数学分析中的典型问题和方法第二章课后练习题答案裴礼文

数学分析中的典型问题和方法第二章课后练习题答案裴礼文
数学分析中的典型问题和方法第二章课后练习题答案裴礼文

初三数学(特殊值法)

专题一初中数学(特殊值法) (1)题目中没有出现具体的数据,只有倍数关系 (猜)(初一)1.一个圆柱的底面半径比一个圆锥的底面半径多3倍,高是原来的1/4,则这个圆柱的体积是原来圆柱体积的() A、3/4 B、27/4倍 C、12倍 D、4/3倍 (猜)(初三)2.AB=2/3AH,AG=2/3AM,三角形ACF的面积是四边形CIKE的() (猜)(初三)3.圆O被A,B,C,D,E,F,G,H八等分,求 ①∠BEC=()度 ②与线段AB相等的线段有()条(不包括自己) ③BC( )1/2CE (填等于大于小于) ④八边形ABCDEFGH是圆O面积的() (初二)4. 已知关于x的一次函数y=ax-a+1和y=(a-1)x-a+2,它们的图象交点是。 (初一)5.若a<-2,则3-│3-│a-3││化简的结果是()

A、3-a B、3+a C、-3-a D、a-3 (初一)6.当m<0时,m与m的大小关系为() A、m>m B、m<m C、m=m D、无法确定 ★(初二)7. (初一)8.已知有理数a、b满足a>b,则下列式子正确的是() A.-a<b B. a>-b C. -a<-b D. -a>-b ★(初三)9.已知二次函数y=ax2+bx+c的图象与x轴交于点(-2,0),(,0),且。与y轴的正半轴的交点在点(0,2)的下方,则下列结论①a<b<0;②2a+c>0;③4a+c<0;④2a-b+1>0中正确的是。(写出序号) (初二)10.若a、b满足,则的值为。 ★(初三)11. (初一)12.若x>0,y<0,且│x│<│y│,则x+y 0。 若x<0 ,y<0,且│x│>│y│,则x+y 0 。 ★(初二)13. A、a、b、c都不小于0 B、a、b、c都不大于0 C、a、b、c至少一个小于0 D、a、b、c至少一个大于0

求极限的方法总结

学号:0 学年论文 求极限的方法总结 Method of Limit 学院理学院专业班级 学生指导教师(职称) 完成时间年月日至年月日

摘要 极限的概念是高等数学中最重要、最基本的概念之一。许多重要的概念如连续、导数、定积分、无穷级数的和及广义积分等都是用极限来定义的。因此掌握好求极限的方法对学好高等数学是十分重要的。但求极限的方法因题而异,变化多端,有时甚至感到变幻莫测无从下手,通过通过归纳和总结,我们罗列出一些常用的求法。本文主要对了数学分析中求极限的方法进行一定的总结,以供参考。 关键词:极限洛必达法则泰勒展开式定积分无穷小量微分中值定理

Abstract The concept of limit is the most important mathematics,one of the most basic important concepts such as continuity,derivative,definite integral,infinite series and generalized integrals and are defined by the mater the methods the Limit learn mathematics integrals and are defined by the limit varies by title,varied,anf sometimes even impossible to start very unpredictable,and summarized through the adoption,we set out the requirements of some commonly used this paper,the mathematical analysis of the method of seeking a certain limit a summary for reference. Keyword:Limit Hospital's Rule Taylor expansion Definite integral Infinitesimal Mean Value Theorem

高等数学求极限的常用方法

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{} 的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii )A x x f x A x f x =+∞ →=-∞ →?=∞ →lim lim lim )()( (iii) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 ) (lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通 项之后,就能变成(i)中的形式了。即)(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0 ∞”对于幂指函数,方法主要是取指数还取对数的方法,即e x f x g x g x f ) (ln )()()(=, 这样就能把幂上的函数移下来了,变成“∞?0”型未定式。 3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候)

