MATLABsimulink在电机中的仿真

三相异步电动机Matlab仿真

中国石油大学胜利学院综合课程设计总结报告 题目:三相异步电机直接启动特性实验模型 学生姓名:潘伟鹏 系别:机械与电气工程系 专业年级: 2012级电气工程专业专升本2班 指导教师:王铭

2013年 6 月 27日

一、设计任务与要求 普通异步电动机直接起动电流达到额定电流的6--7倍,起动转矩能达到额定转矩的1.25倍以上。过高的温度、过快的加热速度、过大的温度梯度和电磁力,产生了极大的破坏力,缩短了定子线圈和转子铜条的使用寿命。但在电网条件和工艺条件允许的情况下,异步电动机也可以直接启动。本次课程设计通过MATLAB软件建模模拟三相异步电动机直接启动时的各个元器件上的电量变化。 参考: 电力系统matlab仿真类书籍 电机类教材 二、方案设计与论证 三相异步电动机直接起动就是利用开关或接触器将电动机的定子绕组直接接到具有额定电压的电网上。 由《电机学》知三相异步电动机的电磁转矩M与直流电动机的电磁转矩有相似的表达形式。它们都与电机结构(表现为转矩常数)和每级下磁通有关,只不过在三相异步电动机中不再是通过电枢的全部电流,而是点数电流的有功分量。三相异步电机电磁转矩的表达式为: (1-1)式中——转矩常数 ——每级下磁通 ——转子功率因数 式(1-1)表明,转子通入电流后,与气隙磁场相互作用产生电磁力,因此,反映了电机中电流、磁场和作用力之间符合左手定则的物理关系,故称为机械特性的物理表达式。该表达式在分析电磁转矩与磁通、电流之间的关系时非常方便。 从三相异步电动机的转子等值电路可知, (1-2) (1-3)将式(1-2)、(1-3)代入(1-1)得:

哈工大 电机学 MATLAB 仿真 实验报告

基于MATLAB的电机学计算机辅助分析与仿真 实验报告 班级: 学号: 姓名: 完成时间:

一、实验内容 1.1单相变压器不同负载性质的相量图 通过MATLAB 画出单相变压器带感性,阻性,容性三种不同性质负载的变压器向量图 1.2感应电机的S T -曲线 通过MATLAB 画出三相感应电动机的转矩转差率曲线 二、实验要求 2.1单相变压器不同负载性质的相量图 根据给定的仿真实例画出负载相位角30,0,302-=j 三种情况下得向量图,观察电压大小与相位的关系,了解总结负载性质不同对向量图的影响 2.2感应电机的S T -曲线 根据给定的实例,画出3.1~3.1-=s 的S T -曲线,了解感应电机临界转差率的大小和稳定工作区间的大小,给出定性分析 三、实验方法 3.1单相变压器不同负载性质的相量图 1.单相变压器不同负载性质的相量图 (1)先画出负载电压'2U 的相量; (2)根据负载的性质和阻抗角画出二次电流(规算值)的相量 (3)在2U 上加上一个与电流方向相同的压降,其大小为二次电流规算值'2I 与二次漏电阻规算值'2R 之积;再加上一个超前电流方向?90的压降,其大小为二次电流'2I 规算值与二次漏电抗规算值'2χ之积; (4)根据上一步结果连线,得出'2E ; (5)超前'2E 方向?90画出m Φ; (6)根据励磁电阻与电抗的大小得出励磁阻抗角,并超前m Φ一个励磁阻抗角的大小得出m I 的方向; (7)根据平行四边形法则,做出'2I -与m I 的和,即为1I ; (8)根据'21E E =得出1E ,并得出1E -。

(9)在1E -上加上一个与电流方向相同的压降,其大小为一次电流1I 与一次漏电阻1R 之积;再加上一个超前电流方向?90的压降,其大小为一次电流1I 与一次漏电抗1χ之积; (10) 根据上一步结果连线,得出1U ; 3.2感应电机的S T -曲线 实验采用matlab 对转矩转差率曲线进行仿真。 由转矩转差率关系公式知, 2212 2122 1)()(x c x s r c r s r U m T s s +++?Ω= 只有s 为自变量,其他参数均为已知。 编程时,先取s 在0.01-1.3正区间的S T -,进行绘图;再取相应负区间对S T -绘图;最后加入(0,0) 四、实验源程序(1分) 4.1单相变压器不同负载性质的相量图 见附录 4.2感应电机的T-S 曲线 %T-S 曲线绘制 %定义常量 R2 = 0.04; R1 = 0.06; M1 = 3; U1 = 380; W = 2*pi*1485/60; X1 = 0.27; X2 = 0.56; C = 1+X1/16.4; %画出s=0.01~1.3的T-S 曲线 s = 0.01:0.01:1.3; T=ones(1,length(s));

