3 平面直角坐标系拓展(一)测试题
中国人民大学附属中学七年级数学下册第三单元《平面直角坐标系》测试题(含答案解析)

一、选择题 1.如图是北京市地图简图的一部分,图中“故宫”、“颐和园”所在的区域分别是( )D E F 6颐和园 奥运村 7故宫 日坛 8天坛 C .E7,D6 D .E6,D7 2.已知点A (0,-6),点B (0,3),则A ,B 两点间的距离是( )A .-9B .9C .-3D .3 3.如图,将一颗小星星放置在平面直角坐标系中第二象限内的甲位置,先将它绕原点O 旋转180︒到乙位置,再将它向上平移2个单位长到丙位置,则小星星顶点A 在丙位置中的对应点A '的坐标为( )A .()3,1-B .()1,3C .()3,1D .()3,1- 4.第24届冬季奥林匹克运动会将于2022年由北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( )A .离北京市200千米B .在河北省C .在宁德市北方D .东经114.8°,北纬40.8°5.在平面直角坐标系中,若点(),A a b -在第三象限,则下列各点在第四象限的是( ) A .(),a b - B .(),a b - C .(),a b -- D .(),a b 6.在平面直角坐标系中,点A 的坐标为(21a +,3-),则点A 在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.象棋在中国有三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图是一局象棋残局,已知棋子“马”和“车”表示的点的坐标分别为(4,1),(2,1)--,则在第三象限的棋子有( )A.1颗B.2颗C.3颗D.4颗8.在平面直角坐标系中,点P(−1,−2+3)在()A.第一象限B.第二象限C.第三象限D.第四象限9.一个图形的各点的纵坐标乘以2,横坐标不变,这个图形发生的变化是()A.横向拉伸为原来的2倍B.纵向拉伸为原来的2倍C.横向压缩为原来的12D.纵向压缩为原来的1210.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为()A.(5,4) B.(4,5) C.(3,4) D.(4,3)11.在平面直角坐标系中,将点A(﹣2,﹣2)先向右平移6个单位长度再向上平移5个单位长度得到点A',则点A'的坐标是()A.(4,5)B.(4,3)C.(6,3)D.(﹣8,﹣7)12.已知点M(12,﹣5)、N(﹣7,﹣5),则直线MN与x轴、y轴的位置关系分别为()A.相交、相交B.平行、平行C.垂直相交、平行D.平行、垂直相交二、填空题13.已知点A(3,b)在第一象限,那么点B(-3,-b)在第________象限.14.对于平面直角坐标系xOy中的点P(a,b),若点P的坐标为(a+kb,ka+b)(其中k 为常数,且k≠0),则称点P为点P的“k属派生点”,例如:P(1,4)的“2属派生点”为P (1+2×4,2×1+4),即P′(9,6).若点P在x轴的正半轴上,点P的“k属派生点”为点P′,且线段PP′的长度为线段OP长度的5倍,则k的值为___.15.若点M(5,a)关于y轴的对称点是点N(b,4),则(a+b)2020= __16.在平面直角坐标系中,将点A(5,﹣8)向左平移得到点B(x+3,x﹣2),则点B的坐标为_____.17.如图,在平面直角坐标系中,三角形ABC经过平移后得到三角形A′B′C′,且平移前后三角形的顶点坐标都是整数.若点P(12,﹣15)为三角形ABC内部一点,且与三角形A′B′C′内部的点P′对应,则对应点P′的坐标是_____.18.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示,则点A 400的坐标为_______.19.把所有正整数从小到大排列,并按如下规律分组:(1)、(2,3)、(4,5,6)、(7,8,9,10)、……,若A n =(a ,b )表示正整数n 为第a 组第b 个数(从左往右数),如A 7=(4,1),则A 20=______________.20.在平面直角坐标系中,点()3,1A -在第______象限.三、解答题21.已知点P(a ﹣2,2a+8),分别根据下列条件求出点P 的坐标.(1)点P 在x 轴上;(2)点Q 的坐标为(1,5),直线PQ ∥y 轴;(3)点P 到x 轴、y 轴的距离相等.22.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将ABC 经过一次平移后得到A B C ''',图中标出了点B 的对应点B '.(1)在给定方格纸中画出平移后的A B C ''';(2)画出AB 边上的中线CD 和BC 边上的高线AE ;(3)求A B C ''的面积是多少?23.请在图中建立平面直角坐标系,使学校的坐标是()2,5,并写出儿童公园,医院,水果店,宠物店,汽车站的坐标.24.正方形的边长为2,建立适当的直角坐标系,使它的一个顶点的坐标为(2,0),并写出另外三个顶点的坐标.25.暑假期间,张明和爸爸妈妈到福建屏南旅游,以下是张明和妈妈对本次旅游的景点分布图作出的描述:张明:“瑞光塔的坐标是()1,3-,白水洋的坐标是()1,3”;妈妈:“瑞光塔在水松林的西北方向上”.根据以上信息回答下列问题:(1)根据张明的描述在下图中建立合适的平面直角坐标系;(2)请判断妈妈的说法对吗?并说明理由;(3)直接写出在(1)的平面直角坐标系中,白水洋、鸳鸯溪、水松林的坐标. 26.如图所示,在平面直角坐标系中,点O 为原点,点()1,2A -,()3,1B -,将AOB 向右平移2个单位,再向上平移3个单位得到111AO B ,点A 的对应点是1A ,点B 的对应点是1B(1)直接写出1O ,1A ,1B 的坐标;(2)在图中画出111AO B ;(3)AOB 的面积=______.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】直接利用已知网格得出“故宫”、“颐和园”所在位置.【详解】如图所示:图中“故宫”、“颐和园”所在的区域分别是:E7,D6.故选:C .【点睛】此题主要考查了坐标确定位置,正确理解位置的意义是解题关键.2.B解析:B【分析】由于A 、B 点都在y 轴上,然后用B 点的纵坐标减去A 点的纵坐标可得到两点之间的距离.【详解】解:∵A (0,-6),点B (0,3),∴A ,B 两点间的距离()369=--=.故选:B .【点睛】本题考查了两点间的距离公式,熟练掌握两点间的距离公式是解题的关键.3.C解析:C【分析】根据图示可知A 点坐标为(-3,1),它绕原点O 旋转180°后得到的坐标为(3,-1),根据平移“上加下减”原则,向上平移2个单位得到的坐标为(3,1).【详解】解:根据图示可知A 点坐标为(-3,1)根据绕原点O 旋转180°横纵坐标互为相反数∴旋转后得到的坐标为(3,-1)根据平移“上加下减”原则∴向下平移2个单位得到的坐标为(3,1)故选C .【点睛】本题考查平面直角坐标系中点的对称点的坐标,掌握与原点对称和平移原则是解题的关键.4.D解析:D【分析】根据点的坐标的定义,确定一个位置需要两个数据解答即可.【详解】解:能够准确表示张家口市这个地点位置的是:东经114.8°,北纬40.8°.故选:D .【点睛】本题考查了坐标确定位置,是基础题,理解坐标的定义是解题的关键.5.C解析:C【分析】直接利用各象限内点的坐标符号得出答案.【详解】解:∵点A (a ,-b )在第三象限,∴a <0,-b <0,∴-a >0,b >0,∴(),a b -在第三象限,(),a b -在第一象限,(),a b --在第四象限,(),a b 在第二象限. 故选:C .【点睛】此题主要考查了点的坐标,正确记忆各象限内点的坐标符号是解题关键.6.D解析:D【分析】根据各象限内点的坐标特征解答.【详解】∵210a +>,点A (21a +,3-)在第四象限.故选:D .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7.A解析:A【分析】根据题意可以画出相应的平面直角坐标系,从而可以解答本题.【详解】由题意可得,建立的平面直角坐标系如图所示,则在第三象限的棋子有“车”(21)--,一个棋子, 故选:A .【点睛】本题考查了坐标确定位置,解答本题的关键是明确题意,画出相应的平面直角坐标系.注意:第三象限点的坐标特征()--,. 8.B解析:B【分析】应先判断出所求点P 的横坐标、纵坐标的符号,进而判断其所在的象限.解:∵−1<0,−2+3>0,∴点P在第二象限.故选:B.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).9.B解析:B【分析】根据横坐标不变,纵坐标变为原来的2倍得到整个图形将沿y轴变长,即可得出结论.【详解】如果将一个图形上各点的横坐标不变,纵坐标乘以2,则这个图形发生的变化是:纵向拉伸为原来的2倍.故选B.【点睛】本题考查了坐标与图形性质:利用点的坐标计算相应的线段的长和判断线段与坐标轴的关系.10.D解析:D【分析】根据已知两点的坐标确定平面直角坐标系,然后确定其它各点的坐标即可解答.【详解】如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选D.【点睛】本题利用平面直角坐标系表示点的位置,关键是由已知条件正确确定坐标轴的位置.11.B【分析】利用“横坐标,右移加,左移减;纵坐标,上移加,下移减”的规律求解可得.【详解】解:将点A(﹣2,﹣2)先向右平移6个单位长度,再向上平移5个单位长度,得到点A',其坐标为(﹣2+6,﹣2+5),即(4,3),故选:B.【点睛】本题考查了坐标与图形变化-平移,在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)12.D解析:D【分析】由点M、N的坐标得出点M、N的纵坐标相等,据此知直线MN∥x轴,继而得出直线MN⊥y轴,从而得出答案.【详解】解:∵点M(12,-5)、N(-7,-5),∴点M、N的纵坐标相等,∴直线MN∥x轴,则直线MN⊥y轴,故选:D.【点睛】本题主要考查坐标与图形性质,熟记纵坐标相同的点在平行于y轴的直线上是解题的关键.二、填空题13.三【分析】根据点A(3b)在第一象限可得b>0;则可以确定点B(-3−b)的纵坐标的符号进而可以判断点B所在的象限【详解】根据题意点A(3b)在第一象限则b>0那么点B(-3−b)中−b<0;则点B解析:三【分析】根据点A(3,b)在第一象限,可得b>0;则可以确定点B(-3,−b)的纵坐标的符号,进而可以判断点B所在的象限.【详解】根据题意,点A(3,b)在第一象限,则b>0,那么点B(-3,−b)中,−b<0;则点B(-3,−b )在第三象限.故答案为:三.【点睛】本题考查四个象限上点的坐标的特点,并要求学生根据点的坐标,判断其所在的象限. 14.±5【分析】先根据点P 在x 轴正半轴确定出点P 的坐标然后利用k 表示出P 的坐标继而表示出线段PP′的长再根据线段PP′的长为线段OP 长的5倍得到关于k 的方程解方程即可求得答案【详解】解:设P (m0)(m解析:±5【分析】先根据点P 在x 轴正半轴确定出点P 的坐标,然后利用k 表示出P'的坐标,继而表示出线段PP′的长,再根据线段PP′的长为线段OP 长的5倍得到关于k 的方程,解方程即可求得答案.【详解】解:设P (m ,0)(m >0),由题意:P ′(m ,mk ),∵PP ′=5OP ,∴|mk |=5m ,∵m >0,∴|k |=5,∴k =±5.故答案为:±5.【点睛】本题考查了新定义下的阅读理解能力,涉及了点的坐标,绝对值的性质,两点间的距离等知识,正确理解新定义是解题的关键.15.1【分析】先根据点坐标关于y 轴对称的变换规律求出ab 的值再代入计算有理数的乘方即可得【详解】点坐标关于y 轴对称的变换规律:横坐标变为相反数纵坐标不变则因此故答案为:1【点睛】本题考查了点坐标关于y 轴 解析:1【分析】先根据点坐标关于y 轴对称的变换规律求出a 、b 的值,再代入计算有理数的乘方即可得.【详解】点坐标关于y 轴对称的变换规律:横坐标变为相反数,纵坐标不变,则5,4b a =-=,因此()()()2020202020204511a b =+=--=, 故答案为:1.【点睛】本题考查了点坐标关于y 轴对称的变换规律、有理数的乘方,熟练掌握点坐标关于y 轴对称的变换规律是解题关键. 16.(﹣3﹣8)【分析】先根据向左平移纵坐标不变得出x ﹣2=﹣8求出x 再代入x+3求出点B的横坐标即可【详解】解:∵将点A(5﹣8)向左平移得到点B(x+3x﹣2)∴x﹣2=﹣8解得x=﹣6∴x+3=﹣解析:(﹣3,﹣8)【分析】先根据向左平移纵坐标不变得出x﹣2=﹣8,求出x,再代入x+3求出点B的横坐标即可.【详解】解:∵将点A(5,﹣8)向左平移得到点B(x+3,x﹣2),∴x﹣2=﹣8,解得x=﹣6,∴x+3=﹣6+3=﹣3,∴则点B的坐标为(﹣3,﹣8).故答案为(﹣3,﹣8).【点睛】本题考查了坐标与图形变化-平移,在平面直角坐标系中,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.17.()【分析】依据对应点的坐标变化即可得到三角形ABC向左平移2个单位向上平移3个单位后得到三角形A′B′C′进而得出点P′的坐标【详解】解:由图可得C(20)C(03)∴三角形ABC向左平移2个单位解析:(32,145)【分析】依据对应点的坐标变化,即可得到三角形ABC向左平移2个单位,向上平移3个单位后得到三角形A′B′C′,进而得出点P′的坐标.【详解】解:由图可得,C(2,0),C'(0,3),∴三角形ABC向左平移2个单位,向上平移3个单位后得到三角形A′B′C′,又∵点P(12,﹣15)为三角形ABC内部一点,且与三角形A′B′C′内部的点P′对应,∴对应点P′的坐标为(12﹣2,﹣15+3),即P'(32-,145),故答案为:(32-,145).【点睛】此题主要考查了坐标与图形变化,关键是注意观察组成图形的关键点平移后的位置.解题时注意:横坐标,右移加,左移减;纵坐标,上移加,下移减.18.(2000)【分析】根据图象可得移动4次图形完成一个循环从而可得出点的坐标【详解】解:由图象可得移动4次图形完成一个循环即所以:故答案为:【点睛】本题考查的是点的坐标规律的探究掌握规律探究的方法是解解析:(200,0)【分析】根据图象可得移动4次图形完成一个循环,从而可得出点400A 的坐标.【详解】解:由图象可得移动4次图形完成一个循环,4004100∴÷= ,()()()48122,0,4,0,6,0,,A A A …()4001002,0,A ∴⨯即()400200,0,A所以:()400200,0A .故答案为:()400200,0A【点睛】本题考查的是点的坐标规律的探究,掌握规律探究的方法是解题的关键.19.(65)【分析】通过新数组确定正整数n 的位置An=(ab)表示正整数n 为第a 组第b 个数(从左往右数)所有正整数从小到大排列第n 个正整数第一组(1)1个正整数第二组(23)2个正整数第三组(456)三解析:(6,5)【分析】通过新数组确定正整数n 的位置,A n =(a ,b )表示正整数n 为第a 组第b 个数(从左往右数),所有正整数从小到大排列第n 个正整数,第一组(1),1个正整数,第二组(2,3)2个正整数,第三组(4,5,6)三个正整数,…,这样1+2+3+4+…+a> n ,而1+2+3+4+…+(a -1)<n ,能确第a 组a 个数从哪一个是开起,直到第b 个数(从左往右数)表示正整数nA 7表示正整数7按规律排1+2+3+4=10>7,1+2+3=6<7,说明7在第4组,第四组应有4个数为(7,8,9,10)而7是这组的第一个数,为此P 7=(4,1),理解规律A 20,先求第几组排进20,1+2+3+4+5+6=21>20,由1+2+3+4+5=15,第六组从16开始,按顺序找即可.【详解】A 20是指正整数20的排序,按规律1+2+3+4+5+6=21>20,说明20在第六组,而1+2+3+4+5=15<20,第六组从16开始,取6个数即第六组数(16,17,18,19,20,21),从左数第5个数是20,故A 20=(6,5).故答案为:(6,5).【点睛】本题考查按规律取数问题,关键是读懂An=(a ,b )的含义,会用新数组来确定正整数n 的位置.20.二【分析】根据第二象限的横坐标小于零纵坐标大于零可得答案【详解】解:点A(-31)在第二象限故答案为:二【点睛】本题考查了点的坐标记住各象限内点的坐标的符号是解决的关键四个象限的符号特点分别是:第一解析:二【分析】根据第二象限的横坐标小于零,纵坐标大于零,可得答案.【详解】解:点A(-3,1)在第二象限,故答案为:二.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).三、解答题21.(1)P(﹣6,0);(2)P(1,14);(3)P(﹣12,﹣12)或(﹣4,4).