利用特殊值法巧解中考数学填空题

利用特殊值法巧解中考数学填空题利用特殊值法巧解中考数学填空题 解法二:取AE=AG的特殊位置(如图2-3),则四边形AGPE、PFCH都是正方形。由矩形PFCH的面积为矩形AGPE面积的2倍,得出PH=-PE ∵PA=-PE ∴PH=PA,易得PA=PH=PF,以P为圆心,PA为半径画圆,则∠HPF=90°∴∠HAF=45° [点评]:这道题若按常规做法解题,过程非常繁杂;针对填空题的特点,采用特殊值法,则非常方便。解法一,主要利用相似三角形的性质和勾股定理的知识,解法与学生的想法基本吻合;解法二,通过作圆的辅助线,由同弧所对的圆心角和圆周角之间的关系,得出结论,具有思路新颖,解法简单的特点。 例4.如图3-1所示,△ABC是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC=120°,以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN 的周长为____。(2019年辽宁省沈阳市中考题) [解析]:由题意可知:△ABC是等边三角形,△BDC是等腰三角形,M、N是在满足∠MDN=60°前提条件下AB、AC边上的动点,在移动过程中肯定存在MN∥BC的情况,取MN∥BC 的特殊位置,可以非常简单的求出△AMN的周长。 取MN∥BC的特殊位置,过D点作DH⊥MN垂足为H(如图3-2),

可得△MDN也是等边三角形,∠BDM=∠HDM=30°, ∠MBD=∠MHD=90°,△MBD≌△MHD,∴MB=MH;同理可证,NC=NH,最后可得△AMN的周长=AB+AC=6。 [点评]:常规作法是延长NC到H点,使CH=BM,先证明 △DCH≌△DBM,得出∠BDM=∠CDH,∠NDH=∠NDM=60°,再证△NMD≌△NHD,得出NM=NH,最后得出△AMN的周长等于AB+AC=6。与常规作法相比,特殊值法的解法比较简单。 总之,利用特殊值法解决有关填空题,特别是对一些难度较大的题,会有很好的解题效果,这种解法充分体现了“特殊与一般”的辩证唯物主义的思想。 最后,提醒同学们两点: ①不是所有的填空题都适用特殊值法,所以一定要认真审题,要根据题的特点决定能否采用特殊值法。 ②采用特殊值法,设特殊的值或特殊的点时,一定要在允许的范围内。

中国数学史-

中国数学史 数学是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合。 中国古代数学的萌芽 原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的陶器,上面已刻有表示1234的符号。到原始公社末期,已开始用文字符号取代结绳记事了。 西安半坡出土的陶器有用1~8个圆点组成的等边三角形和分正方形为100个小正方形的图案,半坡遗址的房屋基址都是圆形和方形。为了画圆作方,确定平直,人们还创造了规、矩、准、绳等作图与测量工具。据《史记·夏本纪》记载,夏禹治水时已使用了这些工具。 商代中期,在甲骨文中已产生一套十进制数字和记数法,其中最大的数字为三万;与此同时,殷人用十个天干和十二个地支组成甲子、乙丑、丙寅、丁卯等60个名称来记60天的日期;在周代,又把以前用阴、阳符号构成的八卦表示八种事物发展为六十四卦,表示64种事物。 公元前一世纪的《周髀算经》提到西周初期用矩测量高、深、广、远的方法,并举出勾股形的勾三、股四、弦五以及环矩可以为圆等例子。《礼记·内则》篇提到西周贵族子弟从九岁开始便要学习数目和记数方法,他们要受礼、乐、射、驭、书、数的训练,作为“六艺”之一的数已经开始成为专门的课程。 春秋战国之际,筹算已得到普遍的应用,筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。这个时期的测量数学在生产上有了广泛应用,在数学上亦有相应的提高。 战国时期的百家争鸣也促进了数学的发展,尤其是对于正名和一些命题的争论直接与数学有关。名家认为经过抽象以后的名词概念与它们原来的实体不同,他们提出“矩不方,

高等数学求极限的14种方法(完整资料).doc

【最新整理,下载后即可编辑】 高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (1)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (2)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2. 极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。 要特别注意判定极限是否存在在: (1)数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即 “一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (2)A x x f x A x f x =+∞ →=-∞ →?=∞ →lim lim lim )()( (3) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (4) 单调有界准则 (5)两边夹挤准 (夹逼定理/夹逼原理) (6) 柯西收敛准则(不需要掌握)。极限)(lim 0 x f x x →存在的充分必要条件。是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (1)“0 0”“∞ ∞”时候直接用 (2)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成

数学分析中求极限的方法总结

数学分析中求极限的方法总结 1 利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下: 定理1.1: (1 (2(3)若B ≠ ((5)[] 0lim ()lim () n n n x x x x f x f x →→??==A ???? (n 为自然数) i 由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商. 例1。 求225 lim 3 x x x →+-的极限 解:由定理中的第三式可以知道 ()()22222 lim 55lim 3lim 3x x x x x x x →→→++=-- 22 2 2 2 lim lim5 lim lim3x x x x x x →→→→+= + 2259 23+ ==-- 例2. 求3 x →