14元阵列天线方向图及其MATLAB仿真

14元阵列天线方向图及其MATLAB仿真

阵列天线方向图及其MATLAB 仿真 1设计目的 1.了解阵列天线的波束形成原理写出方向图函数 2.运用MATLAB 仿真阵列天线的方向图曲线 3.变换各参量观察曲线变化并分析参量间的关系 2设计原理 阵列天线:阵列天线是一类由不少于两个天线单元规则或随机排列并通过适当激励获得预定辐射特性的特殊天线。 阵列天线的辐射电磁场是组成该天线阵各单元辐射场的总和—矢量和由于各单元的位置和馈电电流的振幅和相位均可以独立调整,这就使阵列天线具有各种不同的功能,这些功能是单个天线无法实现的。 在本次设计中,讨论的是均匀直线阵天线。均匀直线阵是等间距,各振源电流幅度相等,而相位依次递增或递减的直线阵。均匀直线阵的方向图函数依据方向图乘积定理,等于元因子和阵因子的乘积。 二元阵辐射场: 式中: 类似二元阵的分析,可以得到N 元均匀直线振的辐射场: 令 ,可得到H 平面的归一化方向图函数,即阵因子的方向函数: 式中:ζφθψ+=cos sin kd 均匀直线阵最大值发生在0=ψ 处。由此可以得出 ])[,(212121ζθθθ?θj jkr jkr m e r e r e F E E E E --+=+=12 cos ),(21jkr m e F r E E -=ψ?θθζ φθψ+=cos sin kd ∑-=+-=10)cos sin (),(N i kd ji jkr m e e r F E E ζ?θθ?θ2πθ=)2/sin()2/sin(1)(ψψψN N A =kd m ζ?-=cos

这里有两种情况最为重要。 1.边射阵,即最大辐射方向垂直于阵轴方向,此时 ,在垂直于阵轴的方向上,各元观察点没有波程差,所以各元电流不需要有相位差。 2.端射振,计最大辐射方向在阵轴方向上,此时0=m ?或π,也就是说阵的各元电流沿阵轴方向依次超前或滞后kd 。 3设计过程 本次设计的天线为14元均匀直线阵天线,天线的参数为:d=λ/2,N=14相位滞后的端射振天线。基于MATLAB 可实现天线阵二维方向图和三维方向图的图形分析。 14元端射振天线H 面方向图的源程序为: a=linspace(0,2*pi); b=linspace(0,pi); f=sin((cos(a).*sin(b)-1)*(14/2)*pi)./(sin((cos(a).*sin(b)-1)*pi/2)*14); polar(a,f.*sin(b)); title('14元端射振的H 面方向图 ,d=/2,相位=滞后'); 得到的仿真结果如图所示: 14元端射振天线三维方向图的源程序为: y1=(f.*sin(a))'*cos(b); z1=(f.*sin(a))'*sin(b); x1=(f.*cos(a))'*ones(size(b)); surf(x1,y1,z1); 2 π?±=m

电机学matlab仿真大作业报告

. 基于MATLAB的电机学计算机辅助分析与仿真 实验报告

一、实验内容及目的 1.1 单相变压器的效率和外特性曲线 1.1.1 实验内容 一台单相变压器,N S =2000kVA, kV kV U U N N 11/127/21=,50Hz ,变压器的参数 和损耗为008.0* ) 75(=C k o R ,0725.0*=k X ,kW P 470=,kW P C KN o 160)75(=。 (1)求此变压器带上额定负载、)(8.0cos 2滞后=?时的额定电压调整率和额定效率。 (2)分别求出当0.1,8.0,6.0,4.0,2.0cos 2=?时变压器的效率曲线,并确定最大效率和达到负载效率时的负载电流。 (3)分析不同性质的负载(),(8.0cos 0.1cos ),(8.0cos 222超前,滞后===???)对变压器输出特性的影响。 1.1.2 实验目的 (1)计算此变压器在已知负载下的额定电压调整率和额定效率 (2)了解变压器效率曲线的变化规律 (3)了解负载功率因数对效率曲线的影响 (4)了解变压器电压变化率的变化规律 (5)了解负载性质对电压变化率特性的影响 1.1.3 实验用到的基本知识和理论 (1)标幺值、效率区间、空载损耗、短路损耗等概念 (2)效率和效率特性的知识 (3)电压调整率的相关知识 1.2串励直流电动机的运行特性 1.2.1实验内容 一台16kw 、220V 的串励直流电动机,串励绕组电阻为0.12Ω,电枢总电阻为0.2Ω。电动势常数为.电机的磁化曲线近似的为直线。其中为比例常数。假设电枢电流85A 时,磁路饱和(为比较不同饱和电流对应的效果,饱和电流可以自己改变)。

