复数典型例题原

复数典型例题原
复数典型例题原

[例1] 当m 为何实数时,复数i m m m m m z )103(2523222

2-++---=;(1)是实数;(2)是

虚数;(3)是纯虚数。

解:(1)z 为实数,则虚部01032=-+m m ,即?????≠-=-+0

2501032

2

m m m

解得m=2 ∴ m=2时,z 为实数

(2)z 为虚数,则虚部01032≠-+m m ,即?????≠-≠-+0

2501032

2

m m m 解得2≠m 且5±≠m

(3)z 为纯虚数?????≠-≠-+=--0

250103023222

2m m m m m

解得21-

=m ∴ 当21-

=m 时,z 为纯虚数

[例3] 求同时满足下列条件的所有复数z :(1)z z 10+

是实数,且6

10

1≤+

的实部和虚部都是整数。

解:设R b a bi a z ∈+=,(且

)022≠+b a 则

22)

(101010b a bi a bi a bi a bi a z z +-++=+++=+

i b a b b a a )10

1()101(2

222+-+++=

由(1)知z z 10+是实数,且6

101≤+

1(2

2=+-b a b 即0=b 或1022=+b a

又6)10

1(12

2≤++

当b=0时,*化为6

101≤+

当102

2=+b a 时,*化为621≤

因此,复数z 为:i 31±或i ±3

[例4] 设复数1||=-i z ,且0≠z ,i z 2≠。又复数w 使z i

z i

w w 22-?

-为实数,问复数

w 在复平面上所对应的点Z 的集合是什么图形,并说明理由。

分析与解答:设bi a z +=,),,,(R y x b a yi x w ∈+= 由题0≠z ,i z 2≠且1||=-i z

∴ 0≠a ,0≠b 且022

2=-+b b a

z i z i w w u 22-?

-=bi a i bi a i yi x yi x +-+?-++=22 2

22222222)2()2(2)2(b a ai b b a y x xi y y x +--+?

-++-+=

22

22222)2(2)2(b a ai y x xi y y x +-?-++-+=

已知u 为实数

∴ 02)2(22

22222=+-?-+-+b a a

y x y y x

∵ 0≠a ∴ 0222=-+y y x 即

1)1(22=-+y x ∴ w 在复平面上所对应的点Z 的集合是以(0,1)为圆心,1为半径的圆 又∵ 02≠-i w ∴ 除去(0,2)点。

[例5] 设虚数21,z z ,满足22

1z z =

(1)若21,z z 又是一个实系数一元二次方程的两根,求21,z z 。 (2)若mi z +=11(i 为虚数单位,R m ∈),2||1≤

z ,复数32+=z w ,求||w 的

取值范围。

解:(1)∵ 21,z z 是一个实系数一元二次方程的两个虚根,因此必共轭,

可设R b a bi a z ∈+=,(1且)0≠b ,则bi a z -=2 由22

1z z =得bi a bi a -=+2

)(

即:bi a abi b a -=+-22

2

根据复数相等,??

?-==-b ab a

b a 222 ∵ 0≠b 解得???

????

=-=2321b a 或????

??

?-=-=2321b a ∴ ???

???

?--=+-=i z i z 23

212

321

2

1或???

???

?+-=-

-=i z i z 232123

21

2

1

(2)由于

mi z z z +==1,1221,32+=z w ∴

mi m mi w 243)1(2

2+-=++=

2

2

2

2+

-

=

+

-

=m

m

m

w

∴12

)2

(

4

)

4(

|

|2

由于2||1≤z 且0≠m ,可解得102≤

令u m =2,

12)2(||2+-=u w 在]1,0(∈u 上,

12)2(2

+-u 是减函数 ∴ )4,13[||∈w

[例6] 已知复数z 满足i z i z z 31)3(-=-,求z 。

方法一:设),(R y x yi x z ∈+=,则)3(1])(3[2

2i yi x i y x -=+-+

即i xi y y x 31332

2+=--+

由复数相等得??

?=-=-+331322x y y x 解得???=-=01y x 或???=-=31

y x ∴ 1-=z 或i z 31+-=

方法二:∵ )3(1)3(i z i z z -=- ∴ iz i z z 331+=-

R z i z ∈+=-)1(31||2 ∴ 1+z 是纯虚数或0 可令)(1R a ai z ∈+-=

i ai i a 31)33(12+=+--+ 即032

=+a a ∴ 0=a 或3-=a

故1-=z 或i z 31+-=

[例7] 已知复数z 满足1||=z 且

021

2<++

z z z ,求z 的值。

解:设),(R y x yi x z ∈+=,由已知得

122=+y x (1)

∵ z

z z 212++

)

(21

)(2yi x yi x yi x +++++=

i y xy x y x )2()3(2

2+++-=

依题意得??

?=+<+-)3(02)2(0322y xy x y x

由(3)得0=y 或

21-

=x (1)当0=y 时,由(1)知1±=x 但1=x 与(2)矛盾

∴ 1-=x ,即11-=z (2)当

21

-

=x 时,由(1)得

23±

=y 把y 值代入(2)均成立 综上可知:11-=z

i z 23212+-

=,i z 23

213--=

[例8] 设b a ,为共轭复数,且i abi b a 643)(2

-=-+,求a 和b 。

解:∵ b a ,为共轭复数 ∴ 设),(R y x yi x a ∈+= 则yi x b -=

i abi b a 643)(2-=-+得 i i y x x 64)(3)2(2

22-=+-,即?????-=+-=6)(344222

y x x ∴ ?????==1122

y x ∴ ???±=±=11y x

∴ i a +=1,i b -=1;i a +-=1,i b --=1;

i a -=1,i b +=1;

i a --=1,i b +-=1。

[例9] 已知关于x 的方程)(09)6(2

R a ai x i x ∈=+++-有实数根b 。

(1)求实数b a ,的值;

(2)若复数z 满足0||2||=---z bi a z ,当z 为何值时||z 有最小值,并求出||z 的最小值。

解:(1)∵ b 是方程)(09)6(2

R a ai x i x ∈=+++-的实根 ∴ 0)()96(2

=-++-i b a b b

∴ ??