33 22 x x →→ = 3 x→ = 1 4 = 式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可例3。已知() 111 1223 1 n x n n =+++ ??-?, 解:观察 11 =1 122 - ? 111 = 2323 - ? 因此得到() 111 12231 n x n n =+++ ??-? 1111111 1 22 11 n n n =-+-+-+- -- 所以 1 lim lim11 n n n x n →∞→∞ ?? =-= ? ?? 2 利用导数的定义求极限 导数的定义:函数f(x) 如果 ()( ) 00 lim lim x x f x x f x y x x ?→?→ +?- ? = ?? 存在, 则此极限值就称函数f(x) () 'f x。 即

《数学史概论》读书报告

《数学史概论》读书报告 数学源自于人类早期的生产活动,早期古希腊、古巴比伦、古埃及、古印度及中国古代都对数学有所研究。数学是研究数量、结构、变化以及空间模型等概念的一门学科。通过抽象化和逻辑推理的运用,由计数、计算、量度和对物体形状及运动的观察中产生。数学的基本要素是:逻辑和直观、分析和推理、共性和个性。以下对李文林著《数学史概论》作一个读后的总结。 一、《数学史概论》简介及其特点 《数学史概论(第2版)》以重大数学思想的发展为主线,阐述了从远古到现代数学的历史。书中对古代希腊和东方数学有精炼的介绍和恰当的分析;同时充分论述了文艺复兴以来近现代数学的演进与变革,尤其是20世纪数学的概观,内容新颖。《数学史概论(第2版)》中西合炉,将中国数学放在世界数学的背景中述说,更具客观性与启发性。《数学史概论(第2版)》脉络分明,重点突出,并注意引用生动的史实和丰富的图片。 本书共分十五章,其中第一章“数学的起源与早期发展”介绍了人类在蒙昧时期由于生产生活的需要,逐渐形成了数与形的概念,从最早的手指计数到石头计数,再到结绳计数直到距今大约五千多年前,出现了书写计数以及相应的计数系统。在灿烂的“河谷文明”中,重点介绍了埃及数学和美索不达米亚数学。第二章“古代希腊数学”,介绍了雅典时期和亚历山大时期的数学,其中重点对数学家泰勒斯、毕达哥拉斯、欧几里得、阿基米德及阿波罗尼奥斯及其成就作了详尽的介绍。第三章“中世纪的中国数学”,从古代著作《世本》中提到的黄帝使“隶首作算数”,殷商甲骨文中使用的完整的十进制计数,到两汉时期、魏晋南北朝时期以及宋元时期达到了发展的高潮。介绍的著作主要有《周髀算经》,《九章算术》,《算经十书》,介绍了刘徽的“割圆术”和他在面积、体积公式推证的成就,祖冲之父子推算“圆周率”,在推导几何图形体积公式时提出了“出入相补”及“祖氏原理”;第四章“印度与阿拉伯的数学”;第五章“近代数学的兴起”,讲述了中世纪的欧洲,从代数学、三角学、透视学、射影几何等方面的发展向近代数学的过渡,以至解析几何的诞生;第六章“微积分的创立”,分别介绍了牛顿和莱布尼茨从不同的角度提出的微积分原理;第七章“分析时代”;第八章至第十章,分别以代数、几何、分析这三大领域的变革为主要线索,介绍了19世纪数学的发展;第十一章至十三章是“20世纪数学概观”,分别介绍了纯粹数学的主要趋势、空前发展的应用数学、现代数学成果十例;第十四章“数学与社会”,第十五章“中国现代数学的开拓”。 本书有以下几个特点:1、与同类书相比,有着最大的空间跨度和时间跨度,从上古的巴比伦、希腊、中国、印度、阿拉伯世界,到中世纪的欧洲,以至20世纪的近代数学、当代数学,遍及世界各地对于数学的贡献地位与影响,都有中肯的评论。2、本书不仅对史实有详尽而忠实的介绍,而且兼有史评史论的作用,更有精辟的历史观。例如作者认为古希腊的数学是一种论证数学,而说中国的古代数学,在南北朝三国时期,也进入到论证数学,刘徽即为其杰出代表之一。至于中世纪欧洲数学的崛起,微积分的创立以及近代数学的诞生史,对于它们的历史背景与社会根源,作者都有敏锐的评论。作者对整个数学的发展有着明确的数学史观。3、本书不仅对数学家和他们的学术成就作了概括的介绍,而且对于一些重要成就,不惜花费篇幅,作了较详细的忠实于原始创造的说明。例如阿基米德对于球体积与抛物线弓形面积的计算,刘徽对于 的计算原理和方法,牛顿与莱布尼茨关于微积分的发现过程,以至较近代如康托关于非可数集合的发现等等,都作了较详细的介绍。这让读者不仅可以了解历史的发展,而且还能深入体会数学大师们原始创造的艰苦历程与来龙去脉。4、本书除了数学家们的传统故事外,还介绍了许多有趣的奇闻轶事。 二、对数学的认识有了进一步的提高

