高中数学3.2立体几何中的向量方法(一)公开课PPT

合集下载

高中数学选修2-1配套(课件+检测):3.2立体几何中的向量方法3.2 第1课时

高中数学选修2-1配套(课件+检测):3.2立体几何中的向量方法3.2 第1课时

第三章 3.2 第1课时A 级 基础巩固一、选择题1.若直线l 的方向向量为a =(1,0,2),平面α的法向量为u =(-2,0,-4),则导学号 21324937( B )A .l ∥αB .l ⊥αC .l ⊂αD .l 与α斜交[解析] ∵u =-2a ,∴u ∥a ,∴l ⊥α.2.在如图所示的坐标系中,ABCD -A 1B 1C 1D 1为正方体,给出下列结论:①直线DD 1的一个方向向量为(0,0,1);②直线BC 1的一个方向向量为(0,1,1);③平面ABB 1A 1的一个法向量为(0,1,0);④平面B 1CD 的一个法向量为(1,1,1). 其中正确的个数为导学号 21324938( C )A .1个B .2个C .3个D .4个[解析] DD 1∥AA 1,AA 1→=(0,0,1);BC 1∥AD 1,AD 1→=(0,1,1),直线AD ⊥平面ABB 1A 1,AD →=(0,1,0);C 1点坐标为(1,1,1),AC 1→与平面B 1CD 不垂直,∴④错.3.(2017·菏泽高二检测)已知A (1,-3,5),B (-1,-1,4)是直线l 上两点,则下列可作为直线l 的方向向量的是导学号 21324939( B )A .(1,1,0)B .(4,-4,2)C .(-3,-3,0)D .(4,4,2)4.(2017·福州高二检测)已知向量n =(2,3,-1)是平面α的一个法向量,则下列向量中能作为平面α的法向量的是导学号 21324940( D )A .(0,3,-1)B .(2,0,-1)C .(-2,3,-1)D .(-2,-3,1)5.已知向量a =(2,4,5)、b =(5,x ,y )分别是直线l 1、l 2的方向向量,若l 1∥l 2,则导学号 21324941( D )A .x =6,y =15B .x =3,y =152C .x =10,y =15D .x =10,y =252[解析] ∵l 1∥l 2,∴a ∥b ,∴52=x 4=y 5,∴⎩⎪⎨⎪⎧ x =10y =252.6.设平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k ),若α∥β,则k =导学号 21324942( C )A .2B .-4C .4D .-2[解析] ∵α∥β,∴1-2=2-4=-2k,∴k =4,故选C . 二、填空题7.已知A 、B 、C 三点的坐标分别为A (1,2,3)、B (2,-1,1)、C (3,λ,λ),若AB →⊥AC →,则λ等于 145.导学号 21324943 [解析] AB →=(1,-3,-2)、AC →=(2,λ-2,λ-3),∵AB →⊥AC →,∴AB →·AC →=0,∴2-3(λ-2)-2(λ-3)=0,解得λ=145. 8.已知直线l 的方向向量为u =(2,0,-1),平面α的一个法向量为v =(-2,1,-4),则l 与α的位置关系为_l ∥α或l ⊂α__.导学号 21324944[解析] u ·v =2×(-2)+0×1+(-1)×(-4)=0,∴l ∥α或l ⊂α.三、解答题9.如图,已知P 是正方形ABCD 所在平面外一点,M 、N 分别是P A 、BD 上的点,且PM ︰MA =BN ︰ND =5︰8.求证:直线MN ∥平面PBC .导学号 21324945[证明] MN →=MP →+PB →+BN →=-PM →+PB →+BN →=-513P A →+PB →+513BD → =-513(BA →-BP →)+PB →+513(BA →+BC →) =513BP →-BP →+513BC →=513BC →-813BP →, ∴MN →与BC →、BP →共面,∴MN →∥平面BCP ,∵MN ⊄平面BCP ,∴MN ∥平面BCP .10.(2017·枣庄高二检测)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为1的菱形,∠ABC =π4,P A ⊥底面ABCD ,P A =2,点M 为P A 的中点,点N 为BC 的中点.AF ⊥CD 于F ,如图建立空间直角坐标系.求出平面PCD 的一个法向量并证明MN ∥平面PCD .导学号 21324946[解析] 由题设知:在Rt △AFD 中,AF =FD =22, A (0,0,0),B (1,0,0),F (0,22,0),D (-22,22,0), P (0,0,2),M (0,0,1),N (1-24,24,0). MN →=(1-24,24,-1),PF →=(0,22,-2). PD →=(-22,22,-2) 设平面PCD 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·PF →=0,n ·PD →=0⇒⎩⎨⎧ 22y -2z =0,-22x +22y -2z =0,令z =2,得n =(0,4,2).因为MN →·n =(1-24,24,-1)·(0,4,2)=0, 又MN ⊄平面PCD ,所以MN ∥平面PCD .B 级 素养提升一、选择题1.下面各组向量为直线l 1与l 2方向向量,则l 1与l 2一定不平行的是导学号 21324947( D )A .a =(1,2,-2)、b =(-2,-4,4)B .a =(1,0,0)、b =(-3,0,0)C .a =(2,3,0)、b =(4,6,0)D .a =(-2,3,5)、b =(-4,6,8)[解析] l 1与l 2不平行则其方向向量一定不共线.A 中:b =-2a ,B 中:b =-3a ,C 中:b =2a .故选D .2.(2017·甘肃天水一中高二期末测试)两个不重合平面的法向量分别为v 1=(1,0,-1)、v 2=(-2,0,2),则这两个平面的位置关系是导学号 21324948( A )A .平行B .