?=-=+-00962b a b b ∴ 3==b a

(2)设),(R y x yi x z ∈+=

∵ 0||2|33|=---z i z ∴ ||2|33|yi x i yi x +=--- 即)(4)3()3(2

2

2

2

y x y x +=++- 整理,得8)1()1(2

2

=-++y x

∴ 复数z 对应点的轨迹是以)1,1(1-O 为圆心,以22为半径的圆。如图所示

连结圆心1O 和原点O ,并延长交圆1O 于点P ,当复数z 为点P 对应的复数时,||z 最小可求得)1,1(-P

∴ i z -=1,2||min =z

【模拟试题】

1. 已知关于x 的实系数方程04422

2=+-+-a a ax x 的两虚根为21,x x ,且

3||||21=+x x ,则a 的值为 。

2. 已知i y y i x )3()12(--=+-,其中R y x ∈,,求x= ,y= 。

3. =++++2005

32i

i i i Λ 。 4. 已知R t y x ∈,,,1-≠t 且0≠t ,求满足

i t t t t yi x )1(1+++=

+时,点),(y x 的轨迹

方程 。

5. 计算(1)

)34)(7()26)(4(11

75i i i i -+++- (2)745)

11()11()22(1i i i i i

-+++++ (3)

8

12)3122()2123(i i i -++--

6. 计算:(1)22

19)

21()5(3213

2i i i

i +-+++- (2)5

4

)31()22(i i -+ 7. 设

i 232

1+

-=ω,计算:)1)(1(22ωωωω+--+

【试题答案】

1. 21

2. 25

;4

3. i

4. 1=xy

5.

解析:(1)原式=)34)(7()3)(4(2i i i i --+--

)321428()4312(222i i i i i i +--++--= )1(25)711(2i i -+-=

i

3947-=

(2)745)11()11()22(1i i i i i -+++++

7

22

225])1(1

[)1(])1[()2(i i i i i ++++?+??-=

i

i --+-=41

)1(216 i

)1216()41

216(-++-= (3)

8

12)3122()2123(i i i -++-- 8

1212]23

211[)2123()(i i i i -++--

?-=

3

34212])2321[()

23

21(])1[()2321(i i i i --?+++-=

)

388(])2321[(4

3i i +-++-= i i 3873881+-=+-=

6.

解析:(1)22

19)

21()5(3213

2i i i i +-+++- =11

2244]

)21[(])(5[321)321(i i i i i i

i +-??++++

i i i i +=--+=5511

(2)令i 2321+-=ω,则13

=ω,于是 5

255445

42)2()

2

321(2)1(2)

31()22(ω-=

+--+=

-+i i i i i

i

31226

+-===

ωω

ω

7.

解析:因为

i 232

1+

-=ω

所以012=++ωω,13

=ω 从而21ωω-=+,ωω-=+2

1

所以,原式44)2)(2(3

2==--=ωωω

2010年高考数学选择题试题分类汇编——复数

(2010湖南文数)1. 复数

2

1i

-等于 A. 1+I B. 1-i C. -1+i D. -1-i

(2010浙江理数)(5)对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是

(A )2z z y -= (B )2

2

2

z x y =+ (C )2z z x -≥ (D )z x y ≤+

解析:可对选项逐个检查,A 项,y z z 2≥-,故A 错,B 项,xyi y x z 22

2

2

+-=,故B 错,C 项,y z z 2≥-,故C 错,D 项正确。本题主要考察了复数的四则运算、共轭复数及其几何意义,属中档题

(2010全国卷2理数)(1)复数2

31i i -??= ?+??

(A )34i -- (B )34i -+ (C )34i - (D )34i + 【答案】A

【命题意图】本试题主要考查复数的运算.

【解析】231i i -??= ?+??

2

2

(3)(1)(12)342i i i i --??=-=--????.

(2010陕西文数)2.复数z =

1i

i

+在复平面上对应的点位于 [A]

(A)第一象限 (B )第二象限 (C )第三象限

(D )第四象限

解析:本题考查复数的运算及几何意义

1i i +i i i 21212)1(+=-=,所以点()2

1,21位于第一象限

(2010辽宁理数)(2)设a,b 为实数,若复数

11+2i

i a bi

=++,则 (A )31

,22a b =

= (B) 3,1a b == (C) 13

,22

a b == (D) 1,3a b ==

【答案】A

【命题立意】本题考查了复数相等的概念及有关运算,考查了同学们的计算能力。 【解析】由

121i

i a bi +=++可得12()()i a b a b i +=-++,所以12

a b a b -=??

+=?,解得32a =

,1

2

b =,故选A 。

(2010江西理数)1.已知(x+i )(1-i )=y ,则实数x ,y 分别为( )

A.x=-1,y=1

B. x=-1,y=2

C. x=1,y=1

D. x=1,y=2 【答案】 D

【解析】考查复数的乘法运算。可采用展开计算的方法,得2

()(1)x i x i y -+-=,没有虚部,x=1,y=2.

(2010安徽文数)(2)已知2

1i =-,则i(1-)=

i i (C)i (D)i 2.B

【解析】(1)i i =+选B.

【方法总结】直接乘开,用2

1i =-代换即可.

(2010浙江文数)3.设i 为虚数单位,则

51i

i

-=+ (A)-2-3i (B)-2+3i (C)2-3i (D)2+3i

解析:选C ,本题主要考察了复数代数形式的四则运算,属容易题

(2010山东文数)(2)已知

()2,a i

b i a b R i

+=+∈,其中i 为虚数单位,则a b += A. 1- B. 1 C. 2 D. 3 答案:B

(2010北京文数)⑵在复平面内,复数6+5i, -2+3i 对应的点分别为A,B.若C 为线段AB 的中点,则点C 对应的复数是

(A )4+8i (B)8+2i (C )2+4i (D)4+i 答案:C

(2010四川理数)(1)i 是虚数单位,计算i +i 2+i 3

(A )-1 (B )1 (C )i - (D )i

解析:由复数性质知:i 2

=-1

故i +i 2+i 3

=i +(-1)+(-i )=-1 答案:A

(2010天津文数)(1)i 是虚数单位,复数

31i

i

+-= (A)1+2i (B)2+4i (C)-1-2i (D)2-i 【答案】A

【解析】本题主要考查复数代数形式的基本运算,属于容易题。

进行复数的除法的运算需要份子、分母同时乘以分母的共轭复数,同时将i 2

改为-1.

