4)-318.化简(每题4分,共16分)(1) a; (2)-5x; (3)-5b; (4)4ab+a2b;-619.(4分)20.(6分)解:(1)∵(+2)+(﹣3)+(+2)+(+1)+(﹣2)+(﹣1)+(﹣2)=﹣3千米,∴这辆城管的汽车司机向队长描述他的位置为出发点以西3千米;(2)|+2|+|﹣3|+|+2|+|+1|+|﹣2|+|﹣1|+|﹣2|+|﹣3|=16千米,∴16×0.2=3.2(升),∴这次巡逻(含返回)共耗油3.2升.21.(6分)解:(1)四月份:(a﹣1)台,五月份:2(a﹣1)﹣1=(2a﹣3)台,六月份:4[(a﹣1)+(2a﹣3)]+5=(12a﹣11)台,第二季度共销售:(a﹣1)+(2a﹣3)+(12a﹣11)=(15a﹣15)台;(2)当a=220时,有15a﹣15=15×220﹣15=3285台.22.(6分)解:(1)甲印刷厂收费表示为:(0.2x+500)元,乙印刷厂收费表示为:0.4x元.(2)选择乙印刷厂.理由:当x=2400时,甲印刷费为0.2x+500=980(元),乙印刷费为0.4x=960(元).因为980>960,所以选择乙印刷厂比较合算.23.(6分)解:(1)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(2)原式=×(1﹣+﹣+﹣+…+﹣)=.。
2016年中考数学模拟试题分类汇编专题4:一元一次方程及其应用(含答案)

一元一次方程及其应用1.(2016·黑龙江齐齐哈尔·一模)某班级劳动时,将全班同学分成x个小组,若每小组11人,则余下1人;若每小组12人,则有一组少4人. 按下列哪个选项重新分组,能使每组人数相同?( )A.3组B.5组C.6组D.7组答案:D2.(2016·广东东莞·联考)下面的数中,与﹣3的和为0的是()A.3 B.﹣3 C. D.【考点】有理数的加法.【分析】设这个数为x,根据题意可得方程x+(﹣3)=0,再解方程即可.【解答】解:设这个数为x,由题意得:x+(﹣3)=0,x﹣3=0,x=3,故选:A.【点评】此题主要考查了一元一次方程的应用,关键是理解题意,根据题意列出方程.3.(2016·辽宁丹东七中·一模)某商品的价格标签已丢失,售货员只知道“它的进价为80元,打七折出售后,仍可获利5%”.你认为售货员应标在标签上的价格为元答案:120元4.(2016·云南省·二模)昆曲高速公路全长128千米,甲、乙两车同时从昆明、曲靖两地高速路收费站相向匀速开出,经过40分钟相遇,甲车比乙车每小时多行驶20千米.求甲、乙两车的速度.【考点】一元一次方程的应用.【分析】设出乙车速度,进而表示出甲车速度,再根据相遇问题,两车行驶的路程之和为128千米列出方程,解方程求出x的值即可.【解答】解:设乙车速度为x千米/时,甲车速度为(x+20)千米/时,根据题意得40分钟=小时,(x+x+20)=128,解得x=86,则甲车速度为:x+20=86+20=106.答:甲车速度为106千米/时,乙车速度为86千米/时.【点评】本题主要考查了一元一次方程的应用,解答本题的关键是根据路程=速度×时间公式列出一元一次方程,此题难度不大.。
丹东数学真题题答案

2016年丹东市初中毕业生毕业升学考试数学试卷参考答案及评分标准(若有其它正确方法,请参照此标准赋分)一、选择题:(每小题3分,共24分)9 )1)(1(-+y y x 10 62<<x 115212 7 13 100)1(602=+x14 11122-15 26 16 ),)或(,)或(-,(257225962528252143(答对一个给1分)三、解答题(每小题8分,共16分) 17.解: 01)2016()21(12360sin 4-+--+︒-π.=12)332(234+--+⨯, ………4分 =1233232+--+, ………6分 =434-. ………8分18.解:(1)如图,△A 1B 1C 1即为所求. ………3分(2)如图,△AB 2C 2即为所求. ………6分点B 2(4,-2),C 2(1,-3)……8分四、(每小题10分,共20分) 19.解:(1)80÷40%=200(人). ………1分∴此次共调查200人. ………2分 (2)︒=︒⨯10836020060. ………4分 ∴文学社团在扇形统计图中所占 圆心角的度数为108°. ………5分 (3)补全如图(每处1分). ………7分 (4)1500×40%=600(人). ………9分∴估计该校喜欢体育类社团的学生有600人.………10分第18题图第19题图20.解:(1)所有可能出现的结果如图:方法一:列表法………4分方法二:树状图法………4分9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以3193==(两人抽取相同数字)P………6分(2)不公平………7分从上面的表格(或树状图)可以看出,两人抽取数字和为2的倍数有5种,两人抽取数字和为5的倍数有3种,所以95=(甲获胜)P,3193==(乙获胜)P.………9分∵3195>∴甲获胜的概率大,游戏不公平. ………10分五、(每小题10分,共20分)21.解:设甲商品的单价为x元,乙商品的单价为2x元,根据题意,得………1分152300240=-xx.………5分解这个方程,得6=x.………7分经检验,6=x是所列方程的根.………8分∴)(元12622=⨯=x.………9分答:甲、乙两种商品的单价分别为6元、12元.………10分(其它解法参考此标准赋分)(5,5)(3,5)(2,5)(5,3)(3,3)(5,2)(3,2)(2,3)(2,2)532532甲乙(2,2)(3,2)(5,2)(2,3)(3,3)(5,3)(2,5)(3,5)(5,5)所有可能出现的结果乙甲5325325325开始22.(1)证明:连接OD . ………1分∵CD 是⊙O 切线,∴∠ODC =90°.即∠ODB+∠BDC =90°. ………2分 ∵AB 为⊙O 的直径, ∴∠ADB =90°.即∠ODB +∠ADO=90°.∴∠BDC =∠ADO . ………3分 ∵OA=OD ,∴ ∠ADO =∠A . ………4分 ∴ ∠BDC = ∠A . ………5分(2) ∵CE ⊥AE ,∴∠E =∠ADB =90°. ∴DB ∥EC . ∴∠DCE =∠BDC . ∵∠BDC = ∠A ,∴ ∠A =∠DCE . ………7分∵∠E =∠E ,∴△AEC ∽△CED . ………8分 ∴EC 2=DE ·AE .∴16=2(2+AD ).∴AD =6. ………10分(其它解法参考此标准赋分)六、(每小题10分,共20分)23.解:如图,根据题意,得∠ADB =64°,∠ACB =48°在Rt △ADB 中,BDAB=︒64tan , 则BD=︒64tan AB ≈21AB ………4分在Rt △ACB 中,CBAB=︒48tan ,则CB= ︒48tan AB ≈ 1110AB ………7分∴CD=BC -B D6=1110AB -21AB AB =9132≈14.7(米) ………9分∴建筑物的高度约为14.7米. ………10分(其它解法参考此标准赋分)A第22题图BDCA建筑 物第23题图24.解:(1)设函数的表达式为y =kx +b ,该一次函数过点(12,74),(28,66),根据题意,得⎩⎨⎧+=+=bk bk 28661274 解得,⎩⎨⎧=-=805.0b k ………2分∴该函数的表达式为805.0+-=x y ………3(2)根据题意,得,(-0.5x+80)(80+x )=6750 ………4分解这个方程得,x 1=10,x 2=70∵投入成本最低.∴x 2=70不满足题意,舍去.∴增种果树10棵时,果园可以收获果实6750千克. ………7分 (3)根据题意,得w =(-0.5x+80)(80+ x ) ………8分 =-0.5 x 2+40 x +6400=-0.5(x -40)2 +7200 ∵a =-0.5<0, 则抛物线开口向下,函数有最大值 ∴当x =40时,w 最大值为7200千克.∴当增种果树40棵时果园的最大产量是7200千克. ………10分七、(本题12分) 25.(1)PM =PN ,PM ⊥PN . ………2分(2) ∵△ACB 和△ECD 是等腰直角三角形, ∴AC=BC ,EC=CD ,∠ACB =∠ECD =90°. ∴∠ACB +∠BCE =∠ECD +∠BCE . ∴∠ACE =∠BCD .∴△ACE ≌△BCD . ∴AE =BD ,∠CAE =∠CBD . ………4分又∵∠AOC =∠BOE , ∠CAE =∠CBD ,∴∠BHO =∠ACO =90°. ………5分 ∵点P 、M 、N 分别为AD 、AB 、DE 的中点, ∴PM =21BD , PM ∥BD ; O G H A D PB MC N E第24题图第25题图②PN =21AE , PN ∥AE . ∴PM =PN . ………6分 ∴∠MGE+∠BHA =180°. ∴∠MGE=90°.∴∠MPN=90°.∴PM ⊥PN . ………8分 (3) PM = kPN ………9分∵△ACB 和△ECD 是直角三角形, ∴∠ACB =∠ECD =90°.∴∠ACB +∠BCE =∠ECD +∠BCE .∴∠ACE =∠BCD . ∵BC =kAC ,CD =kCE , ∴k CECDAC BC ==. ∴△BCD ∽△ACE .∴BD = kAE . ………11分 ∵点P 、M 、N 分别为AD 、AB 、DE 的中点, ∴PM =21BD ,PN =21AE . ∴PM = kPN . ………12分 八、(本题14分)26.解:(1)把点A (4,0),B (1,3)代入bx ax y +=2,得 ⎩⎨⎧+=+=.,b a b a 34160 ………1分解得⎩⎨⎧=-=41b a ………2分∴抛物线表达式为x x y 42+-= .………3分 (2)点C 的坐标为(3,3). ………4分又∵点B 的坐标为(1,3), ∴BC=2.ADPBMC NE 第25题图③∴S △ABC =21×2×3=3 . ………6分 (3)过P 点作PD ⊥BH 交BH 于点D ,设点P (m ,-m 2+4m ), 根据题意,得BH =AH =3,HD =m m 42-,PD =m -1 ∴ABP S ∆=ABH S ∆+HAPD S 四边形-BPD S ∆ 6=21×3×3+21(3+m -1)(m 2-4m )- 21(m -1)(3+m 2-4m ) ∴ 3m 2-15m =0m 1=0(舍去), m 2=5 ………9分 ∴点P 坐标为(5,-5). ………10分(其它解法参考此标准赋分) (4)△CMN 的面积为:25或229或5或17 ………14分。
辽宁省丹东市2016届九年级中考模拟试卷(八)数学试题解析(解析版)