相交不垂直C .垂直D .以上都不对[解析] ∵v 1=(1,0,-1),v 2=(-2,0,2),∴v 2=-2v 1,∴v 1∥v 2,∴两个平面平行.3.已知点A (4,1,3)、B (2,-5,1),C 为线段AB 上一点且|AC →||AB →|=13,则点C 的坐标为导学号 21324949( C )A .(72,-12,52)B .(38,-3,2)C .(103,-1,73)D .(52,-72,32) [解析] ∵C 在线段AB 上,∴AC →∥AB →,∴设C (x ,y ,z ),则由|AC →||AB →|=13得,(x -4,y -1,z -3)=13(2-4,-5-1,1-3), 即⎩⎨⎧x -4=-23y -1=-2z -3=-23,解得⎩⎨⎧ x =103y =-1z =73. 故选C . 4.对于任意空间向量a =(a 1,a 2,a 3)、b =(b 1,b 2,b 3),给出下列三个命题: ①a ∥b ⇔a 1b 1=a 2b 2=a 3b 3; ②若a 1=a 2=a 3=1,则a 为单位向量; ③a ⊥b ⇔a 1b 1+a 2b 2+a 3b 3=0. 其中真命题的个数为导学号 21324950( B ) A .0 B .1 C .2 D .3[解析] 由a 1b 1=a 2b 2=a 3b 3⇒a ∥b ,反之不一定成立,故①不正确;②显然错误;③是正确的,故选B .二、填空题5.过点A (1,0,0)、B (0,1,0)、C (0,0,1)的平面的一个法向量为_(1,1,1)__.导学号 21324951[解析] 设法向量n =(x ,y,1),由⎩⎪⎨⎪⎧ n ·AB →=0n ·AC →=0,得⎩⎪⎨⎪⎧ -x +y =0-x +1=0,∴⎩⎪⎨⎪⎧x =1y =1.∴n =(1,1,1). 6.在空间直角坐标系O -xyz 中,已知A (1,-2,3)、B (2,1,-1),若直线AB 交平面xOz 于点C ,则点C 的坐标为___(53,0,13)___.导学号 21324952 [解析] 设点C 的坐标为(x,0,z ),则AC →=(x -1,2,z -3),AB →=(1,3,-4),因为AC →与AB→共线,所以x -11=23=z -3-4,解得⎩⎨⎧ x =53z =13,所以点C 的坐标为(53,0,13). 三、解答题 7.设a 、b 分别是不重合的直线l 1、l 2的方向向量,根据下列条件判断l 1,l 2的位置关系:导学号 21324953(1)a =(4,6,-2)、b =(-2,-3,1);(2)a =(5,0,2)、b =(0,1,0);(3)a =(-2,-1,-1)、b =(4,-2,-8).[解析] (1)∵a =(4,6,-2)、b =(-2,-3,1),∴a =-2b ,∴a ∥b ,∴l 1∥l 2.(2)∵a =(5,0,2)、b =(0,1,0),∴a ·b =0,a ⊥b ,∴l 1⊥l 2.(3)∵a =(-2,-1,-1),b =(4,-2,-8),∴a 与b 不共线也不垂直.∴l 1与l 2相交或异面.8.已知三棱锥P -ABC ,D 、E 、F 分别为棱P A 、PB 、PC 的中点,求证:平面DEF ∥平面ABC .导学号 21324954[证明] 证法一:如图.设PD →=a ,PE →=b ,PF →=c ,则由条件知,P A →=2a ,PB →=2b ,PC →=2c ,设平面DEF 的法向量为n ,则n ·DE →=0,n ·DF →=0,∴n ·(b -a )=0,n ·(c -a )=0,∴n ·AB →=n ·(PB →-P A →)=n ·(2b -2a )=0,n ·AC →=n ·(PC →-P A →)=n ·(2c -2a )=0,∴n ⊥AB →,n ⊥AC →,∴n 是平面ABC 的法向量,∴平面DEF ∥平面ABC .证法二:设PD →=a ,PE →=b ,PF →=c ,则P A →=2a ,PB →=2b ,PC →=2c ,∴DE →=b -a ,DF →=c -a ,AB →=2b -2a ,AC →=2c -2a ,对于平面ABC 内任一直线l ,设其方向向量为e ,由平面向量基本定理知,存在唯一实数对(x ,y ),使e =xAB →+yAC →=x (2b -2a )+y (2c -2a )=2x (b -a )+2y (c -a )=2xDE →+2yDF →,∴e 与DE →、DF →共面,即e ∥平面DEF ,∴l ⊄平面DEF ,∴l ∥平面DEF .由l 的任意性知,平面ABC ∥平面DEF .C 级 能力拔高在正四棱锥P -ABCD 中,底面正方形边长为32,棱锥的侧棱长为5,E 、F 、G 分别为BC 、CD 、PC 的中点,用向量方法证明下列问题.导学号 21324955(1)EF ⊥P A ;(2)EF ∥平面PBD ;(3)直线P A 与平面EFG 不平行.[解析] 设AC 与BD 的交点为O ,∵P -ABCD 为正四棱锥,∴PO ⊥平面ABCD ,且AC ⊥BD ,以O 为原点,OB ,OC 、OP 分别为x 轴、y 轴、z 轴建立空间直角坐标系,∵正方形ABCD 边长为32,∴OB =OC =3,又PC =5,∴OP =4,∴A (0,-3,0)、B (3,0,0)、C (0,3,0)、D (-3,0,0)、P (0,0,4).(1)∵E 、F 分别为BC 、CD 的中点,∴E (32,32,0)、F (-32,32,0),∴EF →=(-3,0,0)、P A →=(0,-3,-4),EF →·P A →=0,∴EF ⊥P A .(2)显然OC →=(0,3,0)为平面PBD 的一个法向量,∵EF →·OC →=0,∴EF ∥平面PBD .(3)∵G 为PC 中点,∴G (0,32,2),设平面EFG 的法向量为n =(x ,y ,z ),则n ·EF →=0,n ·EG →=0,∴⎩⎪⎨⎪⎧ -3x =0-32x +2z =0,∴⎩⎪⎨⎪⎧ x =0z =0. 取n =(0,1,0),∵n ·P A →=-3≠0,∴P A 与平面EFG 不平行.。