331+24121-(1-)(1+)2

i i i i

i i i i +++===+()() 【温馨提示】近几年天津卷每年都有一道关于复数基本运算的小题,运算时要细心,不要失分哦。

(2010天津理数)(1)i 是虚数单位,复数

1312i

i

-+=+

(A)1+i (B)5+5i (C)-5-5i (D)-1-i 【答案】A

【解析】本题主要考查复数代数形式的基本运算,属于容易题。

进行复数的除法的运算需要份子、分母同时乘以分母的共轭复数,同时将i 2

改为-1.

1312i i

-+=

+-+551(12)(12)5i

i i i +==++-(13i )(1-2i) 【温馨提示】近几年天津卷每年都有一道关于复数基本运算的小题,运算时要细心,不要失分哦。

(2010广东理数)2.若复数z 1=1+i ,z 2=3-i ,则z 1·z 2=( )

A .4+2 i B. 2+ i C. 2+2 i D.3 2. A .12(1)(3)1311(31)42z z i i i i ?=+?-=?+?+-=+ (2010福建文数)4.i 是虚数单位,4

1i ()1-i

+等于 ( ) A .i

B .-i

C .1

D .-1

上海市2019届高三数学一轮复习典型题专项训练:复数与行列式

上海市2019届高三数学一轮复习典型题专项训练 复数与行列式 一、复数 1、(2018上海高考)已知复数z 满足117i z i +=-()(i 是虚数单位),则∣z ∣= 2、(2017上海高考)已知复数z 满足3 0z z +=,则||z = 3、(2016上海高考)设i i Z 23+= ,期中i 为虚数单位,则Im z =__________________ 4、(宝山区2018高三上期末)若i z i 23-+= (其中i 为虚数单位),则Imz = . 5、(崇明区2018高三上期末(一模))若复数z 满足iz=1+i (i 为虚数单位),则z= . 6、(奉贤区2018高三上期末)复数 i +12 的虚部是________. 7、(静安区2018高三二模)若复数z 满足(1)2z i i -=(i 是虚数单位),则||z = 8、(普陀区2018高三二模)已知i 为虚数单位,若复数2(i)i a +为正实数,则实数a 的值为……………………………( ) )A (2 ()B 1 ()C 0 ()D 1- 9、(青浦区2018高三二模)若复数z 满足2315i z -=+(i 是虚数单位),则=z _____________. 10、(青浦区2018高三上期末)已知复数i 2i z =+(i 为虚数单位),则z z ?= . 11、(松江、闵行区2018高三二模)设m ∈R ,若复数(1i)(1i)m ++在复平面内对应的点位于实轴 上,则m = . 12、(松江区2018高三上期末)若i -2是关于x 的方程02 =++q px x 的一个根(其中i 为虚数单位,R q p ∈,),则q 的值为 A. 5- B. 5 C. 3- D. 3 13、(杨浦区2018高三上期末)在复平面内,复数2i z i -= 对应的点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 14、(浦东新区2018高三二模)已知方程210x px -+=的两虚根为1x 、2x ,若12||1x x -=,则实数p 的值为( ) A. 3± B. 5± C. 3,5 D. 3±,5± 15、(浦东新区2018高三二模)在复数运算中下列三个式子是正确的:(1)1212||||||z z z z +≤+;(2)1212||||||z z z z ?=?;(3)123123()()z z z z z z ??=??,相应的在向量运算中,下列式子:(1)

复数经典例题百度文库

一、复数选择题 1.在复平面内,复数534i i -(i 为虚数单位)对应的点的坐标为( ) A .()3,4 B .()4,3- C .43,55??- ?? ? D .43,55?? - ??? 2.设复数1i z i =+,则z 的虚部是( ) A .12 B .12 i C .12 - D .12 i - 3. 212i i +=-( ) A .1 B .?1 C .i - D .i 4.若复数(2)z i i =+(其中i 为虚数单位),则复数z 的模为( ) A .5 B C . D .5i 5.若复数1z i i ?=-+,则复数z 的虚部为( ) A .-1 B .1 C .-i D .i 6.若复数()()24z i i =--,则z =( ) A .76i -- B .76-+i C .76i - D .76i + 7.复数z 满足12i z i ?=-,z 是z 的共轭复数,则z z ?=( ) A B C .3 D .5 8.已知i 为虚数单位,若复数()12i z a R a i +=∈+为纯虚数,则z a +=( ) A B .3 C .5 D .9.已知复数()2 11i z i -= +,则z =( ) A .1i -- B .1i -+ C .1i + D .1i - 10.设复数2i 1i z =+,则复数z 的共轭复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 11.复数z 满足22z z i +=,则z 在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 12. 122i i -=+( ) A .1 B .-1 C .i D .-i

复数讲义绝对经典

复数 一、复数的概念 1. 虚数单位 i: (1)它的平方等于1-,即21i =-; (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立. (3)i 与-1的关系: i 就是1-的一个平方根,即方程21x =-的一个根,方程21x =-的另一个 根是-i . (4)i 的周期性: 41n i i +=, 421n i +=-, 43n i i +=-, 41n i =. 2. 数系的扩充:复数(0)i i(0) i(0)i(0) a b a b b a a b b a b a =?? +=??+≠??+≠?? 实数纯虚数虚数非纯虚数 3. 复数的定义: 形如i()a b a b +∈R ,的数叫复数,a 叫复数的实部,b 叫复数的虚部.全体复数所成的集合叫做复数集,用字母C 表示 4. 复数的代数形式: 通常用字母z 表示,即()z a bi a b R =+∈,,把复数表示成a bi +的形式,叫做复数的代数形式. 5. 复数与实数、虚数、纯虚数与0的关系: 对于复数()a bi a b R +∈,,当且仅当0b =时,复数()a bi a b R +∈,是实数a ;当0b ≠时,复数z a bi =+叫做虚数;当0a =且0b ≠时,z bi =叫做纯虚数;当且仅当 0a b ==时,z 就是实数0

6. 复数集与其它数集之间的关系:N Z Q R C 7. 两个复数相等的定义: 如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等.这就是说,如果a ,a b d ,,, c ,d ∈R ,那么i i a b c d +=+?a c =,b d = 二、复数的几何意义 1. 复平面、实轴、虚轴: 复数i()z a b a b =+∈R ,与有序实数对()a b ,是一一对应关系.建立一一对应的关系.点Z 的横坐标是a ,纵坐标是b ,复数i()z a b a b =+∈R ,可用点()Z a b , 表示,这个建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x 轴叫做实轴,y 轴叫做虚轴.实轴上的点都表示实数. 2. .对于虚轴上的点要除原点外,因为原点对应的有序实数对为()00, ,它所确定的复数是00i 0z =+=表示是实数. 除了原点外,虚轴上的点都表示纯虚数. 3. 复数z a bi =+←???→一一对应 复平面内的点()Z a b , 这就是复数的一种几何意义.也就是复数的另一种表示方法,即几何表示方法. 三、复数的四则运算 1. 复数1z 与2z 的和的定义:

福建省莆田第一中学复数经典例题doc

一、复数选择题 1.设复数1i z i =+,则z 的虚部是( ) A . 12 B .12 i C .12 - D .12 i - 2.若20212zi i =+,则z =( ) A .12i -+ B .12i -- C .12i - D .12i + 3.若复数1z i =-,则1z z =-( ) A B .2 C . D .4 4.若(1)2z i i -=,则在复平面内z 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.设复数z 满足方程4z z z z ?+?=,其中z 为复数z 的共轭复数,若z ,则z 为( ) A .1 B C .2 D .4 6.已知复数z 满足2021 22z i i i +=+-+,则复数z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 7.若复数()4 1i 34i z += +,则z =( ) A . 4 5 B . 35 C . 25 D . 5 8.已知复数1z i =+,z 为z 的共轭复数,则()1z z ?+=( ) A B .2 C .10 D 9.复数z 对应的向量OZ 与(3,4)a =共线,对应的点在第三象限,且10z =,则z =( ) A .68i + B .68i - C .68i -- D .68i -+ 10.已知()312++=+a i i bi (,a b ∈R ,i 为虚数单位),则实数+a b 的值为( ) A .3 B .5 C .6 D .8 11.已知i 为虚数单位,则43i i =-( ) A . 2655 i + B . 2655 i - C .2655 i - + D .2655 i - -

复数知识点与历年高考经典题型

数系的扩充与复数的引入知识点(一) 1.复数的概念: (1)虚数单位i ; (2)复数的代数形式z=a+bi ,(a, b ∈R); (3)复数的实部、虚部、虚数与纯虚数。 2.复数集 整 数有 理 数实数(0)分 数复 数(,)无理数(无限不循环 小数)纯 虚 数(0)虚 数(0)非 纯 虚 数(0)b a bi a b R a b a ??????=?????+∈????≠?≠??=?? 3.复数a+bi(a, b ∈R)由两部分组成,实数a 与b 分别称为复数a+bi 的实部与虚部,1与i 分别是实数单位和虚数单位,当b=0时,a+bi 就是实数,当b ≠0时,a+bi 是虚数,其中a=0且b ≠0时称为纯虚数。 应特别注意,a=0仅是复数a+bi 为纯虚数的必要条件,若a=b=0,则a+bi=0是实数。 4.复数的四则运算 若两个复数z1=a1+b1i ,z2=a2+b2i , (1)加法:z1+z2=(a1+a2)+(b1+b2)i ; (2)减法:z1-z2=(a1-a2)+(b1-b2)i ;

(3)乘法:z1·z2=(a1a2-b1b2)+(a1b2+a2b1)i ; (4)除法:11212211222222()()z a a b b a b a b i z a b ++-=+; (5)四则运算的交换率、结合率;分配率都适合于复数的情况。 (6)特殊复数的运算: ① n i (n 为整数)的周期性运算; ②(1±i)2 =±2i ; ③ 若ω=-21+23i ,则ω3=1,1+ω+ω2=0. 5.共轭复数与复数的模 (1)若z=a+bi ,则z a bi =-,z z +为实数,z z -为纯虚数(b ≠0). (2)复数z=a+bi 的模 |Z|=且2||z z z ?==a 2+b 2. 6.根据两个复数相等的定义,设a, b, c, d ∈R ,两个复数a+bi 和c+di 相 等规定为a+bi=c+di a c b d =???=?. 由这个定义得到a+bi=0?00a b =??=?. 两个复数不能比较大小,只能由定义判断它们相等或不相等。 7.复数a+bi 的共轭复数是a -bi ,若两复数是共轭复数,则它们所表示的点关于实轴对称。若b=0,则实数a 与实数a 共轭,表示点落在实轴上。 8.复数的加法、减法、乘法运算与实数的运算基本上没有区别,最主要的是在运算中将i 2=-1结合到实际运算过程中去。 如(a+bi)(a -bi)= a 2+b 2

最新高中数学《复数》经典考题分类解析

最新高中数学《复数》经典考题分类解析 复数的代数运算年年必考,其题目活而不难,主要考查学生灵活运用知识的能力,复数的几何意义也是考查的一个重点。落实考查特点有利于抓住复习中的关键:(1)复数的概念,包括虚数、纯虚数、复数的实部与虚部、复数的模、复数的相等、共轭复数的概念。(2)复数代数形式基本运算的技能与技巧,特别是 i ±1的计算,注意转化思想的训练,善于将复数向实数转化。 (3)复数的几何意义, 1、复数的概念以及运算 例1i 是虚数单位,238i 2i 3i 8i ++++=L .(用i a b +的形式表示,a b ∈R ,) 解:原式=i -2-3i +4+5i -6-7i +8=4-4i 点评:复数是高中数学的重要内容,是解决数学问题的重要工具,本题考查了复数的概念以及复数的引入原则,主要考查i 12-=的实际应用问题。 例2若a 为实数, =,则a 等于( ) A . B . C . D .-解析:由已知得:等式左边=i a a i ai 3 223223)21)(2(-++=-+ 由复数相等的充要条件知:???????-=-=+23 220322a a ,所以a = 点评:本题考查了复数的基本运算以及复数相等的概念。 例3若复数(1)(2)bi i ++是纯虚数(i 是虚数单位,b 是实数),则b =( ) A .2 B .12 C .12- D .2- 解析:(1)(2)bi i ++=i b b )12()2(++-,因为(1)(2)bi i ++是纯虚数,因此