关于高等数学方法与典型例题归纳

关于高等数学方法与典 型例题归纳 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

2014年山东省普通高等教育专升本考试 2014年山东专升本暑期精讲班核心讲义 高职高专类 高等数学 经典方法及典型例题归纳 —经管类专业:会计学、工商管理、国际经济与贸易、电子商务 —理工类专业:电气工程及其自动化、电子信息工程、机械设计制造及其 自动化、交通运输、计算机科学与技术、土木工程 2013年5月17日星期五 曲天尧 编写 一、求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方;

(2) ???? ???=<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1 3.分子(母)有理化求极限 例3:求极限)13(lim 22+-++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】1 3) 13)(13(lim )13(lim 2 2 22222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030+-+-=+-+→→ 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子........... 是解题的关 键 4.应用两个重要极限求极限 两个重要极限是1sin lim 0=→x x x 和e x n x x x n n x x =+=+=+→∞→∞→1 0)1(lim )11(lim )11(lim ,第一个重 要极限过于简单且可通过等价无穷小来实现。主要考第二个重要极限。 例5:求极限x x x x ?? ? ??-++∞→11lim 【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X 1 +,最后凑指数部分。 【解】22 212 12112111lim 121lim 11lim e x x x x x x x x x x x =???? ????????? ??-+???? ??+=??? ??-+=??? ??-+--+∞→+∞→+∞→

论述中国古代数学史存在互相矛盾的结论

论述中国古代数学史存在互相矛盾的结论 【内容提要】 中国古代数学史的研究结论中,在数学的思维方式、理论构造、珠算评价等方面存在互相矛盾的结论,造成这些矛盾的原因既有方法论层次上的问题,也有中西古代数学比较标准方面的问题,中国古代数学应当在运演工具、建构模式、价值走向方面建立起自己的理论框架。 【论文正文】 中国古代数学的研究,目前存在着一些彼此对立的研究结论;正确地分析存在着的矛盾结论,无疑会有助于人们深入地了解中国古代数学,同时也会使人们对数学史研究的方法和评价标准有新的认识。 一、几个有代表性的矛盾结论 如何评价中国古代数学,如何评价在中国古代文明中数学的作用以及它取得的成就是每个数学史学者关心的问题。但是目前的一些研究却有着一些矛盾的结论,这些矛盾的结论往往是围绕着认识、理解、评价中国古代数学的关键性理论问题展开的。 1.关于古代数学运用的思维方式问题 中国古代数学是否象古希腊那样明确地运用逻辑思维问题,目前已成为评价中国古代数学的一个重要因素,因为在人们的认识和理解中,数学如果没有严格的逻辑思维形式,那就

很难成为真正的数学理论,袁晓明先生的研究结论与人们的良好愿望相反,他认为中国古代数学不存在象古希腊数学那样以逻辑为基础的思维方式,“与古希腊数学严格地采用逻辑演绎的逻辑思维方式不同,中国数学则是以非逻辑思维为主,即主要通过直觉、想象、类比、灵感等思维形式来形成概念、发现方法、实现推理的。”[1] 郭书春先生通过对《九章算术》的研究,得出相反的结论,他认为《九章算术》的注释中已经具有并形成了演绎的逻辑方法及演绎的逻辑体系,“刘徽注中主要使用了演绎推理,他的论证主要是演绎论证即真正的数学证明,从而把《九章算术》上百个一般公式、解法变成了建立在必然性基础之上的真正的数学科学。”[2] 巫寿康先生与郭书春先生的观点相同,他认为:“刘徽《九章算术注》中的每一个题,都可以分解成一些首尾相接的判断,如果仔细分析这些判断之间的联系,就会发现这些判断组成若干个推理,然后由这些推理再组成一个证明,因此可以说,《九章算术注》中的论证已经具备了证明的结构,就大多数注文来说,这其中的推理都是演绎推理,大多数证明也都是演绎证明。”[3] 中国古代数学到底“是以非逻辑思维为主”,还是“主要是演绎证明”,这是中国古代数学研究中一个矛盾的结论,还没有得到统一认识的问题。