3.2.1立体几何中的向量方法——平行与垂直

3.2.1立体几何中的向量方法——平行与垂直
(4)解方程组,取其中的一 个解,即得法向量。
x
F
C
G
E
D
y
x
B
A
y
求平面的法向量
例5:正方体ABCD-A1B1C1D1的棱长为1,E、F、G分 别是AB、BC、AA1的中点
(1)建立空间直角坐标系,并求出E、F、G的坐标
(2)写出 EF, EG, GF z
D1 A1 G D B1
(3)试求平面EFG的法向量
试判断DB1与平面FEG 是否垂直,说明理由.
O1 A1 Q E1 O R
全优P58---8
B1 S B A1
z
D1
N
B1
C1
M
P
y
D
x A
E
C
B
y
x A
题型一:利用空间向量解决平行问题
证明:如图建立空间直角坐标系, 全优 p58—8题 设正方体棱长为1,则 1 1 M (0,1, ), N ( ,1,1), A1 (1,0,1), D(0,0,0) 2 2 1 1 z MN ( ,0, ), A1D (1,0,1) 2 2 D1 C1 N 2MN A D MN // A1D A1 B1
平面的法向量:如果
二、平面的法向量
,过点A与向量 n
垂直
的平面是被唯一确定的
n ⊥ ,那 么 向 量 n
叫做平面 的法向量.
注意: 1.法向量一定是非零向量; 2.一个平面的所有法向量 都互相平行;
n
A
u
平面的法向 量不唯一

b
l
n b n b 0
线线平行 l ∥ m a // b a b 线线垂直 l m a b a b 0 m

立体几何中的向量方法(一)——方向向量与法向量

立体几何中的向量方法(一)——方向向量与法向量

(1)直线OA的一个方向向量坐标为___(_1_,0__,0_)___
(2)平面OABC 的一个法向量坐标为__(_0_,0__,1_)____ (3)平面AB1C 的一个法向量坐标为__(_-_1_,-_1_,_1_)__
z
O1
C1
A1
B1
o
A
x
C
y
B
例2:已知A(3, 0, 0), B(0, 4, 0), C(0,0,2) 求平面ABC的法向量.
l
a
b
m
设直线 l,m 的方向向量分别为 a, b ,
平面, 的法向量分别为 u, v ,则
(2) l a // u a u
l
a
A
u
C B
设直线 l,m 的方向向量分别为 a, b ,
平面, 的法向量分别为 u, v ,则 (3) u v u v 0
β
uv
α
例1. 如图所示, 正方体的棱长为1
设直线 l,m 的方向向量分别为 a, b ,
平面, 的法向量分别为 u, v ,则
(一). 平行关系:
(1) l / /m a / /b a b ;
a
l
b
m
设直线 l,m 的方向向量分别为 a, b ,
平面, 的法向量分别为 u, v ,则
(2) l / / a u a u 0 ;
叫做平面 的法向量.
l
n
A
给定一点A和一个向量 n,那么
过点A,以向量 n 为法向量的平面是
完全确定的.
平面的法向量:
l
注意:
1.法向量一定是非零向量;
2.一个平面的所有法向量都
n
互相平行;

