有机发光二极管显示原理及应用

有机发光二极管显示原理及应用
有机发光二极管显示原理及应用

有机发光二极管显示原理及应用

摘要:有机电致发光二极管( OLED) 因其白光材料的多样性、制程的简单性和成本低廉性, 特别是其面光源的属性, 相较于电致发光二极管( LED) 的点光源, 更有望成为未来显示器件的主角。本文介绍OLED 显示技术的最新进展, 分别阐述了OLED的显示原理,分类及优缺点。OLED器件的显示材料,OLED制备的核心工艺与技术,并简要介绍了OLED技术的应用前景。

关键词:OLED;显示技术;

1.引言

OLED 具有全固态、主动发光、高对比度、超薄、低功耗、无视角限制、响应速度快、工作范围宽、易于实现柔性显示和3D显示等诸多优点,将成为未来20 年最具“钱景”的新型显示技术。同时,由于OLED 具有可大面积成膜、功耗低以及其它优良特性,因此还是一种理想的平面光源,在未来的节能环保型照明领域也具有广泛的应用前景。

2.OLED发展过程

OLED的应用大概可以分为三个阶段:

(1)1997-2001年,OLED的试验阶段,在这个阶段,OLED开始走出实验室,主要应用在汽车音响面板,PDA手机上。但产量非常有限,产品规格也很少,均为无源驱动,单色或区域彩色,很大程度上带有试验和试销性质。2001年全球销售额仅1.5亿美元。

(2)2002-2005年,OLED的成长阶段,这个阶段人们将能广泛接触到带有OLED的产品,包括车载显示器,PDA、手机、DVD、数码相机、头盔用微显示器和家电产品。产品正式走入市场,主要是进入传统LCD、VFD等显示领域。仍以无源驱动、单色或多色显示、10英寸以下面办为主,但有源驱动的、全彩色和10英寸以上面板也开始投入使用。

(3)2005年以后,OLED的成熟阶段,随着OLED产业化技术的日渐成熟,OLED将全面出击显示器市场并拓展属于自己的应用领域。其各项技术优势将得到充分发掘和发挥。

3.OLED显示原理

图1.:OLED结构图

OLED的基本结构(如图1.所示)是由一薄而透明具半导体特性之铟锡氧化物(ITO),与电力之正极相连,再加上另一个金属阴极,包成如三明治的结构。整个结构层中包括了:空穴传输层(HTL)、发光层(EL)与电子传输层(ETL)。

4.OLED分类

以OLED使用的有机发光材料来看,一是以染料及颜料为材料的小分子器件系统,另一则以共轭性高分子为材料的高分子器件系统。同时由于有机电致发光器件具有发光二极管整流与发光的特性,因此小分子有机电致发光器件亦被称为OLED,高分子有机电致发光器件则被称为PLED。小分子及高分子OLED在材料特性上可说是各有千秋,但以现有技术发展来看,如作为监视器的信赖性上,及电气特性、生产安定性上来看,小分子OLED现在是处于领先地位,当前投入量产的OLED组件,全是使用小分子有机发光材料。

5.OLED制备的核心工艺和技术

OLED器件的发光效率和稳定性、器件的成品率乃至器件的成本等都要受到工艺技术的控制。有机发光二极管工艺技术的发展对产业化进程尤为重要,制备工艺可分为小分子有机发光二极管OLED工艺技术,和聚合物发光二极管PLED 工艺技术两大类。小分子OLED通常用蒸镀方法或干法制备,PLED一般用溶液方法或湿法制备。这里主要谈下小分子OLED的工艺。小分子OLED制备过程中的关键工艺技术,其中包括氧化铟锡(ITO)基片的清洗和预处理、阴极隔离柱制备、有机功能薄膜和金属电极的制备、彩色化技术、封装技术、显示驱动技术。

6.市场应用前景

全球OLED面板出货金额预测

由于有机发光二极管(OLED)材料上的优势,应用于显示器时,无疑将会产生深远的影响。与现有的各种显示器:CRT(阴极射线管显示屏)、PDP(等离子显示屏)、LCD(液晶显示屏)相比,OLED显示器具有以下明显的优势:

1、技术优势——无辐射,超轻薄(可达1毫米以下),柔软显示,屏幕可卷曲;

2、成本优势——OLED制造工艺比较简单,批量生产时的成本要比LCD至少节省20% ;

3、适应性强——能在-45℃~80℃正常显示;

4、节能性强——由于有机材料自己发光,驱动电压低,无需后背光源,因而更加节省能源;

5、可视角大——接近180度;

6、反应速度快——OLED显示屏中的单个元素反应速度是LCD液晶屏的1000倍,可以实现精彩的视频重放,色彩炫丽,绝不会出现液晶屏上的拖曳现象;

7、外形优势——OLED的重量比LCD轻得多,而且可以做到更加轻薄。

虽然一直以来,人们认为OLED最主要的缺点是寿命比LCD短,目前只能达到5000小时,而LCD可达10000小时,但最新的技术显示,通过将磷光材料与制作TFT背板的非晶硅集成, OLED产品可能延长3倍寿命。

正因为OLED具有如此多的优点,所以具有广泛的市场应用前景。主要领域包括:商业领域如POS机和ATM机、复印机、游戏机等;通讯领域如手机、移动网络终端等;计算机领域如PDA、商用和家用计算机等;消费类电子产品如音响设备、数码相机、便携式DVD;工业应用领域如仪器仪表等;交通领域如GPS、飞机仪表等。

但是在OLED的实际应用中,并非总是一帆风顺。虽然OLED技术可称之为最理想的显示技术,但它的研究开发历史并不长,要想真正实现其产业化,必须克服以下一些具体的难题,即因大面积化带来工艺、设备技术和驱动技术等方面的问题,从单色显示到多色显示带来的问题,封装技术与使用寿命的问题,阴极电极微细化的问题,驱动技术问题等。

