江苏省徐州市区16—17学年上学期七年级期中考试数学试题(附答案)
江苏省徐州市2024-2025学年八年级上学期11月期中数学试题

江苏省徐州市2024-2025学年八年级上学期11月期中数学试题一、单选题1.我国杨秉烈先生在上世纪八十年代发明了繁花曲线规画图工具,利用该工具可以画出许多漂亮的繁花曲线,繁花曲线的图案在服装、餐具等领域都有广泛运用.下面四种繁花曲线中,是轴对称图形的是()A.B.C.D.2.下列说法中,正确的是()A.面积相等的两个图形是全等图形B.形状相等的两个图形是全等图形C.周长相等的两个图形是全等图形D.能够完全重合的两个图形是全等图形3.如图,小明书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.SSA D.ASA4.如图,公路AC、BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AB的长为10km,则M、C两点间的距离为()A .6kmB .5kmC .12kmD .7km5.A 、B 、C 三名同学玩“抢凳子”游戏.他们所站的位围成一个ABC V ,在他们中间放一个木凳,谁先抢到凳子谁获胜,为保证游戏公平,则凳子应放的最适当的位置是在ABC V 的()A .三边垂直平分线的交点B .三边中线的交点C .三个内角角平分线的交点D .三边高的交点6.如图,在ABC V 中,分别以点B 和点C 为圆心,大于12BC 的长为半径画弧两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若18AC =,5BD =,则AD 的长为()A .11B .12C .13D .147.下列由三条线段a b c 、、构成的三角形:①如果A B C ∠∠=∠+;②3,4,5(0)a k b k c k k ===>;③如果::3:4:5A B C ∠∠∠=;④221,1,2a m b m c m =+=-=(m 为大于1的整数),其中能构成直角三角形的是()A .①④B .①②④C .②③④D .①②③8.如图,已知ABC V 中,357AB AC BC ===,,,若过点A 的一条直线将ABC V 分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A .1条B .2条C .3条D .4条二、填空题9.如图,镜子中号码的实际号码是.10.如图,AC AD =,12∠=∠,要使ABC AED ≌△△,应添加的条件是.(只需写出一个条件即可)11.若等腰三角形的周长是20cm ,一腰长为7cm ,则这个三角形的底边长是cm .12.如图,在公园内有两棵树相距8米,一棵树高15米.另一棵树高9米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞米.13.如图,在等边ABC V 中,6AB =,B 平分ABC ∠,点E 在BC 的延长线上,且30E ∠=︒,则C 的长为.14.如图,ABC AB AC 中,,的垂直平分线l l ₁,₂相交于点O ,若BAC ∠等于76︒,则OBC ∠=.15.如图,在笔直的公路AB 旁有一个城市书房C ,C 到公路AB 的距离CD 为80米,AC 为100米,BC 为300米.一辆公交车以3米/秒的速度从A 处向B 处缓慢行驶,若公交车鸣笛声会使以公交车为中心170米范围内受到噪音影响,那么公交车至少秒不鸣笛才能使在城市书房C 看书的读者不受鸣笛声影响.16.如图,90MON ∠=︒,在ABC V 中,13,10AC BC AB ===,点A ,B 分别在边,OM ON 上运动,ABC V 的形状始终保持不变,在运动的过程中,点C 到点O 的最小距离为.三、解答题17.如图,D ,E 分别是AB ,AC 的中点,且AB =AC .求证∠B =∠C .18.如图,已知B 、E 、C 、F 在同一条直线上,AB DE =,AC DF =,BE CF =,AC 与DE 交于点G .(1)求证:ABC DEF ≌△△;(2)若50B ∠=︒,60ACB ∠=︒,求EGC ∠的度数.19.如图,在10×10的正方形网格中,每个小正方形的边长都为1,ABC V 为格点三角形(即三角形的顶点都在格点上).(1)在图中作出ABC V 关于直线对称的111A B C △(要求:A 与1A ,B 与1B ,C 与1C 相对应),并求出111A B C △面积;(2)若有一格点P 到点A 、B 的距离相等,则网格中满足条件的点P 共有_____个;(3)在直线l 上求作一点Q 使QB QC +的值最小,此时()2QB QC +=.20.小明和小亮学习了“勾股定理”之后,为了测量风筝的垂直高度CE ,他们进行了如下操作:①测得水平距离BD 的长为15米;②根据手中剩余线的长度计算出风筝线BC 的长为25米;③牵线放风筝的小明的身高为1.6米.(1)求风筝的垂直高度CE ;(2)如果小明想风筝沿CD 方向下降12米,则他应该往回收线多少米?21.在Rt ABC △中,90ACB ∠=︒,BC a =,AC b =,AB c =.将Rt ABC △绕点O 依次旋转90︒、180︒和270︒,构成的图形如图1所示.该图是我国古代数学家赵爽制作的“勾股圆方图”,也被称作“赵爽弦图”,它是我国最早对勾股定理证明的记载,也成为了2002年在北京召开的国际数学家大会的会标设计的主要依据.(1)请利用这个图形证明勾股定理;(2)图2所示的徽标,是我国古代弦图的变形,该图是由其中的一个Rt ABC △绕中心点O 顺时针连续旋转3次,每次旋转90︒得到的,如果中间小正方形的面积为21cm ,这个图形的总面积为2113cm ,2cm AD =,则徽标的外围周长为________cm .22.如图,四边形ABCD 中,∠BAD =90°,∠DCB =90°,EF 分别是BD 、AC 的中点,(1)请你猜测EF 与AC 的位置关系,并给予证明;(2)当AC=8,BD=10时,求EF 的长.23.如图,已知()ABC AC AB BC << ,请用无刻度的直尺和圆规,完成下列作图(不写作法,保留作图痕迹);(1)如图1,在B 边上寻找一点M ,使ACM ABC ∠=∠;(2)如图2,在BC 边上寻找一点N ,使得NA NB BC +=.24.在长方形ABCD 中,90A B C D ∠=∠=∠=∠=︒,5AB CD ==,4BC AD ==.(1)如图1,P 为BC 边上一点,将ABP 沿直线AP 翻折至APQ △的位置,其中点Q 是点B 的对称点,当点Q 落在CD 边上时,请你直接写出DQ 的长为_______.(2)如图2,点E 是AB 边上一动点,过点E 作EF DE ⊥交BC 边于点F ,将BEF △沿直线EF 翻折得B EF ' ,连接DB ',当DEB '△是以DE 为腰的等腰三角形时,求AE 的长;(3)如图3,点M 是射线AB 上的一个动点,将ADM △沿DM 翻折,其中点A 的对称点为A ',当A ',M ,C 三点在同一直线上时,请直接写出AM 的长.。
2021—2022学年七年级数学(上)期中检测试卷及答案解析

2021-2022学年七年级数学(上)期中学习效果评价一、选择题(每小题3分,共30分)1.﹣2的倒数是()A.﹣2 B.﹣C.D.22.2020年4月1日,意大利外长在众议院接受问询时表示,自新冠肺炎疫情暴发以来,意大利总计从海外获得3000万只口罩,其中2200万只来自中国.将2200万用科学记数法表示为()A.22×106B.2.2×106C.2.2×107D.0.22×1073.下列计算正确的是()A.6a﹣5a=1 B.a+2a2=3a2C.﹣(a﹣b)=﹣a+b D.3a2b﹣2ab2=a2b4.下面四个图形是如图的正方体的表面展开图的是()A.B.C.D.5.用一个平面去截一个几何体,如果截面的形状是长方形,那么这个几何体不可能是()A.圆柱B.圆锥C.五棱柱D.正方体6.下列判断中,正确的是()A.ab﹣a﹣1的常数项是1 B.﹣5不是单项式C.2xy2﹣x+5是三次三项式D.πR中,系数是7.在有理数(﹣1)2,(﹣2)3,﹣23,﹣|﹣2|,﹣(﹣)中,负数有()个.A.4 B.3 C.2 D.18.某种商品进价为a元,商店将价格提高30%作零售价销售.在销售旺季过后,商店又以8折(即售价的80%)的价格开展促销活动.这时一件该商品的售价为()A.a元B.0.8a元C.1.04a元D.0.92a元9.如图,a,b在数轴上的位置如图所示,那么|a﹣b|+|a+b|的结果是()A.﹣2b B.2b C.﹣2a D.2a10.按如图所示的运算程序,能使输出y值为1的是()A.m=1,n=1 B.m=1,n=0 C.m=1,n=2 D.m=2,n=1 二、填空题(每小题3分,共15分)11.直角三角形绕它的直角边旋转一周,形成了一个圆锥体,这说明了.12.若a﹣5b=3,则17﹣3a+15b=.13.