【分析】(1)利用x轴上点的坐标性质纵坐标为0,进而得出a的值,即可得出答案;(2)利用平行于y轴直线的性质,横坐标相等,进而得出a的值,进而得出答案;(3)利用点P到x轴、y轴的距离相等,得出横纵坐标相等或互为相反数进而得出答案.【详解】解:(1)∵点P(a﹣2,2a+8)在x轴上,∴2a+8=0,解得:a=﹣4,故a﹣2=﹣4﹣2=﹣6,则P(﹣6,0);(2)∵点Q的坐标为(1,5),直线PQ∥y轴,∴a﹣2=1,解得:a=3,故2a+8=14,则P(1,14);(3)∵点P到x轴、y轴的距离相等,∴a﹣2=2a+8或a﹣2+2a+8=0,解得:a1=﹣10,a2=﹣2,故当a=﹣10时,a﹣2=﹣12,2a+8=﹣12,则P(﹣12,﹣12);故当a=﹣2时,a﹣2=﹣4,2a+8=4,则P(﹣4,4).综上所述:P(﹣12,﹣12)或(﹣4,4).【点睛】此题主要考查了点的坐标性质,用到的知识点为:点到两坐标轴的距离相等,那么点的横纵坐标相等或互为相反数以及点在坐标轴上的点的性质等知识,属于基础题,要熟练掌握点的坐标性质.22.(1)见解析;(2)见解析;(3)8.【分析】(1)根据图形平移的性质画出△A′B′C′即可;(2)取线段AB的中点D,连接CD,过点A作AE⊥BC的延长线与点E即可;(3)根据S△A′B′C =S△ABC代入三角形公式计算即可.【详解】(1)如图,A B C'''即为所求;(2)如图,线段CD和线段AE即为所求;(3)1144822A B C ABCS S BC AE'''==⋅⋅=⨯⨯=【点睛】本题考查的是平移变换,掌握图形平移但图形的形状不变是解答本题的关键.23.儿童公园(-2,-1),医院(2,-1),水果店(0,3),宠物店(0,-2),汽车站(3,1).【分析】直接利用学校的坐标是()2,5,得出原点位置进而得出答案.【详解】如图所示:建立平面直角坐标系,儿童公园(-2,-1),医院(2,-1),水果店(0,3),宠物店(0,-2),汽车站(3,1).【点睛】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.24.作图见解析;()2,0-;()0,2;()0,2-【分析】先找到()2,0A ,根据正方形的对称性,可知A 点的对称点C 的坐标,同样可得出B 和D 的坐标;【详解】建立坐标轴,使正方形的对称中心为原点,则)2,0A ,()2,0C -, 那么B 的坐标是(2,其对称点D 的坐标为(0,2.【点睛】本题主要考查了正方形的性质和坐标与图形性质,准确判断是解题的关键.25.(1)见解析;(2)错误,理由见解析;(3)白水洋的坐标为(1,3),鸳鸯溪的坐标为(4,1),水松林的坐标为(3,1)-.【分析】(1)根据瑞光塔和白水洋的坐标建立平面直角坐标系即可;(2)根据水松林和瑞光塔的位置即可确定方位;(3)根据白水洋、鸳鸯溪、水松林在平面直角坐标系中的位置即可得.【详解】(1)由题意,建立的平面直角坐标系如图所示:(2)妈妈的说法错误,理由如下:由水松林和瑞光塔的位置得:瑞光塔在水松林的东南方向上,不是西北方向上, 所以妈妈的说法错误;(3)由白水洋、鸳鸯溪、水松林在平面直角坐标系中的位置得:白水洋的坐标为(1,3),鸳鸯溪的坐标为(4,1),水松林的坐标为(3,1)-.【点睛】本题考查了建立平面直角坐标系、求点坐标,掌握建立平面直角坐标系的方法是解题关键.26.(1)()12,3O ;()11,5A ;()15,2B;(2)见解析;(3)2.5. 【分析】(1)直接根据平移的坐标变化规律即可求解;(2)先描点,再连线即可;(3)利用网格图中,根据割补法即可求解.【详解】(1)()12,3O ;()11,5A ;()15,2B; (2)(3)111433141 2.5222AOB S =⨯⨯-⨯⨯-⨯⨯= 【点睛】此题主要考查图形的平移、再网格图中求三角形的面积,熟练掌握平移的性质和割补法是解题关键.。
人教版数学七年级下册第七章《平面直角坐标系》重难点易错点辨析+金题精讲+思维拓展

平面直角坐标系重难点易错点辨析平面直角坐标系题一:关于平面直角坐标系的描述,下列说法错误的是( )A.x轴、y轴不属于任何象限B.平面直角坐标系中有四个象限C.平面内两条互相垂直的数轴就能组成平面直角坐标系D.横轴与纵轴的交点称为原点点的坐标题二:在平面直角坐标系中,下面的点在第一象限的是() A.(1,2) B.(-2,3)C.(0,0) D.(-3,-2)金题精讲题一:(1)第二象限内的点P(x,y)满足|x|=5,y2=4,则点P的坐标是;(2)在平面直角坐标系中,点A(2,m2+1)一定在第象限;(3)如果点M(a+b,ab)在第二象限,那么点N(a,b)在第象限.题二:将如图各点纵坐标不变,横坐标乘以2,所得图形与原图形比()A.形状大小变了,整体鱼被横向拉长为原来的2倍B.形状大小变了,整体鱼被纵向拉长为原来的2倍C.形状大小不变,整体鱼向右移动了两个单位D.形状大小不变,整体鱼向左移动了两个单位题三:如图是坐标系的一部分,若M位于点(2,-2)上,N位于点(4,-2)上,则G位于点()上.A.(1,3) B.(1,1)C.(0,1) D.(-1,1)题四:(1)已知点P(a-1,3a+6)在y轴上,求点P的坐标;(2)已知点A(2m+1,m+9)在一三象限角平分线上,求点A的坐标.题五:(1)已知两点A(-3,m),B(2m,4),且A和B到x轴距离相等,求B点坐标.(2)点A在第四象限,当m为何值时,点A(m+2,3m-5)到x轴的距离是它到y轴距离的一半.思维拓展题一:定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1、l2的距离分别为a、b,则称有序非实数对(a,b)是点M的“距离坐标”,根据上述定义,距离坐标为(2,3)的点的个数是()A.1 B.2 C.3 D.4坐标系中的两类问题重难点易错点解析坐标变换题一:(1) 在平面直角坐标系中,点P(-1,2)关于x轴的对称点的坐标为;(2) 在平面直角坐标系中,将点A(-2,3)向右平移3个单位长度,再向下平移1个单位长度,得到的点的坐标是;(3) 在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为.求面积题二:如图,A、B、C为一个三角形的三个顶点,且A、B、C三点的坐标分别为(3,4)、(6,2)、(5,6).请计算△ABC的面积.金题精讲题一:如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标.(2)若把△ABC向上平移2个单位,再向左平移1个单位得到△A′B′C ′,写出A′、B′、C ′的坐标.(3)求出三角形ABC的面积.题二:如图,Rt△AOB放置在坐标系中,点A的坐标是(1,0),点B 的坐标是(0,2),把Rt△AOB绕点A按顺时针方向旋转90度后,得到Rt△AO′B′,则B′的坐标是()A.(1,2) B.(1,3)C.(2,3) D.(3,1)题三:在直角坐标系中,已知点A(a+1,3-a)与点B(a-5,b-2a)关于y轴对称,(1)求a、b;(2)如果点B关于x轴的对称的点是C,求△ABC的面积.思维拓展题一:已知点A坐标为(2, 3),那么点A关于一三象限角分线的对称点的坐标是什么?点A关于二四象限角分线的对称点坐标又是什么?坐标系中找规律重难点易错点解析动点找规律题一:如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为.(用n表示)图形运动找规律题二:如图,将边长为1的正方形OAPB沿x轴正方向连续翻转48次,点P依次落在点P1,P2,P3,P4,…,P48的位置,则P48的坐标是.金题精讲题一:一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是.题二:如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3…已知:A(1,3),A1(2,3),A2(4,3),A3(8,3);B(2,0),B1(4,0),B2(8,0),B3(16,0).观察每次变换前后的三角形有何变化,按照变换规律,第n次变换后得到的三角形A n的坐标是,B n 的坐标是.题三:如图,在平面直角坐标系中,已知点A(-3,0)、B(0,4),且AB=5,对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2014的直角顶点的坐标为.题四:如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2014次相遇地点的坐标是()A.(2,0) B.(-1,1)C.(-2,1) D.(-1,-1)思维拓展题一:如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形的边时反弹,反弹时角度均为45°,当点P第2015次碰到长方形的边时,点P的坐标为()A.(1,4) B.(5,0)C.(6,4) D.(8,3)平面直角坐标系重难点易错点辨析题一:C.题二:A.金题精讲题一:(1)(-5,2);(2)一;(3)三.题二:A.题三:C.题四:(1)(0,9);(2)(17,17).题五:(1)(8,4),(-8,4);(2)8/7.思维拓展题一:D.坐标系中的两类问题重难点易错点解析题一:(1) (-1, -2);(2) (1, 2);(3) (-3, 4)点拨:关于x轴对称——纵反横不变;关于y轴对称——横反纵不变;上下平移——上加下减;左右平移——左减右加;旋转——转图形题二:5.点拨:坐标系中求面积——割补法金题精讲题一:(1) A(-2, -2),B(3, 1),C(0, 2);(2) A′(-3, 0),B′(2, 3),C ′(-1, 4);(3) 7题二:D 题三:(1)2,5;(2)6思维拓展题一:(3, 2),(-3, -2).坐标系中找规律重难点易错点解析题一:(2n, 1)点拨:动点找规律,分析横、纵坐标与运动次数n的关系题二:(47, 1)点拨:图形运动找规律:先分析图形整体位置,再看所研究点的位置金题精讲题一:(5, 0)题二:(2n, 3),(2n+1, 0)题三:(8052, 0)题四:B思维拓展题一:A平面直角坐标系内点的特征专题讲座练习知识点一:平面内点的坐标特征【例1】根据坐标特征确定点的位置1、请你根据下列各点的坐标判定它们分别在第几象限或在什么坐标轴上?A(-5,2) B (3,-2) C(0,4) D(-6,0)E(1,8) F(0,0) G(5,0) H(-6,-4) M (0,-3)2、已知坐标平面内点A(m,n)在第四象限,那么点B(n,m)在()A.第一象限B.第二象限C.第三象限D.第四象限【例2】根据点的位置求字母的值或取值范围1、点 P(m-1,m+3)在直角坐标系的y轴上,则 P点坐标为()A. (-4,0)B. (0,-4)C. (4,0)D. (0,4)2、在平面直角坐标系中,若点P(x-3, x)在第二象限,则x的取值范围为()A. x>0 B.x<3 C.0<x<3 D.x>3【例3】根据点的位置确定坐标系的位置1、如右图,在正方形网格中,若 A(1,1),B(2,0),则 C点的坐标为()A.(-3,-2)B.(3,-2)C.(-2,-3)D.(2,-3)巩固练习:1、点A(-3,2)在第___ _象限,点D(3,-2)在第象限,点C(3,2)在第象限,点F(0,2)在轴上,点E(2,0)在轴上。
【多套试卷】人教版初中数学七年级下册第七章《平面直角坐标系》检测卷(含答案)

人教版初中数学七年级下册第七章《平面直角坐标系》检测卷(含答案)一、选择题(每小题3分,共30分)1. 若有序数对(3a-1,2b+5)与(8,9)表示的位置相同,则a+b的值为( )A. 2B. 3C. 4D. 52. 如图,小手盖住的点的坐标可能为( )A. (5,2)B. (-6,3)C. (-4,-6)D. (3,-4)第2题第3题3. 雷达二维平面定位的主要原理是:测量目标的两个信息——距离和角度,目标的表示方法为(γ,α),其中,γ表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为A(5,30°),目标B的位置表示为B(4,150°).用这种方法表示目标C的位置,正确的是( )A. (-3,300°)B. (3,60°)C. (3,300°)D. (-3,60°)4. 把点A(-2,1)向上平移2个单位长度,再向右平移3个单位长度后得到点B,点B 的坐标是( )A. (-5,3)B. (1,3)C. (1,-3)D. (-5,-1)5. 在平面直角坐标系中,点P(2,x2)在( )A. 第一象限B. 第四象限C. 第一或者第四象限D. 以上说法都不对6. 如图是株洲市的行政区域平面地图,下列关于方位的说法明显错误的是( )A. 炎陵位于株洲市区南偏东约35°的方向上B. 醴陵位于攸县的北偏东约16°的方向上C. 株洲县位于茶陵的南偏东约40°的方向上D. 株洲市区位于攸县的北偏西约21°的方向上第6题第7题7. 象棋在中国有着三千多年的历史,属于二人对抗性游戏的一种.由于用具简单,趣味性强,成为流行极为广泛的棋艺活动.如图是一方的棋盘,如果“帅”的坐标是(0,1),“卒”的坐标是(2,2),那么“马”的坐标是( )A. (-2,1)B. (2,-2)C. (-2,2)D. (2,2)8. 点M在y轴的左侧,到x轴、y轴的距离分别是3和5,则点M的坐标是( )A. (-5,3)B. (-5,-3)C. (5,3)或(-5,3)D. (-5,3)或(-5,-3)9. 已知A(-4,3),B(0,0),C(-2,-1),则三角形ABC的面积为( )A. 3B. 4C. 5D. 610. 如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2018次运动后,动点P的坐标是( )A. (2019,0)B. (2019,1)C. (2019,2)D.(2018,0)二、填空题(每小题3分,共24分)11. 若将7门6楼简记为(7,6),则6门7楼可简记为,(8,5)表示的意义是.12. 平面直角坐标系内有一点P(x,y),若点P在横轴上,则y ;若点P在纵轴上,则x ;若点P为坐标原点,则x 且y .13. 已知A(-1,4),B(-4,4),则线段AB的长为.14. 若点(m-4,1-2m)在第三象限内,则m的取值范围是.15. 如图,线段OB,OC,OA的长度分别是1,2,3,且OC平分∠AOB.若将A点表示为(3,30°),B点表示为(1,120°),则C点可表示为.第15题第16题16. 如图,在平面直角坐标系xOy中,将线段AB平移得到线段MN.若点A(-1,3)的对应点为M(2,5),则点B(-3,-1)的对应点N的坐标是.17. 已知长方形ABCD在平面直角坐标系中的位置如图所示,将长方形ABCD沿x轴向左平移到使点C与坐标原点重合后,再沿y轴向下平移到使点D与坐标原点重合,此时点A的坐标是,点B坐标是,点C坐标是.第17题第18题18. 如图,在平面直角坐标系中,A,B的坐标分别为(3,0),(0,2),将线段AB平移至A1B1,则a+b的值为.三、解答题(共66分)19. (8分)如图是某市市区几个旅游景点的示意图(图中每个小正方形的边长为1个单位长度),如果以O为原点建立平面直角坐标系,用(2,2.5)表示金凤广场的位置,用(11,7)表示动物园的位置.根据此规定:(1)湖心岛、光岳楼、山陕会馆的位置如何表示?(2)(11,7)和(7,11)是同一个位置吗?为什么?20. (8分)如图所示,三角形ABC三点坐标分别为A(-3,4),B(-4,1),C(-1,2).(1)说明三角形ABC平移到三角形A1B1C1的过程,并求出点A1,B1,C1的坐标;(2)由三角形ABC平移到三角形A2B2C2又是怎样平移的?并求出点A2,B2,C2的坐标.21. (9分)某次海战中敌我双方舰艇对峙示意图(图中1 cm代表20海里)如下,对我方潜艇O来说:(1)北偏东40°的方向上有哪些目标?要想确定敌舰B的位置,还需要什么数据?(2)距离我方潜艇20海里的敌舰有哪几艘?(3)要确定每艘敌舰的位置,各需要几个数据?22. (9分)在平面直角坐标系中,描出点A(-1,3),B(-3,1),C(-1,-1),D(3,1),E(7,3),F(7,-1),并连接AB,BC,CD,DA,DE,DF,形成一个图案.(1)每个点的横坐标保持不变,纵坐标变为原来的一半,再按原来的要求连接各点,观察所得图案与原来的图案,发现有什么变化?(2)纵坐标保持不变,横坐标分别增加3呢?23. (10分)已知点P(2m+4,m-1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大5;(3)点P到x轴的距离为2,且在第四象限.24. (10分)如图,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘同一实数a,将得到的点先向右平移m个单位长度,再向上平移n个单位长度(m>0,n>0),得到正方形A′B′C′D′及其内部的点,其中点A,B的对应点分别为A′,B′.