柴油加氢工艺流程

合集下载

柴油精制流程

柴油精制流程

一、装置简介1、装置组成装置组成:装置由反应部分(包括新氢、循环氢联合压缩机组)、分馏部分、干气脱硫部分、公用工程部分组成。

2、生产方案柴油加氢精制装置采用加氢精制催化剂DN200,以直馏柴油和催化裂化柴油混合油为原料,经过催化加氢反应进行脱硫、脱氢、烯烃饱和及部分芳烃饱和,生产精制柴油,保证柴油达到GB2522000轻柴油质量标准。

二、主要工艺技术路线1、原料油过滤为了防止放反应器因进料中的固体颗粒堵塞导致压降过大而造成的非正常停工,在装置内设置自动反冲洗过滤器,脱除原料油中大于25微米的固体颗粒。

2、原料油惰性气体保护因为原料油与空气接触会生成聚合物和胶质,为有效防止结垢,原料油缓冲罐采用脱硫燃料气气封。

3、高压空冷器前注水加氢过程中生成的H2S、NH3,在一定温度下会生成NH4HS结晶,沉积在空冷器管束中,导致系统压降增大。

因此在反应流出物进入空冷器前注入脱盐水来溶解铵盐结晶析出。

4、高压换热器采用双壳程、螺纹锁紧环形式,提高换热效率,减少换热面积,节省投资。

5、从工艺流程的优化、高效换热设备的应用、新型内构件的设计技术应用等多方面考虑,采用综合节能技术,降低装置的能耗。

6、采用炉前混氢方案,提高换热器效率和减缓加热炉结焦程度。

7、采用板焊结构热壁反应器。

反应器内件包括入口扩散器、分配盘、冷氢箱、出口收集器等,使进入反应器中催化剂床层的物流分布均匀,催化剂床层的径向温差小。

8、反应器入口温度通过调节加热炉燃料来控制,第二、第三床层入口温度通过调节急冷氢量来控制。

三、装置工艺流程原则工艺流程图附后,工艺流程叙述如下:1、反应部分原料油自装置外来,首先经原料油/低分油换热器(E1109)与低分油换热,然后通过原料油过滤器(F11101)进行过滤,除去原料中大于25μm的颗粒,过滤后的原料油进原料油聚结器脱水,然后进入原料油缓冲罐(V1101),再经加氢进料泵(P1101A/B)升压后,在流量控制下,与混合氢混合作为混合进料。

100万吨柴油加氢操作规程(最终)

100万吨柴油加氢操作规程(最终)

中国石化股份有限公司荆门分公司企业标准100万吨/年柴油加氢装置工艺技术操作规程Q/JSH J0401·XX—20051 范围本规程主要规定了荆门分公司100万吨/年柴油加氢精制装置的工艺原理、流程、开停工操作法、岗位操作法及事故处理方案等内容。

本规程适用于荆门分公司100万吨/年柴油加氢精制装置的生产操作。

2 引用标准下列标准所包含的条文,通过在本标准中引用而构成本标准的条文。

本标准出版时,所示版本均为有效。

所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。

Q/JSH G1101·01—2003 工艺技术操作规程管理标准3 工艺概述3.1 加氢精制的工艺原理加氢精制就是在一定的工艺条件下,通过催化剂的作用,原料油与H2接触,脱除原料油中的硫、氮、氧及金属等杂质,并使烯烃饱和以提高油品使用性能的过程。

3.1.1主要化学反应3.1.1.1 加氢脱硫硫是普遍存在于各种石油中的一种重要杂元素,原油中硫含量因产地而异,典型的含硫化合物如硫醇类RSH、二硫化物RSR’、硫醚类RSR’与杂环含硫化合物噻吩等。

加氢脱硫反应如下:3.1.1.2 加氢脱氮氮是天然石油中的一种重要元素,其中石油中的氮多以杂环芳香化合物的形式存在,也有少量如苯胺类非杂环化合物;及吡啶、吡咯、喹啉及其衍生物等双环、多环、杂环氮化物。