有机膜的不均匀性将导致发光亮度和色彩的不均匀性,影响显示效果。显示面积增大,意味着器件必须有很高的瞬间亮度和高的发光效率,并在高亮度下有良好的稳定性。从单色显示到多色显示和彩色过渡时,将三种不同的发光材料分别镀在非常临近的三个小区域上将是又一大难题。要实现OLED的商业化,使用寿命问题必须解决,从材料和器件结构着手是途径之一。驱动技术在实验室研究阶段显得不是很重要,但是一旦考虑到产业化和大面积化,此问题就会变得异常突出,至今为止,还没有一套成熟的高度集成的大电流驱动IC。

当前世界上关于OLED器件的开发主要分布在日本、美国和欧州。欧美主要以高分子材料为主,可望有比较长的寿命。日本则以低分子材料为主,已获得很好的发光亮度,发光效率寿命。就目前的情况来看,在实际应用技术开发方面,日本遥遥领先,己经进入商业应用阶段。欧州居第二位,但在应用技术方面与日本的距离越来越近。美国主要拥有基本专利。致力于OLED开发的主要厂商有杜邦、三星电子、索尼、惠普、IBM、柯达、夏普,东芝,三洋、朗讯及飞利浦等。随着大规模的对OLED的研究及应用,相信全面解决以上问题将指日可待。业界普遍认为,OLED的产业化已经开始,今后3~5年是OLED技术走向成熟和市场需求高速增长的阶段。。

7.OLED显示器介绍

在2008年10月29日于日本横滨开幕的FPD International展会上,三星展示了他们使用柔性OLED(Flexible OLED)技术制作的手机,效果非常惊人。柔性OLED,最大的特点就是超薄、超低能耗,且可以随意扭曲——这让在屏幕上的一些创意得以实现,你可以做出一个真正大尺度的”折叠”手机,也可以做出一款

能环绕在手腕上的圆环

CES 2012消费电子展LG公布了该公司面板的规格细节。然采用WOLED(白光OLED)+滤色片的相对低成本方式,拥有WRGB四色通道像素组合。在颜色描绘方面某些情况下会比RGB组合产品更加精准。此外,色彩表现力受可视角度的影响也更小。而对比普通的CCFL/LED背光LCD面板,LGD这款OLED面板的色彩表现力优势更大,同时在响应时间方面也要

强得太多:响应速度比普通LCD显示器要快上1000倍,任何动态画面都很难出现重影或者模糊现象。除薄达4mm的厚度以外,这款55英寸的OLED电视成品重量仅7.5kg并可完美挂在墙上。

参考文献

李震梅,董传岱. 新型平板显示技术-OLED.信息终端,

邱勇,段炼. OLED照明及OLED有源显示材料与器件.新材料,

百度文库相关文档

数码管显示原理

数码管显示原理 我们最常用的是七段式和八段式LED 数码管,八段比七段多了一个小数点,其他的基本相同。所谓的八段就是指数码管里有八个小LED 发光二极管,通过控制不同的LED 的亮灭来显示出不同的字形。数码管又分为共阴极和共阳极两种类型,其实共阴极就是将八个LED 的阴极连在一起,让其接地,这样给任何一个LED 的另一端高电平,它便能点亮。而共阳极就是将八个LED 的阳极连在一起。其原理图如下。

其中引脚图的两个COM 端连在一起,是公共端,共阴数码管 要 将其接地,共阳数码管将其接正5伏电源。一个八段数码管称为一 位,多个数码管并列在一起可构成多位数码管,它们的段选线(即 a,b,c,d,e,f,g,dp )连在一起,而各自的公共端称为位选线。显示时, 都从段选线送入字符编码,而选中哪个位选线,那个数码管便会被点 亮。数码管的8段,对应一个字节的8位,a 对应最低位,dp 对应最 高位。所以如果想让数码管显示数字 0,那么共阴数码管的字符编码 为00111111,即0x3f ;共阳数码管的字符编码为11000000,即0xc0。 可以看出两个编码的各位正好相反。如下图。 MW 引脚图 共阴极 *5V 共阳取 g f vpM a ti e d COM c

共阴扱共阳极 共阳极的数码管0~f的段编码是这样的: unsigned char code table[]={ // 共阳极0~f 数码管编码0xc0,0xf9,0xa4,0xb0,//0~3 0x99,0x92,0x82,0xf8,//4~7 0x80,0x90,0x88,0x83,//8~b 0xc6,0xa1,0x86,0x8e //c~f }; 共阴极的数码管0~f的段编码是这样的: un sig ned char code table[]={// 0x3f,0x06,0x5b,0x4f, 0x66,0x6d,0x7d,0x07, 0x7f,0x6f,0x77,0x7c, 0x39,0x5e,0x79,0x71 }; 共阴极0~f数码管编码 //0~3 //4~7 //8~b //c~f Qa

LED发光二极管原理(图文)讲解学习

LED发光二极管原理(图文)半导体发光器件包括半导体发光二极管(简称LED)、数码管、符号管、米字管及点阵式显示屏(简称矩阵管)等。事实上,数码管、符号管、米字管及矩阵管中的每个发光单元都是一个发光二极管。 一、半导体发光二极管工作原理、特性及应用(一)LED发光原理发光二极管是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN结。因此它具有一般P-N结的I-N特性,即正向导通,反向截止、击穿特性。此外,在一定条件下,它还具有发光特性。在正向电压下,电子由N区注入P区,空穴由P 区注入N区。进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光,如图1所示。 假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。发光的复合量相对于非发光复合量的比例越大,光量子效率越高。由于复合是在少子扩散区内发光的,所以光仅在靠近PN结面数μm以内产生。 理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度Eg有关,即λ≈1240/Eg(mm)式中Eg的单位为电子伏特(eV)。若能产生可见光(波长在380nm紫光~780nm红光),半导体材料的Eg应在3.26~1.63eV之间。比红光波长长的光为红外光。现在已有红外、红、黄、绿及蓝光发光二极管,但其中蓝光二极管成本、价格很高,使用不普遍。 (二)LED的特性 1.极限参数的意义(1)允许功耗Pm:允许加于LED两端正向直流电压与流过它的电流之积的最大值。超过此值,LED发热、损坏。 (2)最大正向直流电流IFm:允许加的最大的正向直流电流。超过此值可损坏二极管。(3)最大反向电压VRm:所允许加的最大反向电压。超过此值,发光二极管可能被击穿损坏。 (4)工作环境topm:发光二极管可正常工作的环境温度范围。低于或高于此温度范围,发