高中数学第三章空间向量与立体几何3.2立体几何中的向量方法3.2.2利用向量解决平行、垂直问题讲义

高中数学第三章空间向量与立体几何3.2立体几何中的向量方法3.2.2利用向量解决平行、垂直问题讲义

3.2.2 利用向量解决平行、垂直问题1.用向量方法证明空间中的平行关系(1)证明线线平行设直线l,m的方向向量分别是a=(a1,b1,c1),b=(a2,b2,c2),则l∥m⇔□01a∥b⇔□02 a=λb⇔□03a1=λa2,b1=λb2,c1=λc2(λ∈R).(2)证明线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔□04a⊥u⇔□05a·u=0⇔□06a1a2+b1b2+c1c2=0.(3)证明面面平行①设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔□07u∥v⇔u=λv⇔□08a1=λa2,b1=λb2,c1=λc2(λ∈R).②由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平行即可.2.用向量方法证明空间中的垂直关系(1)证明线线垂直设直线l1的方向向量u1=(a1,b1,c1),直线l2的方向向量u2=(a2,b2,c2),则l1⊥l2⇔□09u1⊥u2⇔□10u1·u2=0⇔□11a1a2+b1b2+c1c2=0.(2)证明线面垂直设直线l的方向向量是u=(a1,b1,c1),平面α的法向量v=(a2,b2,c2),则l⊥α⇔□12 u∥v⇔□13u=λv(λ∈R)⇔□14a1=λa2,b1=λb2,c1=λc2(λ∈R).(3)证明面面垂直若平面α的法向量u=(a1,b1,c1),平面β的法向量v=(a2,b2,c2),则α⊥β⇔□15u ⊥v⇔□16u·v=0⇔□17a1a2+b1b2+c1c2=0.1.判一判(正确的打“√”,错误的打“×”)(1)若两直线方向向量的数量积为0,则这两条直线一定垂直相交.( )(2)若一直线与平面垂直,则该直线的方向向量与平面内的所有直线的方向向量的数量积为0.( )(3)两个平面垂直,则其中一平面内的直线的方向向量与另一平面内的直线的方向向量垂直.( )答案 (1)× (2)√ (3)×2.做一做(请把正确的答案写在横线上)(1)若直线l 1的方向向量为u 1=(1,3,2),直线l 2上有两点A (1,0,1),B (2,-1,2),则两直线的位置关系是________.(2)若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则直线l 与平面α的位置关系为________.(3)已知两平面α,β的法向量分别为u 1=(1,0,1),u 2=(0,2,0),则平面α,β的位置关系为________.(4)若平面α,β的法向量分别为(-1,2,4),(x ,-1,-2),并且α⊥β,则x 的值为________.答案 (1)垂直 (2)垂直 (3)垂直 (4)-10探究1 利用空间向量解决平行问题例1 已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .[证明] (1)如图所示,建立空间直角坐标系Dxyz ,则有D (0,0,0),A (2,0,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2), 所以FC 1→=(0,2,1),DA →=(2,0,0),AE →=(0,2,1).设n 1=(x 1,y 1,z 1)是平面ADE 的法向量,则n 1⊥DA →,n 1⊥AE →, 即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0,n 1·AE →=2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1,所以n 1=(0,-1,2). 因为FC 1→·n 1=-2+2=0,所以FC 1→⊥n 1.又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE . (2)因为C 1B 1→=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量. 由n 2⊥FC 1→,n 2⊥C 1B 1→,得 ⎩⎪⎨⎪⎧n 2·FC 1→=2y 2+z 2=0,n 2·C 1B 1→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,得y 2=-1,所以n 2=(0,-1,2), 因为n 1=n 2,所以平面ADE ∥平面B 1C 1F . 拓展提升利用向量法证明平行问题的两种途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的共线关系; (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行平行关系的证明.【跟踪训练1】 在长方体ABCD -A 1B 1C 1D 1中,AB =4,AD =3,AA 1=2,P ,Q ,R ,S 分别是AA 1,D 1C 1,AB ,CC 1的中点.求证:PQ ∥RS .证明 证法一:以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Dxyz .则P (3,0,1),Q (0,2,2),R (3,2,0),S (0,4,1), PQ →=(-3,2,1),RS →=(-3,2,1),∴PQ →=RS →,∴PQ →∥RS →,即PQ ∥RS . 证法二:RS →=RC →+CS →=12DC →-DA →+12DD 1→,PQ →=PA 1→+A 1Q →=12DD 1→+12DC →-DA →,∴RS →=PQ →,∴RS →∥PQ →,即RS ∥PQ . 