一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共24分)1-2的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间【答案】B.考点:估算无理数的大小.2.如图,反比例函数y=kx的图象经过点M,则此反比例函数的解析式为()A.y=-12xB.y=12xC.y=-2xD.y=2x【答案】C.【解析】试题解析:由图象可知:图象过(-1,2)点,代入得:k=-2,∴y=-2x.故选C.考点:待定系数法求反比例函数解析式.3.图a、图b是由一些完全相同的正方体组成的几何体,它们的三视图中()A.主视图相同 B.左视图相同 C.俯视图相同 D.三视图都不相同【答案】B.考点:简单组合体的三视图.4.一个正方形的面积等于5,则它的边长x满足()A.1<x<2 B.2<x<3 C.3<x<4 D.4<x<5【答案】B.【解析】试题解析:∵正方形的面积等于5,∴x2=5,(x>0),∵4<5<9,<3,即2<x<3;故选B.考点:估算无理数的大小.5.甲、乙、丙、丁四个同学在三次阶段考试中数学成绩的方差分别为s甲2=0.12,s乙2=0.19,S丙2=0.21,s丁2=0.10,则成绩最稳定的是()A.甲 B.乙 C.丙 D.丁【答案】D.【解析】试题解析:∵s甲2=0.12,s乙2=0.19,S丙2=0.21,s丁2=0.10,∴s丁2<s甲2<s乙2<S丙2,∴成绩最稳定的是丁.故选D.考点:方差.6.一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,投掷此骰子,朝上面的点数为奇数的概率是()A.16B.14C.13D.12【答案】D.【解析】试题解析:∵骰子六个面中奇数为1,3,5,∴P(向上一面为奇数)=31 62 ,故选D.考点:列表法与树状图法.7.如图,在矩形ABCD中,DE平分∠ADC交BC于点E,EF⊥AD交AD于点F,若EF=3,AE=5,则AD等于()A.5 B.6 C.7 D.8【答案】C.【解析】试题解析:∵矩形ABCD,∴∠ADC=90°,∵EF⊥AD,∴EF∥CD,∴∠FED=∠EDC,∵DE平分∠ADC,∴∠FDE=∠EDC,∴∠FED=∠FDE,∴DF=E=3,∵EF⊥AD,∴∠AFE=90°,∵AE=5,EF=3,由勾股定理得:AF=4,∴AD=AF+DF=3+4=7.故选C.考点:矩形的性质;平行线的判定与性质;角平分线的性质;等腰三角形的判定;勾股定理.8.等边三角形绕它的一个顶点旋转90°后与原来的等边三角形组成一个新的图形,那么这个新的图形()A.是轴对称图形,但不是中心对称图形 B.是中心对称图形,但不是轴对称图形C.既是轴对称图形,又是中心对称图形 D.既不是轴对称图形,又不是中心对称图形【答案】A.【解析】试题解析:等边三角形绕它的一个顶点旋转90°后与原来的等边三角形组成一个新的图形,沿着一条直线对折后两部分完全重合,故是轴对称图形;找不到一点把图形绕该点旋转180度,旋转后的图形能和原图形完全重合,故不是中心对称图形.故选A.考点:1.中心对称图形;2.等边三角形的性质;3.轴对称图形.二、填空题(本题共8小题,每小题3分,共24分)9.在直角坐标系中,点(2,-3)在第象限.【答案】四.【解析】试题解析:由于点(2,-3)横坐标为正数,纵坐标为负数,则点在第四象限.考点:点的坐标.10.如图,在△ABC中,D、E分别是AB、AC的中点,若DE=3,则BC= .【答案】6.【解析】试题解析:∵D,E 分别是△ABC 的边AB 和AC 的中点,∴DE 是△ABC 的中位线,∵DE=3,∴BC=2DE=6.考点:三角形中位线定理.11.化简:2242a a a a-+ = . 【答案】2a a-. 【解析】试题解析:原式=2(2)(2)2a a a a a +-+ =2a a-. 考点:分式的乘除法.12.一个不透明的袋子中装有5个红球和3个绿球,这些球除了颜色外都相同,从袋子中随机摸出一个球,它是红球的概率为 . 【答案】58. 【解析】试题解析:布袋中球的总数为:5+3=8, 取到红球的概率为:58. 考点:概率公式. 13.不等式组21312x x +≥-⎧⎨-⎩<的解集为 .【答案】-1≤x<5.【解析】试题解析:解第一个不等式得:x≥-1;解第二个不等式得:x<5,则不等式组的解集是:-1≤x<5.考点:解一元一次不等式组.14.如图,直线AB∥CD,∠PQA=25°,∠PRC=60°,则∠P=.【答案】35°.【解析】试题解析:∵AB∥CD,∴∠1=∠PRC=60°,∵∠1=∠P+∠PQA,∠PQA=25°,∴∠P=∠1-∠PQA=60°-25°=35°.考点:平行线的性质.15.如图,点A、B的坐标分别为(1,2)、(4,0),将△AOB沿x轴向右平移,得到△CDE,已知DB=1,则点C的坐标为.【答案】(4,2).【解析】试题解析:∵点A 、B 的坐标分别为(1,2)、(4,0),将△AOB 沿x 轴向右平移,得到△CDE,DB=1, ∴OD=3,∴△AOB 沿x 轴向右平移了3个单位长度,∴点C 的坐标为:(4,2).考点:坐标与图形变化-平移.16.如图,抛物线y=x 2-2x+k (k <0)与x 轴相交于A (x 1,0)、B (x 2,0)两点,其中x 1<0<x 2,当x=x 1+2时,y 0(填“>”“=”或“<”号).【答案】<.【解析】试题解析:∵抛物线y=x 2-2x+k (k <0)的对称轴方程是x=1,又∵x 1<0,∴x 1与对称轴x=1距离大于1,∴x 1+2<x 2,∴当x=x 1+2时,抛物线图象在x 轴下方,即y <0.考点:二次函数的性质.三、解答题17.计算:(12)-3π-10)0. 【答案】132. 【解析】试题分析:原式第一项被除数利用负指数幂法则计算,除数利用平方根定义化简,再利用除法法则计算,第二项被除数利用平方根定义及特殊角的三角函数值计算,除数利用零指数幂法则计算,再计算除法运算,最后算减法运算即可得到结果.试题解析:原式+1=10-92+1=132.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.18.解方程:13211x x+=--.【答案】x=2.【解析】试题分析:观察可得最简公分母是(x-1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.试题解析:方程两边同时乘以x-1,得1+2(x-1)=3整理得,1+2x-2=3解得,x=2检验:当x=2时,x-1≠0,∴x=2是原分式方程的解.考点:解分式方程.四、解答题(每小题10分,共20分)19.已知:如图,在四边形ABCD中,AD∥BC,AC⊥BC,点E、F分别是边AB、CD的中点,AF=CE.求证:AD=BC.【答案】证明见解析.【解析】试题分析:首先判定两个三角形是直角三角形,然后证得CD=AB,从而可以利用HL证明两个直角三角形全等,证得结论.试题解析:∵AC⊥BC,∴∠ACB=90°.∵AD∥BC,∴∠CAD=∠ACB=90°.∵点E 、F 分别是AB 、CD 的中点, ∴CE=12AB ,AF=12CD . ∵AF=CE,∴CD=AB.在Rt△CDA 和Rt△ABC 中,AC CA CD AB =⎧⎨=⎩∴Rt△CDA≌Rt△ABC.∴AD=BC.考点:1.三角形中位线定理;2.全等三角形的判定与性质.20.为了给某区初一新生订做校服,某服装加工厂随机选取部分新生,对其身高情况进行调查,图甲、图乙是由统计结果绘制成的不完整的统计图.根据图中信息解答下列问题:(1)一共调查了 名学生;(2)在被调查的学生中,身高在1.55~1.65m 的有 人,在1.75m 及以上的有 人;(3)在被调查的学生中,身高在1.65~1.75m 的学生占被调查人数的 %,在1.75m 及以上的学生占被调查人数的 %;(4)如果今年该区初一新生有3200人,请你估计身高在1.65~1.75m 的学生有多少人.【答案】(1)160;(2)56;16;(3)40;10;(4)1280人.【解析】试题分析:(1)用1.55m 以下的人数除以对应的百分比即可.(2)先用总人数乘以1.55-1.65m 的百分比,求出这一段的人数,再用总人数减去其余三段的人数即可解答.(3)用人数除以总人数即可求得.(4)由样本估计总体的方法解答即可.试题解析:(1)24÷15%=160;(2)160×35%=56,160-24-56-64=16;(3)64÷160=40%,16÷160=10%;(4)3200×40%=1280人.答:估计身高在1.65~1.75m的学生有1280人.考点:1.条形统计图;2.扇形统计图.五、解答题21.将背面完全相同,正面分别写有数字-2、1、-4的三张卡片混合后,小峰从中随机抽取一张,把卡片上的数字作为积的一个因式.将形状、大小完全相同,分别标有数字-1、3、4的三个小球混合后,小华随机抽取一个,把小球上的数字作为积的另一个因式,然后计算这两个数的乘积.(1)请用列表法或画树状图的方法求出两个数的乘积是非负数的概率.(2)小峰和小华做游戏,规则是:若这两数的积是非负数,则小峰赢;否则小华赢.你认为这个游戏公平吗?请说明理由,如果不公平,请你修改游戏规则,使游戏公平.【答案】(1)59;(2)不公平,修改游戏规则见解析.【解析】试题分析:(1)列表得出所有等可能的情况数,找出两个数的乘积是非负数的情况数,即可求出所求的概率;(2)由(1)求出乘积为负数的概率,比较即可得到游戏不公平,进而修改规则即可.试题解析:(1)列表法:从上面的树状图或表格可以看出,共有9种结果可能出现,且每种结果出现的可能性相同,其中两个数的乘积是非负数的结果有5种,即(-2,-1),(-2,-3),(1,4),(-4,-1),(-4,-3).∴P(乘积为非负数)=59;(2)由(1)得P(乘积为负数)=49,∵49≠59,∴不公平,我修改的游戏规则如下:若两个数的乘积是非负数,则小峰得4分,否则小华得5分.考点:1.游戏公平性;2.列表法与树状图法.22.在20m高的楼AB的前方有一个旗杆CD,从楼的顶端A测得旗杆的顶端C的俯角为45°,底端D的俯角为60°.(1)求旗杆的底端D与楼的底端B的距离;(2)求旗杆CD的高度.[说明:(1)(2)的计算结果精确到0.01m].【答案】(1)旗杆的底端D与楼的底端B的距离约为11.55m;(2)旗杆CD的高度约为8.45m.【解析】试题分析:(1)在Rt△ABD中,利用AB的长和∠DAB的度数求得DB的值即为旗杆的底端D与楼的底端B 的距离;(2)作CE⊥AB与E点,利用两平行线之间的距离相等得到CE=DB,在直角三角形ACE中求得AE后,用AB 减去AE即可得到旗杆的高度.试题解析:(1)由题意可知,∠DAB=30°,在Rt△ADB中,DB=AB•tan30°,,≈20×1.7323,≈11.55,答:旗杆的底端D与楼的底端B的距离约为11.55m;(2)作CE⊥AB,垂足为E,则四边形CDBE为矩形.∴CE=DB,CD=EB,在Rt△ACE中,∠CAE=45°,∴CD=EB=AB-AE,≈20-20 1.7323,≈8.45.答:旗杆CD的高度约为8.45m.考点:解直角三角形的应用-仰角俯角问题.六、解答题23.如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线相交于点E,∠ADC=60°.(1)求证:△ADE是等腰三角形;(2)若,求BE的长.【答案】(1)证明见解析;(2)2.【解析】试题分析:(1)连接OD,根据CD是⊙O的切线,推出∠ODC=90°,求出∠OAD=∠ODA=30°,根据三角形的外角性质求出∠E=∠A,即可得出答案;(2)由(1)知,OD,进一步求出OE,即可得到答案.试题解析:(1)连接OD,∵CD是⊙O的切线,∴OD⊥CD,即∠ODC=90°,∵∠ADC=60°,∴∠ODA=30°,在⊙O中OA=OD,∴∠OAD=∠ODA=30°,∴∠E=∠ADC-∠EAD=60°-30°=30°=∠EAD,∴DA=DE,即△ADE是等腰三角形.(2)由(1)知,在Rt△ODE中,OD=DE×tan30°==2,OE=2OD=4,∴BE=OE-OB=OE-OD=4-2=2,答:BE的长是2.考点:1.切线的性质;2.等腰三角形的判定;3.含30度角的直角三角形;4.锐角三角函数的定义.24.甲、乙两车分别从A、B两地同时相向而行,匀速开往对方所在地,图(1)表示甲、乙两车离A地的路程y(km)与出发时间x(h)的函数图象,图(2)表示甲、乙两车间的路程y(km)与出发时间x(h)的函数图象.(1)A、B两地的距离为 km,65h的实际意义是;(2)求甲、乙两车离B 地的路程y (km )与出发时间x (h )的函数关系式及x 的取值范围,并画出图象(不用列表,图象画在备用图中);(3)丙车在乙车出发10分钟时从B 地出发,匀速行驶,且比乙车提前20分钟到达A 地,那么,丙车追上乙车多长时间后与甲车相遇?【答案】(1)180;65h 时甲乙两车相距0km ;(2)l 甲:y=-60x+180(0≤x≤3)l 乙:y=90x (0≤x≤2).(3)丙车追上乙车49h 后与甲车相遇. 【解析】试题分析:(1)从图(1)可看出甲乙路程相距180km ,从图(2)可看出65h 他们相距0km ,故这个时间相遇.(2)从图中根据时间和路程可求出甲和乙的速度,设l 甲:y=k 1x+180,l 乙:y=k 2x ,从而求出函数式.画出函数图象.(3)设l 丙:y=k 3x+b ,由题意知l 丙经过(16,0),(53,180),从而确定函数式找到它与甲的交点,从而求出解.试题解析:(1)180,甲、乙两车出发65h 两车相遇. (2)由题意,v 甲=180603= 65(v 甲+v 乙)=180, 即v 乙=90∴乙车从B 地到达A 地所用的时间为180290= 由题意,设l 甲:y=k 1x+180,l 乙:y=k 2x则3k 1+180=0,即k 1=-60,∴l 甲:y=-60x+180(0≤x≤3)2k 2=180,即k 2=90,∴l 乙:y=90x (0≤x≤2).(画出图象)(3)设l 丙:y=k 3x+b ,由题意知l 丙经过(16,0),(53,180) ∴3310651803k b k b ⎧+=⎪⎪⎨⎪+=⎪⎩即312020k b =⎧⎨=-⎩ ∴l 丙:y=120x-20.1202090y x y x=-⎧⎨=⎩∴123x = 1202060180y x y x =-⎧⎨=-+⎩∴2109x = ∴1024939-=,即丙车追上乙车49h 后与甲车相遇. 