高等数学-求极限的各种方法

求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方; (2) ???? ??? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1ΛΛ 3.分子(母)有理化求极限 例3:求极限)13(lim 22+-++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】1 3) 13)(13(lim )13(lim 2 2 22222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 01 32lim 2 2 =+++=+∞ →x x x

例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030 +-+-=+-+→→ 41 sin tan lim 21sin tan lim sin 1tan 11 lim 30300 =-=-+++=→→→x x x x x x x x x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键 4.应用两个重要极限求极限 两个重要极限是1sin lim 0=→x x x 和e x n x x x n n x x =+=+=+→∞→∞→1 0)1(lim )11(lim )11(lim , 第一个重要极限过于简单且可通过等价无穷小来实现。主要考第二个重要极限。 例5:求极限x x x x ?? ? ??-++∞→11lim 【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X 1 + ,最后凑指数部分。 【解】22 212 12112111lim 121lim 11lim e x x x x x x x x x x x =???? ????????? ??-+???? ??+=??? ??-+=??? ??-+--+∞→+∞→+∞→ 例6:(1)x x x ??? ??-+∞→211lim ;(2)已知82lim =??? ??-++∞→x x a x a x ,求a 。 5.用等价无穷小量代换求极限 【说明】 (1)常见等价无穷小有: 当0→x 时,~)1ln(~arctan ~arcsin ~tan ~sin ~x x x x x x +1e x -, ()abx ax x x b ~11,2 1~ cos 12-+-; (2) 等价无穷小量代换,只能代换极限式中的因式.. ;

特殊值法解数学题

臧老师辅导课堂之 特殊值法专项训练 特殊值法是用满足条件的特殊值(式)代入题目去验证、计算,从而得到正确结论的一种方法.特殊值法在解题中有下列应用. 1.解选择题: 若a>b>c>0,m>n>0.(m、n为数),则下列各式中成立的是[ ] A.a m b n>b n c m>c n a m B.a m b n>c n a m>b n c m C.c n a m>a m b n>b n c m D.b n c m>c n a m>a m b n 2.确定多项式的系数 已知当x是任何实数时,x2-2x+5=a(x+1)2+b(x+1)+c都成立,求a、b、c的值. 3.判断命题的真假 判断命题“式子a2+(a+1)2+a2(a+1)2=(a2+a-1)2是恒等式”的真假. 4.解证定值问题 若a、b为定值,且无论k取何值时,关于x的一次方程 专项练习 1 已知a、b、c都是实数,且a>b>c,那么下列式子中正确的是 [ ] 2.命题“式子x3+9=(x+2)3-6(x+2)2+12(x+2)是恒等式”是真命题,对吗? 值,求a、b应满足的关系式.并求出这个定值. 4.已知a+b+c≠0,求证:不论a、b、c取何实数时,三 5、设a、b、c是不全相等的任意实数,若x=a2-bc,y=b2-ca,z=c2-ab,则x、y、z[] A.都不小于0B.都不大于0 C.至少有一个小于0D.至少有一个大于0 6、如果a、b均为有理数,且b<0,则a、a-b,a+b的大小关系是

[ ] A.a<a+b<a-b B.a<a-b<a+b C.a+b<a<a-b D.a-b<a+b<a 巧取特殊值解选择题 山东省茌平县傅平镇中学初三·一班鲁傅 我在解某些选择题时,采用了取特殊值法,使问题简捷,迅速地获得解决,如下面几例. 例1 已知a、b、c都是实数,且a>b>c,那么下列式子中正确的是 [ ] (98年全国初中数学联赛)解:∵a>b>c, ∴可取a=1,b=0,c=-1代入各选择支,只有a+b=1>b+c=-1成立.故选(B). 例2 设a、b、c是不全相等的任意实数,若x=a2-bc,y=b2-ca,z=c2-ab,则x、y、z[ ] A.都不小于0B.都不大于0 C.至少有一个小于0D.至少有一个大于0 (94年全国初中数学联赛题)解:若令a=0,b=1,c=-1,则x=y=z=1,故可排除(B)、(C); 再令a=0,b=c=1,则x=-1,y=z=1,又可排除(A).故选(D). (94年全国初中数学联赛题) 则[ ] A.M<Q<P<N B.M<P<Q<N