???≠+=-0 1202b b 所以b =2。 点评:本题考查的复数的乘法运算问题,通过该运算考查了纯虚数的概念。 2、复数的几何意义 复数与复平面上的点,及复平面上从原点出发的向量建立了一一对应关系,这样使得 复数问题可以借助几何图形的性质解决,反之,一些解析几何问题、平面几何问题也可以借助于复数的运算加以解决。 例4若35ππ44θ??∈ ??? ,,则复数(cos sin )(sin cos )i θθθθ++-在复平面内所对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 解析:复数的实部a =)4sin(2sin cos π θθθ+=+,虚部b = )4sin(2cos sin πθθθ-=-,因为4 543πθπ<<,所以 ππθπππθπ<-<<+<42,234,所以0)4sin(<+πθ,0)4 sin(>-πθ,即a<0,b>0,所以复数对应的点在第二象限。 点评:本题以复数的三角形式作为命题背景,考查了复数的三角形式运算以及三角函数的恒等变化,以及复数的几何意义。复数与复平面内的点的对应关系经常出现在考题中,关键是把复数化简成bi a +的形式,并且准确的判断出a 、b 的符号是求解问题的关键。 3、复数的开放性的考查 例4.复数i z a b a b =+∈R ,,,且0b ≠,若24z bz -是实数,则有序实数对()a b ,可以是 .(写出一个有序实数对即可) 解析:因为24z bz -=i b ab ab b a )42()4(222-+--是实数,所以有 0422=-b ab ,因为0≠b ,所以b a 2=,所以答案可以填写(2,1)或(2,4)、(3,6)等等。

复数经典例题

一、复数选择题 1.复数1 1z i =-,则z 的共轭复数为( ) A .1i - B .1i + C . 1122 i + D . 1122 i - 2.已知复数2z i =-,若i 为虚数单位,则1i z +=( ) A . 3155 i + B . 1355i + C .113 i + D . 13 i + 3.已知复数1=-i z i ,其中i 为虚数单位,则||z =( ) A . 12 B . 2 C D .2 4.i =( ) A .i - B .i C i - D i 5. 212i i +=-( ) A .1 B .?1 C .i - D .i 6.已知i 为虚数单位,则复数23i i -+的虚部是( ) A .35 B .35i - C .15 - D .1 5 i - 7. )) 5 5 11-- +=( ) A .1 B .-1 C .2 D .-2 8.若复数1211i z i +=--,则z 在复平面内的对应点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.复数12i z i = +(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 10. 122i i -=+( ) A .1 B .-1 C .i D .-i 11.在复平面内,已知平行四边形OABC 顶点O ,A ,C 分别表示25-+i ,32i +,则点B 对应的复数的共轭复数为( ) A .17i - B .16i - C .16i -- D .17i --

12.复数()()212z i i =-+在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 13.复数21i i +的虚部为( ) A .1- B .1 C .i D .i - 14.已知i 是虚数单位,设11i z i ,则复数2z +对应的点位于复平面( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限15.题 目文件丢失! 二、多选题 16.已知复数12z =-,则下列结论正确的有( ) A .1z z ?= B .2z z = C .31z =- D .2020122 z =- + 17.已知复数(),z x yi x y R =+∈,则( ) A .2 0z B .z 的虚部是yi C .若12z i =+,则1x =,2y = D .z = 18.已知复数012z i =+(i 为虚数单位)在复平面内对应的点为0P ,复数z 满足 |1|||z z i -=-,下列结论正确的是( ) A .0P 点的坐标为(1,2) B .复数0z 的共轭复数对应的点与点0P 关于 虚轴对称 C .复数z 对应的点Z 在一条直线上 D .0P 与z 对应的点Z 间的距离的最小值为 2 19.已知复数122 z =-+(其中i 为虚数单位,,则以下结论正确的是( ). A .2 0z B .2z z = C .31z = D .1z = 20.设复数z 满足1 z i z +=,则下列说法错误的是( ) A .z 为纯虚数 B .z 的虚部为12 i - C .在复平面内,z 对应的点位于第三象限 D .2 z =

复数经典例题百度文库(1)

一、复数选择题 1.复数()1z i i =?+在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.已知复数()123z i i +=- (其中i 是虚数单位),则z 在复平面内对应点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.复数312i z i =-的虚部是( ) A .65i - B .35i C .35 D .65 - 4.如图所示,在复平面内,网格中的每个小正方形的边长都为1,点A ,B 对应的复数分别是1z ,2z ,则12z z -=( ) A 2 B .2 C .2 D .8 5.已知i 是虚数单位,则复数 41i i +在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 6.已知i 为虚数单位,复数12i 1i z += -,则复数z 在复平面上的对应点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 7.若复数z 满足421i z i += +,则z =( ) A .13i + B .13i - C .3i + D .3i - 8.若复数z 满足()322i z i i -+= +,则复数z 的虚部为( ) A .35 B .3 5i - C .35 D .35i 9.已知复数()211i z i -=+,则z =( ) A .1i -- B .1i -+ C .1i + D .1i - 10.复数z 的共轭复数记为z ,则下列运算:①z z +;②z z -;③z z ?④ z z ,其结果一定是实数的是( )

高中《复数》经典练习题1(含答案)

高中《复数》经典练习题 【编著】黄勇权 一、填空题 1、复数i i ++12的共扼复数是 。 2.设复数z=1+i (i 是虚数单位),则|+z|= 。 3、若复数Z 满足Z (1-i )=2+4i (i 为虚数单位),则Z= 。 4、若复数Z 满足Z+2i =i 2i 55++(i 为虚数单位),则Z= 。 5、z=(m 2-4)+(2-m )i 为纯虚数,则实数m 的值为 。 6、已知m ∈R ,i 是虚数单位,若z=a-2i ,z ?z =6,则m= 。 7、已知z =(x+1)+(x -3)i 在复平面内对应的点在第四象限,则实数m 的取值范围是 。 8、若复数Z 满足2-3i= 3+2Zi (i 为虚数单位),则Z= 。 9、复数Z=i+i 2在复平面对应的点在第 象限。 10、复数Z 满足(Z-1)i=2+i ,则Z 的模为 。 11、若复数Z 满足Z (1-i )= 2+2i (i 为虚数单位),则Z= 。 12、复数Z=i 1i 32++,则Z ?(z -1)= . 13、若复数i 2i a +的实部与虚部相等,则实数a = 。 14、复数 的虚部 。 15、2.若复数(α∈R )是纯虚数,则复数2a+2i 在复平面内对应的点在第 象限。 16、设复数z 满足(z+i )(2+i )=5(i 为虚数单位),则z=______。 17、如果复数z= (i 为虚数单位)的实部与虚部互为相反数,那么|z|=______