探究2 利用空间向量解决垂直问题例2 如图,在四棱锥E -ABCD 中,AB ⊥平面BCE ,CD ⊥平面BCE ,AB =BC =CE =2CD =2,∠BCE =120°.求证:平面ADE ⊥平面ABE .[证明] 取BE 的中点O ,连接OC ,则OC ⊥EB , 又AB ⊥平面BCE .∴以O 为原点建立空间直角坐标系Oxyz .如图所示.则由已知条件有C (1,0,0),B (0,3,0),E (0,-3,0),D (1,0,1),A (0,3,2). 设平面ADE 的法向量为n =(a ,b ,c ),则n ·EA →=(a ,b ,c )·(0,23,2)=23b +2c =0,n ·DA →=(a ,b ,c )·(-1,3,1)=-a +3b +c =0.令b =1,则a =0,c =-3, ∴n =(0,1,-3).∵AB ⊥平面BCE ,∴AB ⊥OC ,又OC ⊥EB ,且EB ∩AB =B ,∴OC ⊥平面ABE , ∴平面ABE 的法向量可取为m =(1,0,0). ∵n ·m =(0,1,-3)·(1,0,0)=0, ∴n ⊥m ,∴平面ADE ⊥平面ABE . 拓展提升利用向量法证明几何中的垂直问题的两条途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的垂直关系. (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行证明.证明线面垂直时,只需直线的方向向量与平面的法向量平行或直线的方向向量与平面内两相交的直线的方向向量垂直.在判定两个平面垂直时,只需求出这两个平面的法向量,再看它们的数量积是否为0.【跟踪训练2】 如右图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,D 1B 1的中点.求证:EF ⊥平面B 1AC .证明 证法一:设AB →=a ,AD →=c ,AA 1→=b ,则EF →=EB 1→+B 1F →=12(BB 1→+B 1D 1→)=12(AA 1→+BD →)=12(AA 1→+AD →-AB →)=12(-a +b +c ),∵AB 1→=AB →+AA 1→=a +b .∴EF →·AB 1→=12(-a +b +c )·(a +b )=12(b 2-a 2+c ·a +c ·b ) =12(|b |2-|a |2+0+0)=0. ∴EF →⊥AB 1→,即EF ⊥AB 1,同理,EF ⊥B 1C . 又AB 1∩B 1C =B 1, ∴EF ⊥平面B 1AC .证法二:设正方体的棱长为2,以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的直角坐标系,则A (2,0,0),C (0,2,0),B 1(2,2,2),E (2,2,1),F (1,1,2).∴EF →=(1,1,2)-(2,2,1) =(-1,-1,1).AB 1→=(2,2,2)-(2,0,0)=(0,2,2),AC →=(0,2,0)-(2,0,0)=(-2,2,0),∴EF →·AB 1→=(-1,-1,1)·(0,2,2)=(-1)×0+(-1)×2+1×2=0.EF →·AC →=(-1,-1,1)·(-2,2,0)=2-2+0=0, ∴EF →⊥AB 1→,EF →⊥AC →, ∴EF ⊥AB 1,EF ⊥AC . 又AB 1∩AC =A , ∴EF ⊥平面B 1AC .证法三:同法二得AB 1→=(0,2,2),AC →=(-2,2,0), EF →=(-1,-1,1).设面B 1AC 的法向量n =(x ,y ,z ), 则AB →1·n =0,AC →·n =0,即⎩⎪⎨⎪⎧2y +2z =0,-2x +2y =0,取x =1,则y =1,z =-1,∴n =(1,1,-1),∴EF →=-n ,∴EF →∥n ,∴EF ⊥平面B 1AC . 探究3 与平行、垂直有关的探索性问题例3 如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得平面AMC ⊥平面BMC ?若存在,求出AM 的长;若不存在,请说明理由.[解] (1)证明:如图,以O 为原点,以射线OD 为y 轴的正半轴,射线OP 为z 轴的正半轴,建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4), AP →=(0,3,4),BC →=(-8,0,0),由此可得AP →·BC →=0,所以AP →⊥BC →,即AP ⊥BC .(2)假设存在满足题意的M ,设PM →=λPA →,λ≠1,则PM →=λ(0,-3,-4).BM →=BP →+PM →=BP →+λPA →=(-4,-2,4)+λ(0,-3,-4)=(-4,-2-3λ,4-4λ),AC →=(-4,5,0).设平面BMC 的法向量n 1=(x 1,y 1,z 1), 平面APC 的法向量n 2=(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧BM →·n 1=0,BC →·n 1=0,得⎩⎪⎨⎪⎧-4x 1-(2+3λ)y 1+(4-4λ)z 1=0,-8x 1=0,即⎩⎪⎨⎪⎧x 1=0,z 1=2+3λ4-4λy 1,可取n 1=⎝ ⎛⎭⎪⎫0,1,2+3λ4-4λ.由⎩⎪⎨⎪⎧AP →·n 2=0,AC →·n 2=0,即⎩⎪⎨⎪⎧3y 2+4z 2=0,-4x 2+5y 2=0,得⎩⎪⎨⎪⎧x 2=54y 2,z 2=-34y 2,可取n 2=(5,4,-3),由n 1·n 2=0,得4-3×2+3λ4-4λ=0,解得λ=25,故PM →=⎝ ⎛⎭⎪⎫0,-65,-85,AM →=AP →+PM →=⎝ ⎛⎭⎪⎫0,95,125,所以AM =3.综上所述,存在点M 符合题意,AM =3. 