用matlab 仿真不同天线阵列个天线的相关系数

2.3.1 阵列几何图 天线阵可以是各种排列,下图所示分别为圆阵(UCA)、线阵(ULA)、矩形阵(URA)排列方式与空间来波方向关系图,为简化整列分析,假设阵元间不考虑耦合,L 为天线数目,天线间距相等且均为d ,为入射在阵列上的水平波达角,为垂直波达角。 图2- 1 阵列排列方式与空间来波方向的关系 1) 圆阵排列方式的天线响应矢量为: 011cos() cos() cos() cos() (,)[,,...,,...,]l L j j j j T U C A a e e e e ξ?ψξ?ψξ?ψξ?ψ θ?-----= 公 式2- 1 其中2/,0,1,...,1l l L l L ψπ==-为第l 天线阵元的方位角,sin(),w w k r k ξθ=为波 数 2) 线阵排列方式的天线响应矢量为: cos sin (1)cos sin (,)[1,,...,]w w jk d jk d L T U LA a e e ?θ ?θ θ?-= 公式2- 2 3) 矩形阵列方式的天线响应矢量为: (1)()[(1)] (1)[(1)(1)](,)(()())[1,,...,,,,... ,...,,...,] T jv j p v ju j u v u URA N p j u p v j N u j N u p v T a vec a u a v e e e e e e e θ?-++---+-== 公式2- 3 ,N P 分别为x ,y 方向的天线数目,这里设x y d d =, (1)()[1,,...,]ju j N u T N a u e e -=; cos sin w x u k d ?θ=; (1)()[1,,...,]jv j p v T p a v e e -=;

电机学实验报告

湖北理工学院 实验报告 课程名称: 专业: 班级: 学号: 学生姓名: 电气与电子信息工程学院

实验一 直流电动机的运行特性 实验时间: 实验地点: 同组人: 一、实验目的: 1、掌握用实验方法测取直流并励电动机的工作特性和机械特性。 2、掌握直流并励电动机的调速方法。 二、预习要点 1、如何正确选择使用仪器仪表。特别是电压表电流表的量程。 2、直流电动机起动时,为什么在电枢回路中需要串接起动变阻器? 不串接会产生什么严重后果? 3、直流电动机起动时,励磁回路串接的磁场变阻器应调至什么位置? 为什么? 若励磁回路断开造成失磁时,会产生什么严重后果? 4、直流电动机调速及改变转向的方法。 三、实验主要仪器与设备: 序号 型 号 名 称 数 量 1 DD03 导轨、测速发电机及转速表 1台 2 DJ23 校正直流测功机 1台 3 DJ15 直流并励电动机 1台 4 D31 直流电压、毫安、电流表 2件 5 D42 三相可调电阻器 1件 6 D44 可调电阻器、电容器 1件 7 D51 波形测试及开关板 1件 四、实验原理 工作特性:电源电压一定,励磁电阻一定时,η、n 、T em =f(P 2)的关系曲线。 (一)并励电动机 (U N I fN 条件下)(并励电动机励磁绕组绝对不能断开) 1. 速率特性n=f(P 2) φ e a a C R I U n -= 转速调整率 %1000?-= ?N N n n n n

02020260 2T n P T P T T T em +=+Ω = +=π 3. 效率特性η=f(P 2) (75~95)% 实验原理图见图1-1 图1-1 直流并励电动机接线图 五、实验内容及步骤 1、实验内容: 工作特性和机械特性 保持U=U N 和I f =I fN 不变,测取n 、T 2、η=f (I a )、n=f (T 2)。 2、实验步骤: (1)并励电动机的工作特性和机械特性 1)按图1-1接线。校正直流测功机 MG 按他励发电机连接,在此作为直流电动机M 的负载,用于测量电动机的转矩和输出功率。R f1选用D44的1800Ω阻值。R f2 选用D42的900Ω串联900Ω共1800Ω阻值。R 1用D44的180Ω阻值。R 2选用D42的900Ω串联900Ω再加900Ω并联900Ω共2250Ω阻值。 2)将直流并励电动机M 的磁场调节电阻R f1调至最小值,电枢串联起动电阻R 1调至最大值,接通控制屏下边右方的电枢电源开关使其起动,其旋转方向应符合转速表正向旋转的要求。 3)M 起动正常后,将其电枢串联电阻R 1调至零,调节电枢电源的电压为220V ,调节校正直流测功机的励磁电流I f2为校正值(50mA 或100 mA ),再调节其负载电阻R 2和电动机的磁场调节电阻R f1,使电动机达到额定值:U =U N ,I =I N ,n =n N 。此时M 的励磁电流I f 即为额定励磁电流I fN 。 4)保持U =U N ,I f =I fN ,I f2为校正值不变,逐次减小电动机负载。测取电动机电枢输入电流I a ,转速n 和校正电机的负载电流I F 。 表1-1 U =U N = 220 V I f =I fN = 100 mA I f2= 81.4 mA