考点:一次函数的应用.七、解答题(本题12分)25.已知点E 在△ABC 内,∠ABC=∠EBD=α,∠ACB=∠EDB=60°,∠AEB=150°,∠BEC=90°.(1)当α=60°时(如图1),①判断△ABC 的形状,并说明理由;②求证:AE ;(2)当α=90°时(如图2),求BD AE的值.【答案】(1) ①等边三角形;理由见解析; ②证明见解析; (2)【解析】试题分析:(1)①由三角形ABC 中有两个60°而求得它为等边三角形;②由△EBD 也是等边三角形,连接DC ,证得△ABE≌△CBD,在直角三角形中很容易证得结论.(2)连接DC ,证得△ABC∽△EBD,设BD=x 在Rt△EBD 中DE=2x 由相似比即得到比值.试题解析:(1)①判断:△ABC 是等边三角形.理由:∵∠ABC=∠ACB=60°∴∠BAC=180°-∠ABC -∠ACB=60°=∠ABC=∠ACB∴△ABC 是等边三角形②证明:同理△EBD 也是等边三角形连接DC ,则AB=BC ,BE=BD ,∠ABE=60°-∠EBC=∠CBD∴△ABE≌△CBD∴AE=CD,∠AEB=∠CDB=150°∴∠EDC=150°-∠BDE=90°∠CED=∠BEC -∠BED=90°-60°=30°在Rt△EDC 中,tan 30CD ED =︒=,∴AE BD =即. (2)连接DC ,∵∠ABC=∠EBD=90°,∠ACB=∠EDB=60°∴△ABC∽△EBD ∴AB BC EB BD =,即AB EB BC BD= 又∵∠ABE=90°-∠EBC=∠CBD ∴△ABE∽△CBD,∠AEB=∠CDB=150°,AE EB CD BD = ∴∠EDC=150°-∠BDE=90°∠CED=∠BEC -∠BED=90°-(90°-∠BDE)=60°设BD=x 在Rt△EBD 中DE=2x ,在Rt△EDC 中CD=DE ×tan60°∴66CD BE AE x BD BD ==== , 即16BD AE =. 考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质;3.等边三角形的判定与性质.八、解答题(本题14分)26.如图,已知在平面直角坐标系中,A ,B 两点在x 轴上,线段OA ,OB 的长分别为方程x 2-8x+12=0的两个根(OB >OA ),点C 是y 轴上一点,其坐标为(0,-3).(1)求A ,B 两点的坐标;(2)求经过A ,B ,C 三点的抛物线的关系式;(3)D 是点C 关于该抛物线对称轴的对称点,E 是该抛物线的顶点,M ,N 分别是y 轴、x 轴上的两个动点. ①当△CEM 是等腰三角形时,请直接写出此时点M 的坐标;②以D 、E 、M 、N 位顶点的四边形的周长是否有最小值?若有,请求出最小值,并直接写出此时点M ,N 的坐标;若没有,请说明理由.【答案】(1)A (-2,0),B (6,0)(2)y=14x 2-x-3.M (0,-53),N (107,0). 【解析】 试题分析:(1)利用分解因式法解方程x 2-8x+12=0即可得出x 的值,再根据OB >OA 即可得出点A 、B 的坐标;(2)根据抛物线过x 轴上的两点AB ,可设抛物线的解析式为:y=a (x+2)(x-6)(a≠0),再由点C 的坐标利用待定系数法即可求出经过A ,B ,C 三点的抛物线的关系式;(3)①设点M 的坐标为(0,m ),根据抛物线的关系式即可得出点E 的坐标,由两点间的距离公式可求出线段CE 、CM 、ME 的长度,再根据等腰三角形的性质分三种情况考虑,由边相等得出关于m 的方程,解方程即可得出m 值,从而得出点M 的坐标;②作点E 关于y 轴对称的点E′,作点D 关于x 轴对称的点D′,连接D′E′交x 轴于点N ,交y 轴于点M ,此时以D 、E 、M 、N 位顶点的四边形的周长最小.根据点C 的坐标可得出点D 的坐标,根据对称的性质即可得出点D′、E′的坐标,由此即可求出四边形周长的最小值,再根据点D′、E′的坐标,利用待定系数法即可求出直线D′E′的解析式,由此即可得出点M 、N 的坐标.试题解析:(1)∵x 2-8x+12=0,∴(x-2)(x-6)=0,解得:x 1=2,x 2=6,∵OB>OA ,∴OA=2,OB=6,∴点A 的坐标为(-2,0),点B 的坐标为(6,0).(2)设抛物线的解析式为:y=a (x+2)(x-6)(a≠0),将C (0,-3)代入得:-3=-12a ,解得:a=14,∴经过A,B,C三点的抛物线的关系式为:y=14(x+2)(x-6)=14x2-x-3.(3)①依据题意画出图形,如图1所示.设点M的坐标为(0,m),∵抛物线的关系式为y=14x2-x-3=14(x-2)2-4,∴点E(2,-4),,CM=|m+3|,△CEM是等腰三角形分三种情况:当CE=CM=|m+3|,解得:或,此时点M的坐标为(0-3)或(0,);当CE=ME,解得:m=-3(舍去)或m=-5,此时点M的坐标为(0,-5);当CM=ME时,有解得:m=-11 2,此时点M的坐标为(0,-112).综上可知:当△CEM是等腰三角形时,点M的坐标为(0-3)、(0,-3)、(0,-5)或(0, -112).②四边形DEMN有最小值.作点E关于y轴对称的点E′,作点D关于x轴对称的点D′,连接D′E′交x轴于点N,交y轴于点M,此时以D、E、M、N位顶点的四边形的周长最小,如图2所示.∵点C(0,-3),点E(2,-4),∴点D(4,-3),=∵E、E′关于y轴对称,D、D′关于x轴对称,∴EM=E′M,DN=D′N,点E′(-2,-4),点D′(4,3),=∴C四边形DEMN设直线D′E′的解析式为y=kx+b,则有3442k bk b=+⎧⎨-=-+⎩,解得:7653kb⎧=⎪⎪⎨⎪=-⎪⎩,∴直线D′E′的解析式为y=76x-53.令y=76x-53中x=0,则y=-53,∴点M(0,-53);令y=76x-53中y=0,则76x-53=0,解得:x=107,∴点N(107,0).故以D、E、M、N+M的坐标为(0,-53),点N的坐标为(107,0).考点:二次函数综合题.。
辽宁省丹东市2016届九年级中考数学模拟试卷(四)数学试题解析(解析版)

一、选择题(共8小题,每小题3分,满分24分)1.-2是2的()A.倒数 B.相反数 C.绝对值 D.平方根【答案】B.【解析】试题解析:-2是2的相反数,故选B.考点:相反数.2.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示应为()A.0.3×106B.3×105C.3×106D.30×104【答案】B.考点:科学记数法—表示较大的数.3.如图是几何体的三视图,该几何体是()A.圆锥 B.圆柱 C.正三棱柱 D.正三棱锥【答案】C.【解析】试题解析:该几何体的左视图为矩形,俯视图亦为矩形,主视图是一个三角形,则可得出该几何体为三棱柱.故选C.考点:三视图.4.函数自变量x的取值范围是()A.x<1 B.x>-1 C.x≤1 D.x≤-1 【答案】A.【解析】试题解析:根据题意得:1-x>0,解得x<1.故选A.考点:函数自变量取值范围.5.下列事件为必然事件的是()A.任意买一张电影票,座位号大于5B.打开电视机,正在播放天气预报C.菱形的对角线的长大于边长D.线段垂直平分线上的点到这条线段的两个端点的距离相等【答案】D.考点:随机事件.6.已知,在▱ABCD中,BC-AB=2cm,BC=4cm,则▱ABCD的周长是()A.6cm B.12cm C.8cm D.10cm【答案】B.【解析】试题解析:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,∵BC -AB=2cm ,BC=4cm ,∴AB=DC=2cm,∴▱ABCD 的周长是=2+2+4+4=12cm .故选B .考点:平行四边形的性质.7.如图,点A 、点B 是函数y=k x的图象上关于坐标原点对称的任意两点,BC∥x 轴,AC∥y 轴,△ABC 的面积是4,则k 的值是( )A .-2B .±4C .2D .±2【答案】C.【解析】试题解析:∵反比例函数的图象在一、三象限,∴k>0,∵BC∥x 轴,AC∥y 轴,∴S △AOD =S △BOE =12k ,∵反比例函数及正比例函数的图象关于原点对称,∴A、B 两点关于原点对称,∴S 矩形OECD =2△AOD =k ,∴S △ABC =S △AOD +S △BOE +S 矩形OECD =2k=4,解得k=2.故选C .考点:反比例函数的性质.8.在Rt△ACB中,∠C=90°,AC=BC,一直角三角板的直角顶角O在AB边的中点上,这块三角板绕O点旋转,两条直角边始终与AC、BC边分别相交于E、F,连接EF,则在运动过程中,△OEF与△ABC的关系是()A.一定相似 B.当E是AC中点时相似 C.不一定相似 D.无法判断【答案】A.【解析】试题解析:连结OC,∵∠C=90°,AC=BC,∴∠B=45°,∵点O为AB的中点,∴OC=OB,∠ACO=∠BCO=45°,∵∠EOC+∠COF=∠COF+∠BOF=90°,∴∠EOC=∠BO F,在△COE和△BOF中,OCE B OC OBEOC FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△COE≌△BOF(ASA ),∴OE=OF,∴△OEF 是等腰直角三角形,∴∠OEF=∠OFE=∠A=∠B=45°,∴△OEF∽△△CAB.故选A .考点:1.相似三角形的判定;2.全等三角形的判定与性质;3.等腰直角三角形性质.二、填空题(共8小题,每小题3分,满分24分)9.如图,直线a∥b,直线c 与a ,b 相交,∠1=55°,则∠2= .【答案】125°.【解析】试题解析:如图,∵∠1=55°,∴∠3=180°-∠1=180°-55°=125°.∵直线a∥b,∴∠2=∠3=125°.考点:平行线的性质.10.分解因式:ba 3-ab 3= .【答案】ab (a-b )(a+b ).【解析】试题解析:原式=ab(a2-b2),=ab(a-b)(a+b).考点:提公因式法与公式法的综合运用.11.一组数据-1、x、3、1、-3的平均数为0,则这组数据的标准差为.【答案】2.【解析】试题解析:∵数据-1、x、3、1、-3的平均数是10,∴(-1+x+3+1-3)÷5=0,解得:x=0,∴这组数据的方差是:S2=15[(-1-0)2+(0-0)2+(3-0)2+(1-0)2+(-3-0)2]=4,∴这组数据的标准差等于2.考点:1.方差;2.标准差;3.平均数.12.如图,在⊙O中,弦AB=4cm,点O到AB的距离OC的长是cm,则⊙O的半径是.【答案】4cm.【解析】试题解析:连结OA,如图,∵点O到AB的距离OC的长是cm,∴OC⊥AB,∴AC=BC=12AB=12×4cm=2cm,在Rt△OCA中,AC=2cm,=4(cm).考点:垂径定理.13.某药店响应国家政策,某品牌药连续两次降价,由开始每盒16元下降到每盒14元.设每次降价的平均百分率是x,则列出关于x的方程是.【答案】16(1-x)2=14.【解析】试题解析:设该药品平均每次降价的百分率是x,根据题意得16×(1-x)(1-x)=14,整理得:16(1-x)2=14.考点:由实际问题抽象出一元二次方程.14.如图,在梯形ABCD中,AD∥BC,AB=DC,∠C=60°,BC-AD=4,则梯形的腰AB= .【答案】4.【解析】试题解析:过点D作DE∥AB,交BC于点E,∵AD∥BC,∴四边形ABED是平行四边形,∴DE=AB,BE=AD,∵AB=DC,BC-AD=4,∴DE=DC,CE=BC-BE=BC-AD=4,∵∠C=60°,∴△DEC是等边三角形,∴AB=CE=4.考点:1.等腰梯形的性质;2.平行四边形的判定与性质;3.等边三角形的判定与性质.15.观察下面两组数据:第一组:2,4,8,16…第二组:5,7,11,19…根据你发现的规律,两组数据的第8个数据的和是 .【答案】515.【解析】试题解析:第一组:2=21,4=22,8=23,16=24,…第二组:5=21+3,7=22+3,11=23+3,19=24+3,…所以,两组的第8个数据的和是:28+(28+3)=256+(256+3)=515.考点:规律型:数字变化类.16.如图,在平面直角坐标系中,O 为坐标原点,四边形ABCD 是矩形,顶点A 、B 、C 、D 的坐标分别为(-1,0),(5,0),(5,2),(-1,2),点E (3,0)在x 轴上,点P 在CD 边上运动,使△OPE 为等腰三角形,则满足条件的P 点有 个.