氮化物可分为碱性化合物和非碱性化合物,其中五员氮杂环的化合物为非碱性化合物,其余为碱性化合物。

在加氢过程中非碱性化合物通常转变为碱性化合物。

几种含氮化合物的氢解反应如下:3.1.3 加氢脱氧石油中的含氧化合物含量远低于硫、氮化合物,通常石油馏分中的有机氧化物以羧酸(如环烷酸)和酚类为主,醚类、羧酸、苯酚类、呋喃类。

3.1.4 加氢脱金属反应石油中一般含有金属组分,其含量因原油的产地不同而各异,其存在形式以金属络合物存在,它们的存在对炼制过程原料油的性质影响很大,金属组分以任何形式在催化剂上沉积都可以造成孔堵塞或催化活性位的破坏而导致催化剂失活,此外,在热加工中金属组分会促进焦炭的形成。

柴油加氢工艺流程精

柴油加氢工艺流程精



延迟焦化柴油
加 氢
催化裂化柴油




燃料气 石脑油 加氢柴油
总厂燃料气管网 催化重整预分馏 油品调合罐区
加工原理:在柴油加氢精制改质装置,除了发生了加氢脱除杂质的反应, 还发生了改质反应,即使柴油中低十六烷值的组分在高压氢气和催化剂存在 的条件下转化成较高十六烷值的组分,进而提高整体柴油的十六烷值。
职业教育应用化工技术专业教学资源库《汽柴油生产操作》课程
柴油加氢装置工艺流程
郑哲奎
承德石油高等专科学校
职业教育应用化工技术专业教学资源库《汽柴油生 冷却器
排放氢
1
2
原料泵
加热炉

低分气



污水
分 罐
精制油去分馏塔 污水
冷氢
柴油加氢精制装置反应系统工艺流程图 (1 精制反应器 2 改质反应器)
职业教育应用化工技术专业教学资源库《汽柴油生产操作》课程
氢气

低分气



污水
分 罐
精制油去分馏塔 污水
高分罐内分离 三相是氢气、油相和 污水
低分罐内分离 三相是低分气、精制 油和污水
职业教育应用化工技术专业教学资源库《汽柴油生产操作》课程
分馏单元的任务是做好柴油 轻组分含量的控制,即50%蒸发 温度的控制。

反应油从低分罐来

原料泵
回流罐
瓦斯气 石脑油
柴油出装置
柴油加氢精制装置分馏系统工艺流程图
分馏塔底泵
职业教育应用化工技术专业教学资源库《汽柴油生产操作》课程
分离塔顶的气体产出量不应 有变化,如果其产量增高,说明 在反应器内发生的加氢裂化量增 加,需要调整反应温度、压力、 剂油比、空速等因素。