Simulink仿真软件辅助电机学教学的探索

Simulink 仿真软件辅助电机学教学的探索 张建辉,许莹莹 (华东交通大学 电气与电子工程学院,江西南昌330013) 摘 要:介绍了Simulink 的特点及其仿真建模的方法,并给出了用Simulink 仿真软件来辅助电机学教 学的具体仿真实例.实践表明,在电机学教学中使用Simulink 仿真软件,可以帮助学生理解课程中的难点,使抽象的概念形象化,既调动了学生的学习积极性,又可以提高教学效果和质量. 关键词:仿真软件;电机学;教学方法 中图分类号:TM301;TP273文献标志码:A 文章编号:1673-0143 01-0063-04 电机学是高校电类各专业一门重要的专业基础课,它所研究的对象具有实用性、普遍性,是其他后续课程的基础,在课程设置中具有关键性地位,是该专业每个学生必须学好的一门课程.但调查显示,电机学是部分学生大学期间最讨厌的两门课之一. 电机学之所以被公认为一门难学难教的课程,主要是由该课程自身的特点和教学中客观存在的一些问题引起的.电机中,电磁量随时间、空间坐标的复杂变化、旋转关系及部分电磁量的非线性关系让学生难以理解;同时,繁多的课程内容令学生“应接不暇”.电机学的研究对象本来比较实际具体,但传统教学过多地依赖理论教学,理论与实践脱节,使学生失去了应有的学习兴趣.另一方面,随着高校扩招,实验条件受到制约,学生进行动手操作的实践机会很少,难以达到应有的教学目标. 要打破这种僵化的局面、提高学生的学习积极性,必须对传统的教学方法进行改进,在教学中引入Simulink 仿真软件进行辅助教学,可以加深学生对理论知识的理解和深化,提高学生的学习兴趣,同时还能弥补硬件实验条件的不足. 1Matlab/Simulink 动态仿真软件 由美国MathWorks 公司推出的Matlab 软件是 目前国内外最流行的计算机仿真软件,旗下的 Simulink 动态建模仿真工具,具有建模方便、直观,更改参数容易,能动态显示图形等优点,在自动控制、电机拖动仿真领域得到了广泛应用,在电机学课程的教学上也能利用其发挥作用. 对电机系统进行仿真分析主要采用Simulink 下的SimPowerSystems 库.它包括6个子模块库:电源(Electrical Sources )子库含有单相交流电源、直流电压源、受控源、三相交流电源等;元件子库(Elements )有各种支路、负载和开关、变压器等主要电力设备元件;附加子库(Extra Library )含有各种附加的控制、测量模块和特殊变压器等模块;电机子库(Machines )有直流、交流、控制等各种电机;测量子库(Measurement )含有电压、电流和阻抗等测量元件;电力电子子库(Power Electronics )里有GTO 、IGBT 、MOSFET 、Thyristor 等各种电力电子元器件. 建立仿真模型时,只需通过鼠标点击相关模块库内的模型,简单拖移到模型窗口,即可建立所研究系统的仿真模型,再利用模型元件的属性对话框设置相关参数后就可以直接对系统仿真.使用Simulink 提供的示波器(Scope )模型,可显示观测点的信号波形.从而使得复杂的系统建模和仿真变得十分容易,而且这种方式非常直观、灵活,特别适合初学者. 收稿日期:2009-10-27 基金项目:教育部特色专业建设基金项目(TS10331) 作者简介:张建辉(1979—),男,河南郾城人,讲师,硕士,主要从事电气工程及其自动化研究. 第38卷第1期2010年3月 江汉大学学报(自然科学版) Journal of Jianghan University (Natural Sciences )Vol.38No.1Mar.2010

电机学实验报告

电机学实验报告 学院:核技术及其自动化工程专业:电气工程及其自动化 教师:黄洪全 姓名:许新 学号:200706050209

实验一异步电机的M-S曲线测绘 一.实验目的 用本电机教学实验台的测功机转速闭环功能测绘各种异步电机的转矩~转差曲线,并加以比较。 二.预习要点 1.复习电机M-S特性曲线。 2.M-S特性的测试方法。 三.实验项目 1.鼠笼式异步电机的M-S曲线测绘测。 2.绕线式异步电动机的M-S曲线测绘。 >T m, (n=0) 当负载功率转矩 当S≥S m 过读取不同转速下的转矩,可描绘出不同电机的M-S曲线。

四.实验设备 1.MEL 系列电机系统教学实验台主控制屏。 2.电机导轨及测功机、转矩转速测量(MEL-13、MEL-14)。 3.电机起动箱(MEL-09)。 4.三相鼠笼式异步电动机M04。 5.三相绕线式异步电动机M09。 五.实验方法 1 被试电动机M04法。 G 功机,与按图线,实验步骤: (1)按下绿色“闭合”按钮开关,调节交流电源输出调节旋钮,使电压输出为220V ,起动交流电机。观察电机的旋转方向,是之符合要求。 (2)逆时针缓慢调节“转速设定”电位器经过一段时间的延时后,M04电机的负载将随之增加,其转速下降,继续调节该电位器旋钮电机由空载逐渐下降到200转/分左右(注意:转速低于200转/分时,有可能造成电机转速不稳定。) (3)在空载转速至200转/分范围内,测取8-9组数据,其中在最大转矩附近多测几点,填入表5-9。