【答案】3.【解析】试题解析:如图,满足条件的P 点有3个.考点:1.矩形的性质,2.坐标与图形性质,3.等腰三角形的判定.三、解答题(共10小题,满分102分)17.先化简,再求值:243()111a a a a -÷-+-,其中a=-5. 【答案】25-. 【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将a 的值代入计算即可求出值.试题解析:原式=24(1)3(1)(1)(1)1a a a a a a +--÷+-- =7(1)(1)(1)(1)a a a a a a++-⨯+- =7a a+ 当a=-5时,原式=57255-+=--. 考点:分式的化简求值.18.已知:如图所示,在网格中建立平面直角坐标系,每个小正方形的边长都是1个单位长度,四边形ABCD 的各顶点均在格点上.(1)将四边形ABCD 绕坐标原点O 按顺时针方向旋转180°后得四边形A 1B 1C 1D 1;(2)将四边形A 1B 1C 1D 1平移,得到四边形A 2B 2C 2D 2,若D 2(2,3),画出平移后的图形.【答案】作图见解析.【解析】试题分析:(1)根据网格结构找出点A 、B 、C 、D 绕点O 顺时针旋转180°后的对应点A 1、B 1、C 1、D 1的位置,然后顺次连接即可;(2)根据网格结构找出点A 1、B 1、C 1、D 1平移后A 2、B 2、C 2、D 2的位置,然后顺次连接即可.试题解析:(1)四边形A 1B 1C 1D 1如图所示;(2)四边形A 2B 2C 2D 2如图所示.考点:1.旋转变换;2.轴对称变换.19.我市为了解中学生的视力情况,对某校三个年级的学生视力进行了抽样调查,得到不完整的统计表与扇形统计图如下,其中扇形统计图的圆心角α为36°,x表示视力情况,根据上面提供的信息,回答下列问题:(1)此次共调查了人;(2)请将表格补充完整;(3)这组数据的中位数落在组内;(4)扇形统计图中“D组”的扇形所对的圆心角的度数是.【答案】(1)200;(2)补图见解析;(3)C;(4)108°.【解析】试题分析:(1)根据圆心角α为36°,求出A组所占的百分比,的出频率,再根据频数是20,即可得出总人数;(2)根据频数、频率之间的关系,分别求出B组的频数、C组的频率、D组的频数以及频率,填表即可;(3)根据中位数的定义即可得出这组数据的中位数落在C组内;(4)用360°乘以D组的频率即可得出答案.试题解析:(1)∵圆心角α为36°,∴A组的频率是:36360=0.1,∴总人数是20÷0.1=200(人),(2)B组的频数是200×0.35=70;C组的频率是50÷200=0.25;D组的频数是:200-20-70-50=60,频率是60÷200=0.3;填表如下:(3)∵这组数据共有200个数,∴中位数是第100,101个数的平均数,∴这组数据的中位数落在C组内;(4)扇形统计图中“D组”的扇形所对的圆心角的度数是360°×0.30=108°.考点:1.统计图;2.中位数.20.数学兴趣小组探究概率实验,桌子上放有质地均匀,反面相同的4张卡片,正面标有1、2、3、4,将这些卡片反面朝上洗匀后放在桌面上,先从中任意抽出1张卡片,用卡片上所标有的数字作为十位上的数字,将这张卡片反面朝上放回洗匀;再从中任意抽出一张卡片,用卡片上所标有的数字作为个位上的数字,试用列表法或画树状图的方法分析下列问题:(1)组成的两位数有多少种可能?(2)组成的两位数恰好能被3整除的概率是多少?【答案】(1)16;(2)5 16.【解析】试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)中的树状图可得组成的两位数恰好能被3整除的有5种情况,然后利用概率公式求解即可求得答案.试题解析:(1)画树状图得:则共有16种等可能的结果.(2)∵组成的两位数恰好能被3整除的有5种情况,∴组成的两位数恰好能被3整除的概率是:516. 考点:列表法或画树状图法.21.如图,AB 是⊙O 的直径,OD∥BC,∠A=30°,CD=2.求:(1)弦BC 的长;(2)图中阴影部分的面积.【答案】(1;(2)169π 【解析】 试题分析:(1)根据圆周角定理得∠ACB=90°,再由OD∥BC 得∠ADO=90°,则根据垂径定理得到AD=DC=2,即AC=4,然后根据含30°的直角三角形三边的关系可计算出BC ;(2)先得到OD=12=S 扇形OAC -S △OAC 进行计算即可.试题解析:(1)∵AB 是⊙O 的直径,∴∠ACB=90°,∵OD∥BC,∴∠ADO=90°,∴OD⊥AC,∴AD=DC=2,∴AC=4,∵∠A=30°,(2)连结OC ,如图,∵OD 为△ACB 的中位线, ∴OD=12在Rt△ACB 中,∠A=30°,∴∠B=60°,∴阴影部分的面积=S 扇形OAC -S △OAC142-⨯=169π- 考点:1.垂径定理;2.圆周角定理;3.扇形的面积.22.甲、乙两市之间有两条铁路线,普通快车线长600千米;高速铁路线长450千米.已知高速列车的速度是普通快车速度的3倍,普通快车先出发3小时,而比高速列车晚到2小时,求普通快车与高速列车的速度分别是多少?【答案】普通快车的速度为90千米/小时,高速列车的速度为270千米/小时.【解析】试题分析:设普通快车的速度为x,则高速列车的速度为3x,根据高速列车比普通快车少用5小时,可得出方程,解出即可.试题解析:设普通快车的速度为x,则高速列车的速度为3x,由题意得:600450323x x-=+,解得:x=90.经检验:x=90是原方程的根.3x=270(千米/时).答:普通快车的速度为90千米/小时,高速列车的速度为270千米/小时.考点:分式方程的应用.23.如图,AB、CD分别表示甲、乙两建筑物的高,从A点测得D点的仰角为30°,从B点测得D点的仰角为60°,已知两楼之间的距离为27米.求甲、乙两建筑物的高AB、CD.(结果精确到个位)(参考数据:≈1.7)【答案】甲、乙两建筑物的高AB、CD分别为31米和46米.【解析】试题分析:先作AE⊥CD于点E,得出AE=BC-27,AB=CE,根据tan∠DBC=CDBC,求出CD的长,再根据tan∠DAE=DEAE,求出DE的长,最后根据CE=CD-DE,即可得出答案.试题解析:作AE⊥CD于点E,则四边形ABCE为矩形,则AE=BC-27,AB=CE,在Rt△BCD中,∵tan∠DBC=CD BC,≈46(米),在Rt△AED中,∵tan∠DAE=DE AE,,∴CE=CD31(米);答:甲、乙两建筑物的高AB、CD分别为31米和46米.考点:解直角三角形的应用-仰角俯角问题.24.某房地产开发公司计划建甲、乙两种户型的住房共80套,该公司所用建房资金不少于2850万元,甲种户型每套成本和售价分别为45万元和51万元,乙种户型每套成本和售价分别为30万元和35万元.设计划建甲种户型x套.(1)该公司最少建甲种户型多少套?(2)若甲种户型不超过32套,选择哪种建房方案,该公司获利最大?最大利润是多少?(3)在(2)的条件下,根据国家房地产政策,公司计划每套甲种户型住房的售价降低a万元(0<a≤1.5),乙种户型住房的售价不变,且预计所建的两种住房能全部售出,直接写出该公司获得最大利润的方案.【答案】(1)公司最少建甲种户型30套;(2)x取最大值32时,W有最大值432万元;(3)当0<a<1时,甲住房有32套,乙住房有48套,该公司才能获得最大利润;当1<a<1.5时,甲住房有30套,乙住房有50套,该公司才能获得最大利润.【解析】试题分析:(1)设公司建甲种户型x套,则B种户型(80-x)套,根据该公司所用建房资金不少于2850万元,列出不等式,进行求解即可;(2)设所获得利润为W万元,根据一套的利润×总的套数=总利润,列出一次函数,再根据函数的增减性即可得出答案;(3)分两种情况讨论:当0<a<1和1<a<1.5时,分别得出甲住房和乙住房各多少套时,该公司才能获得最大利润.试题解析:(1)设公司建甲种户型x套,则B种户型(80-x)套,45x+30(80-x)≥2850解得:x≥30,答:公司最少建甲种户型30套;(2)设所获得利润为W万元,根据题意得:W=(51-45)x+(35-30)(80-x)=x+400,∵k=1>0,∴W随x的增大而增大,∴当x取最大值32时,W有最大值432万元;(3)当0<a<1时,甲住房有32套,乙住房有48套,该公司才能获得最大利润;当1<a<1.5时,甲住房有30套,乙住房有50套,该公司才能获得最大利润.考点:1.一元一次不等式的应用;2.一次函数的应用.25.已知:在Rt△ABC中,∠ABC=90°,∠C=60°,现将一个足够大的直角三角形的顶点P放在斜边AC上.(1)设三角板的两直角边分别交边AB,BC于点M,N.①当点P是AC的中点时,分别作PE⊥AB于点E,PF⊥BC于点F,得到图1,写出图中的一对全等三角形;②在①的条件下,写出与△PEM相似的三角形,并直接写出PN与PM的数量关系.(2)移动点P,使AP=2CP,将三角板绕点P旋转,设旋转过程中三角板的两直角边分别交边AB,BC于点M,N(PM不与边AB垂直,PN不与边BC垂直);或者三角板的两直角边分别交边AB,BC的延长线于点M,N.①请在备用图中画出图形,判断PM与PN的数量关系,并选择其中一种图形证明你的结论;②在①的条件下,当△PCN是等腰三角形时,若BC=3cm,则线段BN的长是.【答案】(1)①△AEP≌△PFC,理由见解析;②△PFN∽△PEM,PM ;(2)①PM=2PN,②1cm 或5cm.【解析】试题分析:(1)①求出∠AEP=∠B=∠PFC=90°,∠APE=∠C=60°,根据AAS 推出两三角形全等即可;②根据已知条件得到,求出PE=12BC ,PF=12AB ,根据相似三角形的判定推出△PFN∽△PEM,根据相似三角形的性质得到PM PE PN PF ==,即可得出答案. (2)①根据相似三角形的性质得到AP PE PC PF==2,设CF=x ,则PE=2x ,求出x ,根据相似三角形的性质即可得到结论;②求出CP=2cm ,分为两种情况:第一种情况:当N 在线段BC 上时,得出△PCN 是等边三角形,求出CN=CP=2cm ,即可得到结论;第二种情况:当N 在线段BC 的延长线上时,求出CN=PC=2cm ,即可得到结论.试题解析:(1)①△AEP≌△PFC,理由是:∵P 为AC 中点,∴AP=PC,∵PE⊥AB,PF⊥BC,∠B=90°,∴∠AEP=∠B=∠PFC=90°,∴PF∥AB,PE∥BC,∴∠APE=∠C=60°,在△AEP 和△PFC 中APE C AEP PFC AP PC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEP≌△PFC(AAS );②△PFN∽△PEM,PM ,理由是:∵在Rt△ACB 中,∠ABC=90°,∠C=60°,BC ,∵PE∥BC,PF∥AB,P 为AC 中点,∴E 为AB 中点,F 为BC 中点, ∴PE=12BC ,PF=12AB , ∴PE BC PF AB == ∵∠PEB=∠B=∠PFB=90°,∴∠EPF=90°,∵∠MPN=90°,∴∠EPM=∠NPF=90°-∠MPF,∵∠PEM=∠PFN=90°,∴△PFN∽△PEM, ∴PM PE PN PF ==,PM .(2)①PM=2PN,如图1,证明:过P 作PE⊥AB 于E ,PF⊥BC 于F ,∵∠AEP=∠PFC=∠B=90°,∴PE∥BC,∴∠APE=∠C,∴△AEP∽∠PFC, ∴22AP PE PC PC PF PC===, 设CF=x ,则PE=2x ,在Rt△PFC 中,∠C=60°,∠PFC=90°,x ,∵在四边形BFPE 中,∠BFP=∠B=∠BEP=90°,∴∠EPF=90°,即∠EPM+∠MPF=90°,∵∠NPF+∠MPF=90°,∴∠NPF=∠EPM,∵∠MEP=∠PFN=90°,∴△PEM∽△PFN,∴PM PE PN PF ==,PN ; ②∵在Rt△ABC 中,∠B=90°,∠C=60°,BC=3cm ,∴AC=2BC=6cm,∵AP=2PC,∴CP=2cm,分为两种情况:第一种情况:当N 在线段BC 上时,如图2,∵△PCN 是等腰三角形,∠C=60°,CP=2cm ,∴△PCN 是等边三角形,∴CN=CP=2cm,∴BN=BC-CN=3cm-2cm=1cm;第二种情况:当N在线段BC的延长线上时,如图3,∵∠PCN=180°-60°=120°,∴要△PCN是等腰三角形,只能PC=CN,即CN=PC=2cm,∴BN=BC+CN=3cm+2cm=5cm,即BN的长是1cm或5cm,考点:1.