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F′与点F重合,求点F的坐标.25. (10分)如图,A(-1,0),C(1,4),点B在x轴上,且AB=3.(1)求点B的坐标;(2)求三角形ABC的面积;(3)在y轴上是否存在点P,使以A,人教版七年级下册第七章《平面直角坐标系》单元测试卷一、选择题(每小题5分,共25分)1、在平面直角坐标系中,若点P的坐标为(3,2),则点P所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2、课间操时,小华、小军、小刚的位置如图,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4)B.(4,5)C.(3,4)D.(4,3)3、若x轴上的点P到y轴的距离为3,则点P的坐标为()A.(3,0)B.(3,0)或(-3,0)C.(0,3)D.(0,3)或(0,-3)4、线段CD是由线段AB平移得到的.点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标为()A.(2,9)B.(5,3)C.(1,2)D.(-9,-4)5、若定义:f(a,b)=(-a,b),g(m,n)=(m,-n),例如f(1,2)=(-1,2),g(-4,-5)=(-4,5),则g(f(2,-3))=()A.(2,3)B.(-2,3)C.(2,-3)D.(-2,-3)二、填空题(每小题5分,共25分)6、如果点M(3,x)在第一象限,则x的取值范围是.7、点A在y轴上,位于原点的上方,距离坐标原点5个单位长度,则此点的坐标为.8、小华将直角坐标系中的猫的图案向右平移了3个单位长度,平移前猫眼的坐标为(-4,3)、(-2,3),则移动后猫眼的坐标为.9、一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标为.10、如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…,(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6…,则顶点A20的坐标为.三、解答题(共50分)11、写出如图中“小鱼”上所标各点的坐标.12、如图,这是某市部分简图,请以火车站为坐标原点建立平面直角坐标系,并分别写出各地的坐标.13、王明从A处出发向北偏东40°走30m,到达B处;李刚也从A处出发,向南偏东50°走了40m,到达C处.(1)用1cm表示10m,画出A,B,C三处的位置;(2)在图上量出B处和C处之间的距离,再说出王明和李刚两人实际相距多少米.14、如图,把△ABC向上平移4个单位长度,再向右平移2个单位得△A1B1C1,解答下列各题:(1)在图上画出△A1B1C1;(2)写出点A1,B1,C1的坐标.15、在平行四边形ACBO中,AO=5,则点B坐标为(-2,4).(1) 写出点C坐标;(2) 求出平行四边形ACBO面积.《平面直角坐标系》单元测试卷参考答案一、选择题1、A2、D3、B4、C5、B二、填空题6、x>07、(0,5)8、(-4,6)、(-2,6)9、(3,2) 10、(5,﹣5)三、解答题11、解:A(-2,0),B(0,-2),C(2,1),D(2,1),E(0,2), O(0,0). 12、解:图略.体育场(-4,3),文化宫(-3,1),宾馆(2,2),市人教版七年级数学下册第八章二元一次方程组单元提升检测题一、选择题(共9题;共27分)1.以为解的二元一次方程是()A. 2x-3y=-13B. y=2x+5C. y-4x=5D. x=y-32.下列4组数值,哪个是二元一次方程2x+3y=5的解?()A. B. C. D.3.二元一次方程组的解是()A. B. C. D.4.我们知道方程组的解是,现给出另一个方程组,它的解是A. B. C. D.5.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,所列方程组正确的是()A. B. C. D.6.七年级学生在会议室开会,每排座位坐12人,则有11人没有座位;每排座位坐14人,则余1人独坐一排,则这间会议室的座位排数是()A. 14B. 13C. 12D. 157.已知是二元一次方程组的解,则a+b的值是()A. 2B. -2C. 4D. -48.由方程组可得出x与y的关系是( )A. 2x+y=4B. 2x-y=4C. 2x+y=-4D. 2x-y=-49.如果方程组的解x,y的值相同,则m的值是( )A. 1B. -1C. 2D. -2二、填空题(共6题;共24分)10.有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需31.5元;若购铅笔4支,练习本10本,圆珠笔1支共需42元,那么购铅笔、练习本、圆珠笔各1件共需________元·11.已知关于x,y的二元一次方程组的解互为相反数,则k的值是________.12.已知方程组的解x,y满足x+3y=3,则m的值是________.13.已知a、b、c满足,则a=________,b=________,c=________.14.已知方程组由于甲看错了方程①中a得到方程组的解为,乙看错了方程组②中的b得到方程组的解为,若按正确的a,b计算,则原方程组的解为________.15.若a﹣3b=2,3a﹣b=6,则b﹣a的值为________.三、解答题(共7题;共49分)16.解二元一次方程组:.17.已知方程,请你写出一个二元一次方程,使它与已知方程所组成的方程组的解为.18.已知方程组由于甲看错了方程①中的a,得到方程组的解为乙看错了方程②中的b,得到方程组的解为试求出a,b的值.19.如图,∠1= ∠2,∠1+∠2=162°,求∠3与∠4的度数.20.列方程或方程组解应用题:“地球一小时”是世界自然基金会在2007年提出的一项倡议.号召个人、社区、企业和政府在每年3月最后一个星期六20时30分﹣21时30分熄灯一小时,旨在通过一个人人可为的活动,让全球民众共同携手关注气候变化,倡导低碳生活.中国内地去年和今年共有119个城市参加了此项活动,且今年参加活动的城市个数比去年的3倍少13个,问中国内地去年、今年分别有多少个城市参加了此项活动.21.先阅读下列材料,再解决问题:解方程组时,如果我们直接消元,那么会很麻烦,但若用下面的解法,则要简便得多.解方程组解:①-②得,即③③×16得④②-④得,将代入③得,所以原方程组的解是.根据上述材料,解答问题:若的值满足方程组,试求代数式的值.22.已知方程组的解能使等式4x﹣6y=2成立,求m的值.答案一、选择题1. A2. B3. B4. D5. D6. C7. B8. A9. B二、填空题10. 10.5 11. -1 12. 1 13.2;2;-4 14.15.-2三、解答题16.解:②﹣①得:3x=6,解得:x=2,把x=2代入①得y=﹣1,∴原方程组的解为.17.x-y=318. 解:根据题意是②方程的解,是①方程的解,∴解得19.解:∵∠1= ∠2,∠1+∠2=162°,∴∠1=54°,∠2=108°.∵∠1和∠3是对顶角,∴∠3=∠1=54°∵∠2和∠4是邻补角,∴∠4=180°-∠2=180°-108°=72°20.解:设中国内地去年有x个城市参加了此项活动,今年有y个城市参加了此项活动.依题意,得,解得:,答:去年有33个城市参加了此项活动,今年有86个城市参加了此项活动21.解:①-②得,即③,③×2007得④,②-④得,将代入③得,故原方程组的解是;所以22.解:将2x+3y=7与4x﹣6y=2联立得:解得:x=2,y=1.把x=2,y=1代入5x﹣7y=m﹣1得:m﹣1=10﹣7,解得m=4.人教版数学七年级下册第八章《二元一次方程组》测试题一、选择题(每小题只有一个正确答案)1.下列各方程组中,属于二元一次方程组的是( )A. B. C. D.2.下列各组数中,方程2x-y=3和3x+4y=10的公共解是( )A. B. C. D.3.用代入法解方程组有以下步骤:①由(1),得y=(3);②由(3)代入(1),得7x-2×=3;③整理得3=3;④∴x可取一切有理数,原方程组有无数个解以上解法,造成错误的一步是( )A.① B.② C.③ D.④4.一船顺水航行45千米需要3小时,逆水航行65千米需要5小时,若设船在静水中的速度为x千米/时,水流速度为y千米/时,则x,y的值为( )A. B. C. D.5.|3x-y-4|+|4x+y-3|=0,那么x与y的值分别为( )A. B. C. D.6.从方程组中求x与y的关系是( )A.x+y=-1 B.x+y=1 C. 2x-y=7 D.x+y=97.如果ax+2y=1是关于x,y的二元一次方程,那么a的值应满足( )A.a是有理数 B.a≠0 C.a=0 D.a是正有理数8.已知甲数的60%加乙数的80%等于这两个数的和的72%,若设甲数为x,乙数为y,则下列方程中符合题意的是( )A . 60%x +80%y =x +72%yB . 60%x +80%y =60%x +yC . 60%x +80%y =72%(x +y )D . 60%x +80%y =x +y9.下列各组数中,不是方程2x +y =10的解是( )A .B .C .D .10.如图所示,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( ).A .400 cm 2B .500 cm 2C .600 cm 2D .4 000 cm 211.有大小两种货车,2辆大车与3辆小车一次可以运货15.5吨,5辆大车与6辆小车一次可以运货35吨,3辆大车与5辆小车一次可以运货为(单位:吨)( )A . 25.5B . 24.5C . 26.5D . 27.512.一文具店的装订机的价格比文具盒的价格的3倍少1元,购买2把装订机和6个文具盒共需70元,问装订机与文具盒价格各是多少元?设文具盒的价格为x 元,装订机的价格为y 元,依题意可列方程组为( )A .B .C .D .二、填空题13.在括号内填写一个二元一次方程,使其与二元一次方程5x -2y =1组成方程组的解是 你所填写的方程为______________. 14.已知方程3x -2y =5的一个解中,y 的值比x 的值大1,则这个方程的这个解是________.15.已知方程组则x -y =______,x +y =______. 16.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x 岁,哥哥的年龄是y 岁,所列方程组为______.17.已知方程2x 2n -1-3y 3m -n +1=0是二元一次方程,则m =______,n =______.三、解答题18、用代入消元法解方程组 20.用加减消元法解方程组⎩⎨⎧-=-=+54032y x y x 3410,490;x y x y +=⎧⎨+-=⎩19、用适当的方法解下列方程组(1)20328x y x y -=⎧⎨+=⎩ (2)23533x y x y -⎧=⎪⎪⎨+⎪=⎪⎩20.甲、乙两人共同解方程组⎩⎨⎧-=-=+ ②by x ①y ax 24155,由于甲看错了方程①中的a ,得到方程组的解为⎩⎨⎧-=-=13y x。
函数之平面直角坐标系经典测试题附答案解析

函数之平面直角坐标系经典测试题附答案解析一、选择题1.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为()A.(5,4) B.(4,5) C.(3,4) D.(4,3)【答案】D【解析】【分析】根据已知两点的坐标确定平面直角坐标系,然后确定其它各点的坐标即可解答.【详解】如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选D.【点睛】本题利用平面直角坐标系表示点的位置,关键是由已知条件正确确定坐标轴的位置.2.如图,正方形ABCD的边长为4,点A的坐标为(-1,1),AB平行于x轴,则点C的坐标为( )A .(3,1)B .(-1,1)C .(3,5)D .(-1,5)【答案】C【解析】 解:∵正方形ABCD 的边长为4,点A 的坐标为(﹣1,1),AB 平行于x 轴,∴点B 的横坐标为:﹣1+4=3,纵坐标为:1,∴点B 的坐标为(3,1),∴点C 的横坐标为:3,纵坐标为:1+4=5,∴点C 的坐标为(3,5).故选C .点睛:本题考查坐标与图形性质,解题的关键是明确正方形的各条边相等,能根据图形找出它们之间的关系.3.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如()()()()()()1,02,02,11,11,22,2,,,,,······根据这个规律,第2019个点的纵坐标为( )A .5B .6C .7D .8【答案】B【解析】【分析】 观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于x 轴上右下角的点的横坐标的平方,并且右下角的点的横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当右下角的点横坐标是偶数时,以横坐标为1,纵坐标为右下角横坐标的偶数减1的点结束,根据此规律解答即可.【详解】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x 轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n 时,共有n 2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2019个点是(45,6),所以,第2019个点的纵坐标为6.故选:B .【点睛】本题考查了点的坐标,观察出点个数与横坐标的存在的平方关系是解题的关键.4.若点M 的坐标为b |+1),则下列说法中正确的是 ( )A .点M 在x 轴正半轴上B .点M 在x 轴负半轴上C .点M 在y 轴正半轴上D .点M 在y 轴负半轴上【答案】C【解析】【分析】首先根据二次根式的定义及绝对值的性质分别判断出点M 的横、纵坐标的符号; 然后根据坐标轴上点的坐标特征进行分析即可作出判断.【详解】有意义,则-a 2≥0,∴a =0.∵|b |≥0,∴|b |+1>0,∴点M 在y 轴的正半轴上.故选C.【点睛】本题考查的是点的坐标的知识,解题关键是熟练掌握坐标轴上点的坐标特征.5.平面直角坐标系中,点A(-3,2),()3,5B ,(),C x y ,若AC ∥x 轴,则线段BC 的最小值及此时点C 的坐标分别为( )A .6,()3,4-B .2,()3,2C .2,()3,0D .3,()3,2【答案】D【解析】【分析】由AC ∥x 轴,A (-3,2),根据坐标的定义可求得y 值,根据线段BC 最小,确定BC ⊥AC ,垂足为点C ,进一步求得BC 的最小值和点C 的坐标.【详解】∵AC ∥x 轴,A (-3,2),(),C x y ,()3,5B ,∴y=2,当BC ⊥AC 于点C 时, 点B 到AC 的距离最短,即:BC 的最小值=5−2=3,∴此时点C 的坐标为(3,2).故选D .【点睛】本题主要考查平面直角坐标系中的点的坐标,根据题意,画出图形,掌握“直线外一点与直线上各个点的连线中,垂线段最短”,是解题的关键.6.平面直角坐标系中,已知□ABCD 的三个顶点坐标分别是A (m ,n ),B ( 2,-l ),C (-m ,-n ),则点D 的坐标是( )A .(-2 ,l )B .(-2,-l )C .(-1,-2 )D .(-1,2 )【答案】A【解析】【分析】【详解】试题分析:∵平行四边形ABCD 是中心对称图形,对称中心是对角线的交点,而A 、C 关于原点对称,故B 、D 也关于原点对称∴D (-2 ,l ).故选A .考点:平行四边形的性质;坐标与图形性质.7.如图,已知A :(1,0).A 2(1,-1),A 3(-1,-l).A 4 (-1, 1), A 5 (2, 1),...则点A 2020的坐标是( )A .(506,505)B .(-505,-505)C .(505,-505)D .(-505,505)【答案】D【解析】【分析】 经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加-1,纵坐标依次加1;在第三象限的点的横坐标依次加-1,纵坐标依次加-1,在第四象限的点的横坐标依次加1,纵坐标依次加-1,第二,三,四象限的点的横纵坐标的绝对值都相等,并且第三,四象限的横坐标等于相邻4的整数倍的各点除以4再加上1,由此即可求出点A 2020【详解】解:易得4的整数倍的各点如:4812,,A A A∵20204505÷=,∴点2020A 在第二象限,∴2020A 是第二象限的第505个点,∴2020A 的坐标为(-505,505),故选:D【点睛】本题考查了点的坐标规律,属于规律型,考查点的坐标,首先确定象限,再找出点之间的规律.8.点A (-4,3)和点B (-8,3),则A ,B 相距( )A .4个单位长度B .12个单位长度C .10个单位长度D .8个单位长度【答案】A【解析】【分析】先根据A ,B 两点的坐标确定AB 平行于x 轴,再根据同一直线上两点间的距离公式解答即可.