(4)当电机转速下降到200转/分时,顺时针回调“转速设定”旋钮,转速开始上升,直到升到空载转速为止,在这范围内,读出8-9组异步电机的转矩T,转速n,填入表5-10。 2.绕线式异步电动机的M-S曲线测绘

电机MATLAB仿真实验

实验一单相变压器空载仿真实验 一、实验目的 1 用仿真的方法了解并求取变压器的空载特性。 2 通过变压器空载仿真了解并求取变压器的参数与损耗。 二、预习要点 1 变压器空载运行有什么特点? 2 在变压器空载实验仿真中,如何通过仿真测取变压器的铁耗。 三、仿真项目 1 完成变压器空载运行仿真模型的搭建与参数设定。 2 仿真测取空载特性U0=f(I0),P0= f(U0),cosΦ0= f(U0)。 四、仿真方法 1 仿真模块 三相交流电压源 可饱与单相变压器 交流电压表 交流电流表 有功、无功功率表 示波器 显示测量数据 计算均方根值(有效值)模块 电力系统仿真环境模块(电力系统仿 真模型中必须含有一个) 2 仿真模型

三 相 交 流 电 压 源 V 1 W A V2 U V W P0 U0 I0 a A x X 55V U AX * * 图1 变压器空载实验接线图 图2 单相变压器空载仿真模型示例图 图3 变压器参数设置示例图(右侧饱与曲线数据请输入到左侧Saturation Characteristic一栏) 3 空载仿真 1)根据图1的接线图进行仿真模型搭建,搭建仿真模型如图2所示,所有频率的设置均改成50。 2)对单相变压器以及其她元器件模块的参数设置,选定额定电压,变压器变比等。设定其额定容量S N=77 V A,U1N/U2N=55/220V。变压器低压侧接电源,高压侧开路。变压器参数设置如图3所示。

3)可自行根据需要选择需要测量的波形以及有效值量,加入示波器以及计算模块进行测量并设定仿真时间。 4)调节电压源电压,调节范围在(1、25~0、2)U N范围内,测取变压器的U0,I0,P0,cosΦ0以及二次侧电压U AX等数据。 5)测取数据时,在额定电压附近侧的点较密,共测取10组数据记录于下表。 表1 空载实验数据 五、实验报告 1、完成表1 2、绘制U0-I0特性曲线 3、计算变压器变比 4、计算低压侧的励磁参数

matlab电机学重难点仿真

电机学难重点的MATLAB仿真 实验报告

铁磁材料磁化曲线的拟合 一、实验内容及目的 1.实验目的 (1)了解磁化曲线的非线性和饱和特性。 (2)掌握采用MATLAB进行曲线拟合的方法。 2.基本知识 在非铁磁材料中,磁通密度B和磁场强度H之间是线性关系,其系数就是空气的磁导率。而在铁磁材料中,二者是非线性关系,称为磁化曲线。一段典型的磁化曲线如图1所示。一般的,磁化曲线都有开始阶段,线性增长阶段,拐弯阶段和饱和阶段四部分,其中线性增长阶段和拐弯阶段的交界点就是曲线的膝点。 图1 变压器磁化曲线 由于表征磁化曲线是用磁通密度B和磁场强度H两维数组表示的,是不连续的,而且其变化特征也比较复杂。当数据量很大的时候采用这种数组形式很不方便,也占用存储量,最好的处理方式,是采用曲线拟合方法,把磁化曲线表示成显函数形式的解析表达式。 二、实验要求及要点描述 (1)采用屏幕图形方式直观显示磁化曲线。 (2)利用编程方法和MATLAB的拟合函数。 (3)根据所提供的数据,合理选取全部和部分数据绘制磁化曲线,并进行比较,