等腰三角形性质和判定,2.三角形中位线,3.相似三角形的性质和判定.26.如图,直线y=2x+2与x轴交于点A,与y轴交于点B,把△AOB沿y轴翻折,点A落到点C,过点B的抛物线y=-x2+bx+c与直线BC交于点D(3,-4).(1)求直线BD和抛物线的解析式;(2)在第一象限内的抛物线上,是否存在一点M,作MN垂直于x轴,垂足为点N,使得以M、O、N为顶点的三角形与△BOC相似?若存在,求出点M的坐标;若不存在,请说明理由;(3)在直线BD上方的抛物线上有一动点P,过点P作PH垂直于x轴,交直线BD于点H,当四边形BOHP 是平行四边形时,试求动点P的坐标.【答案】(1)直线BD的解析式为:y=-2x+2;y=-x2+x+2;(2)(1,23)P点的坐标为(1,2)或(2,0).【解析】试题分析:(1)由直线y=2x+2可以求出A,B的坐标,由待定系数法就可以求出抛物线的解析式和直线BD 的解析式;(2)如图1,2,由(1)的解析式设M(a,-a2+a+2),当△BOC∽△MON或△BOC∽△ONM时,由相似三角形的性质就可以求出结论;(3)设P(b,-b2+b+2),H(b,-2b+2).由平行四边形的性质建立方程求出b的值就可以求出结论.试题解析:(1)∵y=2x+2,∴当x=0时,y=2,∴B(0,2).当y=0时,x=-1,∴A(-1,0).∵抛物线y=-x2+bx+c过点B(0,2),D(3,-4),∴2934 cb c=⎧⎨-++=-⎩解得:12 bc=⎧⎨=⎩,∴y=-x2+x+2;设直线BD 的解析式为y=kx+b ,由题意,得 234b k b =⎧⎨+=-⎩, 解得:22k b =-⎧⎨=⎩, ∴直线BD 的解析式为:y=-2x+2;(2)存在.如图1,设M (a ,-a 2+a+2).∵MN 垂直于x 轴,∴MN=-a 2+a+2,ON=a .∵y=-2x+2,∴y=0时,x=1,∴C(1,0),∴OC=1.∵B(0,2),∴OB=2.当△BOC∽△MNO 时, ∴BO OC MN ON=, ∴2212a a a =-++,解得:a 1=1,a 2=-2(舍去)∴M(1,2);如图2,当△BOC∽△ONM 时,BO OC ON MN=, ∴2122a a a=-++,(舍去),∴符合条件的点M 的坐标为(1,2); (3)设P (b ,-b 2+b+2),H (b ,-2b+2). 如图3,∵四边形BOHP是平行四边形,∴BO=PH=2.∵PH=-b2+b+2+2b-2=-b2+3b.∴2=-b2+3b∴b1=1,b2=2.当b=1时,P(1,2),当b=2时,P(2,0)∴P点的坐标为(1,2)或(2,0).考点:二次函数综合题。
2016届中考数学一模检测试题(带答案)

2016届中考数学一模检测试题(带答案)临近中考许多考生一头扎进一套套的综合训练题中希望熟能生巧,结果却收效甚微。
下文为各位考生准备了中考数学一模检测试题的内容。
1.(2013年北京)在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出1个小球,其标号大于2的概率为()A.15B.25C.35D.452.(2013年上海)将定理的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取1张,那么取到字母e的概率为____________.3.(2013年湖北宜昌)2012~2013NBA整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是()A.科比罚球投篮2次,一定全部命中B.科比罚球投篮2次,不一定全部命中C.科比罚球投篮1次,命中的可能性较大D.科比罚球投篮1次,不命中的可能性较小4.(2013年福建福州)袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出1个球,如果取到白球的可能性较大,那么袋中白球的个数可能是()A.3个B.不足3个C.4个D.5个或5个以上5.(2013年海南益阳)有三张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、正方形、圆,从这三张卡片中任意抽取一张,卡片正面的图形既是轴对称图形又是中心对称图形的概率是________.6.在一个不透明的盒子中,共有一白三黑四个围棋子,它们除了颜色之外没有其他区别.(1)随机地从盒中提出一子,则提出白子的概率是多少?(2)随机地从盒中提出一子,不放回再提第二子.请你用画树状图或列表的方法表示所有等可能的结果,并求恰好提出一黑一白子的概率.B级中等题7.(2013年重庆)从3,0,-1,-2,-3这五个数中,随机抽取一个数,作为函数y=(5-m2)x和关于x的方程(m+1)x2+mx+1=0中m 的值,恰好使所得函数的图象经过第一、三象限,且方程有实数根的概率为________.8.(2013年湖北襄阳)襄阳市辖区内旅游景点较多,李老师和刚初中毕业的儿子准备到古隆中、水镜庄、黄家湾三个景点去游玩.如果他们各自在这三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择古隆中为第一站的概率是________.9.在一个口袋中有4个完全相同的小球,把它们分别标上1,2,3,4.小明先随机地摸出1个小球,小强再随机的摸出1个小球.记小明摸出球的标号为x,小强摸出的球标号为y.小明和小强在此基础上共同协商一个游戏规则:当xy时,小明获胜,否则小强获胜.(1)若小明摸出的球不放回,求小明获胜的概率;(2)若小明摸出的球放回后小强再随机摸球,问他们制定的游戏规则公平吗?请说明理由.10.(2012年江西)如图73,大小、质地相同,仅颜色不同的两双拖鞋(分左、右脚)共四只,放置在地板上[可表示为(A1,A2),(B1,B2)].(1)若先将两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,求恰好匹配成相同颜色的一双拖鞋的概率;(2)若从这四只拖鞋中随机地取出两只,利用树状图或表格列举出所有可能出现的结果,并求恰好匹配成相同颜色的一双拖鞋的概率.C级拔尖题11.(2013年江西)甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.(1)下列事件是必然事件的是()A.乙抽到一件礼物B.乙恰好抽到自己带来的礼物C.乙没有抽到自己带来的礼物D.只有乙抽到自己带来的礼物(2)甲、乙、丙3人抽到的都不是自己带来的礼物(记为事件A),请列出事件A的所有可能的结果,并求事件A的概率.1.C2.273.A4.D5.236.解:(1)∵共有一白三黑四个围棋子,P(白子)=14.(2)画树状图如图73.∵共有12种等可能的结果,恰好提出一黑一白子的有6种情况,P(一黑一白)=612=12.图737.258.199.解:(1)画树状图如图74.∵共有12种等可能的结果,小明获胜的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)共6种情况,小明获胜的概率为:12.(2)画树状图如图75.图75∵共有16种等可能的结果,小明获胜的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)共6种情况,P(小明获胜)=38,P(小强获胜)=58,∵P(小明获胜)P(小强获胜),他们制定的游戏规则不公平.10.解:(1)∵若先将两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,有A1A2,A1B2,B1B2,B1A2四种情况,恰好匹配的有A1A2,B1B2两种情况,P(恰好匹配)=24=12.(2)方法一,画树状图如图76.图76∵所有可能的结果为A1A2,A1B1,A1B2,A2A1,A2B1,A2B2,B1A1,B1A2,B1B2,B2A1,B2A2,B2B1,从这四只拖鞋中随机的取出两只,共有12种不同的情况,其中恰好匹配的有4种,分别是A1A2,A2A1,B1B2,B2B1.P(恰好匹配)=412=13.方法二,列表格如下:A1B2A2B2B1B2-A1B1A2B1-B2B1A1A2-B1A2B2A2-A2A1B1A1B2A1可见,从这四只拖鞋中随机的取出两只,共有12种不同的情况,其中恰好匹配的有4种,分别是A1A2,A2A1,B1B2,B2B1.P(恰好匹配)=412=13.11.解:(1)A(2)设甲、乙、丙三人的礼物分别记为a,b,c,根据题意画出树状图如图77.图77一共有6种等可能的情况,三人抽到的礼物分别为abc,acb,bac,bca,cab,cba,3人抽到的都不是自己带来的礼物的情况有bca,cab有2种,所以,P(A)=26=13.为大家推荐的中考数学一模检测试题的内容,还满意吗?相信大家都会仔细阅读,加油哦!精心整理,仅供学习参考。
2016届中考数学一模考试试卷(练习)
2016届中考数学一模考试试卷(练习)中考复习最忌心浮气躁,急于求成。
指导复习的教师,应给学生一种乐观、镇定、自信的精神面貌。
要扎扎实实地复习,一步一步地前进,下文为大家准备了中考数学一模考试试卷的内容。
一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.的倒数是()(A)(B)(C)(D)2.解一元二次方程得到它的根是()(A)(B)或(C)(D)或3.事件A:若a是实数,则事件B:若实数x满足,则x正实数。
则下列关于事件A和事件B的说法正确的是()(A)事件A是必然事件,而事件B是随机事件(B)事件A是随机事件,而事件B是必然事件(C)事件A是必然事件,而事件B是必然事件(D)事件A是随机事件,而事件B是随机事件4.下列各数:①;②;③;④中是负数的是()(A)①②③(B)①②④(C)②③④(D)①②③④5.如图①,有6张写有实数的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图②摆放,从中任意翻开两张都是无理数的概率是()(A)(B)(C)(D)6.如图是某几何体的三视图及相关数据,则判断正确的是(A)(B)(C)(D)7.如图,A、B、C是⊙O上的三点,且A是优弧BAC上与点B、点C不同的一点,若△BOC是直角三角形,则△BAC必是()(A)等腰三角形(B)锐角三角形(C)有一个角是的三角形(D)有一个角是的三角形8.如右图所示,三角形ABC的面积为1cm2。
AP垂直B的平分线BP于P。
则与三角形PBC的面积相等的长方形是()9.两个正数满足,,设,则P关于t的函数图像是A.射线(不含端点)B.线段(不含端点)C.直线D.抛物线的一部分10.如图,边长为2的正方形EFGH在边长为6的正方形ABCD 所在平面上移动,始终保持EF∥AB.线段CF的中点为M,DH的中点为N,则线段MN的长为()A、B、C、D、二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.如图,直线a//b,直角三角板的直角顶点P在直线b上,若,则的度数。
辽宁省丹东市中考数学一模试卷