加氢裂化工艺流程介绍

加氢裂化工艺流程介绍

加氢裂化工艺流程介绍加氢裂化工艺是炼油(石油加工)领域中的一种常用工艺,主要用于将重质石油馏分转化为较轻质的高附加值产品,如汽油和润滑油等。

以下是对加氢裂化工艺流程的介绍。

加氢裂化工艺是一种在高温高压下进行催化裂化反应的技术。

该工艺可以将重质石油馏分分解成轻质零部件,其中包括液化气、汽油、柴油和润滑油等。

在加氢裂化过程中,石油馏分首先经过预热,使其达到反应温度(通常为500-550摄氏度)。

然后,经过高压氢气的加氢作用,将石油分子中的一些碳链断裂成更短的碳链,从而产生较轻质的产品。

加氢裂化的反应器通常采用催化剂床,催化剂床中放置着由金属氧化物和酸性氧化物组成的催化剂。

加氢裂化反应器中的催化剂具有催化裂化反应的活性,能够促进碳链断裂和氢气的加氢反应。

催化剂床中的催化剂能够在高温高压下,将石油分子中的碳链断裂成较轻质的碳链,并捕获并催化裂化反应中产生的不稳定的分子中间体。

在加氢裂化过程中,石油馏分经过反应器后,会进入分离器进行分离。

分离器用于将产物中的不同组分进行分离和纯化。

在分离器中,液相产物被分离出来,并通过蒸汽冷凝器进行冷却,得到液体产品。

而气相产物则通过气体分离装置进行分离,得到液化气等产品。

加氢裂化工艺的设备通常还包括氢气压缩装置、再生装置和废气处理装置等。

氢气压缩装置用于将氢气压缩到加氢裂化过程所需的高压,并输送至反应器中。

再生装置用于再生催化剂,以维持催化剂的活性。

废气处理装置用于处理加氢裂化过程中产生的废气,以达到环保要求。

加氢裂化工艺是一种重要的炼油工艺,可将重质石油馏分转化为较轻质的高附加值产品。

这种工艺通过在高温高压下进行催化裂化反应,将石油分子的碳链断裂成较轻质的碳链。

这种工艺在提高石油利用率、改善燃料质量和减少环境污染方面具有重要意义。

加氢技术

加氢技术
助剂是金属化合物,也有非金属元素;
加氢精制催化剂的化学组成对其活性的影响,主要表现
在主金属和助催化剂的比例上,主金属与助剂两者之间 应有合理的比例 。
助剂的作用按机理不同可以分为两类:
★ 结构性助剂:作用是增大表面积,防止烧结,提 高催化剂的结构稳定性;
★ 调变性助剂:作用是改变催化剂的电子结构、表 面性质或晶型结构,从而可以提高催化剂的活性 或选择性。
RSR H2S
④ 噻吩类:
+ 3H2
S
+ H2
H2 C4H9SH
C4H8 SH2
S
H2
C4H10
噻吩类加氢脱硫有两个途径:
先加氢使环上双键饱和,然后再开环,脱硫生成烷烃; 先开环脱硫生成二烯烃,然后二烯烃再加氢饱和。
对许多有机含硫化合物的加氢脱硫反应进行研究表明:
硫醇、硫醚、二硫化物的加氢脱硫在较缓和的条件下 就能进行;环状化合物加氢脱硫比较困难。
深度加氢精制大多是加氢处理过程,加氢裂化和加氢处理 相比,前者属于转化率高,以生产轻质油为主要目的的加 氢处理过程。
临 氢 降 凝(hydro-defreezing)
主要用于生产低凝柴油,采用具有选择性的分子筛催化剂 (ZSM-5系列),能有选择性地使长链的正构烷烃或少侧链的烷 烃发生裂化反应,而保留芳烃、环烷烃和多侧链烷烃,从而降 低馏分油的凝点。 汽油:目的不是降凝,而是将直链烷烃除去,提高汽油抗爆性。
CH3
2.烯烃
在加氢裂化过程中,烯烃可进行加氢、异构化、环化和 聚合等反应;
加氢和异构化反应速度明显大于环化和聚合反应;
大分子烯烃可进一步发生分解,生成更小分子的烯烃,进 而被加氢饱和;
加氢裂化反应产品中烯烃含量少,产品的安定性好。

柴油加氢装置

柴油加氢装置
减渣中硫、氮、氧、微金属含量最多,焦化装置原料是100%减渣
精制反应器内发生的反应
含硫有机物
催化剂
H2
烃类
含氮有机物
H2
催化剂
烃类
含氧有机物
H2
催化剂
烃类
金属有机物
H2
催化剂
烃类
烯烃
催化剂
H2
烷烃
H2S NH3 H2O 金属单质
与重整精制反应不同有:烃类碳数不同,杂质含量不同。 与重整精制反应相同有:均为放热反应,体积缩小反应。
低 分 罐
精制油去分馏塔 污水
在改质反应器内发生的主要反应第1、2步反应,
十六烷值为零
十六烷值约20以上
非柴油组分
想避免第3步反应的发生,就要控制好反应深度,即反应 温度、反应压力、反应空速、氢油比等。
新氢 原料泵
柴油加氢精制装置反应系统工艺流程
循环氢压缩机 冷却器
排放氢
加热炉
1
2