不少于4条曲线。 (4)绘制每条磁化曲线对应的图和表。 (5)在一个图中显示全部曲线,并进行区分。 三、基本知识及实验方法描述 (1)利用编程方法和MATLAB的拟合函数进行曲线拟合。 (2)由于磁感应强度B与电动势E之间是呈线性关系的,而磁场强度H和电流I之间也是呈线性关系的,所以在绘制磁化曲线时可以用E-I曲线来表示B-H 曲线,作为磁化曲线。 (3)实验中利用多项式函数来进行曲线的拟合,在MATLAB中的拟合函数为p=polyfit(H1,B1,n); poly2str(p,'x'); z=polyval(p,H1);,分别选择全部数据或者部分数据进行拟合,先将数据选择好,然后再确定用几次多项式进行拟合,分别在一个图中显示四组数据拟合的曲线,更换拟合函数的多项式次数在进行实验,然后分析实验结果。 四、实验源程序 四张表的数据都进行13次拟合 >>H1=[1.40 1.43 1.46 1.49 1.52 1.55 1.58 1.61 1.64 1.67... 1.71 1.75 1.79 1.83 1.87 1.91 1.95 1.99 2.03 2.07... 2.12 2.17 2.22 2.27 2.32 2.37 2.42 2.48 2.54 2.60... 2.67 2.74 2.81 2.88 2.95 3.02 3.09 3.16 3.24 3.32... 3.40 3.48 3.56 3.64 3.72 3.80 3.89 3.98 4.07 4.16... 4.25 4.35 4.45 4.55 4.65 4.76 4.88 5.00 5.12 5.24... 5.36 5.49 5.62 5.75 5.88 6.02 6.16 6.30 6.45 6.60... 6.75 6.91 7.08 7.26 7.45 7.65 7.86 8.08 8.31 8.55... 8.80 9.06 9.33 9.61 9.90 10.2 10.5 10.9 11.2 11.6... 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.6 16.2 16.8... 17.4 18.2 18.9 19.8 20.6 21.6 22.6 23.8 25.0 26.4... 28.0 29.7 31.5 33.7 36.0 38.5 41.3 44.0 47.0 50.0... 52.9 55.9 59.0 62.1 65.3 69.2 72.8 76.6 80.4 84.2... 88.0 92.0 95.6 100.0 105.0 110.0 115.0 120.0 126.0 132.0... 138.0 145.0 152.0 166.0 173.0 181.0 189.0 197.0 205.0 ]; >> B1=0.4:0.01:1.89 a=polyfit(h1,b1,13) for n=1:151 hf1(n)=173*(n-1)/150

MATLAB仿真天线阵代码

天线阵代码 一、 clc clear all f=3e9; N1=4;N2=8;N3=12; a=pi/2; %馈电相位差 i=1; %天线电流值 lambda=(3e8)/f; %lambda=c/f 波长 d=lambda/2; beta=2.*pi/lambda; W=-2*pi:0.001:2*pi; y1=sin((N1.*W./2))./(N1.*(sin(W./2))); %归一化阵因子 y1=abs(y1); r1=max(y1); y2=sin((N2.*W./2))./(N2.*(sin(W./2))); %归一化阵因子 y2=abs(y2); r2=max(y2); y3=sin((N3.*W./2))./(N3.*(sin(W./2))); %归一化阵因子 y3=abs(y3); r3=max(y3); %归一化阵因子绘图程序, figure(1) subplot(311);plot(W,y1) ; grid on; %绘出N=4等幅等矩阵列的归一化阵因子 xlabel('f=3GHz,N=4,d=1/2波长,a=π/2') subplot(312);plot(W,y2) ; grid on; %绘出N=8等幅等矩阵列的归一化阵因子 xlabel('f=3GHz,N=8,d=1/2波长,a=π/2') subplot(313);plot(W,y3) ; grid on; %绘出N=12等幅等矩阵列的归一化阵因子 xlabel('f=3GHz,N=12,d=1/2波长,a=π/2') %--------------------- %只有参数N改变的天线方向图 t=0:0.01:2*pi; W=a+(beta.*d.*cos(t)); z1=(N1/2).*(W);

电机学实验报告

课程名称:电机学实验指导老师:章玮成绩:__________________ 实验名称:异步电机实验实验类型:______________同组学生:旭东 一、实验目的和要求(必填)二、实验容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1、测定三相感应电动机的参数 2、测定三相感应电动机的工作特性 二、实验项目 1、空载试验 2、短路试验 3、负载试验 三、实验线路及操作步骤 电动机编号为D21,其额定数据:P N=100W,U N=220V,I N=0.48A,n N=1420r/min,R=40Ω,定子绕组△接法。 1、空载试验 (1)所用的仪器设备:电机导轨,功率表(DT01B),交流电流表(DT01B),交流电压表(DT01B)。 (2)测量线路图:见图4-4,电机绕组△接法。 (3)仪表量程选择:交流电压表250V,交流电流表0.5A,功率表250V、0.5A。(4)试验步骤: 安装电机时,将电机和测功机脱离,旋紧固定螺丝。 试验前先将三相交流可调电源电压调至零位,接通电源,合上起动开S1,缓缓升高电源电压使电机起动旋转,注意观察电机转向应符合测功机加载的要求(右视机组,电机旋转方向为顺时针方向),否则调整电源相序。注意:调整相序时应将电源电压调至零位并切断 电源。

接通电源,合上起动开关S1,从零开始缓缓升高电源电压,起动电机,保持电动机在额定电压时空载运行数分钟,使机械损耗达到稳定后再进行试验。 调节电源电压由1.2倍(264V~66V)额定电压开始逐渐降低,直至电机电流或功率显著增大为止,在此围读取空载电压、空载电流、空载功率,共读取7~9组数据,记录于表4-3中。注意:在额定电压附近应多测几点。 试验完毕,将三相电源电压退回零位,按下电源停止按钮,停止电机。 表4-3 2、短路试验 (1)所用的仪器设备:同空载试验 (2)测量线路图:见图4-4,电机绕组△接法。 (3)仪表量程选择:交流电压表250V,交流电流表1A,功率表250V、2A。