辽宁省丹东市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列判断中,你认为正确的是()A . 0的倒数是0B . π是有理数C . 大于2D . 的值是±32. (2分)钓鱼岛是我国固有领土,位于我国东海,总面积约6340000平方米,数据6340000用科学记数法表示为()A .B .C .D .3. (2分)(2018·聊城) 如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=95°,∠CDE=25°,则∠DEF的度数是()A . 110°B . 115°C . 120°D . 125°4. (2分)如图,由下列条件不能判定△ABC与△A DE相似的是()A .B . ∠B=∠ADEC .D . ∠C=∠AED5. (2分)(2020·甘孜) 如图摆放的下列几何体中,左视图是圆的是()A .B .C .D .6. (2分)下列计算正确的是()A . 3x+2x2=5x3B . (a-b)2=a2-b2C . (-x3)2=x6D . 3x2·4x3=12x67. (2分)如图,矩形ABCD中,AB=3,BC=5.过对角线交点O作OE⊥AC交AD于E,则AE的长是()A . 1.6B . 2.5C . 3D . 3.48. (2分) (2016九上·武汉期中) 如图,点P为⊙O内一点,且OP=6,若⊙O的半径为10,则过点P的弦长不可能为()A . 17B . 3C . 16D . 15.59. (2分) (2016九上·太原期末) 若A(3,y1),B(2,y2)在函数y= 的图象上,则y1 , y2的大小关系是()A . y1>y2B . y1=y2C . y1<y2D . 无法确定10. (2分) (2017九上·汉阳期中) 下列方程中,没有实数根的方程式()A . x2=9B . 4x2=3(4x﹣1)C . x(x+1)=1D . 2y2+6y+7=011. (2分)从长度分别为3,5,7,9,11的5条线段中任取3条,这3条线段能组成三角形的概率为()A .B .C .D .12. (2分) (2015八上·宜昌期中) 下列各式是完全平方式的是()A . x2﹣x+B . 1+x2C . x+xy+1D . x2+2x﹣1二、填空题 (共6题;共6分)13. (1分) (2017·淄博) 分解因式:2x3﹣8x=________.14. (1分)(2018·黔西南模拟) 若一组数据6,7,5,6,x,1的平均数是5,则这组数据的众数是________.15. (1分)如图,线段AB是⊙O的直径,弦CD⊥AB,∠CAB=20°,则∠AOD等于________.16. (1分)如图,A是反比例函数y= (x>o)图象上一点,点B,D在y轴正半轴上,△ABD是△COD关于点D的位似图形,且△ABD与△COD的位似比是1:3,△ABD的面积为1,则该反比例函数的表达式为________17. (1分)如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=3,则EF的长为________18. (1分)已知抛物线y=a(x﹣2)2+k(a>0,a,k常数),A(﹣3,y1)B(3,y2)C(4,y3)是抛物线上三点,则y1 , y2 , y3用“<”排列为________.三、解答题 (共8题;共68分)19. (5分)(2020·甘肃) 计算:20. (5分)解不等式组,并写出不等式组的整数解.21. (7分)(2016·防城) 如图,在平面直角坐标系网格中,将△ABC进行位似变换得到△A1B1C1 .(1)△A1B1C1与△ABC的位似比是________;(2)画出△A1B1C1关于y轴对称的△A2B2C2;(3)设点P(a,b)为△ABC内一点,则依上述两次变换后,点P在△A2B2C2内的对应点P2的坐标是________.22. (9分) (2019八下·瑶海期末) 某校团委举办了一次“中国梦,我的梦”演讲比赛,满分10分,学生得分均为整数,成绩达6分以上为合格,达到9分以上(含9分)为优秀.这次竞赛中甲、乙两组学生成绩分布的条形统计图如下.(1)补充完成下列的成绩统计分析表:组别平均分中位数方差合格率优秀率甲 6.7________ 3.4190%20%乙________7.5________80%10%(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是________组学生;(填“甲”或“乙”)(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.23. (7分)(2017·宛城模拟) 如图,在△OAB中,OA=OB,以点O为圆心的⊙O经过AB的中点C,直线AO 与⊙O相交于点E、D,OB交⊙O于点F,P是的中点,连接CE、CF、BP.(1)求证:AB是⊙O的切线.(2)若OA=4,则①当长为________时,四边形OECF是菱形;②当长为________时,四边形OCBP是正方形.24. (5分)(2016·岳阳) 我市某学校开展“远是君山,磨砺意志,保护江豚,爱鸟护鸟”为主题的远足活动.已知学校与君山岛相距24千米,远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的2.5倍,服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用了3.6小时,求学生步行的平均速度是多少千米/小时.25. (15分)(2016·丹东) 如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图③,写出PM与PN的数量关系,并加以证明.26. (15分)(2019·澄海模拟) 如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C 运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t>0)秒.(1)求线段AC的长度;(2)当点Q从B点向A点运动时(未到达A点),求△APQ的面积S关于t的函数关系式,并写出t的取值范围;(3)伴随着P,Q两点的运动,线段PQ的垂直平分线为l:①当l经过点A时,射线QP交AD于点E,求AE的长;②当l经过点B时,求t的值.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共68分)19-1、20-1、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、24-1、25-1、25-2、25-3、26-1、26-2、。
精品:辽宁省丹东市2016届九年级下学期中考模拟试卷(六)数学试题(解析版)
一、选择题(共8小题,每小题3分,满分24分)1.比2小3的数是( )A .﹣1B .﹣5C .1D .5【答案】A【解析】试题解析:∵2﹣3=﹣1,∴比2小3的数是﹣1.故选A .考点:有理数的减法.2.一个几何体的三视图如右所示,则这个几何体是( )A .正方体B .球C .圆锥D .圆柱【答案】D【解析】试题解析:如图,该几何体的三视图中两个视图是矩形,一个视图是个圆,故该几何体为圆柱.故选D .考点:由三视图判断几何体.3.函数y =k x的图象经过点(2,3),则k =( ) A .2 B .3 C .6 D .﹣6【答案】C【解析】试题解析:∵函数y =k x 的图象经过点(2,3), ∴2k =3,解得k =6. 故选:C .考点:反比例函数图象上点的坐标特征.4.解分式方程12xx--+2=12x-,可知方程()A.解为x=2 B.解为x=4 C.解为x=3 D.无解【答案】D【解析】试题解析:去分母,得1﹣x+2(x﹣2)=﹣1.去括号,得1﹣x+2x﹣4=﹣1.移项,得﹣x+2x=﹣1﹣1+4.合并同类项,得x=2.检验:当x=2时,x﹣2=0,x=2不是分式方程的解,原分式方程无解.故选:D.考点:解分式方程.5.甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,但甲的成绩比乙的成绩稳定,那么两者的方差的大小关系是()A.s2甲>s2乙B.s2甲=s2乙C.s2甲<s2乙D.不能确定【答案】C【解析】试题解析:∵甲的成绩比乙的成绩稳定,∴s2甲<s2乙,故选C.考点:方差.6.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向黄色区域的概率是()A.16B.13C.12D.23【答案】A【解析】试题解析:∵转盘被等分成6个扇形区域,而黄色区域占其中的一个,∴指针指向黄色区域的概率=16.故选A.考点:几何概率.7.如图,在△ABC中,AB=AC,AB=8,BC=12,分别以AB、AC为直径作半圆,则图中阴影部分的面积是()A.64π﹣12B.16π﹣32 C.16π﹣24D.16π﹣12【答案】D【解析】试题解析:设半圆与底边的交点是D,连接AD.∵AB是直径,∴AD⊥BC.又∵AB=AC,∴BD=CD=6.根据勾股定理,得AD ==2.∵阴影部分的面积的一半=以AB 为直径的半圆的面积﹣三角形ABD 的面积=以AC 为直径的半圆的面积﹣三角形ACD 的面积,∴阴影部分的面积=以AB 为直径的圆的面积﹣三角形ABC 的面积=16π﹣12×12×2=16π﹣12.故选D .考点:扇形面积的计算.8.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a 的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )A .12≤a ≤13B .12≤a ≤15C .5≤a ≤12D .5≤a ≤13【答案】A【解析】试题解析:a 的最小长度显然是圆柱的高12,最大长度根据勾股定理,得:=13. 即a 的取值范围是12≤a ≤13.故选:A .考点:勾股定理的应用.二、填空题(共8小题,每小题3分,满分24分)9.在函数y=12x +中,自变量x 的取值范围是 . 【答案】x ≠﹣2【解析】试题解析:根据题意得:x+2≠0,解可得:x≠﹣2.考点:函数自变量的取值范围;分式有意义的条件.10.因式分xy2﹣x=.【答案】x(y+1)(y﹣1)【解析】试题解析:原式=x(y2﹣1)=x(y+1)(y﹣1),故答案为:x(y+1)(y﹣1)考点:提公因式法与公式法的综合运用.11.一个口袋中有4个白球,5个红球,6个黄球,每个球除颜色外都相同,搅匀后随机从袋中摸出一个球,这个球是白球的概率是.【答案】4 15【解析】试题解析:共有球4+5+6=15个,白球有4个,因此摸出的球是白球的概率为:4 15.故本题答案为:4 15.考点:概率公式.12.用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的夹角α为度.【答案】22【解析】试题解析:由平移的性质知,AO∥SM,故∠WMS=∠OWM=22°;故答案为:22.考点:平移的性质;同位角、内错角、同旁内角.13.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A和B的距离为mm.【答案】150【解析】试题解析:∵AC=150﹣60=90mm,BC=180﹣60=120mm,∴AB==150mm.考点:勾股定理的应用.14.如果关于x的一元二次方程x2﹣6x+c=0(c是常数)没有实根,那么c的取值范围是.【答案】c>9【解析】试题解析:∵关于x的一元二次方程x2﹣6x+c=0(c是常数)没有实根,∴△=(﹣6)2﹣4c<0,即36﹣4c<0,解得:c>9.故答案为:c>9.考点:根的判别式.15.如图,AB是⊙O的直径,点D在AB的延长线上,过点D作⊙O的切线,切点为C,若∠A=25°,则∠D=度.【答案】40【解析】试题解析:连接OC,∵∠A=25°,∴∠DOC=2∠A=50°,又∠OCD=90°,∴∠D=40°.考点:切线的性质.16.如图,直线y=,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去,点A n的坐标为.【答案】(2n﹣1,0)【解析】试题解析:直线y=,点A 1坐标为(1,0),过点A 1作x 轴的垂线交 直线于点B 1可知B 1点的坐标为(1,, 以原O 为圆心,OB 1长为半径画弧x 轴于点A 2,OA 2=OB 1,OA 2==2,点A 2的坐标为(2,0),这种方法可求得B 2的坐标为(2,2),故点A 3的坐标为(4,0), 此类推便可求出点A n 的坐标为(2n ﹣1,0).故答案为:(2n ﹣1,0).考点:一次函数综合题.三、解答题(共10小题,满分102分)17.解不等式组:()32421152x x x x ⎧--≥⎪⎨-+>⎪⎩.【答案】x <﹣7【解析】试题分析:本题可根据不等式组分别求出x 的取值,然后画出数轴,数轴上相交的点的集合就是该不等式的解集.若没有交集,则不等式无解.试题解析:不等式组可以转化为:17x x ≤⎧⎨<-⎩, 在坐标轴上表示为:∴不等式组的解集为x <﹣7.考点:解一元一次不等式组.18.已知,如图,在平行四边形ABCD 中,∠BAD 的平分线交BC 边于点E .求证:BE =CD .【答案】见解析【解析】试题分析:先根据平行四边形的性质,求出AB=CD,∠DAE=∠BEA,再根据角平分线的性质,确定∠BAE=∠DAE,结合等腰三角形的性质证出BE=CD.试题解析:∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD.∴∠DAE=∠BEA.∵AE平分∠BAD,∴∠BAE=∠DAE.∴∠BAE=∠BEA.∴AB=BE.又∵AB=CD,∴BE=CD.考点:平行四边形的性质.19.图1是某市2007年2月5日至14日每天最低气温的折线统计图.