若a,b互为相反数,x,y互为倒数,c的绝对值等于2,则()2020﹣(﹣x•y)2020+c2=.14.在桌子上摆有一些大小相同的正方体木块组成一个几何体,如图分别是从正面和从上面看到的形状图,组成这个几何体的小立方块个数最多需要块.15.如果x|m﹣1|y2﹣(m﹣3)xy+3x是关于x,y的四次三项式,则m=.三、解答题(共7小题,满分55分)16.(9分)计算:(1)(﹣5)﹣(+8)+(﹣9)﹣(﹣7);(2)(﹣+)÷;(3)(﹣2)2+8÷(﹣2)×﹣(﹣1)2020.17.(10分)先化简,再求值:(1)x2+3xy+6﹣8x2+xy,其中x=1,y=﹣1;(2)(﹣12m2﹣4mn)﹣2(3mn﹣8m2),其中m=1,n=.18.(6分)如图,这是一个由小立方块所搭成的几何体从上面看到的形状图,正方形中的数字表示在该位置小立方块的个数,请你画出它从正面和左面看到的几何体形状图.19.(6分)画出数轴,在数轴上表示下列各数,并用“<”连接+5,﹣(﹣3.5),0,﹣|﹣|,+(﹣4).20.(6分)在罗山县某住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图如图所示).(1)用含m、n的代数式表示该广场的面积S;(2)若m、n满足(m﹣6)2+|n﹣8|=0,求出该广场的面积.21.(8分)探索规律:将连续的偶数2,4,6,8,…排成如表:(1)十字框中的五个数的和与中间的数16有什么关系?请通过计算说明;(2)移动十字框,设中间的数为x,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五个数,这五个数的和能等于2020吗?若能,请直接写出这五个数;若不能,请说明理由.22.(10分)小明的妈妈在某玩具厂工作,厂里规定每个工人每周要生产某种玩具140个,平均每天生产20个,但由于种种原因,实际每天生产量与计划量相比有出入.下表是小明妈妈某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减产值+10 ﹣12 ﹣4 +8 ﹣1 +6 0 (1)根据记录的数据可知小明妈妈星期三生产玩具个;(2)根据记录的数据可知小明妈妈本周实际生产玩具个;(3)该厂实行“每日计件工资制”,每生产一个玩具可得工资5元,若超额完成任务,则超过部分每个另奖3元;少生产一个则倒扣3元,那么小明妈妈这一周的工资总额是多少元?(4)若将上面第(3)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不变,在此方式下小明妈妈这一周的工资与按日计件的工资哪一个更多?请说明理由.2021-2022学年七年级数学(上)期中学习效果评价答案解析一.选择题(每小题3分,共30分)1.﹣2的倒数是()A.﹣2 B.﹣C.D.2【分析】根据倒数的意义,乘积是1的两个数叫做互为倒数,据此解答.【解答】解:∵﹣2×=1.∴﹣2的倒数是﹣,故选:B.2.2020年4月1日,意大利外长在众议院接受问询时表示,自新冠肺炎疫情暴发以来,意大利总计从海外获得3000万只口罩,其中2200万只来自中国.将2200万用科学记数法表示为()A.22×106B.2.2×106C.2.2×107D.0.22×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2200万=22000000=2.2×107.故选:C.3.下列计算正确的是()A.6a﹣5a=1 B.a+2a2=3a2C.﹣(a﹣b)=﹣a+b D.3a2b﹣2ab2=a2b【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=a,故A错误.(B)a与2a2不是同类项,不能合并,故B错误.(C)原式=﹣a+b,故C正确.(D)3a2b与﹣2ab2不是同类项,不能合并,故D错误.故选:C.4.下面四个图形是如图的正方体的表面展开图的是()A.B.C.D.【分析】B、C选项中“◆”“●”是对面,与原图不符,而D折叠后,前面为“★”上面为“◆”时,“●”在左面,而不在右面,因此A符合题意.【解答】解:将A折叠后,前面为“★”后面为“空白正方形”,上面为“◆”下面为“空白正方形”,右面为“●”左面为“空白正方形”故选:A.5.用一个平面去截一个几何体,如果截面的形状是长方形,那么这个几何体不可能是()A.圆柱B.圆锥C.五棱柱D.正方体【分析】根据圆柱、正方体、圆锥、无棱柱的特点判断即可.【解答】解:A、用垂直于地面的一个平面截圆柱截面为矩形,与要求不符,故此选项不符合题意;B、圆锥由一个平面和一个曲面,截面最多有三条边,截面不可能是长方形,与要求相符,故此选项符合题意;C、五棱柱的截面可以是长方形,与要求不符,故此选项不符合题意;D、正方体的截面可以是长方形,与要求不符,故此选项不符合题意.故选:B.6.下列判断中,正确的是()A.ab﹣a﹣1的常数项是1 B.﹣5不是单项式C.2xy2﹣x+5是三次三项式D.πR中,系数是【分析】利用多项式次数与项数定义以及单项式的次数与系数定义分别判断即可.【解答】解:A、ab﹣a﹣1的常数项是﹣1,原说法错误,故此选项不符合题意;B、﹣5是单项式,原说法错误,故此选项不符合题意;C、2xy2﹣x+5是三次三项式,原说法正确,故此选项符合题意;D、πR中,系数是π,原说法错误,故此选项不符合题意,故选:C.7.在有理数(﹣1)2,(﹣2)3,﹣23,﹣|﹣2|,﹣(﹣)中,负数有()个.A.4 B.3 C.2 D.1【分析】先直接化简各数,再利用负数的定义得出答案.【解答】解:有理数(﹣1)2=1,(﹣2)3=﹣8,﹣23=﹣8,﹣|﹣2|=﹣2,﹣(﹣)=,其中负数有3个.故选:B.8.某种商品进价为a元,商店将价格提高30%作零售价销售.在销售旺季过后,商店又以8折(即售价的80%)的价格开展促销活动.这时一件该商品的售价为()A.a元B.0.8a元C.1.04a元D.0.92a元【分析】根据题意列出等量关系,商品的售价=原售价的80%.直接列代数式求值即可.【解答】解:依题意可得:a(1+30%)×0.8=1.04a元.故选:C.9.如图,a,b在数轴上的位置如图所示,那么|a﹣b|+|a+b|的结果是()A.﹣2b B.2b C.﹣2a D.2a【分析】根据数轴上点的位置判断出绝对值里边式子的正负,原式利用绝对值的代数意义化简,计算即可得到结果.【解答】解:根据题意得:b<a<0,且|a|<|b|,∴a﹣b>0,a+b<0,∴原式=a﹣b﹣a﹣b=﹣2b.10.按如图所示的运算程序,能使输出y值为1的是()A.m=1,n=1 B.m=1,n=0 C.m=1,n=2 D.m=2,n=1 【分析】根据题意一一计算即可判断.【解答】解:当m=1,n=1时,y=2m+1=2+1=3,当m=1,n=0时,y=2n﹣1=﹣1,当m=1,n=2时,y=2m+1=3,当m=2,n=1时,y=2n﹣1=1,故选:D.二、填空题(每小题3分,共15分)11.直角三角形绕它的直角边旋转一周,形成了一个圆锥体,这说明了面动成体.【分析】根据点动成线,线动成面,面动成体进行解答即可.【解答】解:直角三角形绕它的直角边旋转一周,形成了一个圆锥体,这说明了面动成体,故答案为:面动成体.12.若a﹣5b=3,则17﹣3a+15b=8 .【分析】把a﹣5b的值代入代数式进行计算即可得答案.【解答】解:∵a﹣5b=3,∴17﹣3a+15b=17﹣3(a﹣5b),=17﹣3×3,=17﹣9,=8.故答案为:8.13.若a,b互为相反数,x,y互为倒数,c的绝对值等于2,则()2020﹣(﹣x•y)2020+c2【分析】根据a,b互为相反数,x,y互为倒数,c的绝对值等于2,可以得到a+b=0,xy=1,c2=4,从而可以得到所求式子的值.【解答】解:∵a,b互为相反数,x,y互为倒数,c的绝对值等于2,∴a+b=0,xy=1,c2=4,∴()2020﹣(﹣x•y)2020+c2=()2020﹣(﹣1)2020+4=0﹣1+4=3,故答案为:3.14.在桌子上摆有一些大小相同的正方体木块组成一个几何体,如图分别是从正面和从上面看到的形状图,组成这个几何体的小立方块个数最多需要11 块.【分析】由主视图和俯视图,判断最多的正方体的个数即可解决问题.【解答】解:由主视图和俯视图可确定所需正方体个数多时的俯视图为:1+2+2+3+3=11,故答案为:11.15.如果x|m﹣1|y2﹣(m﹣3)xy+3x是关于x,y的四次三项式,则m=﹣1 .【分析】直接利用多项式的次数与项数确定方法分析得出答案.【解答】解:∵x|m﹣1|y2﹣(m﹣3)xy+3x是关于x,y的四次三项式,∴|m﹣1|=2,m﹣3≠0,解得:m=﹣1.故答案为:﹣1.三、解答题(共7小题,满分55分)16.(9分)计算:(1)(﹣5)﹣(+8)+(﹣9)﹣(﹣7);(2)(﹣+)÷;(3)(﹣2)2+8÷(﹣2)×﹣(﹣1)2020.