经典-同步电机模型的MATLAB仿真h

安徽工业大学工商学院课程设计(论文)同步电机模型的MATLAB仿真 学生姓名:李春笋 学号:111842161 专业班级:气1142 指导教师:范国伟 2013年12月20日

摘要 采用电力电子变频装置实现电压频率协调控制,改变了同步电机历来的恒速运行不能调速的面貌,使它和异步电机一样成为调速电机大家庭的一员。本文针对同步电机中具有代表性的凸极机,在忽略了一部分对误差影响较小而使算法复杂度大大增加的因素(如谐波磁势等),对其内部电流、电压、磁通、磁链及转矩的相互关系进行了一系列定量分析,建立了简化的基于abc三相变量上的数学模型,并将其进行派克变换,转换成易于计算机控制的d/q坐标下的模型。再使用MATLAB中用于仿真模拟系统的SIMULINK 对系统的各个部分进行封装及连接,系统总体分为电源、abc/dq转换器、电机内部模拟、控制反馈四个主要部分,并为其设计了专用的模块,同时对其中的一系列参数进行了配置。系统启动仿真后,在经历了一开始的振荡后,各输出相对于输出时间的响应较稳定。关键词:同步电机 d/q模型 MATLAB SIMULINK 仿真。 The Simulation Platform of Synchronous Machine by MATLAB Abstract: The utilization of transducer realizes the control of voltage’s frequency. It changes the situation that Synchronous Machine is always running with constant speed. Just like Asynchronous Machine, Synchronous machine can also be viewed as a member of the timing machine. This thesis intends to aim at the typical salient pole machine in Synchronous Machine. Some quantitative analysis are made on relations of salient pole machine among current, voltage, flux, flux linkage and torque, under the condition that some factors such as harmonic electric potential are ignored. These factors have less influence on error but greatly increase complexity of arithmetic. Thus, simplified mathematic model is established on the basis of a, b, c three phase variables. By the Park transformation, this model is transformed to d, q model which, is easy to be controlled by computer. Simulink is used to masking and linking all the parts of the system. The system can be divided into four main parts, namely power system, abc/dq transformation, simulation model of the machine and feedback control. Special blocks are designed for the four parts and a series of parameters in these parts are configured. The results of simulation show that each output has a satisfactory response when there is disturbance. Key Words: Synchronous Machine Simulation d/q Model MATLAB SIMULINK

MATLAB仿真天线阵代码

天线阵代码 .pudn./downloads164/sourcecode/math/detail750575.htm l 一、 clc clear all f=3e9; N1=4;N2=8;N3=12; a=pi/2; %馈电相位差 i=1; %天线电流值 lambda=(3e8)/f; %lambda=c/f 波长 d=lambda/2; beta=2.*pi/lambda; W=-2*pi:0.001:2*pi; y1=sin((N1.*W./2))./(N1.*(sin(W./2))); %归一化阵因子 y1=abs(y1); r1=max(y1); y2=sin((N2.*W./2))./(N2.*(sin(W./2))); %归一化阵因子 y2=abs(y2); r2=max(y2); y3=sin((N3.*W./2))./(N3.*(sin(W./2))); %归一化阵因子 y3=abs(y3);

r3=max(y3); %归一化阵因子绘图程序, figure(1) subplot(311);plot(W,y1) ; grid on; %绘出N=4等幅等矩阵列的归一化阵因子 xlabel('f=3GHz,N=4,d=1/2波长,a=π/2') subplot(312);plot(W,y2) ; grid on; %绘出N=8等幅等矩阵列的归一化阵因子 xlabel('f=3GHz,N=8,d=1/2波长,a=π/2') subplot(313);plot(W,y3) ; grid on; %绘出N=12等幅等矩阵列的归一化阵因子 xlabel('f=3GHz,N=12,d=1/2波长,a=π/2') %--------------------- %只有参数N改变的天线方向图 t=0:0.01:2*pi; W=a+(beta.*d.*cos(t)); z1=(N1/2).*(W); z2=(1/2).*(W); W1=sin(z1)./(N1.*sin(z2)); %非归一化的阵因子K1 K1=abs(W1); %---------------------- W=a+(beta.*d.*cos(t));