数学分析求极限的方法

求极限的方法 具体方法 ⒈利用函数极限的四则运算法则来求极限 定理1①:若极限)(lim 0 x f x x →和)(lim x g x x →都存在,则函数)(x f ±)(x g ,)()(x g x f ? 当0x x →时也存在且 ①[])()()()(lim lim lim 0 .0 x g x f x g x f x x x x x →→→±=± ②[])()()()(lim lim lim 0 x g x f x g x f x x x x x x →→→?=? 又若0)(lim 0 ≠→x g x x ,则 ) () (x g x f 在0x x →时也存在,且有 )()()() (lim lim lim 0 x g x f x g x f x x x x x x →→→= 利用极限的四则运算法则求极限,条件是每项或每个因子极限存在,一般所给的变量都不满足这个条件,如 ∞ ∞、00 等情况,都不能直接用四则运算法则,必须要对变量进行变形,设法消去分子、分母中的零因子,在变形时,要熟练掌握饮因式分解、有理化运算等恒等变形。 " 例1:求24 22 lim ---→x x x 解:原式=()()()022 22lim lim 22 =+= -+-- - →→x x x x x x ⒉用两个重要的极限来求函数的极限 ①利用1sin lim =→x x x 来求极限 1sin lim 0 =→x x x 的扩展形为: 令()0→x g ,当0x x →或∞→x 时,则有

()()1sin lim 0=→x g x g x x 或()()1sin lim =∞ →x g x g x 例2:x x x -→ππ sin lim 解:令t=x -π.则sinx=sin(-π t)=sint, 且当π→x 时0→t 故 1sin sin lim lim 0 ==-→→t t x x t x ππ ~ 例3:求() 11 sin 21 lim --→x x x 解:原式=()()()()()()()211sin 1111sin 1221 21lim lim =--?+=-+-+→→x x x x x x x x x ②利用e x x =+∞→)1 1(lim 来求极限 e x x =+∞ →)1 1(lim 的另一种形式为e =+→α α α1 )1(lim .事实上,令 .1 x =α∞→x .0→?α所以=+=∞ →x x x e )11(lim e =+→ααα1 0)1(lim 例4: 求x x x 1 )21(lim +→的极限 解:原式=221 210)21()21(lim e x x x x x =?? ?+????+→ 利用这两个重要极限来求函数的极限时要仔细观察所给的函数形式只有形式符合或经过变化符合这两个重要极限的形式时才能够运用此方法来求极限。一般常用的方法是换元法和配指数法。 ⒊利用等价无穷小量代换来求极限 所谓等价无穷小量即.1) () (lim =→x g x f x x 称)(x f 与)(x g 是0x x →时的等价无穷小量,记作)(x f )(~x g .)(0x x →.

数学分析第三版答案下册

数学分析第三版答案下册 【篇一:2015年下学期数学分析(上)试卷a参考答案】> 一、填空题(每小题3分,共15分): 1、126; 2、2; 3、1?x?x2???xn?o(xn); 4、arcsinx?c (或?arccos x?c);5、2. 二、选择题(每小题3分,共15分) 1、c; 2、a; 3、a; 4、d; 5、b 三、求极限(每小题5分,共10分) 1??1、lim1?2? 2、limxlnx ?n??x?0 ?n? ? n 1?? ?lim?1?2?n??n?? 1 n n2? 1n 1 lnx(3分) ?lim?li?? x?0x?011 ?2 xx (3分) (?x)?0 (2分)?lime?1(2分) ?lim? n?? x?0 3n2 ?3 。四、利用数列极限的??n定义证明:lim2(10分) n??n?3 证明:当n?3时,有(1分) 3n299 (3分) ?3??22 n?3n?3n 993n2