【分析】(1)根据有理数的加减法可以解答本题;(2)先把除法转化为乘法,然后根据乘法分配律即可解答本题;(3)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【解答】解:(1)(﹣5)﹣(+8)+(﹣9)﹣(﹣7)=(﹣5)+(﹣8)+(﹣9)+7=(﹣13)+(﹣9)+7=﹣22+7=﹣15;(2)(﹣+)÷=(﹣+)×48=×48﹣×48+×48=18﹣40+12=﹣10;(3)(﹣2)2+8÷(﹣2)×﹣(﹣1)2020.=4+8×(﹣)×﹣1=4+(﹣1)+(﹣1)=2.17.(10分)先化简,再求值:(1)x2+3xy+6﹣8x2+xy,其中x=1,y=﹣1;(2)(﹣12m2﹣4mn)﹣2(3mn﹣8m2),其中m=1,n=.【分析】(1)首先确定同类项,然后再合并同类项即可;(2)首先去括号,然后再合并同类项,化简后,再代入m、n的值可得答案.【解答】解:(1)原式=﹣7x2+4xy+6;(2)原式=﹣12m2﹣4mn﹣6mn+16m2=4m2﹣10mn,当m=1,n=时,原式=4×1﹣10×1×=4﹣4=0.18.(6分)如图,这是一个由小立方块所搭成的几何体从上面看到的形状图,正方形中的数字表示在该位置小立方块的个数,请你画出它从正面和左面看到的几何体形状图.【分析】从正面看有3列,每列小正方形数目分别为2,3,4,从左面看有2列,每列小正方数形数目分别为4,2,据此可画出图形.【解答】解:如图所示:.19.(6分)画出数轴,在数轴上表示下列各数,并用“<”连接+5,﹣(﹣3.5),0,﹣|﹣|,+(﹣4).【分析】首先在数轴上表示各数,然后再根据在数轴上表示的有理数,右边的数总比左边的数大用“<”号把它们连接起来即可.【解答】解:如图所示:∴.20.(6分)在罗山县某住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图如图所示).(1)用含m、n的代数式表示该广场的面积S;(2)若m、n满足(m﹣6)2+|n﹣8|=0,求出该广场的面积.【分析】(1)由广场的面积等于大矩形面积减去小矩形面积表示出S即可;(2)利用非负数的性质求出m与n的值,代入S中计算即可得到结果.【解答】解:(1)S=2m×2n﹣m(2n﹣n﹣0.5n)=4mn﹣0.5mn=3.5mn;(2)由题意得m﹣6=0,n﹣8=0,∴m=6,n=8,代入,可得原式=3.5×6×8=168.21.(8分)探索规律:将连续的偶数2,4,6,8,…排成如表:(1)十字框中的五个数的和与中间的数16有什么关系?请通过计算说明;(2)移动十字框,设中间的数为x,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五个数,这五个数的和能等于2020吗?若能,请直接写出这五个数;若不能,请说明理由.【分析】(1)通过观察计算结果与16的倍数关系很容易得出结论;(2)观察数字的排列规律,左右数字与中间的数字相差2,上下数字与中间的数字相差10,利用这一关系很容易表示其余四个数字,然后用加号连接这五个数字即可得出结论;(3)利用(2)的结论,令这五个数字之和等于2020,解这个方程,若方程的解为整数则能,否则为不能.【解答】解:(1)∵十字框中的五个数字之和为14+18+16+6+26═80,又∵80÷16=5,∴十字框中的五个数字之和是中间数字16的5倍.(1)通过观察知:左边的数字比中间的数字小2,右边的数字比中间的数字答2,上面的数字比中间的数字小10,下面的数字比中间的数字答10.∵中间的数字为x,∴左边的数字为x﹣2,右边的数字为x+2,上面的数字为x﹣10.下面的数字为x+10,∴十字框中的五个数字之和为x﹣2+x+2+x+x﹣10+x+10=5x.(3)这五个数字之和能等于2020.由(2)知:十字框中的五个数字之和为中间的数字的5倍设中间的数字为x,则这五个数字之和为5x.∵5x=2020,∴x=404.∴这五个数字为:402,404,406,394,414.22.(10分)小明的妈妈在某玩具厂工作,厂里规定每个工人每周要生产某种玩具140个,平均每天生产20个,但由于种种原因,实际每天生产量与计划量相比有出入.下表是小明妈妈某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减产值+10 ﹣12 ﹣4 +8 ﹣1 +6 0 (1)根据记录的数据可知小明妈妈星期三生产玩具16 个;(2)根据记录的数据可知小明妈妈本周实际生产玩具147 个;(3)该厂实行“每日计件工资制”,每生产一个玩具可得工资5元,若超额完成任务,则超过部分每个另奖3元;少生产一个则倒扣3元,那么小明妈妈这一周的工资总额是多少元?(4)若将上面第(3)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不变,在此方式下小明妈妈这一周的工资与按日计件的工资哪一个更多?请说明理由.【分析】(1)根据记录可知,小明妈妈星期三生产玩具20﹣4=16个;(2)先把增减的量都相加,然后根据有理数的加法运算法则进行计算,再加上计划生产量即可;(3)先计算每天的工资,再相加即可求解;(4)先计算超额完成几个玩具,然后再求算工资.【解答】解:(1)20﹣4=16个;(2)∵(+10)+(﹣12)+(﹣4)+(+8)+(﹣1)+(+6)+0 =10﹣12﹣4+8﹣1+6=7,∴140+7=147(个).故本周实际生产玩具147个;(3)147×5+(10+8+6)×3+(12+4+1)×(﹣3)=735+24×3+17×(﹣3)=735+72﹣51=756(元).故小明妈妈这一周的工资总额是756元;(4)147×5+7×3=735+21=756(元).故小明妈妈这一周的工资与按日计件的工资一样多.故答案为:16,147.。
山东济南市中区2024—2025学年七年级数学第一学期期中考试试题(含答案)

市中区七年级第一学期期中数学学业质量调研试题(满分150分时间120分钟)一.选择题:本题共10小题,每小题4分,共40分.每小题只有一个选項符合題目要求.1.-2024的相反数是( )A.-2024B.2024C.±2024D.120242.如下列各图片所示的景德镇瓷器中,主视图和左视图相同的是(不考虑瓷器花纹等因素)( )A. B. C. D.3.2024年6月2日6时23分,"嫦娥六号"着陆器在月球背面预定着陆区域成功着陆.月球与地球之间的距离约为380000千米,将380000用科学记数法表示为( )A.0.38x106B.3.8x105C.38x104D.3.8x1064.数学课上,小明用土豆做了一个长方体模型,若用一个平面去截该模型,截面的形状不可能是( )A. B . C . D .5.下列运算正确的是( )A .5m+5n=5mnB .2m2n-m2n=2C .m5-m2=m3D .-m+4m=3m6.如图所示的是一个正方体的表面展开图,每个面都标注了一个字,则展开前与"冷"相对的是( )A.仔B.着C.沉D.细7.若7x2y2和﹣11x3m y2的和是单项式,则式子12m-16的值是( )A .-13B .-9C .-8 D.﹣58.如图,数轴上点A和点B分别表示数a和b.则下列式子正确的是()A.a-b<0B.a+b>0C.ab>0D.ab>09.已知非零实数x、y、z满足(x+y)(y+z)(x+z)=0,且x+y+z<0,则x|x|+y|y|+z|z|的值为()A .1B .-1C .3 D.﹣310.将图1中周长为12的长方形纸片剪成1号、2号、3号、4号正方形和5号长方形,并将它们按图2A.20B.22C.23D.24 二.填空题:本题共6小题,每小超4分,共24分.11.电视剧《西游记》中,"齐天大生"孙悟空有一个宝贝如意金箍棒,当他快速旋转金箍棒时,展现在我们眼前的是一个圆面的形象,这说明 . 12.比较大小:-2 -1.8(填">","<"或"="). 13.一个棱柱有10个面,则它有 个顶点.14.如图是一组有规律的图案,它们是由正三角形组成的,第1个图案中有6个正三角形,第2个图案中有10个正三角形,第3个图案中有14个正三角形…按此规律,第100个图案中有 个正三角形。
安徽省芜湖市第二十九中学2022—2023学年七年级上学期期中考试数学试卷(含答案与解析)

C. D.
【答案】D
【解析】
【分析】先根据4月份业务量比3月份下降了 得出4月份业务量,再根据5月份业务量比4月份增长了 计算5月份业务量.
【详解】解: 3月份业务量为a,4月份业务量比3月份下降了 ,
4月份业务量为 ,
快递公司5月份业务量比4月份增长了 ,
5月份的业务量为 .
故选:D.
【点睛】本题考查列代数式,解题的关键是正确理解增长率、下降率的含义.
(2)与标准售价比较,30件儿童服装总售价超过或不足多少元?
(3)请问该商场 售完这30件儿童服装后,赚了多少钱?
20.已知代数式 , .
(1)若 ,求 的值;
(2)若 的值与y的取值无关,求m的值.