电机学实验1实验报告

实验报告 课程名称:电机学指导老师:史涔溦成绩:__________________实验名称:直流电动机实验实验类型:验证性实验同组学生姓名: 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1、进行电机实验安全教育和明确实验的基本要求 2、认识在直流电机实验中所用的电机、仪表、变阻器等组件 3、学习直流电动机的接线、起动、改变电机转向以及调速的方法 4、掌握用实验方法测取直流并励电动机的工作特性和机械特性 5、掌握直流并励电动机的调速方法 6、并励电动机的能耗制动 二、实验内容和原理 1、并励直流电动机起动实验 2、改变并励直流电动机转向实验 : 3、测取并励直流电动机的工作特性和机械特性 4、并励直流电动机的调速方法 三、主要仪器设备 1、直流电源(220V,3A,可调) 2、并励直流电动机 3、负载:测功机。与被测电动机同轴相连。 4、调节电阻。电枢调节电阻选取0-90欧,磁场调节电阻选取0—3000欧。 5、直流电压电流表。电压表为直流250V,电枢回路电流表量程,励磁回路电流表量程200mA。 四、操作方法与实验步骤 (1)并励直流电动机的起动实验 接线图: `

实验时,首先将电枢回路电阻调节到最大,因为起动初n=0,而端电压为额定值,如果电枢回路电阻过小那么会因电流过大而烧坏电机。其次应该Rf调节到最小,因为当电枢电流和电动势一定时,磁通量和转速是成反比的,如果磁场太弱,那么会造成很大的转速,从而造成危险。调节电源电压,缓缓启动电机,观察电动机的旋转方向是否符合负载的加载方向。最后逐步减小R1,实现分级起动,直到完全切除R1. 注意每次起动前,将测功机加载旋钮置0。实验完成后,将电压和测功机加载旋钮置0。 (2)改变并励直流电动机转向实验 改变转向,即改变导体的受力方向,则改变电枢电流或者磁场的方向都可以实现。因此对调励磁绕组或者电枢绕组的极性即可。重新起动,观察转向。 (3)测量并励直流电动机的工作特性和机械特性 1、完全起动电机并获取稳定转速,使得R1=0 2、将电动机调节到额定状态,调节电源电压测功机加载旋钮及磁场调节电阻R f ,至额定状态:U=U N , I=I N ,n=n N ,记下此时的I f ,即I fN 。 . 3、保持U=U N ,I f =I fN 不变,调测功机加载旋钮,逐渐减小电动机负载至最小,测I、n、T 2 。 (4)并励直流电动机的调速特性1、改变电枢电压调速 1) 按操作1起动后,切除电枢调节电阻R 1(R 1 =0)

matlab仿真天线辐射图

微波技术与天线作业 电工1001,lvypf(12) 1、二元阵天线辐射图matlab实现 1)matlab程序: theta = 0 : .01*pi : 2*pi; %确定θ的范围 phi = 0 : .01*pi : 2*pi; %确定φ的范围 f = input('Input f(Ghz)='); %输入频率f c = 3*10^8; %常量c lambda = c / (f*10^9); %求波长λ k = (2*pi) / lambda; %求系数k d = input('Input d(m)='); %输入距离d zeta = input('Input ζ='); %输入方向系数ζ E_theta=abs(cos((pi/2)*cos(theta))/sin(theta))*abs(cos((k*d*sin(theta)+zeta)/2)); %二元阵的E面方向图函数 H_phi=abs(cos((k*d*cos(phi)+zeta)/2)); %二元阵的H面方向图函数 subplot(2,2,1); polar(theta,E_theta); title('F_E_θ') subplot(2,2,2); polar(phi,H_phi); title('F_H_φ'); subplot(2,2,3); plot(theta,E_theta); title('F_E_θ'); grid xlim([0,2*pi]) subplot(2,2,4); plot(phi,H_phi); grid xlim([0,2*pi]) title('F_H_φ');

2)测试数据生成的图形: a)f=2.4Ghz,d=lambda/2,ζ=0 图1,f=2.4Ghz,d=lambda/2,ζ=0 b)f=2.4Ghz,d=lambda/2,ζ=pi 图2,f=2.4Ghz,d=lambda/2,ζ=pi

手把手教你天线设计——用MATLAB仿真天线方向图

手把手教你天线设计—— 用MATLAB仿真天线方向图 吴正琳 天线是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换。在无线电设备中用来发射或接收电磁波的部件。无线电通信、广播、电视、雷达、导航、电子对抗、遥感、射电天文等工程系统,凡是利用电磁波来传递信息的,都依靠天线来进行工作。此外,在用电磁波传送能量方面,非信号的能量辐射也需要天线。一般天线都具有可逆性,即同一副天线既可用作发射天线,也可用作接收天线。同一天线作为发射或接收的基本特性参数是相同的。这就是天线的互易定理。天线的基本单元就是单元天线。 1、单元天线 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子。 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子。

1.1用MATLAB画半波振子天线方向图 主要是说明一下以下几点: 1、在Matlab中的极坐标画图的方法: polar(theta,rho,LineSpec); theta:极坐标坐标系0-2*pi rho:满足极坐标的方程 LineSpec:画出线的颜色 2、在方向图的过程中如果rho不用abs(f),在polar中只能画出正值。也就是说这时的方向图只剩下一半。 3、半波振子天线方向图归一化方程: Matlab程序: clear all lam=1000;%波长 k=2*pi./lam;

相关文档
最新文档