(1)图2是该市2007年2月5日至14日每天最高气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图;(2)在这10天中,最低气温的众数是,中位数是,方差是.【答案】(1)见解析;(2)众数为7℃;中位数为7.5℃;方差S2=2.49(℃)2【解析】考点:折线统计图;频数(率)分布直方图;中位数;众数;方差.20.一不透明纸箱中装有形状,大小,质地等完全相同的4个小球,分别标有数字1,2,3,4.(1)从纸箱中随机地一次取出两个小球,求这两个小球上所标的数字一个是奇数另一个是偶数的概率;(2)先从纸箱中随机地取出一个小球,用小球上所标的数字作为十位上的数字;将取出的小球放回后,再随机地取出一个小球,用小球上所标的数字作为个位上的数字,则组成的两位数恰好能被3整除的概率是多少?试用树状图或列表法加以说明.【答案】(1)P=23;(2)P=5 16【解析】试题分析:(1)列举出所有情况,看所求的情况占总情况的多少即可;(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.试题解析:(1)从纸箱中随机地一次取出两个小球,所标数字的所有可能结果有:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种;而所标数字一个是奇数另一个是偶数的有4种,∴P=4=623;(2)画树状图:或用列表法:所有可能出现的结果共有16种,其中能被3整除的有5种.∴P=5 16.考点:列表法与树状图法.21.如图,已知A(﹣4,2)、B(n,﹣4)是一次函数y=kx+b的图象与反比例函数y=mx的图象的两个交点.(1)求此反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.【答案】(1)反比例函数的解析式为y=﹣8x;一次函数的解析式为y=﹣x﹣2;(2)﹣4<x<0或x>2.【解析】试题分析:(1)先把A(﹣4,2)代入y=mx求出m=﹣8,从而确定反比例函数的解析式为y=﹣8x;再把B(n,﹣4)代入y=﹣8x求出n=2,确定B点坐标为(2,﹣4),然后利用待定系数法确定一次函数的解析式;(2)观察图象得到当﹣4<x<0或x>2 时,一次函数的图象都在反比例函数图象的下方,即一次函数的值小于反比例函数的值.试题解析:(1)把A(﹣4,2)代入y=mx得m=﹣4×2=﹣8,∴反比例函数的解析式为y=﹣8x;把B(n,﹣4)代入y=﹣8x得﹣4n=﹣8,解得n=2,∴B点坐标为(2,﹣4),把A(﹣4,2)、B(2,﹣4)分别代入y=kx+b得4224k bk b-+=⎧⎨+=-⎩,解方程组得12kb=-⎧⎨=-⎩,∴一次函数的解析式为y=﹣x﹣2;(2)﹣4<x<0或x>2.考点:反比例函数与一次函数的交点问题.22.某商场门前的台阶截面如图所示.已知每级台阶的宽度(如CD)均为30cm,高度(如BE)均为20cm.为了方便残疾人行走,商场决定将其中一个门的门前台阶改造成供轮椅行走的斜坡,并且设计斜坡的倾斜角为9度.请计算从斜坡起点A到台阶前的点B的水平距离.(参考数据:sin9°≈0.16,cos9°≈0.99,tan9°≈0.16)【答案】从斜坡起点A到台阶前点B的距离为410cm【解析】考点:解直角三角形的应用-坡度坡角问题.23.已知△ABC是等边三角形,以BC为直径的半圆O与边AB相交于点D,DE⊥AC,垂足为点E.(1)判断DE与⊙O的位置关系,并证明你的结论;(2)若AE=1,求⊙O的直径.【答案】(1)见解析;(2)OB =2【解析】试题分析:(1)连接OD,由等边三角形的性质得出AB=BC,∠B=∠C=60°,证出△OBD是等边三角形,得出∠BOD=∠C,证出OD∥AC,得出DE⊥OD,即可得出结论;(2)连接CD,根据圆周角定理和等边三角形的性质得出BD=AD=OB,然后解直角三角形即可求得.试题解析:(1)DE是⊙O的切线;理由如下:连接OD,如图1所示:∵△ABC是等边三角形,∴AB=BC=AC,∠B=∠C=60°,∵OB=OD,∴△OBD是等边三角形,∴∠BOD=60°,∴∠BOD=∠C,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∴DE是⊙O的切线;(2)连接CD,∵BC为直径,∴CD⊥AB,∴BD=AD=OB,在直角△ADE中,∠A=60°,∴AD=2AE=2,∴OB=AD=2.考点:切线的判定.24.通过市场调查,一段时间内某地区某一种农副产品的需求数量y(千克)与市场价格x (元/千克)(0<x<30)存在下列关系:又假设该地区这种农副产品在这段时间内的生产数量z(千克)与市场价格x(元/千克)成正比例关系:z=400x(0<x<30).现不计其它因素影响,如果需求数量y等于生产数量z,那么此时市场处于平衡状态.(1)请通过描点画图探究y与x之间的函数关系,并求出函数关系式;(2)根据以上市场调查,请你分析:当市场处于平衡状态时,该地区这种农副产品的市场价格与这段时间内农民的总销售收入各是多少?(3)如果该地区农民对这种农副产品进行精加工,此时生产数量z与市场价格x的函数关系发生改变,而需求数量y与市场价格x的函数关系未发生变化,那么当市场处于平衡状态时,该地区农民的总销售收入比未精加工市场平衡时增加了17600元.请问这时该农副产品的市场价格为多少元?【答案】(1)y=﹣100x+5000(2)农副产品的市场价格是10元/千克,农民的总销售收入是40000元.(3)这时该农副产品的市场价格为18元/千克【解析】试题分析:(1)通过描点画图可知y是x的一次函数,从而利用待定系数法即可求出该解析式;(2)令y=z,求出此时的x,则农民的总销售收入是xy元;(3)可设这时该农副产品的市场价格为a元/千克,因为该地区农民的总销售收入比未精加工市场平衡时增加了17600元,则a(﹣100a+5000)=40000+17600,解之即可.试题解析:(1)描点.因为由图象可知,y是x的一次函数,所以设y=kx+b,由x=5,y=4500;x=10,y=4000得:则54500 104000 k bk b+=⎧⎨+=⎩所以1005000 kb=-⎧⎨=⎩即y=﹣100x+5000(2)∵y=z,∴﹣100x+5000=400x,∴x=10.∴总销售收入=10×4000=40000(元)∴农副产品的市场价格是10元/千克,农民的总销售收入是40000元.(3)设这时该农副产品的市场价格为a元/千克,则a(﹣100a+5000)=40000+17600,解之得:a1=18,a2=32.∵0<a<30,∴a=18.∴这时该农副产品的市场价格为18元/千克.考点:一次函数的应用.25.已知点O是△ABC内任意一点,连接OA并延长到E,使得AE=OA,以OB,OC为邻边作▱OBFC,连接OF与BC交于点H,再连接EF.(1)如图1,若△ABC为等边三角形,求证:①EF⊥BC;②EF=BC;(2)如图2,若△ABC为等腰直角三角形(BC为斜边),猜想(1)中的两个结论是否成立?若成立,直接写出结论即可;若不成立,请你直接写出你的猜想结果;(3)如图3,若△ABC是等腰三角形,且AB=AC=kBC,请你直接写出EF与BC之间的数量关系.【答案】(1)见解析;(2)EF⊥BC仍然成立;(3)EF=BC【解析】试题分析:(1)由平行四边形的性质得到BH=HC=12BC,OH=HF,再由等边三角形的性质得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可;(2)由平行四边形的性质得到BH=HC=12BC,OH=HF,再由等腰直角三角形的性质得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可;(3)由平行四边形的性质得到BH=HC=12BC,OH=HF,再由等腰三角形的性质和AB=AC=kBC得到AB=BC,AH⊥BC,根据勾股定理得到AH=,即可.试题解析:(1)连接AH,如图1,∵四边形OBFC是平行四边形,∴BH=HC=12BC,OH=HF,∵△ABC是等边三角形,∴AB=BC,AH⊥BC,在Rt△ABH中,AH2=AB2﹣BH2,∴AH==BC,∵OA=AE,OH=HF,∴AH是△OEF的中位线,∴AH=12EF,AH∥EF,∴EF⊥BC,BC=12 EF,∴EF⊥BC,EF=BC;(2)EF⊥BC仍然成立,EF=BC,如图2,∵四边形OBFC是平行四边形,∴BH=HC=12BC,OH=HF,∵△ABC是等腰三角形,∴AB=BC,AH⊥BC,在Rt△ABH中,AH2=AB2﹣BH2=(BH)2﹣BH2=BH2,∴AH=BH=12 BC,∵OA=AE,OH=HF,∴AH是△OEF的中位线,∴AH=12EF,AH∥EF,∴EF⊥BC,12BC=12EF,∴EF⊥BC,EF=BC;(3)如图3,∵四边形OBFC是平行四边形,∴BH=HC=12BC,OH=HF,∵△ABC是等腰三角形,∴AB=kBC,AH⊥BC,在Rt△ABH中,AH2=AB2﹣BH2=(kBC)2﹣(12BC)2=(k2-14)BC2,∴AH=BH=BC,∵OA=AE,OH=HF,∴AH是△OEF的中位线,∴AH=12EF,AH∥EF,∴EF⊥BC,=12 EF,∴EF=BC.考点:四边形综合题.26.如图,抛物线y=ax2+bx+c(a<0)与x轴相交于A、B两点,与y轴的正半轴相交于点C,对称轴l与x轴的正半轴相交于点D,与抛物线相交于点F,点C关于直线l的对称点为E.(1)当a=﹣2,b=4,c=2时,判断四边形CDEF的形状,并说明理由;(2)若四边形CDEF是正方形,且AB=,求抛物线的解析式.【答案】(1)四边形CDEF是菱形.(2)解析式为y=-2x2+2x-12.【解析】试题分析:(1)根据a、b、c的值,可确定抛物线的解析式,进而可求出C、F、E点的坐标,连接CE,交DF于P,即可得到CP、DP、EP、FP的长,由此可证得CE、DF互相平分,由此可判定四边形CDEF是平行四边形;知道了CP、DP的长,即可用勾股定理求出CD的长,同理可求出CF的长,易证得CD=CF,由此可判定四边形CDEF是菱形;(也可根据直线l是C、E的对称轴,得到CF=EF,由此可判定平行四边形CDEF是菱形)(2)若四边形CDEF是正方形,则OC=DP=CP=EP=PF=c,可据此表示出F点的坐标,即可用顶点式表示出该二次函数的解析式,将其化为一般式后,可得到两个表示C点纵坐标的式子,联立两式可求出a、c的关系式,由此可用a表示出该二次函数的表达式,进而可用a表示出A、B的坐标,然后根据AB的长即可求出a的值,从而确定二次函数的解析式.试题解析:(1)结论:四边形CDEF是菱形.∵直线l是抛物线的对称轴,点C、E关于l对称,∴F2为抛物线的顶点,点E在抛物线上,∵y=﹣2x2+4x+2=﹣2(x2﹣2x﹣1)=﹣2(x﹣1)2+4,∴四边形CDEF各顶点坐标分别为C(0,2),D(1,0),F(1,4),E(2,2),连接CE交直线于l于点P,则P点坐标为(1,2),∴CP=PE=1,DP=PF=2,∴四边形CDEF是平行四边形,在Rt△COD中,CD=,在Rt △CPF 中,CF=,∴CD =CF , ∴四边形CDEF 是菱形;(2)(方法一)∵四边形CDEF 是正方形, ∴CP =DP =EP =FP =OC =c ,∴点F 的坐标为(c ,2c ),∴抛物线为y =a (x ﹣c )2+2c =ax 2﹣2acx +ac 2+2c ,∴ac 2+2c =c ,∴ac =﹣1(∵c >0),即c=-1a, ∴y=ax 2+2x-1a ; (方法二)设抛物线的顶点F 坐标为(h ,k ),则y =a (x ﹣h )2+k =ax 2﹣2ahx +ah 2+k ,∴c =ah 2+k ,∵四边形CDEF 是正方形,∴CP =DP =EP =FP =OC ,∴()222k hk ah k =⎧⎪⎨=+⎪⎩, 解得12h a k a ⎧=-⎪⎪⎨⎪=-⎪⎩,∴y=ax2+2x-1a,令ax2+2x-1a=0,得x=,由AB=,a<0,得=∴a=﹣2,经检验,a=﹣2是原分式方程的解,∴所求解析式为y=-2x2+2x-12.考点:二次函数综合题.。
辽宁省丹东市第七中学2016届九年级数学第二次模拟试题