18、复数z=﹣2i+ 3-i i ,则复数z 的共轭复数在复平面内对应的点在第 象限。 19、设复数z 满足 i i z i (23)4(+=-?是虚数单位),则z 的实部为 。 20、设复数121,1z i z i =-=+,其中i 是虚数单位,则Z1Z2 的模为 。 二、选择题 1、设a ,b ∈R ,i 为虚数单位,若(a+bi )?i=2﹣5i ,则ab 的值为( )。 A 、-5 B 、5 C 、-10 D 、10 2、若复数z 为纯虚数, 且满足i )i 2(+=-a z (i 为虚数单位),则实数a 的值为 . A 、 12 B 、 13 C 、 14 D 、 16 3、已知复数z 满足(1)2i z i -=,其中i 为虚数单位,则z 的模为( ) A 、 4 2 B 、 3 2 C 、 2 2 D 、 2 4、i 是虚数单位,复数 等于( ) A 、﹣2﹣2i B 、2﹣2i C 、﹣2+2i D 、2+2i 5、若复数()()ai i z -+=11是实数,则实数a 的值是( ) A 、1± B 、1- C 、0 D 、1 6、设i 为虚数单位,已知复数i i z -= 1,则z 的共轭复数在复平面内表示的点位于( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 7、i 是虚数单位, 的值是( )。 A 、 1 B 、 -1 C 、 i D 、-i

河北省盐山中学复数经典例题 百度文库

一、复数选择题 1.复数2 1i =+( ) A .1i -- B .1i -+ C .1i - D .1i + 2.复数3(23)i +(其中i 为虚数单位)的虚部为( ) A .9i B .46i - C .9 D .46- 3.若复数z 为纯虚数,且()373z i m i -=+,则实数m 的值为( ) A .97 - B .7 C . 97 D .7- 4.已知i 为虚数单位,则复数23i i -+的虚部是( ) A .35 B .35i - C .15 - D .15 i - 5.若(1)2z i i -=,则在复平面内z 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 6.已知复数()2 11i z i -= +,则z =( ) A .1i -- B .1i -+ C .1i + D .1i - 7.复数z 的共轭复数记为z ,则下列运算:①z z +;②z z -;③z z ?④z z ,其结果一定是实数的是( ) A .①② B .②④ C .②③ D .①③ 8.已知复数z 满足2 2z z =,则复数z 在复平面内对应的点(),x y ( ) A .恒在实轴上 B .恒在虚轴上 C .恒在直线y x =上 D .恒在直线y x =-上 9.已知复数1z i =+,z 为z 的共轭复数,则()1z z ?+=( ) A B .2 C .10 D 10.若复数z 满足213z z i -=+,则z =( ) A .1i + B .1i - C .1i -+ D .1i -- 11.复数()()212z i i =-+在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 12.已知i 是虚数单位,2i z i ?=+,则复数z 的共轭复数的模是( ) A .5 B C D .3

复数经典例题 百度文库(1)

一、复数选择题 1.已知复数2z i =-,若i 为虚数单位,则1i z +=( ) A . 3155 i + B . 1355i + C .113 i + D . 13 i + 2.在复平面内,复数534i i -(i 为虚数单位)对应的点的坐标为( ) A .()3,4 B .()4,3- C .43,55??- ??? D .43,55?? - ?? ? 3.若()2 11z i =-,21z i =+,则1 2 z z 等于( ) A .1i + B .1i -+ C .1i - D .1i -- 4.设复数1i z i =+,则z 的虚部是( ) A . 12 B .12 i C .12 - D .12 i - 5.已知复数1=-i z i ,其中i 为虚数单位,则||z =( ) A . 12 B C D .2 6.复数()1z i i =?+在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 7. 212i i +=-( ) A .1 B .?1 C .i - D .i 8.已知复数()123z i i +=- (其中i 是虚数单位),则z 在复平面内对应点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.已知i 为虚数单位,则复数23i i -+的虚部是( ) A .35 B .35i - C .15- D .15 i - 10.已知i 是虚数单位,则复数41i i +在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 11.若复数()4 1i 34i z += +,则z =( )

高考数学复数典型例题附答案

1, 已知复数求k的值。 解: ,∴ 由的表示形式得k=2 即所求k=2 点评: (i) 对于两个复数、,只要它们不全是实数,就不能比较大小,因此,、能够比较大小 ,均为实数。 (ii)虚数不能与0比较大小,更无正负之分,因此, 对于任意复数z,且R; 且R。 2, 若方程有实根,求实数m的值,并求出此实根。 解:设为该方程的实根,将其代入方程得 由两复数相等的定义得, 消去m得, 故得 当时得,原方程的实根为; 当时得,原方程的实根为。 点评:对于虚系数一元方程的实根问题,一般解题思路为:设出实根——代入方程——利用两复数相等的充要条件求解。 3, 已知复数z满足,且z的对应点在第二象限,求a的取值范围。

解:设, 。 由得 ① 对应点在第二象限,故有 ② 又由①得③ 由③得, 即, ∴, ∴④ 于是由②,④得,即 再注意到a<0,故得 即所求a的取值范围为 点评:为利用导出关于a的不等式,再次利用①式:由①式中两复数相等切入,导出关于与a的关系式:此为解决这一问题的关键。此外,这里对于有选 择的局部代入以及与的相互转化,都展示了解题的灵活与技巧,请同学们注意领悟,借鉴。4, 求同时满足下列两个条件的所有复数: (1);

(2)z的实部与虚部都是整数。 解:设,则 由题意,∴ ∴y=0或 (Ⅰ)当y=0时,,, ∴由得① 注意到当x<0时,;当x>0时,, 此时①式无解。 (Ⅱ)当时,由得 ∴ 又这里x,y均为整数 ∴x=1,或x=3,, ∴或 于是综合(Ⅰ)(Ⅱ)得所求复数z=1+3i,1-3i,3+i,3-i. 5, (1)关于x的方程在复数集中的一个根为-2i,求a+b的值。 (2)若一元二次方程有虚根,且,试判断a,b,c所成数列的特征。 解: (1) 解法一:

复数经典例题

一、复数选择题 1.若()2 11z i =-,21z i =+,则1 2 z z 等于( ) A .1i + B .1i -+ C .1i - D .1i -- 2.若20212zi i =+,则z =( ) A .12i -+ B .12i -- C .12i - D .12i + 3.已知复数()2m m m i z i --=为纯虚数,则实数m =( ) A .-1 B .0 C .1 D .0或1 4. 212i i +=-( ) A .1 B .?1 C .i - D .i 5.已知,a b ∈R ,若2 ()2a b a b i -+->(i 为虚数单位),则a 的取值范围是( ) A .2a >或1a <- B .1a >或2a <- C .12a -<< D .21a -<< 6.已知复数31i z i -=,则z 的虚部为( ) A .1 B .1- C .i D .i - 7.已知复数21i z i =-,则复数z 在复平面内对应点所在象限为( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 8.已知复数z 满足()3 11z i i +=-,则复数z 对应的点在( )上 A .直线12 y x =- B .直线12y x = C .直线12x =- D .直线12 y 9.复数z 满足12i z i ?=-,z 是z 的共轭复数,则z z ?=( ) A B C .3 D .5 10.已知复数5i 5i 2i z =+-,则z =( ) A B .C .D .11.已知i 为虚数单位,若复数()12i z a R a i +=∈+为纯虚数,则z a +=( ) A B .3 C .5 D .12.设2i z i +=,则||z =( ) A B C .2 D .5 13.在复平面内,复数z 对应的点为(,)x y ,若2 2 (2)4x y ++=,则( )

复数经典例题百度文库

一、复数选择题 1.已知i 是虚数单位,复数2z i =-,则()12z i ?+的模长为( ) A .6 B C .5 D 2.已知,a b ∈R ,若2 ()2a b a b i -+->(i 为虚数单位),则a 的取值范围是( ) A .2a >或1a <- B .1a >或2a <- C .12a -<< D .21a -<< 3.若复数()()24z i i =--,则z =( ) A .76i -- B .76-+i C .76i - D .76i + 4.已知复数5i 5i 2i z =+-,则z =( ) A B .C .D .5.已知i 为虚数单位,若复数()12i z a R a i +=∈+为纯虚数,则z a +=( ) A B .3 C .5 D .6.若复数1211i z i +=--,则z 在复平面内的对应点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 7.满足313i z i ?=-的复数z 的共扼复数是( ) A .3i - B .3i -- C .3i + D .3i -+ 8.复数z 的共轭复数记为z ,则下列运算:①z z +;②z z -;③z z ?④z z ,其结果一定是实数的是( ) A .①② B .②④ C .②③ D .①③ 9.若复数2i 1i a -+(a ∈R )为纯虚数,则1i a -=( ) A B C .3 D .5 10.已知复数1z i =+,z 为z 的共轭复数,则()1z z ?+=( ) A B .2 C .10 D 11.若( )()3 24z i i =+-,则在复平面内,复数z 所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 12.在复平面内,已知平行四边形OABC 顶点O ,A ,C 分别表示25-+i ,32i +,则点B 对应的复数的共轭复数为( ) A .17i - B .16i - C .16i -- D .17i -- 13.复数()()212z i i =-+,则z 的共轭复数z =( ) A .43i + B .34i - C .34i + D .43i -

高三复数总复习知识点经典例题习题

高三复数总复习知识点经 典例题习题 Revised by BLUE on the afternoon of December 12,2020.

复 数 一.基本知识 【1】复数的基本概念 (1)形如a + b i 的数叫做复数(其中R b a ∈,);复数的单位为i ,它的平方等 于-1,即1i 2-=.其中a 叫做复数的实部,b 叫做虚部 实数:当b = 0时复数a + b i 为实数 虚数:当0≠b 时的复数a + b i 为虚数; 纯虚数:当a = 0且0≠b 时的复数a + b i 为纯虚数 (2)两个复数相等的定义: (3)共轭复数:z a bi =+的共轭记作z a bi =-; (4)复平面:建立直角坐标系来表示复数的平面叫复平面;z a bi =+,对应点坐标 为(),p a b ;(象限的复习) (5)复数的模:对于复数z a bi =+,把z =叫做复数z 的模; 【2】复数的基本运算 设111z a b i =+,222z a b i =+ (1) 加法:()()121212z z a a b b i +=+++; (2) 减法:()()121212z z a a b b i -=-+-; (3) 乘法:()()1212122112z z a a b b a b a b i ?=-++ 特别22z z a b ?=+。 (4)幂运算:1i i =21i =-3i i =-41i =5i i =61i =-?????? 【3】复数的化简 c di z a bi +=+(,a b 是均不为0的实数);的化简就是通过分母实数化的方法将分母化为实数:()()22 ac bd ad bc i c di c di a bi z a bi a bi a bi a b ++-++-==?=++-+

复数问题的题型与方法

复数问题的题型与方法 复数一节的题型主要是讨论复数的概念,复数相等,复数的几何表示,计算复数模,共轭复数,解复数方程等. 一、数学规律: 1.共轭复数规律, 2.复数的代数运算规律i4n 1=i,i4n 2= 1,i4n 3= i; 1)i 4n=1 n n 1 n 2 n 3 n n 1 n 2 n 3 (3)i · i · i ·i = 1,i +i +i +i =0; ; 3.辐角的运算规律 (1)Arg(z1·z2)=Argz1+Argz 2 3)Argzn=nArgz (n∈N) ?,n 1。 或z∈R 。 要条件是|z|=|a|。

(6)z 1·z 2 ≠0,则 4.根的规律 复系数一元 n 次方程有且只有 n 个根,实系数一元 n 次方程的虚根成对共轭出现。 5.求最值 时,除了代数、三角的常规方法外,还需注意几何法及不等式 ||z 1| |z 2 ||≤|z 1± z 2 |≤ |z 1 |+|z 2 |的运用。 即|z 1±z 2 |≤ |z 1 |+|z 2 |等号成立的条件是: z 1 , z 2所对应的向量共线且同向。 |z 1±z 2 |≥|z 1| |z 2 |等号成立的条件是: z 1,z 2 所对立的向量共线且异向。 二、 主要的思想方法和典型例题分析: 1.化归思想 复数的代数、几何、向量及三角表示,把复数与实数、三角、平面几何和解析几何有 机地联系在一起,这就保证了可将复数问题化归为实数、三角、几何问题。反之亦然。这 种化归的思想方法应贯穿复数的始终。 分析】这是解答题,由于出现了复数 z 和 z ,宜统一形式,正面求解。 解】解法一 设 z =x +yi ( x , y ∈R ),原方程即为 x 2 y 2 3y 3xi 1 3i 用复数相等的定义得: ∴ z 1= 1, z 2 = 1+3i.