有机发光二极管显示研究现状与发展

暨南大学 研究生课程论文 论文题目:有机发光二极管显示研究现状与发展 学院:理工学院 学系:物理系 专业:物理电子学 课程名称:发光与显示技术 学生姓名:汤华清 学号:1034234006 指导教师:刘彭义 2011年06 月15 日

有机发光二极管显示研究现状与发展 汤华清 (暨南大学物理系,广州510632) 摘要:有机电致发光二极管( OLED) 因其白光材料的多样性、制程的简单性和成本低廉性, 特别是其面光源的属性, 相较于电致发光二极管( LED) 的点光源, 更有望成为未来显示器件的主角。本文介绍OLED 显示技术的最新进展, 分别阐述了OLED的显示原理,分类及优缺点。OLED器件的显示材料,OLED制备的核心工艺与技术, 其中包括氧化铟锡(ITO)基片的清洗和预处理、阴极隔离柱制备、有机功能薄膜和金属电极的制备、彩色化技术、封装技术、显示驱动技术。并简要介绍了OLED技术的应用前景。 Abstract:Because the organic electroluminescence diode (OLED) its white light material's multiplicity, the system regulation's simplicity and cost inexpensive, specially its photo source's attribute, compares in the electroluminescence diode (LED) the point source, will become in the future display device's lead hopefully. This article introduced that the OLED display technology the newest progress, elaborated the OLED display principle separately, the classification and the good and bad points. , OLED component's demonstration material, OLED preparation core craft and technology, including the indium oxide tin (ITO) the substrate clean and the pretreatment, the negative pole insulated column preparation, the organic function thin film and metal electrode's preparation, the multicolored technology, the seal technology, the demonstration actuation technology. And introduced the OLED technology application prospect briefly. 关键词:OLED;显示技术;发光元件;彩色化技术;驱动电路 1.引言 OLED 具有全固态、主动发光、高对比度、超薄、低功耗、无视角限制、响应速度快、工作范围宽、易于实现柔性显示和3D显示等诸多优点,将成为未来20 年最具“钱景”的新型显示技术。同时,由于OLED 具有可大面积成膜、功耗低以及其它优良特性,因此还是一种理想的平面光源,在未来的节能环保型照明领域也具有广泛的应用前景。 2.OLED概述 2.1 OLED发展过程 1963年Pope发表了世界上第一篇有关OLED的文献,当时使用数百伏电压,加在有机芳香族Anthracene(葸)晶体上时,观察到发光现象。但由于电压过高,发光效率低,未得到重视。直到1987年伊士曼柯达公司的C.W. Tang及Steve Van Slyke等人发明以真空蒸镀法制成多层式结构的OLED器件后,研究开发才活越起来。同年,英国剑桥大学卡文迪许实验室的Jeremy Burroughes证明高分子有机聚合物也有电致发光效应。1990年英国剑桥大学的Friend等人成功的开发出以涂布方式将多分子应用在OLED上,即Polymer(多聚物,聚和物) LED,亦称PLED。不但再次引发第二次研究热潮,更确立了OLED在二十一世纪产业中所占的重要地位。近年来有源OLED(TFT-OLED)成为研究热点。OLED所用的TFT需采用多晶硅技术,与LCD所用的TFT有很大差别。OLED与低温多晶硅技术结合使得开发较大尺寸的显示屏成为可能。OLED的应用大概可以分为三个阶段:

6位7段LED数码管显示

目录 1. 设计目的与要求..................................................... - 1 - 1.1 设计目的...................................................... - 1 - 1.2 设计环境...................................................... - 1 - 1.3 设计要求...................................................... - 1 - 2. 设计的方案与基本原理............................................... - 2 - 2.1 6 位 8 段数码管工作原理....................................... - 2 - 2.2 实验箱上 SPCE061A控制 6 位 8 段数码管的显示................... - 3 - 2.3 动态显示原理.................................................. - 4 - 2.4 unSP IDE2.0.0 简介............................................ - 6 - 2.5 系统硬件连接.................................................. - 7 - 3. 程序设计........................................................... - 8 - 3.1主程序......................................................... - 8 - 3.2 中断服务程序.................................................. - 9 - 4.调试............................................................... - 12 - 4.1 实验步骤..................................................... - 12 - 4.2 调试结果..................................................... - 12 - 5.总结............................................................... - 14 - 6.参考资料........................................................... - 15 - 附录设计程序汇总.................................................... - 16 -

