因式分解的12种方法的详细解析
因式分解的十二种方法(已整理)[1]
![因式分解的十二种方法(已整理)[1]](https://img.taocdn.com/s3/m/40b8d68184868762caaed5ce.png)
因式分解的十二种方法:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。
因式分解的方法多种多样,现总结如下:1、提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1、分解因式x -2x -x(2003淮安市中考题)x -2x -x=x(x -2x-1)2、应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
例2、分解因式a +4ab+4b (2003南通市中考题)解:a +4ab+4b =(a+2b)3、分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3、分解因式m +5n-mn-5m解:m +5n-mn-5m= m -5m -mn+5n= (m -5m )+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)4、十字相乘法对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4、分解因式7x -19x-6分析:1 -37 22-21=-19解:7x -19x-6=(7x+2)(x-3)5、配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
例5、分解因式x +3x-40解x +3x-40=x +3x+( ) -( ) -40=(x+ ) -( )=(x+ + )(x+ - )=(x+8)(x-5)6、拆、添项法可以把多项式拆成若干部分,再用进行因式分解。
例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b)7、换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。
因式分解的12种方法精讲

因式分解常用12种方法及应用【因式分解的12种方法】把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。
因式分解的方法多种多样,现总结如下:L提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1.分解因式x3 -2x 2-xx,~x=x(x^_2x_ 1)2.应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
例2.分解因式a2 +4沥+4力2解:a2 +4ab+4b2 =(a+2b)23.分组分解法要把多项式am+cm+bm十bn分解因式,可以先把它前两项分成一组,并提出公因式。
,把它后两项分成一组,并提出公因式们从而得到ct(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3.分解因式m2 +5n-mn-5m解:m2 +5n・mn・5m= m 2-5m-mn+5n =(m2 -5m )+(-mn+5n)4.十字相乘法对于mx2 ^px^-q形式的多项式,如果a^b=m, c^d=q且ac+bd=p,则多项式可因式分解为(ctx+d)(bx+c)例4.分解因式7x2 -19x-6分析:1 x7=7, 2x(-3)=-6 lx2+7x(.3)=・19解:7x2-19x-6=f7x+2;(x-3;5.配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
例5.分解因式+6x-40 解x2 +6x-40=x2 +6x+( 9) -(9 ) -40=(x+ 3)2 -(7 )2 =[(x+3)+7][(x+3) —7]=(x+10)(x-4)6.拆、添项法可以把多项式拆成若干部分,再用进行因式分解。
例6.分解因式bc(b^c)+ca(c-a)-ab(a+b)角学:bc(b+c)+ca(c-a)-ab(a^-b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)-^bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b)7 .换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。
因式分解的十二种方法

因式分解的十二种方法把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。
因式分解的方法多种多样,现总结如下:1、提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1、分解因式x -2x -x(2003淮安市中考题)x -2x -x=x(x -2x-1)2、应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
例2、分解因式a +4ab+4b (2003南通市中考题)解:a +4ab+4b =(a+2b)3、分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3、分解因式m +5n-mn-5m解:m +5n-mn-5m= m -5m -mn+5n= (m -5m )+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)4、十字相乘法对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4、分解因式7x -19x-6分析:1 -37 22-21=-19解:7x -19x-6=(7x+2)(x-3)5、配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
例5、分解因式x +3x-40解x +3x-40=x +3x+( ) -( ) -40=(x+ ) -( )=(x+ + )(x+ - )=(x+8)(x-5)6、拆、添项法可以把多项式拆成若干部分,再用进行因式分解。
例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b)7、换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。
因式分解的12种方法

3、分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3、分解因式m +5n-mn-5m解:m +5n-mn-5m= m -5m -mn+5n= (m -5m )+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)6、拆、添项法可以把多项式拆成若干部分,再用进行因式分解。
例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b)7、换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。
例7、分解因式2x -x -6x -x+2解:2x -x -6x -x+2=2(x +1)-x(x +1)-6x=x [2(x + )-(x+ )-6令y=x+ , x [2(x + )-(x+ )-6= x [2(y -2)-y-6]= x (2y -y-10)=x (y+2)(2y-5)=x (x+ +2)(2x+ -5)= (x +2x+1) (2x -5x+2)=(x+1) (2x-1)(x-2)8、求根法令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x )例8、分解因式2x +7x -2x -13x+6解:令f(x)=2x +7x -2x -13x+6=0通过综合除法可知,f(x)=0根为,-3,-2,1则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1)9、图象法令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x )例9、因式分解x +2x -5x-6解:令y= x +2x -5x-6作出其图象,见右图,与x轴交点为-3,-1,2则x +2x -5x-6=(x+1)(x+3)(x-2)10、主元法先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。
因式分解的十二种方法