21.对于含绝对值的算式,在有些情况下,可以不需要计算出结果也能将绝对值符号去掉,例如:|7-6|=7-6;|6-7|=7-6; ; .
10.定义:若 ,则 ,x称为以10为底的N的对数,简记为 ,其满足运算法则: .例如:因为 ,所以 ,亦即 ; .根据上述定义和运算法则,计算 的结果为( )
A.5B.2C.1D.0
【答案】C
【解析】
【分析】根据新运算的定义和法则进行计算即可得.
【详解】解:原式 ,
,
,
,
,
故选:C.
【点睛】本题考查了新定义下的实数运算,掌握理解新运算的定义和法则是解题关键.
【答案】C
【解析】
【分析】根据同类项的定义求解即可,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.
【详解】由题意得:m=2,n=3,
∴ .
故选:C.
【点睛】本题考查了同类项.解题的关键是熟练掌握同类项的定义.
河南省南阳市邓州市2024—2025学年七年级上学期期中考试数学试卷(含答案)

邓州市2024~2025学年第一学期期中质量评估七年级数学试卷注意事项:1.本试卷共6页,三个大题,满分120分,答题时间100分钟;2.请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效.一、选择题(每小题3分,共30分)请将唯一正确答案的序号涂在答题卡上.1.中国是最早使用正负数表示具有相反意义的量的国家.某同学上午卖废品收入10元,记为元,下午买书支出6元,记为A .元B .元C .元D .元2.10月6日在北京石景山首钢园举行的2024年WTT (世界乒乓球职业联盟赛)中国大满贯女单决赛中,中国选手孙颖莎勇夺冠军.数据2024的相反数是A.B .C .D .3,小宇不小心将墨水滴在了数轴上,使部分数轴被墨迹遮盖,则被遮盖的部分中表示整数的点有A .3个B .4个C .5个D .6个4.绝对值等于5的数是A .5B .C .D .5,有理数大小比较的历史可以追溯到古希腊和古印度时期,下列各组有理数大小比较,正确的是A .B .C .D .6.代数式的意义是A .a 与b 的倒数的差的平方B .a 的平方与b 的倒数的差C .a 的平方与b 的差的倒数D .a 与b 的差的平方的倒数7.用四舍五入法对2.098176分别取近似值,其中正确的是A .2.09(精确到0.01)B .2.098(精确到千分位)C .2.0(精确到十分位)D .2.0981(精确到0.0001)8.把按字母y 的升幂排列后,其中的第2项是A .B .C .D .9.当时,多项式的值为3,则当时,这个多项式的值为A .B .2C .D .710.如图所示的运算程序中,若开始输入x 的值为16,我们发现第一次输出的结果为8,第二次输出的结果为4,第三次输出的结果为2,……,则第2024次输出的结果为A .8B .4C .2D .110+4+4-6+6-2024-2024-1202412024-5-155±(5)0--<32(2)(2)->-1(0.3)3--<-83217-<-21a b-323223xy x y x y ---2x y-32x y-2x y32xy1x =2ax bx +-1x =-2-7-二、填空题(每小题3分,共15分)11.2024年6月2日清晨,嫦娥六号成功着陆在月球背面南极-艾特肯盆地,通过飞行器探测月球沿着一定的轨道围绕地球运动,某一时刻它与地球相距405500千米,用科学记数法表示这个数是________千米.12.写出一个只含有字母x ,y ,系数为的三次单项式________.(填一种即可)13.若与互为相反数,则________.14.在生物学中,生物链中的能量流动有“逐级递减”的特点,一个营养级中的能量只有10%-20%能被下一个营养级所利用.在如图所示的生物链中,若中摄入了1000千焦能量,每一个营养级中只有20%的能量能被下一营养级所利用,则获得的能量为________千焦.15.点A ,B ,P 是数轴上不重合的三个点,点A 表示的数为,点B 表示的数为3,若A ,B ,P 三个点中,其中一点到另外两点的距离相等时,我们称这三个点为“和谐三点”,则符合“和谐三点”的点P 表示的数为________.三、解答题(本题8个小题,共75分)16.(8分)已知下列各数:0,,2.0,,,,.(1)把这些数中符合要求的数分别填入如图所示的集合圈中,并标注重叠部分集合的名称;(2)画出数轴,把它们分别在数轴上表示出来,并用“”连接起来.17.(7分)下面是小乐同学进行有理数混合运算的过程,请认真阅读并完成相应任务.计算:.解:原式第一步;2-2b +2(3)a -a b =1H 4H 1234H H H H →→→1-12-3-0.5-142⎛⎫-- ⎪⎝⎭22-<18(41)2(5)÷-+-⨯-18(3)2(5)=÷--⨯-第二步;第三步;第四步;任务1:①第一步先算括号里面的有理数加法,依据的法则是:异号两数相加________,并用较大的绝对值减去较小的绝对值;第二步将有理数的除法转化为乘法,依据的法则是:除以一个数等于________.②运算从第________步开始出现错误.任务2:请你写出正确的解答过程.18.(12分)计算:(1);(2);(3).19.(9分)(1)若是关于x 的四次单项式,求m ,n 的值,并写出这个单项式.(2)我们称各项的次数都相同的多项式为齐次多项式,如就是齐次多项式,若多项式是齐次四项式,求的值;20.(9分)在一次航展期间,表演刚开始时,直升机A ,B 分别悬停在同一高度,表演过程中两直升机的连续高度变化如下表(单位:千米;规定:上升为正,下降为负).动作1动作2动作3动作4动作5直升机A 直升机B?(1)直升机A 在完成这5个动作之后,处在初始悬停位置的________;(填“上方”或“下方”)(2)直升机A 每上升1千米消耗5升燃油,每下降1千米消耗3升燃油,求直升机A 在这5个动作表演过程中,一共消耗多少升燃油?(3)若直升机A 和直升机B 完成5个动作后的高度相同,直接写出表格中“?”代表的数据.21.(9分)“数轴”是一个非常重要的数学工具,它使数轴上数和点建立起对应关系,揭示了数与点之间1182(5)3⎛⎫=⨯--⨯- ⎪⎝⎭610=--16=-21212133434⎛⎫⎛⎫⎛⎫-++---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2238(4)(8)595⎛⎫⎛⎫⨯---⨯-+-⨯ ⎪ ⎪⎝⎭⎝⎭22022123312(1)43⎛⎫-÷+-⨯-- ⎪⎝⎭22(2)2mm xn +-323253a ab b abc +-+2223||313(3)(1)2b a x y a y xy a x y +---+-2a b +4.2+ 2.3- 1.5+0.9- 1.1+3.8+ 2.5- 4.7+ 1.8-的内在联系,它是“数形结合”的基础.下面就让我们利用学习过的 “数轴”来进行探索活动吧.已知点A 在数轴上对应的数为a ,点B 在数轴上对应的数为b ,A 、B 两点之间的距离记为或,且,,请回答下列问题:(1)求________.(2)设点P 在数轴上对应的数为x ,若,则________.(3)若点M ,N ,P 是数轴上的三点,点M 表示的数为4,点N 表示的数为,动点P 表示的数为x .①当点P 在点M 、N 之间(含M 、N 两点),请化简;②若点P 表示的数是1,现在有一蚂蚁从点P 出发,以每秒1个单位长度的速度向右运动,设运动时间为t 秒,当t 为________秒时,蚂蚁所在的点到点M 、点N 的距离之和是7.22.(10分)某乒乓球训练馆准备购买10副某种品牌的乒乓球拍,每副球拍配个乒乓球,已知A ,B 两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元.现两家超市正在促销,A 超市所有商品均打九折(按原价的90%付费)销售,而B 超市买1副乒乓球拍送3个乒乓球.(1)则在A 超市购买需要________元,在B 超市购买需要________元;(2)当每副球拍配10个乒乓球时,分别计算去A 超市和B 超市购买的费用各是多少元?(3)童童说:“当时,先去B 超市购买10副球拍,再去A 超市购买余下的乒乓球会更省钱.”童童的说法是否正确?请说明理由.23.(11分)综合与实践:【概念学习】定义:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如、等.类比有理数的乘方,我们把记作,读作“2的下3次方”,记作,读作“的下4次方”.一般地,把记作,读作“a 的下n 次方”.【初步探究】(1)直接写出计算结果:________,________.【深入探究】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?例如:AB a b =-b a -3a =-2b =AB =35x -=x =1-14x x ++-(3)x x ≥12x =222÷÷3)3(3(3())()-÷-÷-÷-222÷÷323)3(3(3())()-÷-÷-÷-4(3)-3-(0)n aa a a a a ÷÷÷÷≠个n a 33313⎛⎫-= ⎪⎝⎭(2)仿照上面的算式,将下列运算写成幂的形式:________(a 为有理数且),________.【归纳结论】(3)一个非零有理数a 的下n 次方写成幂的形式是:________.【结论应用】(4)计算:.邓州市2024-2025学年第一学期期中质量评估七年级数学试题参考答案一、选择题(每小题3分,共30分)1.D2.B3.C4.D5.C6.B7.B8.A9.C10.B二、A 填空题(每小题3分;共15分)11.千米12.(答案不唯一)13.14.815.1或7或(每对一个即给1分)三、解答题(本题8个小题,共75分)16.(1)(2)17.(7分)任务1:①取绝对值较大的加数的符号2411112222222222⎛⎫=÷÷÷=⨯⨯⨯= ⎪⎝⎭6a =0a ≠713⎛⎫- ⎪⎝⎭n a =236461112(2)333⎛⎫⎛⎫÷⨯--÷ ⎪ ⎪⎝⎭⎝⎭54.05510⨯22x y -8-5-211230|0.5| 2.0422⎛⎫∴-<-<-<<-<<-- ⎪⎝⎭乘以这个数的倒数②第 三 步开始出现错误;任务2:解:原式18.解:(1)原式.(2)原式(3)原式.(备注:每小题4分,共12分,解答方法不唯一,只结果错只扣1分)19.(9分)解:(1)是关于x 的四次单项式,,,,解得,.单项式是.(2)由题意得:,解得,,.又,即所以,(备注:若学生写两个答案,可扣1分)20.(9分)解(1)上方;(2)(升),∴直升机A 一共消耗了43.6升燃油;(3)表格中“?”