LED显示屏显示原理

LED显示屏系统原理及工程技术 导读:LED显示屏是利用发光二极管点阵模块或像素单元组成的平面式显示屏幕。由于它具有发光率高、使用寿命长、组态灵活、色彩丰富以及对室内外环境适应能力强等优点,自20世纪80年代后期开始,随着LED制造技术的不断完善,在国外得到了广泛的应用。 本主题首先介绍了LED显示屏的发展与应用概况。 在第一章中叙述了LED显示器件的基本工作原理及特性,详细介绍了LED点阵显示屏的具体电路和参数。第二章针对广泛应用的图文显示屏,在介绍它的基本组成之后,对各部分LED显示屏电路进行了深入的分析,并给出了完整实用的硬件电路图和全部汇编语言程序清单。 第三章的内容是图象显示屏,侧重分析了LED显示屏的灰度控制方法,并介绍了集成电路TLC5902的特性及应用。 第四章讨论了当时最先进的视频显示屏,就视频信号源的组织、视频LED显示屏的结构、主要集成电路芯片,以及配套的应用软件等,分别介绍了ZQL9701、DS90C031等芯片的技术特性和LEDSHOW、“LED管理工具&rdquo等软件的使用方法。书后还附有我国LED的行业标准。本书可供从事各类LED显示屏工作的工程技术人员参考,也可作为大专院校有关专业的教书参考书或教材。 前言 LED显示屏是利用发光二极管点阵模块或像素单元组成的平面式显示屏幕。由于它具有发光率高、使用寿命长、组态灵活、色彩丰富以及对室内外环境适应能力强等优点,自20世纪80年代后期开始,随着LED 制造技术的不断完善,在国外得到了广泛的应用。在我国改革开放之后,特别是进入90年代国民经济高速增长,对公众场合发布信息的需求日益强烈,LED显示屏的出现正好适应了这一市场形势,因而在LED显示屏的设计制造技术与应用水平上都得到了迅速的提高。 LED显示屏经历了从单色、双色图文显示屏,到图象显示屏,一直到今天的全彩色视频显示屏的发展过程。无论在期间的性能(提高亮度LED显示器及蓝色发光灯等)和系统的组成(计算机化的全动态显示系统)等方面都取得了长足的进步。目前已经达到的超高亮度全彩色视频显示的水平,可以说能够满足各种应用条件的要求。其应用领域已经遍及交通、证券、电信、广告、宣传等各个方面。我国LED显示屏的发展可以说基本上与世界水平同步,至今已经形成了一个具有相当发展潜力的产业。应该指出的是,我国LED产业不但在应用技术上取得了巨大的成功,而且在创新能力上有出色的表现,例如北京中庆数据设备公司研制的ZQL9701超大规模芯片,就代表了当前LED显示屏控制电路的国际水平。 与国内LED显示屏产业的迅速发展相比,目前关于LED显示屏的图书资料显得太少,不便于设计制造人员及运用维护人员的工作,由此萌发了编写一本LED显示屏技术用书的想法,适逢电子科技大学出版社之邀,斗胆动笔草就本书。书中分别就LED显示屏的概况、LED显示器件、图文显示屏、图象显示屏、视频显示屏等有关技术问题进行了叙述,以期使从事各类LED显示屏工作的读者能够从本书中得到一些有用的材料。 由于LED显示屏是多种综合应用的产品,涉及光电子学、半导体器件、数字电子电路、大规模集成电路、单片机及微机等各个方路及方法还要花较大篇幅进行介绍,容易冲淡主题。反过来采用集成电路和单片机等简单普及的刻与LED显述硬件又有软件。上述各个领域都自成体系,在本书中无法一一尽述,只能以显示意直接有关的部分,而不追求各相关技术自身的完成性;二、尽量采用简单普及的方案进不方案,可以追求相关技术的先进性。例如在一些控制电路中,能用常规集成电路实现,而又面,既示避免各个相关技术“从头说起”的麻烦,从而达到精简内容突出重点的目的。而不行描屏有进行讨论。书中在处理相关领域技术方面采取了以下两条对策:一、侧重叙述屏为主线,介绍相关技术在LED显示屏中的应用,不采器件的方案。 LED电子显示屏控制原理

有机发光二极管原理及应用

有机发光二极管原理及应用 梁亮5030209282 有机发光二极管诞生于1979年,由柯达公司罗切斯特实验室的邓青云博士及同事范斯莱克所发明。 ⑴有机发光二极管(OLED)的原理 有机发光二极管(OLED)同普通发光二极管(LED)发光的原理相同,即利用半导体经过渗透杂质处理后形成PN结,电子由P型材料引入,当电子与半导体内的空穴相遇时,有可能掉到较低的能带上,从而放出能量与能隙相同的光子,从而形成发光二极管。发光二极管的光线波长取决于发光材料的能隙大小。若要使二极管产生可见光,就要使材料的低能带与高能导带之间的能隙大小必须落在狭窄的范围内,大约2至3电子伏特。能量为一电子伏特的光子波长为1240纳米,处于红外区,当能量达到3电子伏特时,发出光子的波长约为400纳米左右,呈紫色。 有机发光二极管与传统发光二极管的区别在于,有机发光二极管所采用的半导体材料为有机分子材料。按照分子大小区分,可分为两大类:小分子的称之为低分子OLED,大分子的称为高分子OLEDP型有机分子。当P型有机分子和N型有机分子接触时,在两者的接触面就会产生类似发光二极管一样的发光现象。此外,采用氧化铟锡作为P型接触材料。由于氧化铟锡为透明导电材料,易于载流子注入,而且具有光线传播还需要有透明性能,非常适合做P型接触材料。 OLED的典型结构非常简单:玻璃基板(或塑料基衬)上首先有一层透明的氧化铟锡阳极,上面覆盖着增加稳定性的钝化层,再向上就是P型和N型有机半导体材料,最顶层是镁银合金阴极。这些涂层都是热蒸镀到玻璃基板上的,厚度非常薄,只有100到150纳米,小于一根头发丝的1%,而传统LED的厚度至少需要数微米。在电极两端加上2V到10V的电压,PN结就可以发出相当明亮的光。这种基本结构多年来一直没有太大的变化,人们称之为柯达型。由于组成材料的分子量很小,甚至小于最小的蛋白质分子,所以柯达型的OLED 又被称为低分子OLED。 第二种有机发光材料为高分子聚合物,也称为高分子发光二极管(PLED),由英国剑桥大学的杰里米伯勒德及其同事首先发现。聚合物大多由小的有机分子以链状方式结合在一起,以旋涂法形成高分子有机发光二极管。 旋转涂布工艺采用的原理是:在旋转的圆盘上(通常为每分钟1200转至1500转)滴上数滴液体,液体会因为旋转形成的离心力而呈薄膜状分布。在这种状态下,液体凝固后便可在膜体上形成晶体管等组件。膜体的厚度可通过调节液体粘度及旋转时间来调整。旋涂之后,要采取烘干的步骤来除去溶剂。 最初PLED是由一种称之为次苯基二价乙烯基(PPV)单层活性聚合物,夹于氧化铟锡和钙之间形成。铟锡氧化物为载流子注入层,而钙为电子传递层。现在的PLED又增添了一层聚合物载流子注入层。PPV聚合物产生黄光,具有效率高寿命长的特点,这是由于在低压工作环境下,聚合物层具有良好的导电性能。这种PLED应用于计算机显示器,其寿命可长达

8位数码管动态显示电路设计.