因式分解的十二种方法01、提公因法:如果一个多项式的各项都含有公因式,那么可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
【例1】分解因式322x x x --(2003淮安市中考题) 解:原式()221x x x =--02、应用公式法:由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
【例2】分解因式2244a ab b ++(2003南通市中考题) 解:原式()22a b =+03、分组分解法:要把多项式am an bm bn +++分解因式,可先把它前两项分成一组,并提出公因式a ,把它后两项分成一组并提出公因式b ,从而得到()()a m n b m n +++,又可以提出公因式()m n +,从而得到()()a b m n ++。
【例3】分解因式255m n mn m +--解:原式()()()()255555m m mn n m m n m m n m =--+=---=--04、十字相乘法:对于2mx px q ++形式的多项式,若ab m cd q ==、且ac bd p +=,则2mx px q ++可因式分解为()()ax d bx c ++【例4】分解因式27196x x -- 解:原式()()372x x =-+05、配方法:对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
【例5】分解因式2340x x +-解:原式222223339316934040222424x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=++--=+--=+-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()()313313852222x x x x ⎛⎫⎛⎫=+++-=+- ⎪⎪⎝⎭⎝⎭06、拆、添项法:可以把多项式拆成若干部分,再用进行因式分解。
【例6】分解因式()()()bc b c ca c a ab a b ++--+ 解:原式()()()bc a b c a ca c a ab a b =++-+--+()()()()()()()()()()()()()()()bc a b bc c a ca c a ab a b bc a b ab a b bc c a ca c a c a b a b b a c c a a b b c c a =++-+--+=+-++-+-=-+++-=++-07、换元法:有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。
因式分解的十二种方法

因式分解的十二种方法因式分解的十二种方法学习初中数学因式分解方程首要培养学习兴趣,并培养学习习惯;其次是多做题,熟练掌握;最后就是掌握好因式分解方程的常用方算法,与做题相结合,能够让自己更好的理解这些方算法。
接下来店铺为你带来因式分解方程的十二种方算法,希望对你有帮助。
因式分解方程是我们解决许多数学问题的有力工具。
接下来的内容是初二数学知识点之因式分解方程。
因式分解方程定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解方程(也叫作分解因式)。
分解因式与整式乘法为相反变形。
同时也是解一元二次方程中公式法的重要步骤1、因式分解方程与解高次方程有密切的关系。
对于一元一次方程和一元二次方程,初中已有相对固定和容易的方法。
在数学上可以证明,对于一元三次和一元四次方程,也有固定的公式可以求解。
只是因为公式过于复杂,在非专业领域没有介绍。
对于分解因式,三次多项式和四次多项式也有固定的分解方法,只是比较复杂。
对于五次以上的一般多项式,已经证明不能找到固定的因式分解方程法,五次以上的一元方程也没有固定解法。
2 、所有的三次和三次以上多项式都可以因式分解方程。
这看起来或许有点不可思议。
比如X^4+1,这是一个一元四次多项式,看起来似乎不能因式分解方程。
但是它的次数高于3,所以一定可以因式分解方程。
如果有兴趣,你也可以用待定系数法将其分解,只是分解出来的式子并不整洁。
3 、因式分解方程虽然没有固定方法,但是求两个多项式的公因式却有固定方法。
因式分解方程很多时候就是用来提公因式的。
寻找公因式可以用辗转相除法来求得。
标准的辗转相除技能对于中学生来说难度颇高,但是中学有时候要处理的多项式次数并不太高,所以反复利用多项式的除法也可以比较笨,但是有效地解决找公因式的问题。
方法因式分解方程没有普遍适用的方法,初中数学教材中主要介绍了提公因式法、公式法。
而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法,求根公式法,换元法,长除法,短除法,除法等。
高中数学因式分解方法大全(十二种)

因式分解的十二种方法把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。
因式分解的方法多种多样,现总结如下:1、提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1、分解因式x -2x -xx -2x –x=x(x -2x-1)2、应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
例2、分解因式a +4ab+4b解:a +4ab+4b=(a+2b)3、分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3、分解因式m +5n-mn-5m解:m +5n-mn-5m= m -5m -mn+5n= (m -5m )+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)4、十字相乘法对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4、分解因式7x -19x-6分析: 1 -37 22-21=-19解:7x -19x-6=(7x+2)(x-3)5、配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
例5、分解因式x +3x-40解x +3x-40=x +3x+( ) -( ) -40=(x+ ) -( )=(x+ + )(x+ - )=(x+8)(x-5)6、拆、添项法可以把多项式拆成若干部分,再用进行因式分解。
例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b)7、换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。
初中因式分解的12种方法,到了高中都能用的上