拓展提升利用向量解决探索性问题的方法对于探索性问题,一般先假设存在,利用空间坐标系,结合已知条件,转化为代数方程是否有解的问题,若有解满足题意则存在,若没有满足题意的解则不存在.【跟踪训练3】 如图,直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4.(1)求证:BC 1⊥平面AB 1C ;(2)在AB 上是否存在点D ,使得AC 1∥平面CDB 1.解 (1)证明:由已知AC =3,BC =4,AB =5,因而△ABC 是∠ACB 为直角的直角三角形,由三棱柱是直三棱柱,则CC 1⊥平面ABC ,以CA ,CB ,CC 1分别为x ,y ,z 轴建立空间直角坐标系,从而CA →=(3,0,0),BC 1→=(0,-4,4),则BC 1→·CA →=(0,-4,4)·(3,0,0)=0,则BC 1→⊥AC →,所以BC 1⊥AC .又四边形BCC 1B 1为正方形,因而BC 1⊥B 1C .又∵B 1C ∩AC =C ,∴BC 1⊥平面AB 1C .(2)假设存在点D (x ,y,0),使得AC 1∥平面CDB 1,CD →=(x ,y,0),CB 1→=(0,4,4), 设平面CDB 1的法向量m =(a ,b ,c ),则⎩⎪⎨⎪⎧m ·CD →=0,m ·CB 1→=0,即⎩⎪⎨⎪⎧xa +yb =0,4b +4c =0.令b =-x ,则c =x ,a =y ,所以m =(y ,-x ,x ),而AC 1→=(-3,0,4),则AC 1→·m =0,得-3y +4x =0.① 由D 在AB 上,A (3,0,0),B (0,4,0)得x -3-3=y4,即得4x +3y =12,② 联立①②可得x =32,y =2,∴D ⎝ ⎛⎭⎪⎫32,2,0,即D 为AB 的中点. 综上,在AB 上存在点D ,使得AC 1∥平面CDB 1,点D 为AB 的中点.1.利用向量证明线线平行的两种思路一是建立空间直角坐标系,通过坐标运算,利用向量平行的坐标表示证明;二是用基底思路,通过向量的线性运算,利用共线向量定理证明.2.向量法证明线线垂直的方法用向量法证明空间中两条直线相互垂直,其主要思路是证明两条直线的方向向量相互垂直.具体方法为:(1)坐标法:根据图形的特征,建立适当的空间直角坐标系,准确地写出相关点的坐标,表示出两条直线的方向向量,证明其数量积为0.(2)基向量法:利用向量的加减运算,结合图形,将要证明的两条直线的方向向量用基向量表示出来.利用数量积运算说明两向量的数量积为0.3.向量法证明线面垂直的方法(1)向量基底法,具体步骤如下:①设出基向量,用基向量表示直线的方向向量;②找出平面内两条相交直线的方向向量并分别用基向量表示;③分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.(2)坐标法,具体方法如下:方法一:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③将平面内任意两条相交直线的方向向量用坐标表示;④分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.方法二:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③求平面的法向量;④说明平面的法向量与直线的方向向量平行.4.证明面面垂直的两种思路一是证明其中一个平面过另一个平面的垂线,即转化为线面垂直;二是证明两平面的法向量垂直.1.已知线段AB的两端点坐标为A(9,-3,4),B(9,2,1),则线段AB与坐标平面( ) A.xOy平行B.xOz平行C.yOz平行D.yOz相交答案 C解析 因为AB →=(9,2,1)-(9,-3,4)=(0,5,-3),所以AB ∥平面yOz .2.若两个不同平面α,β的法向量分别为u =(1,2,-1),v =(-3,-6,3),则( ) A .α∥β B .α⊥βC .α,β相交但不垂直D .以上均不正确 答案 A解析 ∵v =-3u ,∴α∥β.3.已知直线l 与平面α垂直,直线l 的一个方向向量为u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z 等于( )A .3B .6C .-9D .9 答案 C解析 ∵l ⊥α,v 与平面α平行,∴u ⊥v ,即u ·v =0,∴1×3+3×2+z ×1=0,∴z =-9.4.在三棱锥P -ABC 中,CP ,CA ,CB 两两垂直,AC =CB =1,PC =2,在如图所示的空间直角坐标系中,下列向量中是平面PAB 的法向量的是( )A.⎝⎛⎭⎪⎫1,1,12 B .(1,2,1) C .(1,1,1) D .(2,-2,1) 答案 A解析 PA →=(1,0,-2),AB →=(-1,1,0),设平面PAB 的一个法向量为n =(x ,y,1),则x -2=0,即x =2;-x +y =0,即y =x =2.所以n =(2,2,1).因为⎝⎛⎭⎪⎫1,1,12=12n ,所以A正确.5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为棱BB 1的中点,在棱DD 1上是否存在点P ,使MD ⊥平面PAC?解 如图,建立空间直角坐标系,则A (1,0,0),C (0,1,0),D (0,0,0),M ⎝⎛⎭⎪⎫1,1,12.假设存在P (0,0,x )满足条件,则PA →=(1,0,-x ),AC →=(-1,1,0).设平面PAC 的法向量为n =(x 1,y 1,z 1),则由⎩⎪⎨⎪⎧ PA →·n =0,AC →·n =0,得⎩⎪⎨⎪⎧ x 1-xz 1=0,-x 1+y 1=0.令x 1=1得y 1=1,z 1=1x ,即n =⎝ ⎛⎭⎪⎫1,1,1x , 由题意MD →∥n ,由MD →=⎝⎛⎭⎪⎫-1,-1,-12,得x =2, ∵正方体棱长为1,且2>1,∴棱DD 1上不存在点P ,使MD ⊥平面PAC .。