电子课程设计 — 8位数码管动态显示电路设计 学院:电子信息工程学院 专业、班级: 姓名: 学号: 指导老师: 2014年12月

目录 一、设计任务与要求 (3) 二、总体框图 (3) 三、选择器件 (3) 四、功能模块 (9) 五、总体设计电路图 (10) 六、心得体会 (12)

8位数码管动态显示电路设计 一、设计任务与要求 1. 设计个8位数码管动态显示电路,动态显示1、2、3、4、5、6、7、8。 2. 要求在某一时刻,仅有一个LED 数码管发光。 3. 该数码管发光一段时间后,下一个LED 发光,这样8只数码管循环发光。 4. 当循环扫描速度足够快时,由于视觉暂留的原因,就会感觉8只数码管是在持续发光。 5、研究循环地址码发生器的时钟频率和显示闪烁的关系。 二、总体框图 设计的总体框图如图2-1所示。 图2-1总体框图 三、选择器件 1、数码管 数码管是一种由发光二极管组成的断码型显示器件,如图1所示。 U13 DCD_HEX 图1 数码管 数码管里有八个小LED 发光二极管,通过控制不同的LED 的亮灭来显示出 不同的字形。数码管又分为共阴极和共阳极两种类型,其实共阴极就是将八个 74LS161计数器 74LS138译码 器 数码管

LED的阴极连在一起,让其接地,这样给任何一个LED的另一端高电平,它便能点亮。而共阳极就是将八个LED的阳极连在一起。 2、非门 非门又称为反相器,是实现逻辑非运算的逻辑电路。非门有输入和输出两个端,电路符号如图2所示,其输出端的圆圈代表反相的意思,当其输入端为高电平时输出端为低电平,当其输入端为低电平时输出端为高电平。也就是说,输入端和输出端的电平状态总是反相的。其真值表如表1所示。 图2 非门 表1 真值表 输入输出 A Y 0 1 1 0 3、5V电源 5V VCC电源如图3所示。 图3 5V电源

有机发光二极管显示原理及应用

有机发光二极管显示原理及应用 摘要:有机电致发光二极管( OLED) 因其白光材料的多样性、制程的简单性和成本低廉性, 特别是其面光源的属性, 相较于电致发光二极管( LED) 的点光源, 更有望成为未来显示器件的主角。本文介绍OLED 显示技术的最新进展, 分别阐述了OLED的显示原理,分类及优缺点。OLED器件的显示材料,OLED制备的核心工艺与技术,并简要介绍了OLED技术的应用前景。 关键词:OLED;显示技术; 1.引言 OLED 具有全固态、主动发光、高对比度、超薄、低功耗、无视角限制、响应速度快、工作范围宽、易于实现柔性显示和3D显示等诸多优点,将成为未来20 年最具“钱景”的新型显示技术。同时,由于OLED 具有可大面积成膜、功耗低以及其它优良特性,因此还是一种理想的平面光源,在未来的节能环保型照明领域也具有广泛的应用前景。 2.OLED发展过程 OLED的应用大概可以分为三个阶段: (1)1997-2001年,OLED的试验阶段,在这个阶段,OLED开始走出实验室,主要应用在汽车音响面板,PDA手机上。但产量非常有限,产品规格也很少,均为无源驱动,单色或区域彩色,很大程度上带有试验和试销性质。2001年全球销售额仅1.5亿美元。

(2)2002-2005年,OLED的成长阶段,这个阶段人们将能广泛接触到带有OLED的产品,包括车载显示器,PDA、手机、DVD、数码相机、头盔用微显示器和家电产品。产品正式走入市场,主要是进入传统LCD、VFD等显示领域。仍以无源驱动、单色或多色显示、10英寸以下面办为主,但有源驱动的、全彩色和10英寸以上面板也开始投入使用。 (3)2005年以后,OLED的成熟阶段,随着OLED产业化技术的日渐成熟,OLED将全面出击显示器市场并拓展属于自己的应用领域。其各项技术优势将得到充分发掘和发挥。 3.OLED显示原理 图1.:OLED结构图

LED工作原理

LED 工作原理 液晶是一种介乎于液体和晶体之间的物质,其显示的原理是通过给液晶施加不同的电压来改变其分子排列状态,从而控制光线的通过量,以便显示多种多样的图像。而液晶自身并不会发光,它只是控制光线的通过与否,因此所有的液晶面板都需要背光源来提供照明。 图1 液晶驱动原理 实际上,LED 也就是我们通常所说的发光二极管,通俗些讲,它就是在PN 结中注入载流子,少数载流子与多数载流子复合后,释放出能量,表现以光的形式,从而实现电致发光。它也并非什么新物件了,这些年已经被应用在户外广告、标牌、指示灯、汽车前大灯、电器按键背光源等多个方面。 发光二极管,是一种固态的半导体器件,它可以直接把电转化为光。LED 的心脏是一个半导体的晶片,晶片的一端附在一个支架上,一端是负极,另一端连接电源的正极,使整个晶片被环氧树脂封装起来。半导体晶片由两部分组成,一部分是P 型半导体,在它里面空穴占主导地位,另一端是N 型半导体,在这边主要是电子。但这两种半导体连接起来的时候,它们之间就形成一个P-N 结。当电流通过导线作用于这个晶片的时候,电子就会被推向P 区,在P 区里电子跟空穴复合,然后就会以光子的形式发出能量,这就是LED 发光的原理。 Field OFF Field ON 0//>-=?⊥εεε

图4 LED背光光源的工作原理 更重要的是,LED可发出从紫外到红外不同波段、不同颜色的光线,早些时候,LED 还只能发出单波长光线,还不能像白炽灯那样工作,甚至只有蓝、红、绿等颜色。 如果只是这样的话,LED无法被做成白光源,也就没法被应用为液晶电视的背光源了。而这些年,众多液晶电视厂商也都在这方面动脑筋,着重开发白光LED背光源。在这一方面,日本企业一直都是先行者,它们在1996年就提出了些解决方案,以日亚化学为例,它们提出的方案就是在蓝色LED上涂抹黄色荧光粉实现白光输出。 LED背光的优势点: 首先,采用了LED 背光,液晶面板的体积将进一步缩小;其次,LED是由众多栅格状的LED 组成,每个“格子”中都拥有一个LED,这样LED 背光就能实现真正的光源平面化;我们知道,平面化光源不仅有优异的亮度均匀性,还不需要复杂的光路设计,应用了L ED的液晶电视就可以被做得更薄,还能实现真正的光源平面化另外,在发光寿命方面,LE D背光源技术更是可以超出传统的CCFL许多。咱们知道,普通的CCFL 背光源的使用寿命一般在3万小时左右,即便是顶级的CCFL背光源的寿命也不过6万小时。而LED 背光则完全没有这样的问题,现阶段白色LED 背光的寿命已经高达10万小时,很多专家还提出这一成绩甚至有进一步发展的空间,消费者即使是24小时不间断使用,LED液晶电视也