初中因式分解的12种方法,到了高中都能用的上
因式分解是人教版八年级上册的内容,在初中数学中属于方法类的知识点,学好因式分解,能解决很多数学问题,甚至对后面高中数学的学习都有着至关重要的作用。
因式分解的运用极为广泛,学霸天下君列出了几个应用场景。
用于求代数式的值
代数式的值
用于化简计算
化简计算
用于比较大小
比较大小
说明整除问题
整除问题
以上总结的四种题型,不论是在平时测验,还是在中考时,都会经常遇到,甚至在奥数试题中都是常见的,如果遇到这些题型,我们第一时间就应该想到,本题的考点是因式分解。
那么遇到因式分解的考题,具体解题方法和解题思路到底是怎样的呢,学霸天下君总结了12种因式分解的解题方法,一直可以用到高中。
文末有打印版资料获取方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解的12种方法的详细解析因式分解是将一个多项式写成几个较简单的乘积的形式。
在数学中,因式分解是一项重要的基础技能,常用于求解方程、化简表达式
和研究多项式的性质等方面。
以下是因式分解的12种常见方法的详细
解析。
1.提取公因式法:当多项式的各项中存在公共因子时,可以提取
出这个公因式,例如,对于多项式2x+6,可以提取出公因式2,得到
2(x+3)。
这种方法常用于求解关系式和化简分式等问题。
2.公式法:利用一些常用的公式进行因式分解。
例如,二次平方
差公式(x^2-y^2)=(x+y)(x-y),互补公式a^2-b^2=(a+b)(a-b)等。
这
种方法常用于解决关于二次方程、三角函数等问题。
3.配方法:对于二次型的多项式,可以利用配方法进行因式分解。
例如,对于多项式x^2+3x+2,可以进行配方法得到(x+1)(x+2)。
这种
方法需要将多项式转化为二次型形式,然后利用配方法进行分解。
4.求因子法:当多项式为多个因子的乘积时,可以用求因子的方
法进行因式分解。
例如,对于多项式x^3-8,可以将8进行因式分解为
2^3,然后利用立方差公式进行因式分解,即x^3-8=(x-2)(x^2+2x+4)。
5.幂的分解法:当多项式中有幂函数时,可以利用幂的分解法进
行因式分解。
例如,对于多项式x^3-y^3,可以利用立方差公式进行因式分解,即x^3-y^3=(x-y)(x^2+xy+y^2)。
6.多项式整除法:当多项式可以被另一个多项式整除时,可以利
用多项式整除法进行因式分解。
例如,对于多项式x^3-1,可以利用
x-1整除得到(x-1)(x^2+x+1)。
7.韦达定理:韦达定理是将多项式表示为二次型的形式,然后利
用二次型进行因式分解。
例如,对于多项式x^3+y^3+z^3-3xyz,可以
将其表示为(x+y+z)(x^2+y^2+z^2-xy-xz-yz)。
8.根的关系法:利用多项式的根的关系进行因式分解。
例如,对
于一元二次多项式ax^2+bx+c,可以利用二次方程求根公式进行因式分解,即ax^2+bx+c=a(x-x1)(x-x2),其中x1和x2为多项式的根。
9.综合方法:当多项式较复杂时,可以综合运用上述方法进行因
式分解。
根据多项式的特点或者利用不同的因式分解方法进行分解,
然后通过拆分、配合等操作得到最简形式。
10.分组法:对于多项式中存在多项式的乘积时,可以利用分组法
进行因式分解。
例如,对于多项式(x+y)^3,可以利用二项式定理展开
后进行分组,得到x^3+3x^2y+3xy^2+y^3。
11.换元法:当多项式中有变量替换时,可以利用换元法进行因式
分解。
例如,对于多项式x^4+y^4,可以进行变量替换,令u=x^2,
v=y^2,从而得到u^2+v^2。
12.单位根法:利用单位根的特性进行因式分解。
例如,对于一元
二次多项式x^2+2x+2,可以通过试探单位根-1进行因式分解,即
(x+1)(x+1)=x^2+2x+1+x+1=x^2+2x+2。
通过熟练掌握以上因式分解的方法,可以在解决数学问题时更为
灵活和高效。
因式分解不仅仅是简单地按照套路分解,更要通过灵活
应用和思维拓展,选取适合的方法,将多项式分解为最简形式。
因此,进行因式分解的时候,需要对各种方法进行充分理解和掌握,结合具
体问题进行综合运用。