3.2立体几何中的向量方法点到平面的距离

3.2立体几何中的向量方法点到平面的距离

C
x
A M
B
y
练习4:
已知正方形ABCD的边长为4,CG⊥平面 ABCD,CG=2,E、F分别是AB、AD的中点, z G 求点B到平面GEF的距离。
x
F
D
C
A
E
B
y
解:如图,建立空间直角坐标系 C-xyz. 由题设 C(0,0,0),A(4,4,0),B(0,4,0), D(4,0,0),E(2,4,0),F(4,2,0),G(0,0,2).
立体几何中的向量方法
----点到平面的距离
一、求点到平面的距离
一般方法:
利用定义先作出过 这个点到平面的垂 线段,再计算这个 垂线段的长度。
P
d

O
还可以用等积法求距离.
向量法求点到平面的距离
sin
sin
d A P
| AP n | AP n
d | AP | sin
P
n
d

d
| AP n | n

A
O
其中A P 为斜向量, n 为法向量。
如图,在正方体ABCD-A1B1C1D1中,棱长为1, E为D1C1的中点,求: B1到面A1BE的距离;
z
D
A
1
1
E
C
1
B
D
1
A
C
y
x
B
练习1:
已知棱长为1的正方体ABCD-A1B1C1D1中, E、F分别是B1C1和C1D1 的中点,求点A1到平 面DBEF的距离。 z D1 F C
x
F A
D
C
E
y
B
2 11 答:点 B 到平面 EFG 的距离为 . 11

立体几何中的向量方法(1)

立体几何中的向量方法(1)

⑴点 在空间中,我们取一定点 O 作为基点,
那么空间中任意一点 P 的位置就可以用向量 O P 来表示,我们把向量 O P 称为点 P 的位置向 量. P ⑵直线 P 空间中任 意一条直线 l a 的位置可以由 l 上一个定点 O A 以及一个定 B 方向确定. A
⑵直线
几点注意: 1.法向量一定是非零向量; 2.一个平面的所有法向量都 互相平行; 3.向量n 是平面的法向量,向 量m 是与平面平行或在平面 内,则有 n m 0
设直线 l , m 的方向向量分别为 a , b , 平面 , 的法向量分别为 u , v ,则
是平面 A C D 1 的法向量 证:设正方体棱长为 1, 以 D A , D C , D D 1 为单位正交基底, 建立如图所示空间坐标系 D xyz
D B 1 (1, 1, 1) , A C ( 1, 1, 0 ) , A D 1 ( 1, 0 , 1) D B 1 A C 0 ,所以 D B 1 A C , 同理 D B 1 A D 1 又因为 A D 1 A C A 所 以 D B1 平 面 A C D , 从 而 D B1
q
” ,
命题的4种情况: p、q分别表示某条件
1 p q且q p )
则 称 条 件 p 是 条 件 q的 充 分 不 必 要 条 件
2 p q且q p )
则 称 条 件 p 是 条 件 q的 必 要 不 充 分 条 件
3 p q且q p )
则 称 条 件 p 是 条 件 q的 充 要 条 件
立体几何中的向量方法(一)
立体几何中的向量方法(一)

第3章3.2 立体几何中的向量方法(一)平行关系

【思路分析】 解答本题可先建立空间直角坐标系,写出每 个平面内两个不共线向量的坐标,再利用待定系数法求出平面的 法向量.
第11页
高考调研 ·新课标 ·数学选修2-1
【解析】 ∵AD,AB,AS 是三条两两垂直 的线段,∴以 A 为原点,以A→D,A→B,A→S的方向 为 x 轴,y 轴,z 轴的正方向建立空间直角坐标系, 则 A(0,0,0),D(12,0,0),C(1,1,0),S(0, 0,1),A→D=(12,0,0)是平面 SAB 的法向量,
2.用向量方法证明空间中的平行关系
线线 平行
设直线 l1,l2 的方向向量分别是 a,b,则要证明 l1∥l2,只需证 明 a∥b,即 a=kb(k∈R)
①设直线 l 的方向向量是 a,平面 α 的法向量是 u,则要证明
l∥α,只要证明 a⊥u,即 a·u=0
②根据线面平行判定定理在平面内找一个向量与已知直线的 线面平行
高考调研 ·新课标 ·数学选修2-1
【思路分析】 直线的方向向量与平面的法向量的关系和直 线与平面位置关系之间的内在联系是 l∥α⇔a⊥u,l⊥α⇔a∥u.
第22页
高考调研 ·新课标 ·数学选修2-1
【解析】 ①∵u=(2,2,-1),a=(-3,4,2), ∴u·a=-6+8-2=0,∴u⊥a. ∴直线 l 和平面 α 的位置关系是 l⊂α或 l∥α. ②∵u=(0,2,-3),a=(0,-8,12), ∴u=-14a,∴u∥a,∴l⊥α. ③∵u=(4,1,5),a=(2,-1,0), ∴u 和 a 既不共线,也不垂直. ∴l 与 α 斜交.
第2页
高考调研 ·新课标 ·数学选修2-1
要点 3 空间平行关系的向量表示 (1)线线平行. 设直线 l,m 的方向向量分别为 a=(a1,b1,c1),b=(a2,b2, c2),则 l∥m⇔a∥b⇔a=λb⇔a1=λa2,b1=λb2,c1=λc2(λ∈R). (2)线面平行. 设直线 l 的方向向量为 a=(a1,b1,c1),平面 α 的法向量为 u =(a2,b2,c2),则 l∥α⇔a⊥u⇔a·u=0⇔a1a2+b1b2+c1c2=0.