代表的数据是.21.(9分)18(3)2(5)6104=÷--⨯-=-+=21212133434⎛⎫⎛⎫⎛⎫=-+++++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2211213213183344=-++-=-+=-2388559⎛⎫=⨯--- ⎪⎝⎭88(1)9=⨯--889=-12931212143=-÷+⨯-⨯-33819=-+--=-()2222mm xn +- 24m ∴=0n =20m +≠2m =0n =∴44x 24b +=2b =1a =1a =±10a -≠ 1a ∴≠1a =-()22120ab +=⨯-+=(4.2 1.5 1.1)5[| 2.3||0.9|]343.6++⨯+-+-⨯=0.6-解:(1)5, (2)或8(3)①5;(没有解答过程不扣分)②.22.(10分)解:(1)在A 超市购买需要元,即元,在B 超市购买需要元,即元;(备注:没有化简不扣分)(2)当时,在A 超市购买需要(元),在B 超市购买需要(元),所以当每副球拍配10个乒乓球时,去A 超市和B 超市购买的费用都是270元;(3)童童的说法正确.理由如下:当时,即购买10副球拍应配120个乒乓球.若只去A 超市购买的费用为:9x+180=9×12+180=288(元)若只去B 超市购买的费用为:(元);若在B 超市购买10副球拍,去A 超市购买余下的乒乓球的费用:(元).所以正确.23.(11分)解:(1),;(2);;(3)(4)解:原式(9分,其它形式表示也可).2-4t =0.92010(0)1x ⨯+()9180x +()2010103x ⨯+-()10170x +10x =9180910180270x +=⨯+=101701010170270x +=⨯+=12x =101701012170290x +=⨯+=()2000.912310281+⨯-⨯=281288290<<3133333=÷÷=3111133333⎛⎫⎛⎫⎛⎫⎛⎫-=-÷-÷-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭461a a a a a a a a ⎛⎫=÷÷÷÷÷= ⎪⎝⎭5711111111(3)33333333⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-÷-÷-÷-÷-÷-÷-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭2(1)11111n n n n a a a a a a a a a a a ↑↑--⎛⎫=÷÷÷÷=⨯⨯⨯⨯⨯ ⎪⎝⎭ 个个424311443332⎛⎫=÷⨯--÷ ⎪⎝⎭111443132916=⨯⨯-=-=-。
江苏省徐州市2024-2025学年高一上学期11月期中考试数学试题

江苏省徐州市2024-2025学年高一上学期11月期中考试数学试题一、单选题1.若全集{}1,2,3,4,5U =,{}1,4,5A =,{}1,3B =,则()U B A ⋃=ð.()A .{}2,3B .{}1,3,4C .{}1,2,3D .{}1,52.命题:2R,0x x ∀∈≥的否定是()A .2R,0x x ∀∉≥B .2R,0x x ∀∈<C .2R,0x x ∃∈<D .2R,0x x ∃∈≥3.若0xy ≠,则“0x y +=”是“2y xx y+=-”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.若1log 38x=-,则x =().A .2B .12C .2-D .12-5.已知1x >,则251x x +-的最小值为().A .10B .9C .26D .116.下列各组函数中,图象不完全相同的是().A .2y x =+和y =B .y =y =C .y =和y =D .e x y =,R x ∈和e t s =,Rt ∈7.若a 是方程2310x x -+=的根,则22a a -+=().AB C .7D .8.已知函数()()()21,121,1x x f x x x ⎧-≤⎪=⎨-->⎪⎩.若()()20f f m ≥,则实数m 的取值范围是()A.[)23,2∞⎡⎤-⋃+⎢⎥⎣⎦B.3,2,22∞⎡⎤⎡⎫-⋃+⎢⎥⎪⎢⎣⎭⎣⎦C.21,2⎡-⎢⎥⎣⎦D.[)21,2,2∞⎡-⋃+⎢⎣⎦二、多选题9.下列命题为真命题的是().A .若0a b >>,则22a ab b >>B .若a b >,c d >,则a c b d ->-C .若a b >,0c <,则22a c b c<D .若2a b >>,则22a b b a->-10.已知集合{}221150A xx x =-+≤∣,集合{10}B x ax =+<∣,A B B = ,则a 可能的取值是().A .4-B .3-C .2-D .1-11.若x ,y 满足221x y xy ++=,则()A .1x y +≥-B .2x y +≤C .2223x y +≥D .222x y +≤三、填空题12.函数()11f x x +-的定义域为.13.若52a b =11a b+的值为.14.噪声污染问题越来越受到重视.用声压级来度量声音的强弱,定义声压级020lg p P L P =⨯,其中常数()000P P >是听觉下限阈值,P 是实际声压.下表为不同声源的声压级:声源与声源的距离/m声压级/dB燃油汽车A 1080电动汽车B1040已知在距离燃油汽车A 、电动汽车B 的10m 处测得实际声压分别为1P ,2P ,则12P P =.四、解答题15.计算:(1)00.2520248(2)9log 413lg83--(3)82log 49log 7+16.设全集为R ,集合{}121A xa x a =-≤≤+∣,2702x B x x ⎧⎫-+=≤⎨⎬-⎩⎭.(1)当1a =时,求R A B ð;(2)若x B ∈是x A ∈的必要条件,求实数a 的取值范围.17.设命题[]:1,2p x ∀∈-,使得不等式22240x x m --+<恒成立;命题[]:0,1q x ∃∈,使得一次函数2232y x m m =+--的图象不在x 轴下方.(1)若命题p 为真命题,求实数m 的取值范围;(2)若命题p ,q 中恰有一个为假命题,求实数m 的取值范围.18.如图,某房地产开发公司要在矩形地块ABCD 上规划出一块五边形ABCEF 地块建造住宅区.住宅区不能占用文物区,文物区可看作以MPN ∠为直角的等腰直角PMN ,设计时过P 作了一条直线EF ,与CD 交于E ,与AD 交于F ;由实地测量知:240m AB =,180m AD =,60m DM MN ==.(1)设m CE x =,将住宅区ABCEF 的面积S 表示为x 的函数,并注明定义域;(2)应如何设计,可使住宅区ABCEF 的面积最大?并求出最大面积.19.已知二次函数()()20f x ax bx c a =++≠.(1)设(){}A xf x x ==∣,()(){}B x f f x x ==∣,证明:A B ⊆;(2)已知集合P 是满足下列性质的函数()g x 的全体:存在非零常数m ,使得对任意实数x ,有()()g x m mg x +=恒成立.判断函数()f x 是否属于集合P ,并说明理由;(3)若对任意x R ∈,不等式()2f x ax b ≥+恒成立,求ba c+的最大值.。
2022学年扬州市江都区七年级数学上学期期中试题卷附答案解析

2022学年扬州市江都区七年级数学上学期期中试题卷2022.11(考试时间:120分钟,本卷满分:150分)一、选择题(每题3分,共24分)1.中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果支出100元记作﹣100元,那么+80元表示( ) A .支出80元B .收入80元C .支出20元D .收入20元2.在下列数1, 6.7, ﹣14, 0, ﹣, π中,属于整数的有( ) A .2个B .3个C .4个D .5个3.下列各式的计算结果正确的是( ) A .xy y x 743=+ B .2325x x x =-C .25722=-y yD .22256ab a b ab =-4.下列各对数中互为相反数的是( ) A.()3+-和3+- B. ()3-+和()3+- C. ()3--和3+-D. ()3+-和3-+5.若1=x 是方程122=-ax 的解,则a 的值为( ) A .1 B .﹣1 C .﹣3 D .3 6.一个长方形的长是a +b ,宽是a ,其周长是( )A .2a +bB .4a +bC .4a +2bD .2a +2b7.如图所示的程序计算,若开始输入的值为21-,则输出的结果y 是( )A .25B .30C .45D .408. 有理数a 、b 、c 在数轴上的位置如图所示,化简:|b -c |-|b -a |+|a +c |结果是 ( )A .c 2B .a 2C .b c 22-D .b c a 222-+二、填空题(每题3分,共30分)9.武汉火神山医院建筑面积339000000平方厘米,拥有1000张床位,将339000000平方厘米用科学记数法表示应为 平方厘米.10.比较大小:87-119-.11.已知55y x a和ba y x -232是同类项,则a ﹣b 的值是 .12.若关于x 的方程320a x-+=是一元一次方程,则=a __________.13.下数轴上到-3的距离是5个单位长度的点表示的数是 . 14.已知()311b am m +-是关于a 、b 的五次单项式,则=m .15.若关于x 、y 的多项式8-y )12(32-+-m x x 的值与y 无关,则=m ____________. 16.已知532++x x 的值为10,则代数式29-3-2+x x 的值为 .17.如图,用若干相同的小棒拼成含正五边形的图形,拼第1个图形需要5根小棒;拼第2个图形需要9根小棒;拼第3个图形需要13根小棒……按此规律,拼第2022个图形需要 根小棒.18.已知有理数c 、、b a 满足6=-b a ,2=-c b ,且b a <,则=-c a . 三、解答题(共96分) 19. 计算:(1)20(15)(14)18-+----; (2)3428122022⨯-÷+ 20.化简:(1)25(1)3(1)a a a ++--; (2)22(24)4(31)x xy x xy -+-- 21. 解方程:(1)43(20)3x x --= (2)3157146x x ---= 22.