低分气



高 分 罐
污水
冷氢
低分气
低 分 罐
精制油去分馏塔 污水
高分罐分离的是油、水、氢气三相的。
新氢 原料泵
柴油加氢精制装置反应系统工艺流程
循环氢压缩机 冷却器
排放氢
加热炉
1
2

低分气



污水
分 罐
精制反应器
改质反应器
冷氢
精制油去分馏塔 污水
排除的污水中,含有H2S、NH3,这是物 理方法第一次脱除S、N、O元素。
催化剂
烯烃
催化剂
H2
烃类 烃类 烃类 烃类 烷烃

重油加氢工艺流程

重油加氢工艺流程

重油加氢工艺流程重油加氢工艺流程是一种将重油中的硫、氮、金属等杂质去除,并降低其凝点、减少其粘度的技术。

下面是一个典型的重油加氢工艺流程。

首先,通过原油蒸馏装置,将原油分离成不同的馏分,其中包括重油。

重油是由原油中的高碳分子组成,具有高粘度、高凝点和高硫含量等特点。

然后,将分离出的重油送入加氢装置。

加氢装置通常由加热炉、加氢反应器、冷凝器和分馏塔等部分组成。

首先,重油通过加热炉加热至适宜的反应温度。

加热炉中的火焰将重油加热到700-800摄氏度,并将其分解为较小的分子。

然后,将加热后的重油送入加氢反应器。

加氢反应器中装有催化剂,通常是氢气和硫化镍等金属的复合物。

在高温和高压下,重油中的硫、氮等杂质与氢气反应,并被催化剂吸附。

这些反应将重油中的有害成分转变为无害成分,并降低了重油的粘度和凝点。

加氢反应器中的反应产物通过冷凝器冷却,并收集在分馏塔中。

分馏塔中设有多个塔板,将不同碳链长度的物质分离。

较轻的物质会上升到更高的塔板,而较重的物质会下降到较低的塔板。

最终,经过多次分馏,得到了净化后的重油和一些轻质燃料。

最后,将净化后的重油送入后处理装置,如加氢裂化装置。

在加氢裂化装置中,重油通过催化剂的作用,进一步分解和转化为较小的分子。

这些分子可以用作汽油、柴油等年轻并更易于燃烧的燃料。

整个重油加氢工艺流程中,加氢反应器是最关键的部分。

加氢反应器的设计和选择催化剂的性能对整个工艺的效果有着重要影响。

催化剂的选择应根据重油的特性、处理能力、硫和氮的含量等因素进行。

此外,反应温度和压力也需要进行调节,以确保反应的有效进行。

重油加氢工艺是一种利用氢气将重油中的有害杂质转化为无害物质的技术。

通过该工艺,可以降低重油的硫、氮含量,改善其燃烧性能,并获得较为清洁的燃料。

这对于减少空气污染、提高能源利用率具有重要意义。

加氢裂化工艺

加氢裂化工艺

加氢裂化工艺一、引言加氢裂化工艺是一种重要的炼油工艺,主要用于将重质石油馏分转化为高级汽油和柴油。

本文将详细介绍加氢裂化工艺的流程和设备组成。

二、加氢裂化工艺流程1. 原料预处理原料先经过蒸馏分离出各个馏分,然后将需要进行加氢裂化的重质馏分送入预处理装置。

预处理装置主要包括加热器、换热器和精密过滤器等设备,其作用是将原料加热至适宜温度,去除杂质和水分。

2. 加氢反应预处理后的原料进入反应器,与催化剂在高压下进行反应。

催化剂通常由铝酸盐、硅酸盐或钼酸盐等组成。

反应器内的温度通常在400-500℃之间,压力在20-30MPa之间。

加氢反应会使原料中的大分子链断裂,并与氢气发生反应生成较轻的烃类物质。