因此,对任给的??0,只要??,即n?便有2 ?3?? (3分) n?n?3 3n2x{3,},当n?n便有2故,对任给的??0,取n?ma(2 分) ?3??成立。 ?n?3 9 3n2 ?3(1分)即得证lim2 n??n?3 五、证明不等式:arctanb?arctana?b?a,其中a?b。(10分) 证明:设f(x)?arctanx,根据拉格朗日中值定理有(3分) f(b)?f(a)?f?(?)(b?a)? 1 (b?a),2 1?? (a???b) (3分) 所以有 f(b)?f(a)?(b?a) (2分) bn?arctaan?b?a (2分)即 arcta 六、求函数的一阶导数:y?xsinx。(10分) 解:两边取对数,有: lny?sinxlnx (4分) 两边求一次导数,有: y??xsinx(cosxlnx? y?sinx (4分) ?cosxlnx? yx sinx )(2分) x 七、求不定积分:?x2e?xdx。(10分)解: 2?x2?x xedx?xde = (2分) ?? = ?x2e?x?2?xe?xdx (2分) = ?x2e?x?2?xde?x(2分) = ?x2e?x?2xe?x?2?e?xdx (2分) =?e?x(x2?2x?2)?c (2分) 15 八、求函数f(x)?|2x3?9x2?12x|在闭区间[?,]上的最大值与最小值。(10 42

特殊值法巧解数列题示例

特殊值法巧解数列题示例 特殊值法在解决选择题与填空题中是比较常用的一种方法,在解题中能否灵活运用,体现了解题者的数学素养与能力.下面举例说明特殊值法(特殊数列、特殊数值)在解一些数列题中的应用. 【例1】已知}{n a 是等比数列,且252,0645342=++>a a a a a a a n ,那么53a a +的值等于( ) (A)5 (B)10 (C)15 (D)20 【分析】取}{n a 为常数数列0>=a a n ,则由252645342=++a a a a a a 得2 54252=?= a a ,故5253==+a a a ,所以选A. 【例2】在等差数列}{n a 中,若45076543=++++a a a a a ,则=+82a a ( ) (A)45 (B)75 (C)180 (D)300 【分析】取}{n a 为常数数列a a n =,则由45076543=++++a a a a a 得904505=?=a a ,所以180282==+a a a ,所以选C. 【例3】在各项均为正数的等比数列}{n a 中,若965=a a ,则=+++1032313log log log a a a ( ) (A)12 (B)10 (C)8 (D)2+5log 3 【分析】取}{n a 为常数数列0>=a a n ,则由965=a a 得392=?=a a ,所以 103log 10log log log 31032313==+++a a a ,所以选B. 如果解题者心中有数(具备特殊化思想),那么直接观察利用心算立即可得结果,可大大地提高解题速度,避免不必要的计算。留心观察细事物,沙子也会变金银!

数学分析中求极限的方法总结

数学分析中求极限的方 法总结 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

数学分析中求极限的方法总 结 1 利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下: 定理:如果0 x x lim f x =,lim g x =x x →→A B ()() (1)[]0 lim ()()lim ()lim ()x x x x x x f x g x f x g x →→→±=±=A ±B (2)[]0 x x lim f x g x =lim f x)lim ()x x x x g x →→→??=A?B ()()( (3)若B ≠0 (4)0 x lim c ()lim ()x x x f x c f x c →→?=?=A (5) [] 0lim ()lim ()n n n x x x x f x f x →→??==A ????(n 为自然数) 上述性质对于,,x x x →∞→+∞→-∞也同样成立i 由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商。 例1. 求225 lim 3x x x →+-的极限 解:由定理中的第三式可以知道 例2. 求3 2 lim 3x x →-的极限 式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可 例3. 已知 ()1111223 1n x n n = +++ ??-?,求lim n n x →∞ 解: 观察 11 =112 2- ? 111=2323-?

因此得到 ()1111223 1n x n n = +++ ??-? 所以 1lim lim 11n n n x n →∞→∞ ?? =-= ??? 2 利用导数的定义求极限 导数的定义:函数f(x)在0x 附近有定义,χ??,则 如果 存在, 则此极限值就称函数f(x)在点0x 的导数记为 () 0'f x 。 即 在这种方法的运用过程中,首先要选好f(x)。然后把所求极限都表示成f(x)在定点0 x 的导数。 例4. 3 利用两个重要极限公式求极限 两个极限公式: (1 (2)1lim 1x x e x →∞ ?? += ??? 但我们经常使用的是它们的变形: (1,