【详解】解:∵点A和点B纵坐标相同,∴AB平行于x轴,AB=﹣4﹣(﹣8)=4.故选A.9.如图,正方形ABCD的顶点A(1,1),B(3,1),规定把正方形ABCD“先沿x轴翻折,再向左平移1个单位”为一次变换,这样连续经过2019次变换后,正方形ABCD的顶点C的坐标为()A.(﹣2018,3)B.(﹣2018,﹣3)C.(﹣2016,3)D.(﹣2016,﹣3)【答案】D【解析】【分析】首先由正方形ABCD,顶点A(1,1)、B(3,1)、C(3,3),然后根据题意求得第1次、2次、3次变换后的点C的对应点的坐标,即可得规律:第n次变换后的点C的对应点的为:当n为奇数时为(3-n,-3),当n为偶数时为(3-n,3),继而求得把正方形ABCD连续经过2019次这样的变换得到正方形ABCD的点C的坐标.【详解】∵正方形ABCD,顶点A(1,1)、B(3,1),∴C(3,3).根据题意得:第1次变换后的点C的对应点的坐标为(3﹣1,﹣3),即(2,﹣3),第2次变换后的点C的对应点的坐标为:(3﹣2,3),即(1,3),第3次变换后的点C的对应点的坐标为(3﹣3,﹣3),即(0,﹣3),第n次变换后的点C的对应点的为:当n为奇数时为(3﹣n,﹣3),当n为偶数时为(3﹣n,3),∴连续经过2019次变换后,正方形ABCD的点C的坐标变为(﹣2016,﹣3).故选D.【点睛】此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的点C的对应点的坐标为:当n为奇数时为(3-n,-3),当n为偶数时为(3-n,3)是解此题的关键.10.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为()A.O1B.O2C.O3D.O4【答案】A【解析】试题分析:因为A点坐标为(-4,2),所以,原点在点A的右边,也在点A的下边2个单位处,从点B来看,B(2,-4),所以,原点在点B的左边,且在点B的上边4个单位处.如下图,O1符合.考点:平面直角坐标系.11.在直角坐标系中,若点P(2x-6,x-5)在第四象限,则x的取值范围是( )A.3<x<5 B.-5<x<3 C.-3<x<5 D.-5<x<-3【答案】A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:∵点P(2x-6,x-5)在第四象限,∴260 {50xx->-<,解得:3<x<5.故选:A.【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.12.在平面直角坐标系中,点P (0,﹣4)在( )A .x 轴上B .y 轴上C .原点D .与x 轴平行的直线上【答案】B【解析】【分析】根据点P 的坐标为(0,﹣4)即可判断点P (0,﹣4)在y 轴上.【详解】在平面直角坐标系中,点P (0,﹣4)在y 轴上,故选:B .【点睛】本题考查了坐标与图形性质,熟练掌握坐标轴上点的坐标特征是解题的关键.13.在平面直角坐标系中,点(-1, 3)在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】【分析】根据各象限内点的坐标特征解答.【详解】解:点(-1, 3)在第二象限故选B.【点睛】本题考查了各象限内点的坐标的符号特征以,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).14.在平面直角坐标系xOy 中,对于点(),P x y ,我们把点()1,1P y x '-++叫做点P 的伴随点.已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得到点123,,,,,n A A A A L L .若点1A 的坐标为()3,1,则点2019A 的坐标为( ) A .()0,2-B .()0,4C .()3,1D .()3,1-【答案】D【解析】【分析】根据“伴随点”的定义依次求出各点,每4个点为一个循环组依次循环,用2019除以4,根据商和余数的情况确定点A 2019的坐标即可.【详解】解:A 1的坐标为(3,1),则A 2(-1+1,3+1)=(0,4),A 3(-4+1,0+1)=(-3,1),A 4(0,-2),A 5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2019÷4=504…3,∴点A 2019的坐标与A 3的坐标相同,为(-3,1),故选D.【点睛】本题考查点的坐标规律,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.15.如图所示,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A(2, 0)同时出发,沿长方形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位长度秒匀速运动,物体乙按顺时针方向以2个单位长度秒匀速运动,则两个物体运动后的第2020次相遇点的坐标是( )A .(2,0)B .(-1,-1)C .( -2,1)D .(-1, 1)【答案】D【解析】【分析】 利用行程问题中的相遇问题,由于长方形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答;【详解】∵A (2,0),四边形BCDE 是长方形,∴B (2,1),C (-2,1),D (-2,-1),E (2,-1),∴BC=4,CD=2,∴长方形BCDE 的周长为()2422612⨯+=⨯=,∵甲的速度为1,乙的速度为2,∴第一次相遇需要的时间为12÷(1+2)=4(秒),此时甲的路程为1×4=4,甲乙在(-1,1)相遇,以此类推,第二次甲乙相遇时的地点为(-1,-1),第三次为(2,0),第四次为(-1,1),第五次为(-1,-1),第六次为(2,0),L L,∴甲乙相遇时的地点是每三个点为一个循环,÷=L,∵202036733∴第2020次相遇地点的坐标为(-1,1);故选D.【点睛】本题主要考查了规律型:点的坐标,掌握甲乙运动相遇时点坐标的规律是解题的关键. 16.如图,在直角坐标系内,正方形如图摆放,已知顶点 A(a,0),B(0,b) ,则顶点C的坐标为()A.(-b,a + b) B.(-b,b - a) C.(-a,b - a) D.(b,b -a)【答案】B【解析】【分析】根据题意首先过点C作CE⊥y轴于点E,易得△AOB≌△BEC,然后由全等三角形的性质,证得CE=OB=b,BE=OA=a,继而分析求得答案.【详解】解:如图,过点C作CE⊥y轴于点E,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠ABO+∠CBE=90°,∵∠ABO+∠BAO=90°,∴∠CBE=∠BAO ,在△ABO 和△BCE 中,90AOB CEB BAO CBEAB BC ⎧⎪⎨⎪∠∠︒∠∠⎩==== ∴△AOB ≌△BEC (AAS ),∴BE=OA=a ,CE=OB=b ,∴OE=OB-BE=b-a ,∴顶点C 的坐标为:(-b ,b-a ).故选:B .【点睛】本题考查正方形的性质以及全等三角形的判定与性质.注意掌握辅助线的作法以及注意掌握数形结合思想的应用.17.有意义,那么直角坐标系中 P(m,n)的位置在( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【解析】【分析】先根据二次根式与分式的性质求出m,n 的取值,即可判断P 点所在的象限.【详解】依题意的-m≥0,mn >0,解得m <0,n <0,故P(m,n)的位置在第三象限,故选C.【点睛】此题主要考查坐标所在象限,解题的关键是熟知二次根式与分式的性质.18.若x 轴上的点P 到y 轴的距离为3,则点P 的坐标为( )A .(3,0)B .(3,0)或(–3,0)C .(0,3)D .(0,3)或(0,–3)【答案】B【解析】【分析】根据x 轴上点的纵坐标为0,可得P 点的纵坐标,根据点P 到y 轴的距离是点的横坐标的绝对值,可得答案.【详解】由x 轴上的点P ,得P 点的纵坐标为0,由点P 到y 轴的距离为3,得P 点的横坐标为3或-3,∴点P 的坐标为(3,0)或(-3,0),故选B .【点睛】本题考查了点的坐标,利用y 轴上点的横坐标为得出P 点的横坐标是解题关键,注意点到x 轴的距离是点的纵坐标的绝对值.19.预备知识:线段中点坐标公式:在平面直角坐标系中,已知A (x 1,y 1),B (x 2,y 2),设点M 为线段AB 的中点,则点M 的坐标为(122x x +,122y y +)应用:设线段CD 的中点为点N ,其坐标为(3,2),若端点C 的坐标为(7,3),则端点D 的坐标为( )A .(﹣1,1)B .(﹣2,4)C .(﹣2,1)D .(﹣1,4) 【答案】A【解析】【分析】根据线段的中点坐标公式即可得到结论.【详解】设D (x ,y ), 由中点坐标公式得:7+x 2=3,3+y 2=2, ∴x =﹣1,y =1,∴D (﹣1,1),故选A .【点睛】此题考查坐标与图形性质,关键是根据线段的中点坐标公式解答.20.如果点P (m +3,m +1)在x 轴上,则点P 的坐标为( )A .(0,2)B .(2,0)C .(4,0)D .(0,﹣4)【答案】B【解析】【分析】根据点P 在x 轴上,即y =0,可得出m 的值,从而得出点P 的坐标.【详解】根据点P 在x 轴上,即y =0,可得出m 的值,从而得出点P 的坐标.解:∵点P (m +3,m +1)在x 轴上,∴y =0,∴m +1=0,解得:m =﹣1,∴m+3=﹣1+3=2,∴点P的坐标为(2,0).故选:B.【点睛】本题考查了点的坐标,注意平面直角坐标系中,点在x轴上时纵坐标为0,得出m的值是解题关键.。
七年级数学下册第第七章《平面直角坐标系》单元测试题(含答案)

七年级数学下册第第七章《平面直角坐标系》单元测试题(含答案)一、选择题(本大题共6小题,每小题3分,共18分)1.下列坐标中,在第三象限的是( )A .(4,5)--B .(4,5)-C .(4,5)D .(4,5)- 2.已知点(3,2)P a a +在x 轴上,则P 点的坐标是( )A .(3,2)B .(6,0)C .(6,0)-D .(6,2) 3.在平面直角坐标系中,将点(,)A x y 向左平移5个单位长度,再向上平移3个单位长度后与点(3,2)B -重合,则点A 的坐标是( )A .(2,5)B .(8,5)-C .(2,1)-D .(8,1)--4.如图,用方向和距离描述少年宫相对于小明家的位置,正确的是( )A .北偏东55°,2kmB .东北方向C .东偏北35°,2kmD .北偏东35°,2km5.若点P (m ,n )在第三象限,则点Q (﹣m ,﹣n )在( )A .第一象限B .第二象限C .第三象限D .第四象限6.如图,在平面直角坐标系中,一动点从原点O 出发,按向上、向右、向下、向右的方向不断地移动,每移动一个单位,得到点A 1(0,1)、A 2(1,1)、A 3(1,0)、A 4(2,0)…,那么点A 2022的坐标为( )A .(1011,0)B .(1011,1)C .(2022,0)D .(2022,1) 二、填空题(本大题共6小题,每小题3分,共18分)7.点A (1,﹣2)到x 轴的距离是 .8.在平面直角坐标系中,若对于平面内任一点(,)a b 有如下变换:(f a ,)(b a =-,)b ,如 (1f ,3)(1=-,3),则(5,3)f -= .9.在平面直角坐标系中,点(a 2+1,﹣1)一定在第 象限.10.线段AB 平移后得到线段CD ,已知(2,3)A 的对应点为(1,4)C -,则(3,2)B 的对应 点D 的坐标为 .11.已知点P (a ,b )在第三象限,且点P 到x 轴的距离为3,到y 轴的距为5,到点P 的坐标为 .12.在平面直角坐标系中,已知点(2,3)P -,//PA y 轴,3PA =,则点A 的坐标为 .三、(本大题共4小题,每小题6分,共24分)13.建立平面直角坐标系,使点C 的坐标为(4,0),写出点A 、B 、D 、E 、F 、G 的坐标.14.点(2,36)P a a -+到两条坐标轴的距离相等,求点P 的坐标.15.点P 是平面直角坐标系中的一点且不在坐标轴上,过点P 向x 轴、y 轴作垂线段,若垂线段的长度的和为4,则点P 叫做“垂距点”,例如:如图中的点P (1,3)是“垂距点”.(1)在点A (﹣2,2),B (,﹣),C (﹣1,5)中,“垂距点”是 ;(2)若D (m ,m )是“垂距点”,求m 的值.16.如图,△ABC 的顶点A (﹣1,4),B (﹣4,﹣1),C (1,1).若△ABC 向右平移4个单位长度,再向下平移3个单位长度得到△A 'B 'C ',且点C的对应点坐标是C '.(1)画出△A 'B 'C ',并直接写出点C '的坐标;(2)若△ABC 内有一点P (a ,b )经过以上平移后的对应点为P ',直接写出点P '的坐标;(3)求△ABC 的面积.四、(本大题共2小题,每小题9分,共18分)17.在平面直角坐标系中,已知点P(2m+4,m﹣1),试分别根据下列条件,求出点P的坐标.求:(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P在过A(2,﹣5)点,且与x轴平行的直线上.18.三角形ABC与三角形A B C'''在平面直角坐标系中的位置如图所示.(1)分别写出下列各点的坐标:A;B;C;(2)三角形ABC由三角形A B C'''经过怎样的平移得到?答:.(3)若点(,)P x y是三角形ABC内部一点,则三角形A B C'''内部的对应点P'的坐标为;(4)求三角形ABC的面积.五、(本大题2小题,第19题10分,第20题12分,共22分)19.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O →C→B→A→O的路线移动(移动一周).(1)写出点B的坐标;(2)当点P移动了4秒时,求出点P的坐标;(3)在移动过程中,当△OBP的面积是10时,直接写出点P的坐标20.如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(﹣3,2).(1)直接写出点E的坐标;(2)在四边形ABCD中,点P从点B出发,沿“BC→CD”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:①当t=秒时,点P的横坐标与纵坐标互为相反数;②求点P在运动过程中的坐标(用含t的式子表示,写出过程);③当三角形P AB的面积为3.2时,求此时P点的坐标;④P点在运动过程中,三角形P AB面积的最大值是.参考答案一、选择题1-6.ACCDAB二、填空题7.28.(﹣5,﹣3)9.四10.(0,3)11.(﹣5,﹣3)12.(﹣2,6)或(﹣2,0)三.解答题13.解:如图所示,以B为坐标原点,BC所在直线为x轴,过点B且垂直于x轴的直线为y 轴建立平面直角坐标系,则A(﹣2,3),B(0,0),D(6,1),E(5,3),F(3,2),G(1,5).14.解:∵点P(a﹣2,3a+6)到两条坐标轴的距离相等,∴a﹣2=3a+6或a﹣2+3a+6=0得a=﹣4或a=﹣1∴(﹣6,﹣6)或(﹣3,3).15.解:(1)根据题意,对于点A而言,|﹣2|+|2|=4,所以A是“垂距点”,对于点B而言,||+|﹣|=3,所以B不是“垂距点”,对于点C而言,|﹣1|+|5|=6≠4,所以C不是“垂距点”,故答案为:A.(2)由题意可知:,①当m>0时,则4m=4,解得m=1;②当m<0时,则﹣4m=4,解得m=﹣1;∴m=±1.16.解:(1)如图所示:∴点C(5,﹣2);(2)∵△ABC向右平移4个单位长度,再向下平移3个单位长度得到△A'B'C',∴点P'(a+4,b﹣3);(3)S△ABC=5×5﹣×3×5﹣×2×3﹣×5×2=25﹣7.5﹣3﹣5=9.5.17.解:(1)令2m+4=0,解得m=﹣2,所以P点的坐标为(0,﹣3);(2)令m﹣1﹣(2m+4)=3,解得m=﹣8,所以P点的坐标为(﹣12,﹣9);(3)令m﹣1=﹣5,解得m=﹣4.所以P点的坐标为(﹣4,﹣5).18.解:(1)A(1,3),B(2,0),C(3,1),故答案为:(1,3),(2,0),(3,1).(2)三角形A'B'C'向右平移4个单位,再向上平移2个单位得到三角形ABC.故答案为:三角形A'B'C'向右平移4个单位,再向上平移2个单位得到三角形ABC.(3)P′(x﹣4,y﹣2),故答案为:(x﹣4,y﹣2),(4)S三角形ABC=2×3﹣×1×3﹣×1×1﹣×2×2=2.19.解:(1)∵A点的坐标为(4,0),C点的坐标为(0,6),∴OA=4,OC=6,∴点B(4,6);(2)∵点P移动了4秒时的距离是2×4=8,∴点P的坐标为(2,6);(3)如图,①当点P在OC上时,S△OBP=×OP1×4=10,∴OP1=5,∴点P(0,5);②当点P在BC上,S△OBP=×BP2×6=10,∴BP2=,∴CP2=4﹣=,∴点P(,6);③当点P在AB上,S△OBP=×BP3×4=10,∴BP3=5,∴AP3=6﹣5=1,∴点P(4,1);④当点P在AO上,S△OBP=×OP4×6=10,∴OP4=,∴点P(,0).综上,点P的坐标为(0,5)或(,6)或(4,1)或(,0).20解:(1)∵C(﹣3,2),A(1,0),∴BC=3,OA=1,∵BC=AE=3,∴OE=AE﹣AO=2,∴E(﹣2,0),故答案为:(﹣2,0).(2)①由题意当P(﹣2,2)时,满足条件,此时t=2.故答案为:2.②当点P在线段BC上时,点P的坐标(﹣t,2),当点P在线段CD上时,点P的坐标(﹣3,5﹣t).③当点P在线段BC上时,三角形P AB的面积最大为×BC×OB=×3×2=3,所以三角形P AB的面积为3.2时,P点只能在线段CD上.如图,设此时PD的长为m.∵△P AB的面积=四边形ABCD的面积﹣△PBC的面积﹣△P AD的面积=(3+4)×2﹣×(2﹣m)×3﹣m×4=7﹣3+m﹣2m=4﹣m,∴4﹣m=3.2,m=1.6此时P点的坐标是(﹣3,1.6).④当点P与D重合时,△P AB的面积最大,最大值为×4×2=4,故答案为:4。