3. 分离和净化经过反应后的产物进入分离塔,塔内通过不同温度和压力的分离区间,将产物分为不同的组分。

其中,高级汽油和柴油是主要产品,其余产物可用于其他工艺或作为燃料。

产物中可能含有少量杂质和催化剂残留,需要通过净化装置进行处理。

4. 催化剂再生反应器中使用的催化剂在一定时间后会失效,需要进行再生。

催化剂再生主要包括焙烧、酸洗和还原等步骤。

焙烧将催化剂中的碳积聚物烧掉,酸洗去除催化剂表面的杂质,还原则是将氧化态的金属还原成金属原子。

三、加氢裂化工艺设备组成1. 反应器反应器是加氢裂化工艺中最重要的设备之一。

反应器通常由钢制成,内部涂有耐高温、耐腐蚀的陶瓷材料。

反应器通常具有自动控制系统和安全保护系统。

2. 分离塔分离塔是将产物分离为不同组分的关键设备。

分离塔通常由钢制成,内部涂有耐高温、耐腐蚀的陶瓷材料。

分离塔通常具有自动控制系统和安全保护系统。

3. 加热器加热器是将原料加热至适宜温度的设备。

加热器通常由钢制成,内部涂有耐高温、耐腐蚀的陶瓷材料。

加热器通常具有自动控制系统和安全保护系统。

4. 换热器换热器是将反应产生的废气或废水与进料进行换热的设备。

换热器通常由钢制成,内部涂有耐高温、耐腐蚀的陶瓷材料。

换热器通常具有自动控制系统和安全保护系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

柴油加氢工艺流程
柴油加氢工艺流程
柴油加氢是一种常用的炼油工艺,通过将柴油与氢气在催化剂的存在下进行反应,可以降低柴油中的硫、氮等杂质含量,提高柴油的质量和清洁度。

下面将介绍柴油加氢的工艺流程。

首先,在柴油加氢工艺中,需要收集原料柴油。

原料柴油一般是从炼油厂的蒸馏塔中分离出来的,含有一定的硫、氮等杂质。

为了确保柴油加氢的效果,原料柴油需要进行预处理。

预处理主要是通过加热和混合来去除柴油中的杂质和水分。

经过预处理后的柴油进入加氢反应器。

加氢反应器是柴油加氢工艺的核心部分。

在加氢反应器中,原料柴油与氢气通过催化剂进行反应。

催化剂的选择非常重要,通常使用的是铜、铁或锌等金属的氧化物。

氢气在催化剂的作用下与柴油中的硫、氮等杂质发生反应,生成硫化氢和氨等无害物质。

同时,催化剂还可以去除柴油中的饱和度较低的分子,使柴油的分子结构更加稳定。

反应过程需要控制温度和压力,一般温度在300℃至400℃之间,压力在20MPa至40MPa之间。

反应后的柴油气体混合物进入分离器。

在分离器中,将气体和液体分离。

气体中主要是未被反应的氢气和反应生成的硫化氢和氨等物质。

气体经过脱除硫器进行二次处理,以去除硫化氢和氨等有害物质。

液体中则主要是经过加氢反应后的柴油。

分离器将气体和液体分别收集。

最后,收集到的柴油经过一系列的处理步骤,如蒸馏和过滤等,以达到对柴油的进一步提纯。

经过处理后的柴油可以用于各种柴油动力设备和柴油发动机,提高动力设备的效率和清洁度。

总之,柴油加氢工艺是一种常用的炼油工艺,可以降低柴油中的硫、氮等杂质含量,提高柴油的质量和清洁度。

工艺流程包括预处理、加氢反应、分离和提纯等步骤。

通过精确的操作和控制,柴油加氢工艺可以生产出高质量的柴油,为各种柴油动力设备提供可靠的燃料。

相关文档
最新文档