高中数学 第43讲 立体几何中的向量方法(一)平行与垂直的证明配套课件 理 新人教B版


[答案] (1) × (2)√
返回目录
第43讲 立体几何中的向量方法(一)——平行与垂直
的证明

双 向
[解析] (1)只要是与直线平行的非零向量都是直线的方向
固 基 础
向量. (2)∵v2=-2v1,∴v1∥v2,l1∥l2.
返回目录
第43讲 立体几何中的向量方法(一)——平行与垂直
的证明

双 向
返回目录
第43讲 立体几何中的向量方法(一)——平行与垂直的证明
双 向

基 础
1.直线的方向向量
l 是空间一直线• —,—A,知B 是 识 直梳线理l —上—任意两点,则称A→B
• 为直一线、直l 的线的方方向向向向量量,与与平A面→B的_平_法_行向_的_量任__的意_非确_零_定_向_量__________也是
方法二:∵M→N=C→1N-C→1M=12C→1B1-12C→1C=12(D→1A1-D→1D)
3.利用空间向量解决探索 性问题
解答(2)
2012年福建T18(B), 2012年北京T16(B)
• • • 说明:A表示简单题,B表示中等题,C表示难题,考频分析2012年
课标地区真题卷情况.
返回目录
第43讲 立体几何中的向量方法(一)——平行与垂直的证明
点• ► 探例究1点一[2012利·福用州空二间模向] 量如证图明7-平4行3-问1题,在正方体 ABCD
固 基
1.设直线l1和l2的方向向量分别为v1和v2,则l1∥l2(或l1
础与l2重合) ⇒__v_1_∥__v_2_.
2.设直线l的方向向量为v,与平面α共面的两个不共
线 向 量 v1 和 v2 , 则 l∥α 或 l⊂α⇒ 存 在 两 个 实 数 x , y , 使 _v_=__x_v_1_+_y_v_2______.

高中数学《第三章空间向量与立体几何3.2立体几何中的向量方法习题3.2...》125PPT课件


设直线 l, m 的方向向量分别为 a, b ,平面 , 的法
rr
向量分别为 u, v ,则
rr
两直线 l,m 所成的角为 ( 0 ≤ ≤
), cos
ab rr

2
ab
rr
直线 l 与平面
所成的角为 ( 0 ≤ ≤
), sin
au rr
2
au
rr uv
二面角 -l - 的大小为 ( 0≤ ≤ ), cos r r .
A.30° B.45°
C.60° D.75°
3.(2014·南宁高二检测 )如图所示,已知
点 P 为菱形 ABCD 外一点,且 PA⊥面 ABCD,PA
=AD=AC,点 F 为 PC 中点,则二面角 C­BF­D
的正切值为 ( D )
A.
3 6
C.
3 3
B.
3 4
D.23 3
利用向量求空间角
rr
rr
⑴范围: 0 ≤ a, b ≤ .
r a
rr rr
⑵ a, b=b, a .
r b
rA a
O
r
B
b
夹角公式:cos a,b a • b
.
ab
两直线(异面直线)所成的角
若两直线
l,
m
所成的角为
(0
r

r
2
)
,

设直线 l, m 的方向向量分别为 a, b
cos cos a, b
rr
= a, b
运算 转化空间角
空间向量解决立体几何问题 的三部曲: (1)建立立体图形与空间向量的联系,用空
间向量表示问题中涉及的点、直线、平面; (2)通过向量运算,研究点、直线、平面之

高中数学第3章3.2.1用向量方法解决平行与垂直问题课件新人教A选修21.ppt


(2)∵E→G=(1,-1,-1),P→G=(1,1,0), B→C=(0,-3,3), ∴E→G·P→G=1-1=0,E→G·B→C=3-3= 0, ∴EG⊥PG,EG⊥BC.
【名师点评】 证明面面垂直通常有两种方法, 一是利用面面垂直的判定定理,转化为线面垂直、 线线垂直去证明;二是证明两个平面的法向量互 相垂直.
l∥α⇔_a_⊥__u_.
面面平行
设平面α,β的法向量分别为u=(a1,b1, c1),v=(a2,b2,c2),则α∥β⇔_u_∥__v_.
3.空间中垂直关系的向量表示
空间中的垂直关系
线线垂直
线面垂直
面面垂直
设直线l的方向 设直线l的方向 设平面α的法向
向量为a=(a1, 向量为a=(a1,b1,量为u=(a1,b1,
【证明】 (1)法一:如图,以三棱锥的顶点P为 原点,以PA、PB、PC所在直线分别作为x轴、y 轴、z轴建立空间直角坐标系.令PA=PB=PC =3,则A(3,0,0)、B(0,3,0)、C(0,0,3)、E(0,2,1)、 F(0,1,0)、G(1,1,0)、P(0,0,0).
于是P→A=(3,0,0), F→G=(1,0,0), 故P→A=3F→G,∴PA∥FG. 而 PA⊥平面 PBC, ∴FG⊥平面 PBC. 又 FG⊂平面 EFG, ∴平面 EFG⊥平面 PBC.
向向量和平面的法向量间的关系证明线面平行和
面面平行.
【证明】 如图所示建立空间直角坐标系 D-xyz, 则有 D(0,0,0),A(2,0,0),C(0,2,0),C1(0,2,2), E(2,2,1),F(0,0,1),B1(2,2,2), 所以F→C1=(0,2,1), D→A=(2,0,0),A→E=(0,2,1).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档