精选人教版七年级下册数学第七章平面直角坐标系单元小结(解析版)(1)

人教版七年级数学下册第七章平面直角坐标系单元综合测试题含详细答案一、(本大题共10小题,每题3分,共30分. 在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!)1.在仪仗队列中,共有八列,每列8人,若战士甲站在第二列从前面数第3个,可以表示为(2,3),则战士乙站在第七列倒数第3个,应表示为( )A.(7,6)B.(6,7)C.(7,3)D.(3,7)2.若点P的坐标是(2,1),则点P在()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,下列各点在阴影区域内的是()A.(3,2)B.(-3,2)C.(3,-2)D.(-3,-2)4. 点E(a,b)到x轴的距离是4,到y轴距离是3,则有()A.a=3, b=4 B.a=±3,b=±4 C.a=4, b=3 D.a=±4,b=±35.已知线段AB=3,且AB∥x轴,若A(-2,4),则将线段向下平移4个单位长度后,点B的对应点的坐标为(D)A.(1,0)B.(0,1)C.(-5,1)D.(1,0)或(-5,0)6.如图3,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后三个的坐标是()A.(2,2)(3,4)(1,7)B.(一2,2)(4,3)(1,7)C.(一2,2)(3,4)(1,7)D.(2,一2)(3,3)(1,7)7.点A(-4,3)和点B(-8,3),则A,B相距()A.4个单位长度B.12个单位长度C.10个单位长度D.8个单位长度8.在坐标系中,已知A(2,0),B(−3,−4),C(0,0),则△ABC的面积为()A.4 B.6 C.8 D.39.如图1所示,从小明家到学校要穿过一个居民小区,小区的道路均是北南或西东方向,小明走下面哪条线路最短( )A .(1,3)→(1,2)→(1,1)→(1,0)→(2,0)→(3,0)→(4,0)B .(1,3)→(0,3)→(2,3)→(0,0)→(1,0)→(2,0)→(4,0)C .(1,3)→(1,4)→(2,4)→(3,4)→(4,4)→(4,3)→(4,2) →(4,0)D .以上都不对10.如图将三角形ABC 的纵坐标乘以2,原三角形ABC 坐标分别为A (-2,0),B (2,0),C (0,2)得新三角形A′B′C′下列图像中正确的是( )A B C D二、细心填一填:(本大题共有6小题,每题4分,共24分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!) 11.已知点P 在第二象限,且横坐标与纵坐标的和为1,试写出一个符合条件的点P . . 12.某一本书在印刷上有错别字,在第20页第4行从左数第11个字上,如果用数序表示可记为(20,4,11),你是电脑打字员,你认为(100,20,4)的意义是第 .13.某雷达探测目标得到的结果如图所示,若记图中目标A 的位置为(3,30°),目标B 的位置为(2,180°),目标C 的位置为(4,240°),则图中目标D 的位置可记为 .14.在平面直角坐标系中,已知线段AB=3,且AB ∥x 轴,且点A 的坐标是(1,2),则点B 的坐标是 .15.如图,三角形A'B'C'是三角形ABC 经过某种变换后得到的图形,如果三角形ABC 中有一点P 的坐标为(a ,2),那么变换后它的对应点Q 的坐标为 .16.在平面直角坐标系中,点P (x ,y )经过某种变换后得到点P'(-y+1,x+2),我们把点P'(-y+1,x+2)叫做点P (x ,y )的终结点.已知点P 1的终结点为P 2,点P 2的终结点为P 3,点P 3的终结点为P 4,这样依次得到P 1,P 2,P 3,P 4,…,P n ,…,若点P 1的坐标为(2,0),则点P 2 017的坐标为 .三、认真答一答:(本大题共5小题,共46分. 只要你认真思考, 仔细运算, 一定会解答正确的!)17.(6分)如图所示,是一个规格为的球桌,小明用A 球撞击B 球,到C 处反弹,再撞击桌边D 处,请选择适当的平面直角坐标系,并用坐标表示各点的位置.18.(10分)以点A 为圆心的圆可表示为⊙A 。
《平面直角坐标系》单元测试题
如 果你 想 走 入 思 想 世 界 , 么 请接 受 教 育 . EHa io ( . 密 尔 顿 ) 那 一 . mh n E汉
维普资讯
相比 (
). .
A. 向右 平移 了 3个 单位
C 向上 平移 了 3 单位 . 个
B 向左平 移 了 3个单 位 . D 向下平移 了 3个单位 .
一
B (5 一 ) . 一 ,3 ) .
B ( ,) . 3 2
C ( ,) (53 .一 ,) (5一 ) . 5 3 或 一 , )D (5 3 或 一 , 3
-
个 正方 形在 平 面直 角 坐标 系 中三个 顶 点 的坐 标为 ( 2 3 ,一 , ) ( , )则 第 四个 顶 点 ) ( 2 1 ,2 1 ,
D.4 3 (,)
.
,
刚
:
2 点 ( 3一 ) . 一 ,5 向上平 移 2 单位 到点 , 个 其坐标 为 (
A ( 3 2 .一 , ) B (2 一 2 .一 , 1) C ( ~) .4, 3
) .
D (3 一 ) . 一 , 3
f ’ 、 荜
图 1
的坐 标为 (
A ( ,) . 2 2
C ( ,3 .2一 ) ) .
D (,) . 2 3
△ B C 是 由 AA BC平移 得 到的 , A( 1一 ) 点 一 , 4 的对 应 点 A ( , 1 , 点 B( , ) 1一 ) 则 1 1 的对应 点
B 、 C 一 ,)的对 应 点 C 的坐标分 别为 ( 点 ( 14 A ( , ) ( ,) . 2 2 、3 4 B ( ,)( ,) . 3 4 、 17
(人教版)南京市七年级数学下册第三单元《平面直角坐标系》测试题(包含答案解析)
一、选择题1.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 2C 3C 2,…按如图所示的方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,已知点B 1(1,1),B 2(3,2),则B n 的坐标是( )A .(2n ﹣1,2n ﹣1)B .(2n ﹣1,2n ﹣1)C .(2n ﹣1,2n ﹣1)D .(2n ﹣1,2n ﹣1)2.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2020次碰到球桌边时,小球的位置是( )A .(3,4)B .(5,4)C .(7,0)D .(8,1) 3.在平面直角坐标系中,点(2,1)A -关于y 轴对称的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限4.若点(),A m n 到y 轴的距离是它到x 轴距离的两倍,则( ). A .2m n = B .2m n = C .2m n =D .2m n = 5.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限6.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A .(4,0)B .(5,0)C .(0,5)D .(5,5)7.平面直角坐标系中,线段CD 是由线段AB 平移得到的,点A(-1,4)的对应点C(4,7),点B(-4,-1)的对应点D的坐标为()A.(-1,-4) B.(1,-4) C.(1,2) D.(-1,2) 8.一个图形的各点的纵坐标乘以2,横坐标不变,这个图形发生的变化是()A.横向拉伸为原来的2倍B.纵向拉伸为原来的2倍C.横向压缩为原来的12D.纵向压缩为原来的129.在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4…,这样依次得到点A1,A2,A3,…,A n,若点A1的坐标为(3,1),则点A2019的坐标为()A.(0,﹣2)B.(0,4)C.(3,1)D.(﹣3,1)10.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)()()()()()1,01,11,22,13,0....→→→→→→,则2018分钟时粒子所在点的横坐标为()A.900 B.946 C.990 D.88611.如图所示,某战役缴获敌人防御工事坐标地图碎片,依稀可见,一号暗堡的坐标为(4,2),四号暗堡的坐标为(2,4)-,原有情报得知:敌军指挥部的坐标为(0,0),你认为敌军指挥部的位置大约是()A.A处B.B处C.C处D.D处12.若把点A(-5m,2m-1)向上平移3个单位后得到的点在x轴上,则点A在() A.x轴上B.第三象限C.y轴上D.第四象限二、填空题13.下列四个命题中:①对顶角相等;②如果两条直线被第三条直线所截,那么同位角相等;③如果两个实数的平方相等,那么这两个实数也相等;④当0m ≠时,点()2,P m m -在第四象限内. 其中真命题有________(填序号).14.若点A (m +2,﹣3)与点B (﹣4,n +5)在二四象限角平分线上,则m +n =_____. 15.已知点A (2a+5,a ﹣3)在第一、三象限的角平分线上,则a =_____.16.直角坐标系内,一动点按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),……,按这样的运动规律,动点第2021次运动到的点的坐标为____________.17.已知两点A(-2,m),B(n ,-4),若AB//y 轴,且AB=5,则m=_______;n=_______________.18.如图所示,在平面直角坐标系中,一动点从原点O 出发,沿着箭头所示方向,每次移动1个单位长度,依次得到点1(0,1)P ,2(1,1)P ,3(1,0)P,4(1,1)P -,5(2,1)P -,6(2,0)P ,…,则点2020P 的坐标是______.19.已知点()24,1P m m +-.()1若点P 在x 轴上,则点P 的坐标为________;()2若点P 在第四象限,且到y 轴的距离是2,则点P 的坐标为________.20.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按下图中的规律摆放. 点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边"OA 1→A 1A2→A2A 3→A 3A 4→A 4A 5…."的路线运动,设第n 秒运动到点P n (n 为正整数);则点P 2021的横坐标为_______三、解答题21.(探究):(1)在图1中,已知线段AB 、CD ,其两条线段的中点分别为E 、F ,请填写下面空格.①若(1,0)A -,(3,0)B ,则E 点坐标为______. ②若(2,2)C -,(2,1)D --,则F 点坐标为______. (2)请回答下列问题①在图2中,已知线段AB 的端点坐标为()11,A x y ,()22,B x y ,求出图中线段AB 的中点P 的坐标(用含1x ,1y ,2x ,2y 的代数式表示),并给出求解过程.②(归纳):无论线段AB 处于直角坐标系中的哪个位置,当其端点坐标为()11,A x y ,()22,B x y ,线段AB 的中点为(,)P x y 时,x =______,y =______.(直接填写,不必证明)③(运用):在图3中,在平面直角坐标系中AOB 的三个顶点(0,0)O ,(2,3)A -,(4,1)B ,若以A ,O ,B ,M 为顶点的四边形是平行四边形,请利用上面的结论直接写出顶点M 的坐标(不需写出解答过程)22.在平面直角坐标系中,点A 从原点O 出发,沿x 轴正方向按半圆形弧线不断向前运动,其移动路线如图所示,其中半圆的半径为1个单位长度,这时点1234,,,A A A A 的坐标分别为()()()()12340,0,1,12,03,1A A A A -,按照这个规律解决下列问题:()1写出点5678,,,,A A A A 的坐标;()2点2018A 的位置在_____________(填“x 轴上方”“x 轴下方”或“x 轴上”); ()3试写出点n A 的坐标(n 是正整数).23.如图,已知每个小正方形的边长均为1的网格中有一个三角形.()1请你画出这个三角形向上平移3个单位长度,所得到的'''A B C ∆()2请以'A 为坐标原点建立平面直角坐标系(在图中画出),然后写出点B ,点C 及','B C 的坐标.24.如图,在平面直角坐标系中,三角形ABC?的顶点坐标分别是()()A 4,1B 1,1?--,,()C 1,4?-,点()11P x ,y ?是三角形 ABC?内一点,点()11 P x ,y ?平移到点()111 P x 3,1?y +-时;(1)画出平移后的新三角形111?A B C 并分别写出点111?A B C 的坐标;(2)求出三角形111?A B C 的面积25.如图,三角形ABC 三个顶点坐标分别是()4,3A ,()3,1B ,()1,2C ,三角形ABC 内任意一点(),M m n .(1)将三角形ABC 平移得到三角形111A B C ,点C 的对应点为()14,4C ,请画出三角形111A B C 并写出1A 的坐标;(2)若三角形PQR 是三角形ABC 经过某种变换后得到的图形.点A 的对应点为P ,点B 的对应点为Q ,点C 的对应点为R .观察变换前后各对应点之间的关系,若点M 经过这种变换后的对应为N ,则点N 的坐标为(______,______)(用含m ,n 的式子表示)26.如图,平面直角坐标系中,已知点A (-3,3),B (-5,1),C (-2,0),P ()是△ABC 的边AC 上任意一点,△ABC 经过平移后得到△A 1B 1C 1,点P 的对应点为 P 1 ( a +6,b+2 )(1)直接写出点A 1,B 1,C 1的坐标; (2)在图中画出△A 1B 1C 1; (3)求△ABC 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由123B B B ,,的规律写出n B 的坐标. 【详解】∵点B 1的坐标为(1,1),点B 2的坐标为(3,2), ∴点B 3的坐标为(7,4),∴Bn 的横坐标是:2n ﹣1,纵坐标是:2n ﹣1. 则B n 的坐标是(2n ﹣1,2n ﹣1).故选:D . 【点睛】本题考查点的坐标规律探索,观察图形前面某些点的坐标,找出规律后再写出图形一般点的坐标.2.D解析:D 【分析】根据题意,可以画出相应的图形,然后即可发现点所在的位置变化特点,即可得到小球第2020次碰到球桌边时,小球的位置. 【详解】如图,小球第一次碰到球桌边时,小球的位置是(0,1) 小球第二次碰到球桌边时,小球的位置是(3,4)小球第三次碰到球桌边时,小球的位置是(7,0) 小球第四次碰到球桌边时,小球的位置是(8,1) 小球第五次碰到球桌边时,小球的位置是(5,4) 小球第六次碰到球桌边时,小球的位置是(1,0) ……∵2020÷6=336 (4)∴小球第2020次碰到球桌边时,小球的位置是(8,1) 故选D【点睛】本题考查坐标位置,解答本题的关键是明确题意,发现点的坐标位置的变化特点,利用数形结合的思想解答.3.C解析:C 【分析】直接利用关于y 轴对称点的性质得出对应点坐标,进而得出答案. 【详解】解:点A (2,-1)关于y 轴对称的点为(-2,-1), 则点(-2,-1)在第三象限. 故选:C . 【点睛】此题主要考查了关于y 轴对称点的性质,正确掌握各象限内点的坐标特点是解题关键.4.C解析:C 【分析】根据分别表示点到x 轴的距离和到y 轴的距离,再根据到y 轴的距离是它到x 轴距离的两倍列式即可. 