LED数码管结构及工作原理

L E D数码管结构及工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

LED数码管的结构及工作原理 沈红卫 LED数码管(LED Segment Displays)是由多个发光二极管封装在一起组成“8”字型的器件,引线已在内部连接完成,只需引出它们的各个笔划,公共电极。LED数码管常用段数一般为7段有的另加一个小数点,还有一种是类似于3位“+1”型。位数有半位,1,2,3,4,5,6,8,10位等等....,LED数码管根据LED的接法不同分为共阴和共阳两类,了解LED的这些特性,对编程是很重要的,因为不同类型的数码管,除了它们的硬件电路有差异外,编程方法也是不同的。图2是共阴和共阳极数码管的内部电路,它们的发光原理是一样的,只是它们的电源极性不同而已。颜色有红,绿,蓝,黄等几种。LED数码管广泛用于仪表,时钟,车站,家电等场合。选用时要注意产品尺寸颜色,功耗,亮度,波长等。下面将介绍常用LED数码管内部引脚图。 图1 这是一个7段两位带小数点 10引脚的LED数码管 图2 引脚定义 每一笔划都是对应一个字母表示 DP是小数点. 数码管分为共阳极的LED数码管、共阴极的LED数码管两种。下图例举的是共阳极的LED数码管,共阳就是7段的显示字码共用一个电源的正。led 数码管原理图示意:

图3 引脚示意图 从上图可以看出,要是数码管显示数字,有两个条件:1、是要在VT端(3/8脚)加正电源;2、要使(a,b,c,d,e,f,g,dp)端接低电平或“0”电平。这样才能显示的。 共阳极LED数码管的内部结构原理图图4: 图4 共阳极LED数码管的内部结构原理图共阴极LED数码管的内部结构原理图: 图5 共阴极LED数码管的内部结构原理图

数码管动态扫描显示01234567

实验5 数码管动态扫描显示01234567 原理图:8个数码管它的数据线并联接到JP5, 位控制由8个PNP型三级管驱动后由JP8引出。 相关原理: 数码管是怎样来显示1,2,3,4呢?数码管实际上是由7个发光管组成8字形构成的,加上小数点就是8个。我们分别把他命名为 A,B,C,D,E,F,G,H。

搞懂了这个原理, 我们如果要显示一个数字2, 那么 A,B,G,E,D这5个段的发光管亮就可以了。也就是把B,E,H(小数点)不亮,其余全亮。根据硬件的接法我们编出以下程序。当然在此之前,还必须指定哪一个数码管亮,这里我们就指定最后一个P2.7。 LOOP: CLR P2.7 ;选中最后的数码管 SETB P0.7 ;B段不亮 SETB P0.5 ;小数点不亮 SETB P0.1 ;C段不亮 CLR P0.2 ;其他都亮 CLR P0.3 CLR P0.4 CLR P0.6 CLR P0.0 JMP LOOP ;跳转到开始重新进行

END 把这个程序编译后写入单片机,可以看到数码管的最后一位显示了一个数字2。 也许你会说:显示1个2字就要10多行程序,太麻烦了。 显示数字2则是C,F,H(小数点)不亮,同时由于接法为共阳接法,那么为0(低电平)是亮 为1(高电平)是灭。从高往低排列,(p0.7_p0.0)写成二进制为01111110, 把他转化为16进制则为A2H。我们可以根据硬件的接线把数码管显示数字编制成一个表格, 以后直接调用就行了。 有了这个表格上面显示一个2的程序则可简化为: LOOP: CLR P2.7 ;选中左边的数码管 MOV P0,#0A2H ;送数字2的代码到P0口 JMP LOOP ;跳转到开始重新进行 END

实验四八位七段数码管动态显示电路的设计

八位七段数码管动态显示电路的设计 一、实验目的 1、了解数码管的工作原理。 2、学习七段数码管显示译码器的设计。 3、学习VHDL的CASE语句及多层次设计方法。 二、实验原理 七段数码管是电子开发过程中常用的输出显示设备。在实验系统中使用的是两个四位一体、共阴极型七段数码管。其单个静态数码管如下图4-4-1所示。 图4-1 静态七段数码管 由于七段数码管公共端连接到GND(共阴极型),当数码管的中的那一个段被输入高电平,则相应的这一段被点亮。反之则不亮。共阳极性的数码管与之相么。四位一体的七段数码管在单个静态数码管的基础上加入了用于选择哪一位数码管的位选信号端口。八个数码管的a、b、c、d、e、f、g、h、dp都连在了一起,8个数码管分别由各自的位选信号来控制,被选通的数码管显示数据,其余关闭。 三、实验内容 本实验要求完成的任务是在时钟信号的作用下,通过输入的键值在数码管上显示相应的键值。在实验中时,数字时钟选择1024HZ作为扫描时钟,用四个拨动开关做为输入,当四个拨动开关置为一个二进制数时,在数码管上显示其十六进制的值。 四、实验步骤 1、打开QUARTUSII软件,新建一个工程。 2、建完工程之后,再新建一个VHDL File,打开VHDL编辑器对话框。 3、按照实验原理和自己的想法,在VHDL编辑窗口编写VHDL程序,用户可参照光 盘中提供的示例程序。 4、编写完VHDL程序后,保存起来。方法同实验一。