先化简,再求值:()()b a ab ab b a 22223435+---,其中1,2-==b a .23.“⊗”表示一种新运算,它的意义是()b a ab b a +-=⊗(1)求(﹣2)⊗(﹣3); (2)已知(3⊗4)⊗x =25-,求x 值.24.国庆期间,特技飞行队进行特技表演,其中一架飞机起飞后的高度变化如右表:(1) 此时这架飞机比起飞点高了多少千米?(2) 如果飞机每上升或下降1千米需消耗2升燃油,那么这架飞机在这4个动作表演过程中,一共消耗了多少升燃油?25.下面是小明同学解方程的过程,请认真阅读并完成相应任务.任务:①以上求解步骤中,第一步进行的是______,这一步的依据是__________;②以上求解步骤中,第________步开始出现错误,具体的错误是_____________﹔③请直接写出该方程正确的解为____________________.26.周末,小明陪爸爸去陶瓷商城购买一些茶壶和茶杯,甲、乙两家商店出售他们看中的同样品牌的茶壶和茶杯,茶壶每把定价都为30元,茶杯每只定价都为5元.这两家商店都有优惠,甲店买一把茶壶赠送茶杯一只;乙店全场九折优惠.小明爸爸需买茶壶5把,茶杯若干只(不少于5只).(1)设购买茶杯()5≥x x只,如果在甲店购买,需付款多少元?如果在乙店购买,需付款多少元?(用含x的代数式表示并化简).(2)当购买15只茶杯时,应在哪家商店购买合算?为什么?27.定义:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2等.类比有理数的乘方,我们把2÷2÷2记作23,读作“2的下3次方”,一般地,把n个a(a≠0)相除记作a n,读作“a 的下n次方”.理解:(1)直接写出计算结果:23=.(2)关于除方,下列说法正确的有(把正确的序号都填上);①a2=1(a≠0);②对于任何正整数n,1n=1;③34=43;④负数的下奇数次方结果是负数,负数的下偶数次方结果是正数. 应用:(3)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢? 例如:(幂的形式).试一试:将下列除方运算直接写成幂的形式:65= ;921)(-= ; (4)计算:()28-2241334-⨯+--÷-)()(28.如图,已知数轴上有A 、B 、C 三点,点O 为原点,点A 、点B 在原点的右侧,点C 在原点左侧,点A 表示的数为a ,点B 表示的数为b ,且a 与b 满足()0852=-+-b a ,25AC =.(1)直接写出a 、b 的值,a = ,b = ;(2)动点P 从点C 出发,以每秒4个单位的速度向右运动,同时动点Q 从点B 出发,以每秒2个单位的速度向右运动,设运动时间为()0≥t t 秒,请用含t 的式子表示点P ,点Q 以及线段PQ 长度;(PQ 就是点P 与点Q 之间的距离)(3)在(2)的条件下,若点M 在A 点以每秒6个单位向左与P 、Q 同时运动,当M 点与P 点或者Q 点相遇时,则立即改变运动方向,以原速度向相反方向运动。
江苏省徐州市2024-2025学年高三上学期11月期中抽测数学试题(含解析)

2024—2025学年度第一学期高三年级期中抽测数学试题1.答题前,考生务必将自己的姓名、准考证号等填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将各答案写在答题卡上写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,则( )A. B. C. D.2.复数的虚部为( )A.1B.C.D.3.若向量,则向量在向量上的投影向量为( )A. B. C. D.4.已知圆锥的母线长为13,侧面积为,则该圆锥的内切球的表面积为( )A.B. C. D.5.等比数列的各项均为正数,若,则( )A.588B.448C.896D.5486.在直角坐标系中,已知直线与圆相交于两点,则的面积的最大值为( )A.1C.27.已知,则( )A.B. C. D.{}{}230,3,1,0,1,2,3A xx x B =-≤=--∣A B ⋂={}1,2,3{}0,1,2,3{}3,1--{}3i 11i-+1-i i-()()2,1,3,4a b == ab 68,55⎛⎫ ⎪⎝⎭34,55⎛⎫ ⎪⎝⎭34,55⎛⎫- ⎪⎝⎭65π100π94000π81400π91000π81{}n a 1234327,2a a a a a a ++==+789a a a ++=xOy 1y kx =+224x y +=,A B AOB ()()11sin ,sin 23αβαβ+=-=22cos cos αβ-=136136-1616-8.已知定义在上的函数满足,且,则( )A.B.C.是增函数D.是减函数二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数,则( )A.的图象关于点对称B.的图象可由的图象向左平移个单位长度得到C.在区间单调递减D.当时,的值域为10.已知正方体的棱长为2,点分别是棱的中点,则( )A.直线与直线的夹角为B.直线与平面C.点到平面D.三棱锥11.如图,由函数与的部分图象可得一条封闭曲线,则()()0,∞+()f x ()()()f xy xf y yf x =+()e e f =()22e 1ef =()1010e 10e f =()f x ()f x x()π2sin 23f x x ⎛⎫=+ ⎪⎝⎭()f x π,03⎛⎫⎪⎝⎭()f x ()2sin2g x x =π3()f x ππ,122⎛⎫⎪⎝⎭π0,2x ⎛⎫∈ ⎪⎝⎭()f x 2⎤⎦1111ABCD A B C D -,M N 111,CC C D MN 1AD 60MN 11AB D A 1B MN 11C B MN -e e 1x y =-+()ln e 1y x =+-ΓA.有对称轴B.的弦长的最大值为C.直线被D.的面积大于三、填空题:本题共3小题,每小题5分,共15分.12.已知随机变量服从二项分布,若,则__________.13.在四面体中,是正三角形,是等腰直角三角形,,平面平面,点在棱上,使得四面体与四面体的体积之比为,则二面角的余弦值为__________.14.已知双曲线上所有点绕原点逆时针旋转角所得曲线的方程为,则的虚轴长为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)下表提供了某厂进行技术改造后生产产品过程中记录的产能(单位:)与相应的生产能耗(单位:标准煤)的几组对应数据:3456标准煤3.5455.5(1)求关于的经验回归方程;(2)已知该厂技术改造前产品的生产能耗为标准煤,试根据(1)中求出的经验回经验回归方程,预测该厂技术改造后产品的生产能耗比技术改造前降低了多少标准煤.参考公式:ΓΓx y t +=Γ)e 2-Γ2e 4-ξ()10,B p ()3111E ξ+=p =ABCD ABC ACD DA DC =ACD ⊥ABC E BD ACDE ABCD 1:2D AC E--()2222:10,0x y C a b a b-=>>C θ2268x y xy ++=C x t y t /tx /t y y x ˆˆˆy bx a =+100t 90t 100t t 1221ˆ()ˆˆ.ni i i ni i x y nxy b x n x ay bx ==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑16.(15分)已知椭圆,短轴的一个端点与两个焦点构成的三角形的面积为4.(1)求的方程;(2)设直线与交于两点,点,求.17.(15分)已知数列满足为常数.(1)若,求;(2)若的各项均为正数,证明:.18.(17分)在中,角的对边分别为,且.(1)求;(2)点分别在边上,且平分平分,.①求证:;②求.19.(17分)设定义在上的函数的导函数为.如果存在实数和函数,使得,其中对任意实数恒成立,则称函数具有性质.(1)求证:函数具有性质;(2)已知函数具有性质,给定实数,,其中.证明:;(3)对于函数和点,令,若点满足在处取得最小值,则称是的“点”.已知函数具有性质,点()2222:10x y C a b a b +=>>C 22y x =+C ,A B 11,04M ⎛⎫- ⎪⎝⎭MA MB ⋅ {}n a (*111,n nd n d a a +-=∈N )1211,3a a ==11nk k k a a +=∑{}n a 212n n n a a a +++≤ABC ,,A B C ,,a b c ()1cos sin b C B +=C ,P Q ,AC AB BP ,ABC CQ ∠ACB ∠BC BQ PB PC +=+AB APBC PC=ABC ∠R ()f x ()f x 'k ()x ϕ()()()244f x x kx x k ϕ=-+'()0x ϕ>x ()f x ()W k ()3212413f x x x x =-++()1W ()g x ()2W ()22121212,,sincos x x x x x x αθθ<=+2212cos sin x x βθθ=+θ∈R ()()()()12g g g x g x αβ-≤-()h x (),P a b ()()22()()L x x a h x b =-+-()()00,Q x h x ()L x 0x x =Q P h ()h x ()W k.若对任意的,都存在曲线上的一点,使得既是的“点”,又是的“点”,求的取值范围.()()()()()()121,,1,P t h t t P t h t t ϕϕ-++-t ∈R ()y h x =Q Q 1P h 2P h k2024—2025学年度第一学期高三年级期中抽测数学试题参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B【解析】,,选B.2.【答案】A 【解析】,虚部为1,选A.3.【答案】A【解析】在上的投影向量,选A.4.【答案】C【解析】,内切球半径,选C.5.【答案】B【解析】,则舍或2,选B.6.【答案】D 【解析】D.7.【答案】D【解析】,选D.8.