数学分析教材和参考书-推荐下载

教材和参考书 教材: 《数学分析》(第二版),陈纪修,於崇华,金路编 高等教育出版社, 上册:2004年6月,下册:2004年10月 参考书: (1)《数学分析习题全解指南》,陈纪修,徐惠平,周渊,金路,邱维元高等教育出版社, 上册:2005年7月,下册:2005年11月 (2)《高等数学引论》(第一卷),华罗庚著 科学出版社(1964) (3)《微积分学教程》,菲赫金哥尔兹编,北京大学高等数学教研室译,人民教育出版社(1954) (4)《数学分析习题集》,吉米多维奇编,李荣译 高等教育出版社(1958) (5)《数学分析原理》,卢丁著,赵慈庚,蒋铎译 高等教育出版社(1979) (6)《数学分析》,陈传璋等编 高等教育出版社(1978) (7)《数学分析》(上、下册),欧阳光中,朱学炎,秦曾复编, 上海科学技术出版社(1983)

(8)《数学分析》(第一、二、三卷),秦曾复,朱学炎编, 高等教育出版社(1991) (9)《数学分析新讲》(第一、二、三册),张竹生编, 北京大学出版社(1990) (10)《数学分析简明教程》(上、下册),邓东皋等编 高等教育出版社(1999) (11)《数学分析》(第三版,上、下册),华东师范大学数学系, 高等教育出版社(2002) (12)《数学分析教程》常庚哲,史济怀编, 江苏教育出版社(1998) (13)《数学分析解题指南》林源渠,方企勤编, 北京大学出版社(2003) (14)《数学分析中的典型问题与方法》裴礼文编, 高等教育出版社(1993) 复旦大学数学分析全套视频教程全程录像,ASF播放格式,国家级精品课程,三学期视频全程 教师简介: 陈纪修-基本信息 博士生导师教授 姓名:陈纪修

浅析中国数学发展史

浅析中国数学发展史 摘要:数学发展史就是数学这门学科的发展历程。人们的思想在不断的发生变化,数学中的很多思想也是人类不断发展的体现。本文围绕中国数学的发展历程和思想进行了简单的概括和论述。介绍了从古至今中国数学的发展历程,讲述了中国数学思想的特点及中国数学对世界的影响以及中外数学文化的交流影响,总结了从数学发展史中得到的启示。 关键词:中国数学史、数学思想、数学历史 一、中国古代数学 数学在中国历史久矣。在殷墟出土的甲骨文中有一些是记录数字的文字,包括从一至十,以及百、千、万,最大的数字为三万;司马迁的史记提到大禹治水使用了规、矩、准、绳等作图和测量工具,而且知道“勾三股四弦五”;据说《易经》还包含组合数学与二进制思想。2002年在湖南发掘的秦代古墓中,考古人员发现了距今大约2200多年的九九乘法表,与现代小学生使用的乘法口诀“小九九”十分相似。 算筹是中国古代的计算工具,它在春秋时期已经很普遍;使用算筹进行计算称为筹算。中国古代数学的最大特点是建立在筹算基础之上,这与西方及阿拉伯数学是明显不同的。 大约在3000年以前中国已经知道自然数的四则运算,这些运算只是一些结果,被保存在古代的文字和典籍中。乘除的运算规则在后来的"孙子算经"(公元三世纪)内有了详细的记载。中国古代是用筹来计数的,在我们古代人民的计数中,己利用了和我们现在相同的位率,用筹记数的方法是以纵的筹表示单位数、百位数、万位数等;用横的筹表示十位数、千位数等,在运算过程中也很明显的表现出来。"孙子算经"用十六字来表明它,"一从十横,百立千僵,千十相望,万百相当。"和其他古代国家一样,乘法表的产生在中国也很早。乘法表中国古代叫九九,估计在2500年以前中国已有这个表,在那个时候人们便以九九来代表数学。现在我们还能看到汉代遗留下来的木简(公元前一世纪)上面写有九九的乘法口诀。 现有的史料指出,中国古代数学书"九章算术"(约公元一世纪前后)的分数运算法则是世界上最早的文献,"九章算术"的分数四则运算和现在我们所用的几乎完全一样。 中国数学发展繁荣时期大约在西汉末期至隋朝中叶。这是中国数学理论的第一个高峰期。这个高峰的标志就是数学专著<九章算术>的诞生。至少有1800年的《九章算术》,其作者是谁?由谁编纂?至今无从考证。史学家们只知道,它是中国秦汉时期一二百年的数学知识结晶,到公元1世纪时开始流传使用。中国数学的全盛时期是隋中叶至元后期。在

相关文档
最新文档