5、对自己编写的VHDL程序进行编译并仿真,对程序的错误进行修改。 6、编译仿真无误后,根据用户自己的要求进行管脚分配。分配完成后,再进行全编译 一次,以使管脚分配生效。 7、根据实验内容用实验导线将上面管脚分配的FPGA管脚与对应的模块连接起来。 如果是调用的本书提供的VHDL代码,则实验连线如下: CLK:FPGA时钟信号,接数字时钟CLOCK3,并将这组时钟设为1024HZ。 KEY[3..0]:数码管显示输入信号,分别接拨动开关的S4,S3,S2,S1。 LEDAG[6..0]:数码管显示信号,接数码管的G、F、E、D、C、B、A。 SEL[2..0]:数码管的位选信号,接数码管的SEL2、SEL1、SEL0。 8、用下载电缆通过JTAG口将对应的sof文件加载到FPGA中。观察实验结果是否与 自己的编程思想一致。 五、实验现象与结果 以设计的参考示例为例,当设计文件加载到目标器件后,将数字信号源模块的时钟选择为1464HZ,拨动四位拨动开关,使其为一个数值,则八个数码管均显示拨动开关所表示的十六进制的值。

LED显示屏系统原理

LED显示屏系统原理 LED显示屏是利用发光二极管点阵模块或像素单元组成的平面式显示屏幕。由于它具有发光率高、使用寿命长、组态灵活、色彩丰富以及对室内外环境适应能力强等优点,自20世 纪80年代后期开始,随着LED制造技术的不断完善,在国外得到了广泛的应用。在我国改革开放之后,特别是进入90年代国民经济高速增长,对公众场合发布信息的需求日益强烈,LED显示屏的出现正好适应了这一市场形势,因而在LED显示屏的设计制造技术与应用水 平上都得到了迅速的提高。 LED显示屏经历了从单色、双色图文显示屏,到图象显示屏,一直到今天的全彩色视频显示屏的发展过程。无论在期间的性能(提高亮度LED显示器及蓝色发光灯等)和系统 的组成(计算机化的全动态显示系统)等方面都取得了长足的进步。目前已经达到的超高亮 度全彩色视频显示的水平,可以说能够满足各种应用条件的要求。其应用领域已经遍及交通、 证券、电信、广告、宣传等各个方面。我国LED显示屏的发展可以说基本上与世界水平同 步,至今已经形成了一个具有相当发展潜力的产业。应该指出的是,我国LED产业不但在 应用技术上取得了巨大的成功,而且在创新能力上有出色的表现,例如北京中庆数据设备公 司研制的ZQL9701超大规模芯片,就代表了当前LED显示屏控制电路的国际水平。 与国内LED显示屏产业的迅速发展相比,目前关于LED显示屏的图书资料显得太少, 不便于设计制造人员及运用维护人员的工作,由此萌发了编写一本LED显示屏技术用书的 想法,适逢电子科技大学出版社之邀,斗胆动笔草就本书。书中分别就LED显示屏的概况、 LED显示器件、图文显示屏、图象显示屏、视频显示屏等有关技术问题进行了叙述,以期使从事各类LED显示屏工作的读者能够从本书中得到一些有用的材料。 由于LED显示屏是多种综合应用的产品,涉及光电子学、半导体器件、数字电子电路、 大规模集成电路、单片机及微机等各个方路及方法还要花较大篇幅进行介绍,容易冲淡主题。 反过来采用集成电路和单片机等简单普及的刻与LED显述硬件又有软件。上述各个领域都 自成体系,在本书中无法尽述,只能以显示意直接有关的部分,而不追求各相关技术自 身的完成性;二、尽量采用简单普及的方案进不方案,可以追求相关技术的先进性。例如在一些控制电路中,能用常规集成电路实现,而又面,既示避免各个相关技术从头说起”的麻 烦,从而达到精简内容突出重点的目的。而不行描屏有进行讨论。书中在处理相关领域技术 方面采取了以下两条对策:一、侧重叙述屏为主线,介绍相关技术在LED显示屏中的应用, 不采器件的方案。 LED电子显示屏控制原理 (一)系统组成本系统由计算机专用设备、显示屏幕、视频输入端口和系统软件等组成。 ?计算机及专用设备:计算机及专用设备直接决定了系统的功能,可根据用户对系统的不同要求选择不同的类型。 ?显示屏幕:显示屏的控制电路接收来自计算机的显示信号,驱动LED发光产生画面, 并通过增加功放、音箱输出声音。 ?视频输入端口:提供视频输入端口,信号源可以是录像机、影碟机、摄像机等,支

数码管动态显示实验报告

实验四数码管动态显示实验一 一、实验要求 1.在Proteus软件中画好51单片机最小核心电路,包括复位电路和晶振电路 2.在电路中增加四个7段数码管(共阳/共阴自选),将P1口作数据输出口与7段数码 管数据引脚相连,P2.0~P2.3引脚输出选控制信号 3.在Keil软件中编写程序,采用动态显示法,实现数码管分别显示数字1,2,3,4 二、实验目的 1.巩固Proteus软件和Keil软件的使用方法 2.学习端口输入输出的高级应用 3.掌握7段数码管的连接方式和动态显示法 4.掌握查表程序和延时等子程序的设计 三.实验说明 本实验是将单片机的P1口做为输出口,将四个数码管的七段引脚分别接到P1.0至P1.7。由于电路中采用共阳极的数码管,所以当P1端口相应的引脚为0时,对应的数码管段点亮。程序中预设了数字0-9的段码。由于是让四个数码管显示不同的数值,所以要用扫描的方式来实现。因此定义了scan函数,接到单片机的p2.0至p2.3 在实验中,预设的数字段码表存放在数组TAB中,由于段码表是固定的,因此存储类型可设为code。 在Proteus软件中按照要求画出电路,再利用Keil软件按需要实现的功能编写c程序,生成Hex文件,把Hex文件导到Proteus软件中进行仿真。为了能够更好的验证实验要求,在编写程序时需要延时0.5s,能让人眼更好的分辨;89C51的一个机器周期包含12个时钟脉冲,而我们采用的是12MHz晶振,每一个时钟脉冲的时间是1/12us,所以一个机器周期为1us。在keil程序中,子函数的实现是用void delay_ms(int x),其中x为1时是代表1ms。 四、硬件原理图及程序设计 (一)硬件原理图设计 电路中P1.0到P1.7为数码管七段端口的控制口,排阻RP1阻值为220Ω,p2.0到p2.3为数码管的扫描信号。AT89c51单片机的9脚(RST)为复位引脚,当RST为高电平的时间达到2个机器周期时系统就会被复位;31引脚(EA)为存取外部存储器使能引脚,当EA为高电平是使用单片机内部存储器,当EA为低电平时单片机则使用外部存储器。18、19引脚是接晶振脚。而接地和电源端在软件中已经接好,所以不用在引线。 如下图所示:

有机发光二极管(OLED)的应用和发展

有机发光二极管(OLED)的应用和发展 摘要: 有机电致发光现象最早发现于上世纪50年代。这项技术最早存在很大的缺点,一开始并未引起广泛的研究兴趣。直到20年前发生的突破性进展,OLED得以实现了各种功能化,并成为了最有前途的显示和发光器件。本文先介绍了OLED的历史,然后讲解了OLED的原理,并重点介绍了OLED 的应用化技术和在各种方面的应用,最后提出了对我国OLED 技术发展的展望。 关键词电致发光;半导体;有机发光二极管;显示器;OLED 照明光电综合;显示驱动电路 1Abstract:phenomenon of OLED is found in 1950s.This technology had many disadvantages at early time,at the beginning ,researchers have no interests on it.Until the breakthrough progressment of 20 years ago,OLED just could accomplish every kind of effection and became the most promising showing and optical apparatus.First of all,this article introduces the history of OLED,then explains the theory,and puts more attention on applied technologies and applies of every aspect,at last,it involves the development of OLED technologies .

LED发光二极管工作原理及检测方法

LED发光二极管工作原理及检测方法 发光二极管LED(Light-EmittingDiode)是能将电信号转换成光信号的结型电致发光半导体器件。 1、发光二极管LED主要特点 (1)在低电压(1.5~2.5V)、小电流(5~30mA)的条件下工作,即可获得足够高的亮度。 (2)发光响应速度快(10-7~10-9 s),高频特性好,能显示脉冲信息。 (3)单色性好,常见颜色有红、绿、黄、橙等。 (4)体积小。发光面形状分圆形、长方形、异形(三角形等)。其中圆形管子的外径有φ1、φ2、φ3、φ4、φ5、φ8、φ10、φ12、φ15、φ20(mm)等规格,直径1mm的属于超微型LED。 (5)防震动及抗冲击穿性能好,功耗低,寿命长。由于LED的PN结工作在正向导通状态,本射功耗低,只要加必要的限流措施,即可长期使用,寿命在10万小时以上,甚至可达100万小时。 (6)使用灵活,根据需要可制成数码管、字符管、电平显示器、点阵显示器、固体发光板、LED 平极型电视屏等。 (7)容易与数字集成电路匹配。 2.发光二极管的原理 发光二极管内部是具有发光特性的PN结。当PN结导通时,依靠少数载流子的注入以及随后的复合而辐射发光。普通发光二极管的外形、符号及伏安特性如图1 所示。LED正向伏安特性曲线比较陡,在正向导通之前几乎有电流。当电压超过开启电压时,电流就急剧上升。因此,LED属于电流控制型半导体器件,其发光亮度L(单位cd/m2,读作坎德拉每平方米)与正向电流IF近似成正双,有公式L =K IFm 式中,K为比例系数,在小电流范围内(IF=1~10mA),m=1.3~1.5。当IF>10mA时,m=1,式(L =K IF 即亮度与正向电流成正比。以磷砷化镓黄色LED为例,相对发光强度与正向电流的关系如图2所示。LED的正向电压则与正向电流以及管芯的半导体材料有关。使用时应根据所要求的显示亮度来选取合适的IF值(一般选10mA左右,对于高亮度LED可选1~2mA),既保证亮度适中,也不会损坏LED。若电流过大,会烧毁LED的PN结。此外,LED的使用寿命将缩短。 由于发光二极管的功耗低、体积小,色彩鲜艳、响应速度快、寿命长,所以常用作收录机、收音

数码管的驱动原理

数码管的驱动原理 所谓共阳共阴,是针对数码管的公共脚而言的。一个1位典型的数码管,一般有10个脚,8个段码(7段加1个小数点),剩下两个脚接在一起。各个段码实际上是一个发光二极管,既然是发光二极管,就有正负极。所谓共阳,也就是说公共脚是正极(阳极),所有的段码实际上是负极,当某一个或某几个段码位接低电平,公共脚接高电平时,对应的段码位就能点亮,进而组合形成我们看到的数字或字母。共阴刚好相反,也就是公共脚是负极(阴极),段码位是阳极,当公共脚接地,段码位接高电平时,对应段码位点亮。 1位数码管是这样,更多位的数码管也基本跟这个原理类似。 共阴共阳与电路接线密切相关,决定了驱动电路的接法,因此在电路设计前要考虑好数码管的类型,否则就不能实现显示的效果了。 驱动共阴数码管一般用PNP,共阳的用NPN 图一低电平有效,图二高电平有效

现在让我们用实验板上的两个数码管来做一个循环显示00~99数字的实验,先来完成必要的硬件部分, 数码管有共阴和共阳的区分,单片机都可以进行驱动,但是驱动的方法却不同,并且相应的0~9的显示代码也正好相反。 首先我们来介绍两位共阳数码管的单片机驱动方法,电路如下图: 网友可以看到:P2.6和P2.7端口分别控制数码管的十位和个位的供电,当相应的端口变成低电平时,驱动相应的三极管会导通,+5V通过IN4148二极管和驱动三极管给数码管相应的位供电,这时只要P0口送出数字的显示代码,数码管就能正常显示数字。 因为要显示两位不同的数字,所以必须用动态扫描的方法来实现,就是先个位显示1 毫秒,再十位显示1毫秒,不断循环,这样只要扫描时间小于1/50秒,就会因为人眼的视觉残留效应,看到两位不同的数字稳定显示。 下面我们再介绍一种共阴数码管的单片机驱动方法,电路如下图: 网友可以看到:+5V通过1K的排阻直接给数码管的8个段位供电,P2.6和P2.7端口分别控制数码管的十位和个位的供电,当相应的端口变成低电平时,相应的位可以吸入电流。单片机的P0口输出的数据相当于将数码管不要显示的数字段对地短路,这样数码管就会显示需要的数字。

相关文档
最新文档