【答案】B【解析】,则,则{}03A xx =≤≤∣{}0,1,2,3A B ⋂=()()1i 1i 1i 1i i 1i 1i 22-+--+-+++===+a b()210683,4,2555||a b b b ⋅⎛⎫== ⎪⎝⎭π13π65π,5,12rl r r h ==∴==1121021021313103R ⨯⨯⨯==++2100400π4π4π99S R ==⋅=4322a a a =+222,20,1q q q q q =+--==-()6789123764448a a a a a a q ++=++=⨯=111,22AOB d AB S AB d =≤==⋅=⋅ =≤()()()()2211111sin ,sin ,cos cos sin sin 23236αβαβαβαβαβ+=-=-=-+-=-⨯=-()()()f xy xf y yf x =+()()()(),ln f xy f y f x f x x xyyx x=+=,即对.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.【答案】AC 【解析】关于对称,A 对.向左平移个单位变为错.,则的一个单调减区间而在单调递减,C 对.,则.D 错.选AC.10.【答案】ABD【解析】与的夹角为与的夹角即为正三角形,,A 对.面与平面,B 对.设平面的法向量()()1010ln ,ee10f x x x f ==⋅()1010e 10,B ef =()π0,3f f x ⎛⎫=⎪⎝⎭π,03⎛⎫⎪⎝⎭()g x π3()π2π2sin 2,B 33g x x f x ⎛⎫⎛⎫+=+≠ ⎪ ⎪⎝⎭⎝⎭ππ3π2232x <+<()π7π,1212x f x <<∴π7π,1212⎛⎫⎪⎝⎭()πππ7π,,,1221212f x ⎛⎫⎛⎫⊂∴⎪ ⎪⎝⎭⎝⎭ππ,122⎛⎫⎪⎝⎭π02x <<ππ4ππ02π,2,2sin 223333x x x ⎛⎫<<<+<<+≤ ⎪⎝⎭MN ∥1,CD MN 1AD 1CD 1AD 11,AD C AD C ∠ 160AD C ∠∴= 1CA ⊥()()111111,2,2,2,0,2,2,cos ,AB D CA D C CA D C =-=-==MN ∴11AB D 1B MN ()100,,,,200n MN y z n x y z x z n B M ⎧⋅=-+=⎧⎪=∴⎨⎨--=⋅=⎩⎪⎩不放设,则错.对于D ,的外接圆是以为直径的圆上,设圆心为D 对.11.【答案】ACD【解析】由的反函数为,两者关于对称,A 正确.对于B ,,令在上单调递减;上单调递增,注意掉在和有一个零点,另一个零点为,B 错.对于与曲线对称轴垂直,如图,只需考察曲线上到距离大最大值即可,找出过与曲线相切且与平行的点即可,令,令,此时到的距离直线被正确.1x =()182,2,1,2,2,,C 3AB n z y n d n ⋅=-=-=--==1C MN MN ,P MN =22222132,,12(2)2OP R R R OP R ⎧+=⎪⎪∴==⎨⎪-+>⎪⎩()e e 1e e 1,ln e 1,e e 1xxxy y x y y =-+⇒=+-∴=+-∴=-+()ln e 1y x =+-y x =e e 1e e 1x x y x y x⎧=-+⇒-=-⎨=⎩()()e e 1,e 1x x h x x h x =+'--=-()h x (),0∞-()0,∞+()()()()120,12e 010,e h h h h x ->-=+-<=∴()2,1--0x ()()001,1,1,,A B x y ∴)01AB x ∴=->∴C,x y t +=ΓAB e e 1x y =-+P y x =P AB P ()e e 1xf x =-+()e 10x f x x ==⇒='()000,2e ,P P -y x =d =∴x y t +=Γ)e 2,C -对于D ,ВD 正确,选:ACD.三、填空题:本题共3小题,每小题5分,共15分.12.【答案】【解析】13.【答案】【解析】设,则,取中点为中点平面平面二面角为.14.【答案】4【解析】设在曲线上,也在曲线上且也在曲线上,曲线的两条对称轴分别为()()()()0Γ0122e 2e 212e 22P AB A B S S x x x ∴>=⋅-⋅-=-->- ( )021,x -<<-∴13()()110,,10,313130111,3B p E p E E p p ξξξξ~=+=+=+=∴=122DA DC ==AC =AC 1,2B ACD E ACD V BF DF BD E V --====∴BD ACD ⊥,ABC BD DE EF ∴===D AC E --1,cos 2DFE DFE ∠∠∴=(),P x y 2268x y xy ++=(),P y x ∴'2268x y xy ++=(),P y x ''--∴2268x y xy ++=y x=±而与曲线没有交点,为曲线实轴所在的直线联立实轴端点为,的虚轴长为4.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(1)(2),即改造后预测生产能耗为.预测该厂改造后100t产品的生产能耗比技术改造前降低了标准煤.16.【解析】(1)由题意,椭圆:.(2),解得或.17.【解析】(1).∴y x=-y x∴=221,68y xxx y xy=⎧⇒=±∴⎨++=⎩()()1,1,1,1--a∴=2c b⇒==C∴44114.5, 4.5,84.5,4 3.5i i i ii ix y x y x y xy=====-=∑∑4213.5ˆˆ45,0.7, 4.50.7 4.5 1.355iix x b a=-=∴===-⨯=∑0.7 1.5ˆ3.y x∴=+100,71.35x y==71.35t9071.3518.65-=∴18.65t222124,222ca ab c bca b c⎧=⎪⎧⎪=⎪⎪⋅=∴=⎨⎨⎪⎪=⎩=+⎪⎪⎩22184x y+=2222184y xx y=+⎧⎪⎨+=⎪⎩2xy=⎧⎨=⎩()1616149,0,2,,14999xA By⎧=-⎪⎪⎛⎫--⎨ ⎪⎝⎭⎪=-⎪⎩113514113514637,2,24369436914416MA MB⎛⎫⎛⎫⋅=⋅-=⨯-⨯=-=-⎪ ⎪⎝⎭⎝⎭()12111111,,2,121213n n na a n na a a+==∴-=∴=+-=-1111111,21(21)(21)22121n nnk kan k k k k==⎛⎫∴=∴=-⎪--+-+⎝⎭∑∑11111111112335212122121nn n n n⎛⎫⎛⎫=⋅-+-++-=-=⎪ ⎪-+++⎝⎭⎝⎭(2)整理得显然成立,.18.【解析】(1).(2)①证明:在和中分别使用正弦定理(2)同理()()1111111,0,0,11n n n d a d a a a n d a =+->≥∴=+-()()21111211111211n n n a a a nd n d n d a a a +++≤⇔≤+++-++2221111nd nd d a a ⎛⎫⎛⎫+≥+- ⎪ ⎪⎝⎭⎝⎭212n n n a a a +++∴≤()sin 1cos sin ,sin 0B C C B B +=> ππcos 12sin 1,63C C C C ⎛⎫-=⇒-== ⎪⎝⎭ABP BCP sin 4sin ,sin 3sin ABAP AB AP BC PC BC PC ∠θ∠θ⎧=⎪⎪⇒⇒=⎨⎪=⎪⎩①①②②()sin60sin sin60sin sin 60PB PC BC PB PCθθθ+===++ ()()1sin30sin 230sin 2302BC BQ BC BQθθ+==+++ ()()1sin 2302sin 230BC BQ PB PC θθ+++=+⇒=+19.【解析】(1)取,则具有性质.(2)具有性质函数使得时对恒成立在上单调递增,当且且另一方面,同理(3)设,,()1260sin 302θθ⇒+=<<+()12cos 602θ∴+==- ()()()22cos 3011cos 602cos 602θθθ-∴+=⇒--=()()()2cos 30sin 602602θθθ∴-+-=- ()()2cos 302cos 902θθ⇒-=- 30290,40,80ABC θθθ∠-=-∴==()()2244144f x x x x x '=-+=⋅-+()1x ϕ=()()()()244,f x x x x f x ϕ=⋅-+∴'()1W ()g x ()2,W ∴∃()x ϕ()()()2248g x x x x ϕ=-+'()()22240x x x ϕ=⋅-+>x ∀∈R ()g x ∴R ()()1212,x x g x g x <∴< 2222222111sin cos ,cos sin x x x x x x αθθβθθ≤+=≥+=()()()()()()()()2121,,g g x g g x g g g x g x αβαβ∴≤≥∴-≤-22111sin cos x x x αθθ≥+=2x β≤()()()()()()()()1212,,g g x g g x g g g x g x αβαβ∴≥≤∴-≥-()()()()()()2112g g g x g x g x g x αβ∴-≤-=-()()()()221(1)[]L x x t h x h t t ϕ=-++--()()()()222(1)[]L x x t h x h t t ϕ=--+-+()()()()()()1212L x x t h x h t t h x ϕ⎡⎤=-++--⎦'⎣'对,都存在曲线上的一点,使得既是的点又是的点设既是,也是的最小值点,两函数定义域为也为两函数极小值点,①,②,①-②具有性质恒成立故恒成立综上:的取值范围为.()()()()()()2212L x x t h x h t t h x ϕ⎡⎤=--+-+⋅⎦'⎣' t ∀∈R ()y h x =Q Q 1P h 2P h ()000,,P x y x ∴()1L x ()2L x 0,x ∴R ()()10200L x L x ∴==''()()()()()0002120x t h x h x h t t ϕ⎡⎤⇒-++--=⎣⎦'()()()()()0002120x t h x h x h t t ϕ⎡⎤---+⎣'+=⎦()()()()()00044010h x t h x t h x ϕϕ⇒-⋅='⇒'⋅'⇒=>()h x ()()()0,00W k t h x ϕ∴>⇒>'2440kx x k -+>2116160k k k >⎧⇒⇒>⎨-<⎩k ()1,∞+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年度第一学期期中检测 七年级数学试题 (全卷共120分,考试时间90分钟) 温馨提示:请把答案全部填涂在答题纸上,否则不给分. 一、选择题(本大题有8小题,每小题3分,共24分。在每小题所给出的四个选项中,只.有一项...是符合题目要求的,请将正确选项前的字母代号填写在答题.....卡.)