【详解】解:点(),A m n 到y 轴的距离是它到x 轴距离的两倍.则2m n =, 故选C . 【点睛】本题考查了点的坐标,熟记点到y 轴的距离,再根据到y 轴的距离是它到x 轴距离的两倍列式是解题的关键.5.D解析:D【解析】解:点P的坐标为(3,﹣1),那么点P在第四象限,故选D.6.B解析:B【分析】根据题意,找出其运动规律,质点每秒移动一个单位,质点到达(1,0)时,共用3秒;质点到达(2,0)时,共用4秒;质点到达(0,2)时,共用4+4=8秒;质点到达(0,3)时,共用9秒;质点到达(3,0)时,共用9+6=15秒;以此类推,即可得出答案.【详解】解:由题意可知,质点每秒移动一个单位质点到达(1,0)时,共用3秒;质点到达(2,0)时,共用4秒;质点到达(0,2)时,共用4+4=8秒;质点到达(0,3)时,共用9秒;质点到达(3,0)时,共用9+6=15秒;以此类推,质点到达(4,0)时,共用16秒;质点到达(0,4)时,共用16+8=24秒;质点到达(0,5)时,共用25秒;质点到达(5,0)时,共用25+10=35秒故答案为:B.【点睛】本题考查整式探索与表达规律,根据题意找出规律是解题的关键.7.C解析:C【分析】由于线段CD是由线段AB平移得到的,而点A(-1,4)的对应点为C(4,7),比较它们的坐标发现横坐标增加5,纵坐标增加3,利用此规律即可求出点B(-4,-1)的对应点D 的坐标.【详解】∵线段CD是由线段AB平移得到的,而点A(-1,4)的对应点为C(4,7),∴由A平移到C点的横坐标增加5,纵坐标增加3,则点B(-4,-1)的对应点D的坐标为(-4+5,-1+3),即(1,2).故选:C.【点睛】本题考查了坐标与图形变化-平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.8.B解析:B【分析】根据横坐标不变,纵坐标变为原来的2倍得到整个图形将沿y轴变长,即可得出结论.【详解】如果将一个图形上各点的横坐标不变,纵坐标乘以2,则这个图形发生的变化是:纵向拉伸为原来的2倍.故选B.【点睛】本题考查了坐标与图形性质:利用点的坐标计算相应的线段的长和判断线段与坐标轴的关系.9.D解析:D【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2019除以4,根据商和余数的情况确定点A2019的坐标即可.【详解】解:∵A1的坐标为(3,1),∴A2(0,4),A3(﹣3,1),A4(0,﹣2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2019÷4=504…3,∴点A2019的坐标与A3的坐标相同,为(﹣3,1).故选:D.【点睛】本题主要考查点的坐标规律,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.10.C解析:C【分析】根据点的坐标变化寻找规律即可.【详解】解:一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)→(1,0)→(1,1)→(1,2)→(2,1)→(3,0)→L,发现:当x=0时,有两个点,共2个点,当x=1时,有3个点,x=2时,1个点,共4个点;当x=3时,有4个点,x=4,1个点,x=5,1个点,共6个点;当x=6时,有5个点,x=7,1个点,x=8,1个点,x=9,1个点,共8个点;当x=10时,有6个点,x=11,1个点,x=12,1个点,x=13,1个点,x=14,1个点,共10个点;…当x=()12n n -,有(n+1)个点,共2n 个点; 2+4+6+8+10+…+2n≤2018, ()222n n +≤2018且n 为正整数, 得n=44,∵n=44时,2+4+6+8+10+…+88=1980,且当n=45时,2+4+6+8+10+…+90=2070,1980<2018<2070,∴当n=45时,x=45462⨯=990,46个点, ∴1980<2018<1980+46,∴2018个粒子所在点的横坐标为990.故选:C .【点睛】 本题考查了规律型:点的坐标,解决本题的关键是观察点的坐标的变化寻找规律. 11.B解析:B【分析】直接利用已知点坐标得出原点位置进而得出答案.【详解】解:如图所示:敌军指挥部的位置大约是B 处.故选:B .【点睛】此题主要考查了坐标确定位置,正确建立平面直角坐标系是解题关键.12.D解析:D【分析】让点A的纵坐标加3后等于0,即可求得m的值,进而求得点A的横纵坐标,即可判断点A所在象限.【详解】∵把点A(﹣5m,2m﹣1)向上平移3个单位后得到的点在x轴上,∴2m﹣1+3=0,解得:m=﹣1,∴点A坐标为(5,﹣3),点A在第四象限.故选D.【点睛】本题考查了点的平移、坐标轴上的点的坐标的特征、各个象限的点的坐标的符号特点等知识点,是一道小综合题.用到的知识点为:x轴上的点的纵坐标为0;上下平移只改变点的纵坐标.二、填空题13.①【分析】根据对顶角相等平行线的性质实数的平方不同象限内点的坐标的特征进行判断【详解】解:①对顶角相等故①是真命题;②如果两条平行线被第三条直线所截那么同位角相等故②是假命题;③如果两个实数的平方相解析:①【分析】根据对顶角相等、平行线的性质、实数的平方、不同象限内点的坐标的特征进行判断.【详解】解:①对顶角相等,故①是真命题;②如果两条平行线被第三条直线所截,那么同位角相等,故②是假命题;③如果两个实数的平方相等,那么这两个实数相等或互为相反数,故③是假命题;④当m≠0时,点P(m2,﹣m)在第四象限内或第一象限内,故④是假命题;故答案为:①.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.14.【分析】根据二四象限角平分线上点的特征解答【详解】∵A(m+2﹣3)在二四象限角平分线上∴m+2=3解得m=1∵点B(﹣4n+5)在二四象限角平分线上∴n+5=4解得n=﹣1∴m+n=1﹣1=0故答解析:【分析】根据二四象限角平分线上点的特征解答.【详解】∵A(m+2,﹣3)在二四象限角平分线上,∴m+2=3,解得m=1,∵点B(﹣4,n+5)在二四象限角平分线上,∴n+5=4,解得n=﹣1,∴m+n=1﹣1=0.故答案为:0.【点睛】本题考查坐标与图形的关系,熟练掌握二四象限角平分线上点的特征是解题关键.15.﹣8【分析】根据第一三象限角平分线上的点的坐标特点:点的横纵坐标相等即可解答【详解】点A(2a+5a-3)在第一三象限的角平分线上且第一三象限角平分线上的点的坐标特点为:点的横纵坐标相等∴2a+5=解析:﹣8.【分析】根据第一、三象限角平分线上的点的坐标特点:点的横纵坐标相等,即可解答.【详解】点A(2a+5,a-3)在第一、三象限的角平分线上,且第一、三象限角平分线上的点的坐标特点为:点的横纵坐标相等,∴2a+5=a-3,解得a=-8.故答案为:-8.【点睛】本题考查了各象限角平分线上点的坐标的符号特征,第一、三象限角平分线上的点的坐标特点为:点的横纵坐标相等;第二、四象限角平分线上的点的坐标特点为:点的横纵坐标互为相反数.16.(20201)【分析】由图中点的坐标可得:每4次运动为一个循环组循环并且每一个循环组向右运动4个单位用2021除以4再由商和余数的情况确定运动后点的坐标【详解】∵2021÷4=505余1∴第2021解析:(2020,1)【分析】由图中点的坐标可得:每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2021除以4,再由商和余数的情况确定运动后点的坐标.【详解】∵2021÷4=505余1,∴第2021次运动为第505循环组的第1次运动,横坐标为505×4=2020,纵坐标为1,∴点的坐标为(2020,1).故答案为:(2020,1).【点睛】考查了点的坐标规律,解题关键是观察点的坐标变化,并寻找规律.17.或-2【分析】根据平行于y 轴的直线上点的横坐标相同求出n 的值然后根据直线的定义求出m 的值【详解】∵A (-2m )B (n-4)AB ∥y 轴且AB=5∴∴或故答案为:或;【点睛】本题考查了坐标与图形性质以及解析:9-或1 -2【分析】根据平行于y 轴的直线上点的横坐标相同求出n 的值,然后根据直线的定义求出m 的值.【详解】∵A (-2,m ),B (n ,-4),AB ∥y 轴,且AB=5,∴2n =-,()45m --=,∴9m =-或1,故答案为:9-或1;2-.【点睛】本题考查了坐标与图形性质以及两点之间的距离公式,主要利用了平行于y 轴的直线上点的横坐标相同的性质.18.【分析】观察题图可知先根据P3(10)P6(20)即可得到P3n(n0)P3n+1(n-1)再根据P3×673(6730) 可得P2019(6730)进而得到P2020(673-1)【详解】由图可知 解析:(673,1)-【分析】观察题图可知,先根据P 3(1,0), P 6 (2,0),即可得到P 3n (n ,0),P 3n+1(n ,-1),再根据P 3×673(673,0) ,可得P 2019 (673,0),进而得到P 2020(673,-1).【详解】由图可知P 3(1,0), P 6 (2,0),···,P 3n (n ,0),P 3n+1(n ,-1),∵3×673=2019,∴P 3×673(673,0) ,即P 2019 (673,0),∴P 2020(673,-1).故答案为:(673,1)-.【点睛】本题主要考查了点的坐标变化规律,解题的关键是根据图形的变化规律得到P 3n (n ,0). 19.【分析】(1)根据坐标轴上点的坐标特征列方程求出m 的值即可得到点P 的坐标;(2)根据点所在的象限确定m 的取值再根据到y 轴的距离是2求出m 的值即可【详解】解:(1)∵点在x 轴上∴m-1=0解得m=1∴解析:()6,0 ()2,2-【分析】(1)根据坐标轴上点的坐标特征列方程求出m 的值即可得到点P 的坐标;(2)根据点所在的象限确定m 的取值,再根据到y 轴的距离是2求出m 的值即可.【详解】解:(1)∵点()24,1P m m +-在x 轴上,∴m-1=0,解得,m=1∴2m+4=6,∴点p 的坐标为:(6,0);(2)∵点P 在第四象限,∴2m+4>0且m-1<0解得,-2<m <1∵点P 到y 轴的距离是2,∴|2m+4|=2,解得,m=-1,或m=-3,∴m=-1∴点P 的坐标为(2,-2)故答案为(6,0),(2,-2)【点睛】本题考查点的坐标,一元一次方程等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.20.【分析】先分别求出A1A2A3A4A5A6A7……的坐标据此发现每个点的横坐标为序号的一半据此解答即可【详解】解:根据题意可知……由此可知每个点的横坐标为序号的一半∴点P2021的横坐标为:故答案为 解析:20212. 【分析】 先分别求出A 1、A 2、A 3、A 4、A 5、A 6、A 7、……的坐标,据此发现每个点的横坐标为序号的一半,据此解答即可.【详解】解:根据题意可知,112A ⎛ ⎝⎭,()210A ,,332A ⎛ ⎝⎭,()420A ,,552A ⎛- ⎝⎭,,()630A ,,7722A ⎛⎫ ⎪ ⎪⎝⎭,……由此可知,每个点的横坐标为序号的一半,∴点P 2021的横坐标为:20212. 故答案为:20212. 【点睛】此题主要考查探索规律,解题的关键是根据题意发现规律.三、解答题21.(1)①()1,0;②12,2⎛⎫- ⎪⎝⎭;(2)①点P 坐标为1212,22x x y y ++⎛⎫ ⎪⎝⎭;②122x x x +=,122y y y +=;③(2,4)或(6,2)-或(6,2)-. 【分析】(1)①根据线段中点的几何意义解题;②根据线段中点的几何意义解题.(2)①设点P 坐标为(,)x y ,过A 、B 两点分别作x 轴、y 轴的平行线交于点F , 再分别取AF 、BF 的中点E 、N ,连接PE 、PN ,可判定四边形PEFN 是矩形 ,得到=,PE FN PN EF =,继而证明t R PAE t ()R BPN AAS ≅,得到,AE PN PE BN ==,可证AE EF =,BN NF =,最后根据线段的和差解题即可; ②由①种归纳得到答案;(3)分两种情况讨论:以AB 为对角线或以AB 为边,作出相应的平行四边形,再利用平行四边形对角线互相平分的性质及中点公式,先解得平行四边形对角线交点坐标,最后根据中点公式解题即可.【详解】(1)①(1,0)A -,(3,0)B ,4AB ∴= E 是AB 的中点,∴线段2AE =E ∴()1,0故答案为:()1,0;②(2,2)C -,(2,1)D --,3CD ∴= F 是CD 的中点,∴线段32CF = 1(2,)2F ∴- 故答案为: 12,2⎛⎫- ⎪⎝⎭; (2)①设点P 坐标为(,)x y ,过A 、B 两点分别作x 轴、y 轴的平行线交于点F , 再分别取AF 、BF 的中点E 、N ,连接PE 、PN ,////PN AF x ∴轴,////PE BF y 轴,∴四边形PEFN 是平行四边形=90BFE ∠︒∴四边形PEFN 是矩形∴=,PE FN PN EF =//PN AFBPN BAF ∴∠=∠在t R PAE 与t R BPN 中PEA BNP PAE BPN AP PB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴t R PAE t ()R BPN AAS ≅,AE PN PE BN ∴==AE EF =,BN NF =,点A 坐标为()11,x y ,点B 坐标为()22,x y ,∴点E 坐标为()1,x y ,点N 坐标为()2,x y ,点F 坐标为()21,x y ,1AE x x ∴=-,2EF x x =-,2BN y y =-,1FN y y =-12x x x x ∴-=-,21y y y y -=-,122x x x +∴=,122y y y +=, ∴点P 坐标为1212,22x x y y ++⎛⎫ ⎪⎝⎭; ②122x x x +=,122y y y +=; ③分两种情况讨论:当以AB 为对角线时,AB 的中点12431(,)22O -++ 1(1,2)O ∴在1AOBM 中,111OO O M =1O ∴是1OM 的中点,设111(,)M a b11+0+0=1,=222a b ∴ 11=2=4a b ∴,1(2,4)M ∴;当以AB 为边时,①AO 的中点22030(,)22O -++ 23(1,)2O ∴- 在2AM OB 中,222BO O M =2O ∴是2BM 的中点,设222(,)M a b22+4+13=1,=222a b ∴- 22=6=2a b ∴-,2(6,2)M ∴-;当以AB 为边时,②BO 的中点34010(,)22O ++ 31(2,)2O ∴ 在3AOM B 中,333AO O M =3O ∴是3AM 的中点,设333(,)M a b332+31=2,=222a b -∴ 22=6=2a b ∴-,3(6,2)M ∴-综上所述,满足条件的点P 有三个,坐标分别是(2,4)或(6,2)-或(6,2)-.【点睛】本题考查坐标与图形,涉及平行四边形的性质、中点公式、矩形的判定与性质、全等三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键. 22.()()514,0A ,()65,1A ,()76,0A ,()87,1A -;()2x 轴上方;()3 A (n-1,0)或()1,1A n -或()1,0A n -或()1,1A n --【分析】()1可根据点在图形中的位置及前4点坐标直接求解;()2根据图形可知点的位置每4个数一个循环,20184504...2÷=,进而判断2018A 与2A 的纵坐标相同在x 轴上方,即可求解;()3根据点的坐标规律可分4种情况分别写出坐标即可求解.【详解】解:(1)由数轴可得:()54,0A ,()65,1A ,()76,0A ,()87,1A -;(2)根据图形可知点的位置每4个数一个循环,20184504...2÷=,2018A ∴与2A 的纵坐标相同,在x 轴上方,故答案为:x 轴上方;(3)根据图形可知点的位置每4个数一个循环,每个点的横坐标为序数减1,纵坐标为0、1、0、-1循环,∴点n A 的坐标(n 是正整数)为A (n-1,0)或()1,1A n -或()1,0A n -或()1,1A n --.【点睛】本题主要考查找点的坐标规律,点的坐标的确定,方法,根据已知点的坐标及图形总结点坐标的变化规律,并运用规律解决问题是解题的关键.23.(1)见解析;(2)见解析,()()()()1,1,'1,2,3,4,'3,1B B C C ---【分析】(1)把3个顶点向上平移3个单位,顺次连接个顶点即可;(2)以点'A 为坐标原点,建立平面直角坐标系,找到所求点的坐标即可.【详解】解:()1如图,()2坐标系如图:()()()()1,1,'1,2,3,4,'3,1B B C C ---【点睛】在平面直角坐标系中,图形的平移与图形上某点的平移相同,注意上下移动改变点的纵坐标,下减,上加.24.(1)1A 为(1-,2-),1B 为(4,0),1C 为(2,3);图见详解;(2)192. 【分析】(1)根据点P 平移前后的坐标,可得出平移的规律,继而可得出△A 1B 1C 1三个顶点的坐标;(2)利用构图法,求解△A 1B 1C 1的面积.【详解】解:(1)∵点()11P x ,y 平移到点()111 P x 3,1y +-, ∴平移的规律为:向右平移3个单位,向下平移1个单位,∴1A 为(1-,2-),1B 为(4,0),1C 为(2,3); 平移后的三角形如图所示:(2)面积为:111A B C 11119S 555253322222=⨯-⨯⨯-⨯⨯-⨯⨯=; 【点睛】 本题考查了平移的性质,坐标与图形的变化,要求同学们能根据点平移前后的坐标得出平移规律.25.(1)画图见解析,点1A 的坐标是(7,5);(2)﹣m ,﹣n【分析】(1)由点C 与其对应点C 1的坐标得出平移方式是先向右平移3个单位,再向上平移2个单位,进而可得点A 1、B 1的坐标,描点后再顺次连接即可;(2)对比点A 、B 、C 与其对应点P 、Q 、R 可得这种变换的方式,从而可得答案.【详解】解:(1)△111A B C 如图所示,点1A 的坐标是(7,5);(2)由于点A (4,3)的对应点P (﹣4,﹣3),点B (3,1)的对应点Q (﹣3,﹣1),点C (1,2)的对应点R (﹣1,﹣2),所以经过这种变换,对应点的横、纵坐标均互为相反数,因为点(),M m n ,所以点N 的坐标为(﹣m ,﹣n );故答案为:﹣m ,﹣n .【点睛】本题考查了平移变换与平移作图,属于常见题型,熟练掌握平移的性质是解题的关键.26.(1)()()11A 3,5,B 1,3,1C (4,2);(2)图见解析;(3)4 【分析】(1)根据P 点的平移规律,分析解答;(2)根据(1)作图;(3)利用面积公式计算解答.【详解】解:(1)∵点P (a ,b )的对应点为P 1(a +6,b+2),∴平移规律为向右6个单位,向上2个单位,∴()()11A 3,5,B 1,3,1C (4,2); (2)△111A B C 如图所示:(3)△ABC 的面积=11133-22-13-13=4222⨯⨯⨯⨯⨯⨯⨯.【点睛】本题考查坐标的平移规律、平移作图,割补法求三角形面积,比较基础.。