辽宁省丹东市第七中学2016届九年级数学第二次模拟试题一、选择题(每题3分,共24分) 1. 2013的相反数的倒数是 ( ) (A )20131 (B )20131- (C )2013- (D )2013 2.下列计算正确的是 ( ). (A )2242a a a +=(B )0133-=-(C ) 22(2)4a a =(D 2=±3. 由两块大小不同的正方体搭成如图所示的几何体,它的主视图是( )4.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠那么∠2的度数是( )(A )23o(B )57o(C )67o (D )77o5.按照“十二五”规划草案,今后五年,我国经济年均增长7%. 2015年国内生产总值将超过55万(亿元).数据“55万”用科学记数法表示为( )(A )0.55×106(B )5.5×105(C )5.5×104(D )55×1046.如图,在菱形ABCD 中,DE ⊥AB ,cosA=54,BE=1,则tan ∠DBE 的值是() (A )31 (B )3 (C )2 (D )57.已知抛物线c bx ax y ++=2的图象如图,则下列结论:①ab <0;② 2=++c b a ;③b <2a ; ④ac b 42-<0.其中正确的结论是 ( )ABC QDMNP (A ) ①② (B ) ②③ (C ) ③④ (D ) ②④ 8.边长一定的正方形ABCD ,Q 是CD 上一动点,AQ 交BD 于点M ,过M 作 MN ⊥AQ 交BC 于N 点,作NP ⊥BD 于点P ,连接NQ ,下列结论:①AM=MN ;②MP=21BD ;③BN+DQ=NQ ;④BMBNAB +为定值。
其中一定成立的是( )(A )①②③ (B )①②④ (C )②③④ (D )①②③④二、填空题(每题3分,共24分)9.分解因式:()=+-ab b a 822______________10.如图,AB 是⊙O 的直径,AB=15,AC=9,则tan∠ADC= .11.计算:+的结果是 .12.函数中,自变量x 的取值范围是 .13.某商品的价格标签已丢失,售货员只知道“它的进价为80元,打七折售出后,仍可获利5%”.你认为售货员应标在标签上的价格为 元 14.如图,反比例函数y=(k >0)的图象与矩形ABCO 的 两边相交于E ,F 两点,若E 是AB 的中点,S △BEF =2, 则k 的值为 .15.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”, 则半径为2的“等边扇形”的面积为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 辽宁省丹东七中2016届中考数学一模试题 一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的序号填入下面的表格内,每小题3分,共24分) 1.﹣2的倒数是( )
A. B.2 C.﹣2 D. 2.如图放置的几何体的左视图是( )
A. B. C. D. 3.下列代数运算正确的是( ) A.(x3)2=x5 B.(x+1)2=x2+1 C.(2x)2=2x2 D.x2•x3=x5 4.某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是( ) A.50元,20元 B.50元,40元 C.50元,50元 D.55元,50元 5.下列说法正确的是( ) A.同位角相等 B.矩形对角线垂直 C.对角线相等且垂直的四边形是正方形 D.等腰三角形两腰上的高相等
6.若点(﹣2,y1)、(﹣1,y2)、(1,y3)在反比例函数y=的图象上,则下列结论中的正确的是( ) A.y1>y2>y3 B.y2>y1>y3 C.y3>y1>y2 D.y3>y2>y1
7.在同一直角坐标系中,函数y=kx﹣k与y=(k≠0)的图象大致是( )
A. B. C. D. 8.如图,边长为2的正方形ABCD的顶点A在y轴上,顶点D在反比例函数y=(x>0)的图象上,已知点B的坐标是(,),则k的值为( ) 2
A.4 B.6 C.8 D.10 二、填空题
9.函数y=中,自变量x的取值范围是 . 10.计算:(π﹣2015)0+(﹣)﹣3﹣2cos60°= . 11.一种花粉颗粒的直径约为0.0000058米,0.0000058用科学记数法表示为 . 12.在大课间活动中,体育老师对甲、乙两名同学每人进行10次立定跳远测试,他们的平均成绩相同,方差分别是S甲=0.20,S乙=0.16,则甲、乙两名同学成绩更稳定的是 . 13.如图,直线a∥b,EF⊥CD于点F,∠2=65°,则∠1的度数是 .
14.若x,y为实数,且,则(x+y)2000= . 15.设抛物线y=﹣x2+8x﹣12与X轴的两个交点是A、B,与y轴的交点为C,则△ABC的面积是 . 16.如图,已知CO1是△ABC的中线,过点O1作O1E1∥AC交BC于点E1,连接AE1交CO1于点O2;过点O2作O2E2∥AC交BC于点E2,连接AE2交CO1于点O3;过点O3作O3E3∥AC交BC于点E3,…,如此继续,可以依次得到点O4,O5,…,On和点E4,E5,…,En.则OnEn= AC.(用含n的代数式表示)
三、解答题 3
17.先化简,再求值.,并在﹣3,1,3,3tan30°+1中选一个合适的数代入求值. 18.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC和△DEF的顶点都在格点上,结合所给的平面直角坐标系解答下列问题: (1)画出△ABC向上平移4个单位长度后所得到的△A1B1C1; (2)画出△DEF绕点O按顺时针方向旋转90°后所得到的△D1E1F1; (3)△A1B1C1和△D1E1F1组成的图形是轴对称图形吗?如果是,请直接写出对称轴所在直线的解析式.
四、解答题 19.为增强环保意识,某社区计划开展一次“减碳环保,减少用车时间”的宣传活动,对部分家庭五月份的平均每天用车时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图.请根据图中提供的信息,解答下列问题: (1)本次抽样调查了多少个家庭? (2)将图①中的条形图补充完整,直接写出用车时间的中位数落在哪个时间段内; (3)求用车时间在1~1.5小时的部分对应的扇形圆心角的度数; (4)若该社区有车家庭有1600个,请你估计该社区用车时间不超过1.5小时的约有多少个家庭?
20.有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y). (1)用树状图或列表法表示(x,y)所有可能出现的结果;
(2)若(x,y)表示平面直角坐标系的点,求点(x,y)在图象上的概率. 4
五、解答题 21.如图,某风景区的湖心岛有一凉亭A,其正东方向有一棵大树B,小明想测量A、B之间的距离,他从湖边的C处测得A在北偏西45°方向上,测得B在北偏东32°方向上,且量得B、C之间的距离为100米,根据上述测量结果,请你帮小明计算A、B之间的距离是多少?(精确到1米,参考数据:sin32°=0.5299,cos32°=0.8480)
22.暴雨过后,某地遭遇山体滑坡,武警总队派出一队武警战士前往抢险.半小时后,第二队前去支援,平均速度是第一队的1.5倍,结果两队同时到达.已知抢险队的出发地与灾区的距离为90千米,两队所行路线相同,问两队的平均速度分别是多少?
六、解答题 23.如图,以AB为直径的⊙O经过AC的中点D,DE⊥BC于点E. (1)求证:DE是⊙O的切线; (2)当DE=1,∠C=30°时,求图中阴影部分的面积.
24.某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元. (1)求y与x的函数关系式并直接写出自变量x的取值范围. (2)每件玩具的售价定为多少元时,月销售利润恰为2520元? (3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?
七、解答题(本题12分) 25.(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数. (2)如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN2,ND2,DH2之间的数量关系,并说明理由. (3)在图①中,若EG=4,GF=6,求正方形ABCD的边长. 5
八、解答题(本题14分) 26.如图,已知抛物线y=﹣+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知B点的坐标为B(8,0). (1)求抛物线的解析式及其对称轴方程; (2)连接AC、BC,试判断△AOC与△COB是否相似?并说明理由; (3)M为抛物线上BC之间的一点,N为线段BC上的一点,若MN∥y轴,求MN的最大值; (4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由. 6
2016年辽宁省丹东七中中考数学一模试卷 参考答案与试题解析
一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的序号填入下面的表格内,每小题3分,共24分) 1.﹣2的倒数是( )
A. B.2 C.﹣2 D. 【考点】实数的性质. 【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.
【解答】解:﹣2的倒数是﹣, 故选:A. 【点评】本题考查了实数的性质,分子分母交换位置是求一个数的倒数的关键.
2.如图放置的几何体的左视图是( )
A. B. C. D. 【考点】简单组合体的三视图. 【专题】常规题型. 【分析】根据从左边看得到的图形是左视图,可得答案. 【解答】解:左视图可得一个正方形,上半部分有条看不到的线,用虚线表示. 故选:C. 【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意中间看不到的线用虚线表示.
3.下列代数运算正确的是( ) A.(x3)2=x5 B.(x+1)2=x2+1 C.(2x)2=2x2 D.x2•x3=x5 【考点】完全平方公式;同底数幂的乘法;幂的乘方与积的乘方. 【分析】根据幂的乘方、完全平方公式、积的乘方、同底数幂的乘法,即可解答. 【解答】解:A、(x3)2=x6,故错误; B、(x+1)2=x2+2x+1,故错误; C、(2x)2=4x2,故错误; D、正确; 故选:D. 【点评】本题考查了幂的乘方、完全平方公式、积的乘方、同底数幂的乘法,解决本题的关键是熟 7
记完全平方公式. 4.某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是( ) A.50元,20元 B.50元,40元 C.50元,50元 D.55元,50元 【考点】众数;中位数. 【分析】根据中位数的定义将一组数据从小到大(或从大到小)重新排列后,找出最中间的那个数;根据众数的定义找出出现次数最多的数即可. 【解答】解:50出现了3次,出现的次数最多, 则众数是50; 把这组数据从小到大排列为:20,25,30,50,50,50,55, 最中间的数是50, 则中位数是50. 故选C. 【点评】此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).
5.下列说法正确的是( ) A.同位角相等 B.矩形对角线垂直 C.对角线相等且垂直的四边形是正方形 D.等腰三角形两腰上的高相等 【考点】命题与定理. 【分析】由平行线的性质、矩形的性质、正方形的判定以及等腰三角形的性质,即可求得答案;注意排除法在解选择题中的应用. 【解答】解:A、两直线平行,同位角相等;故本选项错误; B、矩形对角线相等,菱形对角线互相垂直;故本选项错误; C、对角线相等且垂直的平行四边形是正方形;故本选项错误; D、等腰三角形两腰上的高相等;故本选项正确. 故选D. 【点评】此题考查了命题与定理.注意掌握平行线的性质、矩形的性质、正方形的判定以及等腰三角形的性质是关键.
6.若点(﹣2,y1)、(﹣1,y2)、(1,y3)在反比例函数y=的图象上,则下列结论中的正确的是( ) A.y1>y2>y3 B.y2>y1>y3 C.y3>y1>y2 D.y3>y2>y1 【考点】反比例函数图象上点的坐标特征. 【分析】易得此函数图象分布在一、三象限,根据反比例函数的增减性即可比较y3、y1、y2的大小. 【解答】解:k>0,函数图象在一,三象限; 由题意可知:横坐标为﹣2,﹣1的在第三象限,横坐标为﹣1的在第一象限. 第三象限内点的纵坐标总小于第一象限内点的纵坐标,那么y3最大, 在第三象限内,y随x的增大而减小,所以y2<y1. 故选C.