1.下列是无理数的是 A.0.666… B.227 C.2 D.2.62626662 2.气象部门测定高度每增加1km,气温约下降5℃,现在地面气温是15℃,那么4km高空的气温是 A.5℃ B.0℃ C.-5℃ D.-15℃ 3.下列各数中,是负数的 A.)51( B.|41| C. 2)31( D.|61| 4.下列各式计算正确的是 A.a2 + a2=2a4 B.5m2-3m2=2 C.-x2 y + yx2=0 D.4m2n-m2n=2mn 5.某商店出售三种不同品牌的大米,米袋上分别标有质量,如下表: 大米种类 A品牌大米 B品牌大米 C品牌大米 质量标示 (10±0.5)kg (10±0.3)kg (10±0.2)kg 现从中任意拿出两袋不同品牌的大米,这两袋大米的质量最多相差 A.0.8kg B. 0.6kg C.0.4kg D.0.5kg 6.下列说法正确的是 A. 两个数之差一定小于被减数 B.减去一个负数,差一定大于被减数 C.减去一个正数,差一定大于被减数 D. 0减去任何数,差都是负数
7.上等米每千克售价为x元,次等米每千克售价为y元,取上等米a千克和次等米b千克,混合后的大米每千克售价为
A.abxy B.axbyab C.axbyab D.2xy 8.当a取一切有理数时,下列代数式的值一定是正数的是 A. 2a B. a C. 2(6)a D. 213x 二、填空题(本大题有8小题,每小题3分,共24分). 9.-2的相反数是 ▲ . 10.某水库的水位下降1米,记作 -1米,那么 +1.2米表示 ▲ . 11.有资料表明,被称为“地球之肺”的森林正以每年15 000 000公顷的速度从地球上消失,每年森林的消失量用科学记数法表示应为 ▲ 公顷.
12.代数式-322ab的系数是 ▲ . 13.数轴上,若A,B表示互为相反数的两个点,A在B的左边,,并且这两点的距离为8,则A点所表示的数是 ▲ . 14.若|x-3|+(y+2)2=0,则x2y的值为 ▲ . 15.已知代数式x+2y的值是3,则代数式2x+4y+1的值是 ▲ . 16.当n等于1,2,3,…时,由白色小正方形和黑色小正方形组成的图形分别如图所示,则第n个图形中白色小正方形和黑色小正方形的个数总和等于 ▲ . (用含n的代数式表示,n是正整数)
第16题 三、解答题(本大题有9小题,共72分. 解答时应写出文字说明或演算步骤.) 17.(本题6分)在数轴上表示下列各数,并把它们按照从小到大....的顺序排列
2
1
3,2,0,1,22
-1-2-3-4-5543210 18.(本题10分)计算: (1) -10-(-16)+(-24) (2) 5÷(-35)×53
19.(本题10分)计算: (1)111(+)20245 (2)311(10.5)(4)3
20.(本题10分)合并同类项: (1) 2231253xxxx (2)2221231aaaa
21.(本题6分) 先化简,再求值:-3(2x2-xy)+4(x2+xy-6),其中x=-1,y=2 22.(本题6分) 已知 4x2my3+n与-3x6y2是同类项, 求多项式22222110.30.452mnmnnmmnnm的值.
23.(本题6分)某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数). 星期 一 二 三 四 五 六 日 增减 -5 +7 -3 +4 +10 -9 -25 (1)本周三生产了多少辆摩托车? (2)本周总生产量与计划生产量相比,是增加了还是减少了? (3)生产量最多的一天比生产量最少的一天多生产了多少辆? 24. (本题8分)某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①西装和领带都按定价的90%付款;② 买一套西装送一条领带。现某客户要到该服装厂购买x套西装(x≥1),领带条数是西装套数的4倍多5.
(1)若该客户按方案①购买,需付款________________元:(用含x的代数式表示) 若该客户按方案②购买,需付款______________元. (用含x的代数式表示) (2)若x=10,通过计算说明此时按哪种方案购买较为合算? 25.(本题10分) 如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向. (1)图中A→C( , ),B→C( , ),C→ (+1,-2); (2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P的位置; (3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程. (4)若图中另有两个格点M、N,且M→A(3-a,b-4),M→N(5-a,b-2),则N→A应记为什么? 2016-2017学年度第一学期期中检测 七年级数学试题参考答案及评分标准
一、选择题 题号 1 2 3 4 5 6 7 8 答案 C C B C A B C D
二、填空题
三、解答题 17. 图略,每个点1分,共5分,)1(0221322 ..........................6分
18.(1)10(16)(24) (2)355()53 101624 ....... 2分
555()33 . ..............................7分
18 .......5分
1259 ..............................10分
19.(1)111()20245 (2)311(10.5)(4)3 111202020245 ...... 2分
3111234
..............................8分
=1054 ...... 4分 118 .............................. 9分 1 ...... 5分
9. 2 10. 上升1.2米 11. 1.5×107 1232 13. ﹣4 14. ﹣18 15. 7 16. n2
+4n 78 ................ ......10分
20.(1)2231253xxxx (2)2221231aaaa 2232315xxxx .............. 3分
22212333aaaa .............. 7分
226xx ........ ...... 5分
22232313aaaa ..............9分
= 22aa .............. 10分
21. -3(2x2-xy)+4(x2+xy-6) 22634424xxyxxy .............................
....... 2分22724xxy ...... ...... ...... ...... ..........
........ 4分 当 x=-1,y=2 时 2=21+71224原式 ...... ...... ...... ................
........5分 =217(2)24 21424 40 ...... ...... ...... ...... ...........
. ...... 6分
22.(1)26,3mm ..... ...... ............ .................. ...... ...... 1分 1,23nn ...... ...... ...... ...... .................. ............
2分 22222110.30.452mnmnnmmnnm
2211(0.31)(0.4)25mnmn ...... ...... ...... ...... ............
...... 3分
221155mnmn . ...... ...... ...... ...... ............
..... 4分
22
11
313-155 ...... ...... ...... ...... ............ ...... ..
.... 5分
93=+
55
12=
5 ...... ...... ...... ...... ........... ...... .
..... 6分
23. (1)本周三生产了300-3=297辆摩托车 . ................................... 2分 (2)-5+7-3+4+10-9-25= -21<0 所以本周总生产量与计划生产量相比,是减少了 ............ 4分 (3)+10-(-25)=35辆 ...... .................................... 6分