上海园南中学七年级数学下册第三单元《平面直角坐标系》测试题(包含答案解析)
一、选择题1.在平面直角坐标系中,若点(),A a b -在第三象限,则下列各点在第四象限的是( ) A .(),a b -B .(),a b -C .(),a b --D .(),a b2.在平面直角坐标系中,与点P 关于原点对称的点Q 为()1,3-,则点P 的坐标是( ) A .()1,3B .()1,3--C .()1,3-D .()1,3-3.点()1,3P --向右平移3个单位,再向上平移5个单位,则所得到的点的坐标为( ) A .()4,2-B .()2,2C .()4,8--D .()2,8-4.如图,点A 的坐标是()3,1-将四边形ABCD 先向左平移3个单位,再向上平移2个单位,那么点A 的对应点A '的坐标是( )A .()0,1B .()6,1C .()0,3-D .()6,3- 5.点A (n+2,1﹣n )不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限6.点()1,3M m m ++在x 轴上,则M 点坐标为( ) A .()0,4-B .()4,0C .()2,0-D .()0,2-7.将点()1,2P 向左平移3个单位后的坐标是( ) A .()2,2-B .()1,1-C .()1,5D .()1,1--8.如图,在一单位长度为1cm 的方格纸上,依如所示的规律,设定点1A 、2A 、3A 、4A 、5A 、6A 、7A 、n A ,连接点O 、1A 、2A 组成三角形,记为1∆,连接O 、2A 、3A 组成三角形,记为2∆,连O 、n A 、1n A +组成三角形,记为n ∆(n 为正整数),请你推断,当n 为50时,n ∆的面积=( )2cmA .1275B .2500C .1225D .12509.如图,在坐标平面内,依次作点()3,1P -关于直线y x =的对称点1P ,1P 关于x 轴对称点2P ,2P 关于y 轴对称点3P ,3P 关于直线y x =对称点4P ,4P 关于x 轴对称点5P ,5P 关于y 轴对称点6P ,…,按照上述变换规律继续作下去,则点2019P 的坐标为( )A .()1,3-B .()1,3C .()3,1-D .()1,3-10.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)()()()()()1,01,11,22,13,0....→→→→→→,则2018分钟时粒子所在点的横坐标为( )A .900B .946C .990D .88611.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)…根据这个规律,则第2016个点的横坐标为()A.44 B.45 C.46 D.4712.如图,△ABC的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为( )A.4 B.8 C.82D.16二、填空题13.已知点A(3,b)在第一象限,那么点B(-3,-b)在第________象限.14.已知点A(2a+5,a﹣3)在第一、三象限的角平分线上,则a=_____.15.若点p(a+13,2a+23)在第二,四象限角平分线上,则a=_____.16.若点M(5,a)关于y轴的对称点是点N(b,4),则(a+b)2020= __17.如图,有A,B,C三点,如果A点用()1,1表示,B点用()2,3表示,则C点的坐标为_______.18.如图点 A、B 的坐标分别为(1,2)、(3,0),将△AOB 沿 x 轴向右平移,得到△CDE.已知点 D 在的点 B 左侧,且 DB=1,则点 C 的坐标为 ____ .19.如图,在平面直角坐标系上有点1,0A ,点A 第一次跳动至点()11,1A -,第二次点1A 向右跳到()22,1A ,第三次点2A 跳到()32,2A -,第四次点3A 向右跳动至点()43,2A ,…,依此规律跳动下去,则点2019A 与点2020A 之间的距离是___________.20.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,按这样的运动规律,经过第1000次运动后,动点P 的坐标是_______;经过第2019次运动后,动点P 的坐标是_______.三、解答题21.(探究):(1)在图1中,已知线段AB 、CD ,其两条线段的中点分别为E 、F ,请填写下面空格.①若(1,0)A -,(3,0)B ,则E 点坐标为______. ②若(2,2)C -,(2,1)D --,则F 点坐标为______. (2)请回答下列问题①在图2中,已知线段AB 的端点坐标为()11,A x y ,()22,B x y ,求出图中线段AB 的中点P 的坐标(用含1x ,1y ,2x ,2y 的代数式表示),并给出求解过程.②(归纳):无论线段AB 处于直角坐标系中的哪个位置,当其端点坐标为()11,A x y ,()22,B x y ,线段AB 的中点为(,)P x y 时,x =______,y =______.(直接填写,不必证明)③(运用):在图3中,在平面直角坐标系中AOB 的三个顶点(0,0)O ,(2,3)A -,(4,1)B ,若以A ,O ,B ,M 为顶点的四边形是平行四边形,请利用上面的结论直接写出顶点M 的坐标(不需写出解答过程)22.在平面直角坐标系中,有A(﹣2,a +1),B(a ﹣1,4),C(b ﹣2,b )三点. (1)当点C 在y 轴上时,求点C 的坐标; (2)当AB ∥x 轴时,求A ,B 两点间的距离; (3)当CD ⊥x 轴于点D ,且CD =1时,求点C 的坐标.23.在平面直角坐标系中,已知点(),B a b ,线段BA x ⊥轴于A 点,线段BC y ⊥轴于C 点,且2(2)a b -++ |22|0a b --=.(1)求A ,B ,C 三点的坐标.(2)若点D 是AB 的中点,点E 是OD 的中点,求AEC 的面积. (3)在(2)的条件下,若点()2,P a ,且AEP AEC S S =△△,求点P 的坐标.24.在直角坐标系中,已知点A (a +b ,2﹣a )与点B (a ﹣5,b ﹣2a )关于y 轴对称, (1)试确定点A 、B 的坐标;(2)如果点B 关于x 轴的对称的点是C ,求△ABC 的面积.25.三角形ABC (记作△ABC )在8×8方格中,位置如图所示,A (-3,1),B (-2,4).(1)请你在方格中建立直角坐标系,并写出C点的坐标;(2)把△ABC向下平移1个单位长度,再向右平移2个单位长度,请你画出平移后的△A1B1C1,若△ABC内部一点P的坐标为(a,b),则点P的对应点P1的坐标是.(3)在x轴上存在一点D,使△DB1C1的面积等于3,求满足条件的点D的坐标.26.在平面直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,2).(1)将△ABC向右平移6个单位长度,再向下平移4个单位长度,得到△A'B′C′.请画出平移后的△A′B′C′,并写出点的坐标A′(,)、B′(,)、C′(,);(2)求出△A′B′C′的面积;(3)若连接AA′、CC′,则这两条线段之间的关系是.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】直接利用各象限内点的坐标符号得出答案.【详解】解:∵点A(a,-b)在第三象限,∴a <0,-b <0, ∴-a >0,b >0,∴(),a b -在第三象限,(),a b -在第一象限,(),a b --在第四象限,(),a b 在第二象限. 故选:C . 【点睛】此题主要考查了点的坐标,正确记忆各象限内点的坐标符号是解题关键.2.D解析:D 【分析】在平面直角坐标系中,关于原点对称的两点的横坐标和纵坐标均互为相反数即可求得. 【详解】∵与点P 关于原点对称的点Q 为()1,3-, ∴点P 的坐标是:()1,3-. 故选D . 【点睛】本题考查平面直角坐标系中点的对称性,掌握关于原点对称的两点的横坐标和纵坐标均互为相反数是解题关键.3.B解析:B 【分析】根据向右平移,横坐标加,向上平移纵坐标加求出点P 对应点的坐标即可得解. 【详解】解:点P (-1,-3)向右平移3个单位,再向上平移5个单位,所得到的点的坐标为(-1+3,-3+5),即(2,2), 故选:B . 【点睛】本题考查了坐标与图形变化-平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.4.A解析:A 【分析】四边形ABCD 与点A 平移相同,据此即可得到点A′的坐标. 【详解】四边形ABCD 先向左平移3个单位,再向上平移2个单位,因此点A(3,−1) 也先向左平移3个单位,再向上平移2个单位,故A′坐标为(0,1). 故选:A . 【点睛】本题考查了坐标与图形的变化−−平移,本题本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.5.C解析:C 【分析】确定出n+2为负数时,1-n 一定是正数,再根据各象限内点的坐标特征解答. 【详解】解:当n+2<0时,n <﹣2,所以,1﹣n >0,即点A 的横坐标是负数时,纵坐标一定是正数,所以,点A 不可能在第三象限,有可能在第二象限;当n+2>0时,n >﹣2,所以,1﹣n 有可能大于0也有可能小于0,即点A 的横坐标是正数时,纵坐标是正数或负数,所以,点A 可能在第一象限,也可能在第四象限; 综上所述:点A 不可能在第三象限. 故选:C . 【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).6.C解析:C 【分析】根据x 轴上的点的纵坐标为0求出m 的值,由此即可得出答案. 【详解】∵点()1,3M m m ++在x 轴上,30m ∴+=,解得3m =-,12m ∴+=-,则M 点的坐标为()2,0-, 故选:C . 【点睛】本题考查了坐标轴上的点坐标,掌握理解x 轴上的点的纵坐标为0是解题关键.7.A解析:A 【分析】向左平移3个长度单位长度,即点P 的横坐标减3,纵坐标不变可得结论. 【详解】解:点P (1,2)向左平移3个长度单位后,坐标为(1-3,2),即(-2,2). 故选:A . 【点睛】本题考查了坐标系中点的平移规律,在平面直角坐标系中,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.8.A解析:A 【分析】根据图形计算发现:第一个三角形的面积是11212⨯⨯=,第二个三角形的面积是12332⨯⨯=,第三个图形的面积是13462⨯⨯=,即第n 个图形的面积是1(1)2n n +,即可求得,△n 的面积. 【详解】由题意可得规律:第n 个图形的面积是1(1)2n n +, 所以当n 为50时,n 的面积()15050112752=⨯⨯+=.故选:A . 【点睛】此题主要考查了点的坐标变化规律,通过计算前面几个具体图形的面积发现规律是解题关键.9.A解析:A 【分析】根据轴对称的性质分别求出P 1, P 2,P 3,P4,P 5,P 6的坐标,找出规律即可得出结论. 【详解】解:∵P (-3,1),∴点P 关于直线y=x 的对称点P 1(1,-3), P 1关于x 轴的对称点P 2(1,3), P 2关于y 轴的对称点P 3(-1,3), P 3关于直线y=x 的对称点P 4(3,-1), P 4关于x 轴的对称点P 5(3,1), P 5关于y 轴的对称点P 6(-3,1), ∴6个点后循环一次,∵当n=2019时, 2019÷6=336…3, ∴2019P 的坐标与P 3(-1,3)的坐标相同, 故选:A . 【点睛】本题考查的是坐标的对称变化,根据各点坐标找出规律是解答此题的关键.10.C解析:C 【分析】根据点的坐标变化寻找规律即可. 【详解】解:一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)→(1,0)→(1,1)→(1,2)→(2,1)→(3,0)→L , 发现:当x=0时,有两个点,共2个点,当x=1时,有3个点,x=2时,1个点,共4个点;当x=3时,有4个点,x=4,1个点,x=5,1个点,共6个点;当x=6时,有5个点,x=7,1个点,x=8,1个点,x=9,1个点,共8个点; 当x=10时,有6个点,x=11,1个点,x=12,1个点,x=13,1个点,x=14,1个点,共10个点; …当x=()12n n -,有(n+1)个点,共2n 个点; 2+4+6+8+10+…+2n≤2018,()222n n +≤2018且n 为正整数, 得n=44,∵n=44时,2+4+6+8+10+…+88=1980, 且当n=45时,2+4+6+8+10+…+90=2070, 1980<2018<2070,∴当n=45时,x=45462⨯=990,46个点, ∴1980<2018<1980+46,∴2018个粒子所在点的横坐标为990. 故选:C . 【点睛】本题考查了规律型:点的坐标,解决本题的关键是观察点的坐标的变化寻找规律.11.B解析:B 【详解】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x 轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12, 右下角的点的横坐标为2时,共有4个,4=22, 右下角的点的横坐标为3时,共有9个,9=32, 右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2016个点是(45,9),所以,第2016个点的横坐标为45.故选:B.12.D解析:D【解析】试题如图所示,当△ABC向右平移到△DEF位置时,四边形BCFE为平行四边形,C点与F点重合,此时C 在直线y=2x-6上,∵C(1,4),∴FD=CA=4,将y=4代入y=2x-6中得:x=5,即OD=5,∵A(1,0),即OA=1,∴AD=CF=OD-OA=5-1=4,则线段BC扫过的面积S=S平行四边形BCFE=CF•FD=16.故选D.二、填空题13.三【分析】根据点A(3b)在第一象限可得b>0;则可以确定点B(-3−b)的纵坐标的符号进而可以判断点B所在的象限【详解】根据题意点A (3b)在第一象限则b>0那么点B(-3−b)中−b<0;则点B解析:三【分析】根据点A(3,b)在第一象限,可得b>0;则可以确定点B(-3,−b)的纵坐标的符号,进而可以判断点B所在的象限.【详解】根据题意,点A (3,b )在第一象限,则b >0,那么点B (-3,−b )中,−b <0;则点B (-3,−b )在第三象限.故答案为:三.【点睛】本题考查四个象限上点的坐标的特点,并要求学生根据点的坐标,判断其所在的象限. 14.﹣8【分析】根据第一三象限角平分线上的点的坐标特点:点的横纵坐标相等即可解答【详解】点A (2a+5a-3)在第一三象限的角平分线上且第一三象限角平分线上的点的坐标特点为:点的横纵坐标相等∴2a+5=解析:﹣8.【分析】根据第一、三象限角平分线上的点的坐标特点:点的横纵坐标相等,即可解答.【详解】点A (2a+5,a-3)在第一、三象限的角平分线上,且第一、三象限角平分线上的点的坐标特点为:点的横纵坐标相等,∴2a+5=a-3,解得a=-8.故答案为:-8.【点睛】本题考查了各象限角平分线上点的坐标的符号特征,第一、三象限角平分线上的点的坐标特点为:点的横纵坐标相等;第二、四象限角平分线上的点的坐标特点为:点的横纵坐标互为相反数.15.【分析】根据二四象限角平分线上的点的横纵坐标互为相反数可得解方程求得a的值即可【详解】∵点P ()在第二四象限的角平分线上∴解得故答案为【点睛】本题考查了二四象限角平分线上的点的坐标的特征熟知二四象限 解析:13- 【分析】 根据二四象限角平分线上的点的横纵坐标互为相反数可得12a 2a 033+++=,解方程求得a的值即可.【详解】∵点P (1a 3+,22a 3+)在第二,四象限的角平分线上, ∴ 12a 2a+033++=, 解得13a =-.故答案为13-.【点睛】本题考查了二四象限角平分线上的点的坐标的特征,熟知二四象限角平分线上的点的横纵坐标互为相反数是解决问题的关键. 16.1【分析】先根据点坐标关于y 轴对称的变换规律求出ab 的值再代入计算有理数的乘方即可得【详解】点坐标关于y 轴对称的变换规律:横坐标变为相反数纵坐标不变则因此故答案为:1【点睛】本题考查了点坐标关于y 轴 解析:1【分析】先根据点坐标关于y 轴对称的变换规律求出a 、b 的值,再代入计算有理数的乘方即可得.【详解】点坐标关于y 轴对称的变换规律:横坐标变为相反数,纵坐标不变,则5,4b a =-=,因此()()()2020202020204511a b =+=--=, 故答案为:1.【点睛】本题考查了点坐标关于y 轴对称的变换规律、有理数的乘方,熟练掌握点坐标关于y 轴对称的变换规律是解题关键. 17.【分析】先根据已知两点的坐标确定符合条件的平面直角坐标系然后再确定C 点的坐标即可【详解】解:由A 点的坐标为(11)B 点的坐标为(23)可以确定平面直角坐标系中x 轴与y 轴的位置如图所示:则C 点的坐标( 解析:()5,2【分析】先根据已知两点的坐标确定符合条件的平面直角坐标系,然后再确定C 点的坐标即可.【详解】解:由A 点的坐标为(1,1),B 点的坐标为(2,3)可以确定平面直角坐标系中x 轴与y 轴的位置如图所示:则C 点的坐标(5,2).故答案为(5,2).【点睛】本题考查了平面直角坐标系,根据已知条件建立合适的平面直角坐标系是解答本题的关键.18.【分析】根据平移的性质得到对应点的变化即可得到答案【详解】解:的坐标为向右平移了2个单位长度点的坐标为点的坐标为:故答案是:【点睛】此题主要考查了坐标与图形变化正确得出平移距离是解题关键解析:()3,2【分析】根据平移的性质,得到对应点的变化,即可得到答案【详解】解:B 的坐标为(3,0),3OB ∴=,1DB =,312OD ∴=-=,CDE ∴∆向右平移了2个单位长度,点A 的坐标为(1,2),∴点C 的坐标为:(3,2).故答案是:(3,2).【点睛】此题主要考查了坐标与图形变化,正确得出平移距离是解题关键.19.2021【分析】根据跳动的规律第偶数跳动至点的坐标横坐标是次数的一半加上1纵坐标是次数的一半奇数次数跳动与该偶数次跳动的横坐标下相反数加上1纵坐标相同分别求出点和点即可求解【详解】解:∵第二次跳动至 解析:2021【分析】根据跳动的规律,第偶数跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次数跳动与该偶数次跳动的横坐标下相反数加上1,纵坐标相同,分别求出点2019A 和点2020A 即可求解.【详解】解:∵第二次跳动至点的坐标为(2,1)第四次跳动至点的坐标为(3,2),第六次跳动至点的坐标为(4,3)第八次跳动至点的坐标为(5,4),第2n 次跳动至点的坐标是(1,)n n +,则第2020次跳动至点的坐标是(1011,1010),第2019次跳动至点的坐标是(1010,1010)-∵点2019A 和点2020A 的纵坐标相同,∴点2019A 和点2020A 之间的距离=1011(1010)2021--=故答案为:2021【点睛】本题主要考查了坐标与图形的性质,以及图形的变换问题,结合图形得到偶数次数跳动的点的横坐标与纵坐标的变换情况是解题的关键.20.【分析】分析点P 的运动规律找到循环次数即可【详解】分析图象可以发现点P 的运动每4次位置循环一次每循环一次向右移动四个单位∵1000=4×250∴当第250循环结束时点P 位置在(10000)∵2019解析:()1000,0 ()2019,2【分析】分析点P 的运动规律,找到循环次数即可.【详解】分析图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位.∵1000=4×250,∴当第250循环结束时,点P 位置在(1000,0),∵2019=4×504+3,∴当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2),故答案为(1000,0);(2019,2).【点睛】本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环.三、解答题21.(1)①()1,0;②12,2⎛⎫- ⎪⎝⎭;(2)①点P 坐标为1212,22x x y y ++⎛⎫ ⎪⎝⎭;②122x x x +=,122y y y +=;③(2,4)或(6,2)-或(6,2)-. 【分析】(1)①根据线段中点的几何意义解题;②根据线段中点的几何意义解题.(2)①设点P 坐标为(,)x y ,过A 、B 两点分别作x 轴、y 轴的平行线交于点F , 再分别取AF 、BF 的中点E 、N ,连接PE 、PN ,可判定四边形PEFN 是矩形 ,得到=,PE FN PN EF =,继而证明t R PAE t ()R BPN AAS ≅,得到,AE PN PE BN ==,可证AE EF =,BN NF =,最后根据线段的和差解题即可;②由①种归纳得到答案;(3)分两种情况讨论:以AB 为对角线或以AB 为边,作出相应的平行四边形,再利用平行四边形对角线互相平分的性质及中点公式,先解得平行四边形对角线交点坐标,最后根据中点公式解题即可.【详解】(1)①(1,0)A -,(3,0)B ,4AB ∴= E 是AB 的中点,∴线段2AE =E ∴()1,0故答案为:()1,0;②(2,2)C -,(2,1)D --,3CD ∴= F 是CD 的中点,∴线段32CF = 1(2,)2F ∴- 故答案为: 12,2⎛⎫- ⎪⎝⎭; (2)①设点P 坐标为(,)x y ,过A 、B 两点分别作x 轴、y 轴的平行线交于点F , 再分别取AF 、BF 的中点E 、N ,连接PE 、PN ,////PN AF x ∴轴,////PE BF y 轴,∴四边形PEFN 是平行四边形=90BFE ∠︒∴四边形PEFN 是矩形∴=,PE FN PN EF =//PN AFBPN BAF ∴∠=∠在t R PAE 与t R BPN 中PEA BNP PAE BPN AP PB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴t R PAE t ()R BPN AAS ≅,AE PN PE BN ∴==AE EF =,BN NF =,点A 坐标为()11,x y ,点B 坐标为()22,x y ,∴点E 坐标为()1,x y ,点N 坐标为()2,x y ,点F 坐标为()21,x y ,1AE x x ∴=-,2EF x x =-,2BN y y =-,1FN y y =-12x x x x ∴-=-,21y y y y -=-,122x x x +∴=,122y y y +=, ∴点P 坐标为1212,22x x y y ++⎛⎫ ⎪⎝⎭; ②122x x x +=,122y y y +=; ③分两种情况讨论:当以AB 为对角线时,AB 的中点12431(,)22O -++ 1(1,2)O ∴在1AOBM 中,111OO O M =1O ∴是1OM 的中点,设111(,)M a b11+0+0=1,=222a b ∴ 11=2=4a b ∴,1(2,4)M ∴;当以AB 为边时,①AO 的中点22030(,)22O -++ 23(1,)2O ∴- 在2AM OB 中,222BO O M =2O ∴是2BM 的中点,设222(,)M a b 22+4+13=1,=222a b ∴- 22=6=2a b ∴-,2(6,2)M ∴-;当以AB 为边时,②BO 的中点34010(,)22O ++ 31(2,)2O ∴ 在3AOM B 中,333AO O M =3O ∴是3AM 的中点,设333(,)M a b332+31=2,=222a b -∴ 22=6=2a b ∴-,3(6,2)M ∴-综上所述,满足条件的点P 有三个,坐标分别是(2,4)或(6,2)-或(6,2)-.【点睛】本题考查坐标与图形,涉及平行四边形的性质、中点公式、矩形的判定与性质、全等三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键. 22.(1)(0,2);(2)4;(3)(﹣1,1)或(﹣3,﹣1)【分析】(1)利用y 轴上点的坐标特征得到b ﹣2=0,求出b 得到C 点坐标;(2)利用与x 轴平行的直线上点的坐标特征得到a +1=4,求出a 得到A 、B 点的坐标,然后计算两点之间的距离;(3)利用垂直于x 轴的直线上点的坐标特征得到|b |=1,然后求出b 得到C 点坐标.【详解】解:(1)∵点C 在y 轴上,∴20b -=,解得2b =,∴C 点坐标为(0,2);(2)∵AB ∥x 轴,∴A 、B 点的纵坐标相同,∴a +1=4,解得a =3,∴A(﹣2,4),B(2,4),∴A ,B 两点间的距离=2﹣(﹣2)=4;(3)∵CD ⊥x 轴,CD =1,∴|b |=1,解得b =±1,∴C 点坐标为(﹣1,1)或(﹣3,﹣1).【点评】本题考查平面直角坐标系中点坐标的求解,解题的关键是掌握坐标轴上点的坐标特征. 23.(1)B 点坐标为(4,6),A 点坐标为(4,0),C 点坐标为(0,6);(2)3;(3)点P 的坐标为(2,32-)或(2,92). 【分析】(1)根据非负数的性质得a-b+2=0,2a-b-2=0,解得a=4,b=6,则B 点坐标为(4,6),由于线段BA ⊥x 轴于A 点,线段BC ⊥y 轴于C 点,易得A 点坐标为(4,0),C 点坐标为(0,6);(2)利用线段中点坐标公式得到点D 的坐标为(4,3),点E 的坐标为(2,32),再根据三角形面积公式和AEC AOC AOE COE S S S S =--△△△△进行计算;(3)由于点P (2,a ),点E 的坐标为(2,32),,则32PE a =-,利用三角形面积公式即可求解.【详解】(1)∵2(2)|22|0a b a b -++--=, ∴20a b -+=,220a b --=,∴4a =,6b =,∴B 点坐标为 (4,6),∵线段BA x ⊥轴于A 点,线段BC y ⊥轴于C 点,∴A 点坐标为(4,0),C 点坐标为(0,6);(2)∵点D 是AB 的中点,∴点D 的坐标为(4,3),∵点E 是OD 的中点,∴点E 的坐标为(2,32), ∴AEC AOC AOE COE S S S S =--△△△△1131644622222=⨯⨯-⨯⨯-⨯⨯ 3=.(3)∵点P 的坐标为(2,a ),点E 的坐标为(2,32), ∴32PE a =-, ∵AEP AEC S S =△△, ∴132322a ⨯⨯-=, ∴32a =-或92, ∴点P 的坐标为(2,32-)或(2,92). 【点睛】本题考查了坐标与图形性质、偶次方和算术平方根的非负性质、矩形的性质等知识.记住坐标轴上点的坐标特征是解题的关键.24.(1)点A 、B 的坐标分别为:(4,1),(﹣4,1);(2)8【分析】(1)根据在平面直角坐标系中,关于y 轴对称时,横坐标为相反数,纵坐标不变,得出方程组求出a ,b 即可解答本题;(2)根据点B 关于x 轴的对称的点是C ,得出C 点坐标,进而利用三角形面积公式求出即可.【详解】解:(1)∵点A (a +b ,2﹣a )与点B (a ﹣5,b ﹣2a )关于y 轴对称,∴()225a b a a b a -=-⎧⎨+=--⎩, 解得:13a b =⎧⎨=⎩, ∴点A 、B 的坐标分别为:(4,1),(﹣4,1);(2)∵点B 关于x 轴的对称的点是C ,∴C 点坐标为:(﹣4,﹣1),∴△ABC 的面积为:12×BC ×AB =12×2×8=8.【点睛】本题主要考查了平面直角坐标系中,各象限内点的坐标的符号的确定方法以及三角形面积求法,熟练记忆各象限内点的坐标符号是解题关键.25.(1)画图见解析,C (1,1);(2)画图见解析,(a+2,b-1);(3)D (1,0)或(5,0)【分析】(1)根据点A 、B 的坐标和直角坐标系的特点建立直角坐标系;(2)分别将点A 、B 、C 向下平移1个单位长度,再向右平移2个单位长度,然后顺次连接各点,并写出点P 的对应点P 1的坐标;(3)根据三角形的面积求出C 1D 的长度,再分两种情况求出OD 的长度,然后写出点D 的坐标即可.【详解】解:(1)直角坐标系如图所示,C 点坐标(1,1);(2)△A1B1C1如图所示,点P1坐标(a+2,b-1);故答案为:(a+2,b-1);(3)设点D的坐标为(a,0),则:△DB1C1的面积=12C1D×OB1=3,即12|a-3|×3=3,解得:a=1或a=5,综上所述,点D的坐标为(1,0)或(5,0).【点睛】本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.26.(1)△A′B′C′见解析;3,﹣2;1,﹣3;4,﹣4;(2)52;(3)AA′∥CC′,AA′=CC′【分析】(1)先根据平移的方式描出平移后点A′、B′、C′的坐标,再顺次连接各点即得平移后的△A′B′C′,进一步即可写出平移后各点的坐标;(2)用△A′B′C′所在的长方形的面积减去周围三个三角形的面积求解即可;(3)根据平移的性质解答即可.【详解】解:(1)△A′B′C′如图所示;点A′(3,﹣2)、B′(1,﹣3)、C′(4,﹣4).故答案为:3,﹣2;1,﹣3;4,﹣4;(2)S△A′B′C′=3×2﹣12×2×1﹣12×1×2﹣12×1×3=6﹣1﹣1﹣32=52;(3)由平移的性质可知,AA′∥CC′,AA′=CC′.故答案为:AA′∥CC′,AA′=CC′.【点睛】本题考查了坐标系中平移作图和平移的性质,属于常考题型,熟练掌握平移的相关知识是解题的关键.。
(完整版)八年级数学平面直角坐标系测试题
《平面直角坐标系》练习题一、选择题(4分×6=24分)1.点A(4,3-)所在象限为()A、第一象限B、第二象限C、第三象限D、第四象限2.点B(0,3-)在()上A、在x轴的正半轴上B、在x轴的负半轴上C、在y轴的正半轴上D、在y轴的负半轴上3.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A 、(3,2)B、(3,3-)-)C、(2,3-)D、(2,2-4.若点P(x,y)的坐标满足xy=0,则点P 的位置是()A 在x轴上B在y轴上C是坐标原点D 在x轴上或在y轴上5.某同学的座位号为(4,2),那么该同学的所座位置是()A 第2排第4列B 第4排第2列C 第2列第4排D不好确定6.线段AB两端点坐标分别为A(4,1-),B(1,4-),现将它向左平移4个单位长度,得到线段A1B1,则A1、B1的坐标分别为()A、A1(0,5-),B1(3-) B 、A1(7,3),B1(0,5),8-C、A1(4,5-)B1(-8,1)D、A1(4,3)B1(1,0)二、填空题(1分×50=50分)7.分别写出数轴上点的坐标:-1A ( )B ( )C ( )D ( )E ( ) 8.在数轴上分别画出坐标如下的点:)1(-A )2(B )5.0(C )0(D )5.2(E )6(-F9. 点)4,3(-A 在第 象限,点)3,2(--B 在第 象限 点)4,3(-C 在第 象限,点)3,2(D 在第 象限 点)0,2(-E 在第 象限,点)3,0(F 在第 象限 10.在平面直角坐标系上,原点O 的坐标是( ),x 轴上的点的坐标的特点是 坐标为0;y 轴上的点的坐标的特点是 坐标为0。
11.如图,写出表示下列各点的有序数对:A ( , );B ( , );C ( , );D ( , );E ( , );F ( , );G ( , );H ( , );I ( , )12.根据点所在位置,用“+”“-”或“0”填表:11109876543113111098741-113.在平面直角坐标系中,将点)5,2(-向右平移3个单位长度,可以得到对应点坐标(,);将点)5-向左平移3个单位长度,2(-可得到对应点(,);将点)5,2(+向上平移3单位长度可得对应点(,);将点)5,2(-向下平移3单位长度可得对应点(,)。