典型例题:复数的代数形式及其运算

复数的代数形式及其运算 例1.计算: i i i i i 2 1 2 1 ) 1( ) 1( 2005 40 40 + + - + + - - + 解:提示:利用i i i i= ± = ±2005 2,2 ) 1( 原式=0 变式训练1: 2 = (A)1 -(B) 1 22 +(C) 1 22 -+(D)1 解:21 2 ===-+故选C; 例2. 若0 1 2= + +z z,求2006 2005 2003 2002z z z z+ + + 解:提示:利用z z z= =4 3,1 原式=2 ) 1(4 3 2002- = + + +z z z z 变式训练2:已知复数z满足z2+1=0,则(z6+i)(z6-i)=▲ . 解:2 例3. 已知4, a a R >∈,问是否存在复数z,使其满足ai z i z z+ = + ?3 2(a∈R),如果存在,求出z的值,如果不存在,说明理由 解:提示:设) , (R y x yi x z∈ + =利用复数相等的概念有 ? ? ? = = + + a x y y x 2 3 2 2 2 3 4 2 2 2> ? ? = - + + ? a y y i a a z a 2 16 2 2 4 | | 2 - ± - + = ? ≤ ? 变式训练3:若 (2) a i i b i -=+,其中i R b a, ,∈是虚数单位,则a+b= __________

解:3 例4. 证明:在复数范围内,方程255||(1)(1)2i z i z i z i -+--+=+(i 为虚数单位)无解. 证明:原方程化简为 2||(1)(1)1 3.z i z i z i +--+=-设 yi x z += (x 、y∈R,代入上述方程得22221 3.x y xi yi i +--=- 221(1)223(2)x y x y ?+=?∴?+=?? 将(2)代入(1) ,整理得281250. x x -+=160,()f x ?=-<∴方程无实数解,∴原方程在复数范围内无解. 变式训练4:已知复数z 1满足(1+i)z 1=-1+5i ,z 2=a -2-i ,其中i 为虚数单位,a∈R, 若12z z -<1z ,求a 的取值范围. 解:由题意得 z 1=151i i -++=2+3i, 于是12z z -=42a i -+1z =13. 13,得a 2-8a +7<0,1

高中数学 典型例题 复数加减 新课标

复数的加减运算 例 计算 (1))43()53(i i -++; (2))54()23(i i --+-; (3))33()22()65(i i i +---+- 分析:根据复数加、减法运算法则进行运算。 解:(1).6)45()33()43()53(i i i i +=-++=-++ (2).77)]5(2[)43()54()23(i i i i +-=--+--=--+- (3))33()22()65(i i i +---+-i )326()325(---+--=.11i -= 确定向量所表示的复数 例 如图,平行四边形OABC ,顶点O 、A 、C 分别表 示0,i 23+,i 42+-,试求: (1)AO 所表示的复数,BC 所表示的复数. (2)对角线CA 所表示的复数. (3)对角线OB 所表示的复数及OB 的长度. 分析:要求某个向量对应的复数,只要找出所求的向量的始点和终点。或者用向量的相等直接给出所求的结论. 解:(1)OA AO -= AO ∴所表示的复数为i 23--. AO BC =Θ, BC ∴所表示的复数为i 23--. (2)OC OA CA -=, CA ∴所表示的复数为i i i 25)42()23(-=+--+ (3)对角线OC OA AB OA OB +=+=,它所对应的复数为 i i i 61)42()23(+=+-++ 3761||22=+=OB

求正方形的第四个顶点对应的复数 例 复数i z 211+=,i z +-=22,i z 213--=,它们在复平面上的对应点是一个正方形的三个顶点,求这个正方形的第四个顶点对应的复数。 分析1:利用BC AD =或者DC AB =求点D 对应的复数。 解法1:设复数1z ,2z ,3z 所对应的点分别为A 、B 、C ,正方形的第四个顶点D 对应的复数为yi x +(R y x ∈,)则 OA OD AD -=)21()(i yi x +-+= i y x )2()1(-+-= OB OC BC -=i i i 31)2()21(-=+----= ∵ BC AD =, ∴.31)2()1(i i y x -=-+- ∴ ???-=-=-3211y x 解得? ??-==12y x 故点D 对应的复数.2i - 分析2:利用正方形的性质,对角钱相等且互相平分,相对顶点连线段的 中点重合,即利用正方形的两条对角线交点是其对称中心求解. 解法2:设复数1z ,2z ,3z 所对应的点分别为A 、B 、C ,正方形的第四个顶点D 对应的复数为yi x +(R y x ∈,) 因为点A 与点C 关于原点对称,所以原点O 为正方形的中心. ∴ 点O 也是B 与D 点的中点,于是由0)()2(=+++-yi x i ∴ .1,2-==y x 故D 对应的复数为.2i - 小结:解题1一定要善于发现问题中可能被利用的条件,寻找最佳的解题方法,解法2利用正方形是如C 对称固形,解题思路较巧. 根据条件求参数的值 例 已知i a a z )5(321++-=,i a a a z )12(12 2-++-=(R a ∈)分别对应向量, 21,OZ OZ (O 为原点) ,若向量12Z Z 对应的复数为纯虚数,求a 的值. 分析:12Z Z 对应的复数为纯虚数,利用复数减法先求出12Z Z 对应的复数,再利用复

复数经典例题

经典例题透析 类型一:复数的有关概念 Z 分别为: (1)实数;(2)虚数;(3)纯虚数. 思路点拨:根据复数Z 为实数、虚数及纯虚数的概念,判断实部与虚部取值情况 .利用 它们的充要条件可分别求出相应的 a 值. 解析: (1)当Z 为实数时, I a - 5a -6=0 Ia = -1或a — 6— 有 2 = = a =6, a 2 -1 = 0 a =二 1 ???当a = 6时,Z 为实数. (2) 当Z 为虚数时, I a - 5a - 6 = 0 Ia=-I ^且a = 6 — 有 2 = = a _1 且 a = 6 , a -1=0 a - -1 ?当 a ∈(-∞,- 1 )U(— 1, 1 )∪( 1, 6)∪( 6, +∞)时,Z 为虚数. (3) 当Z 为纯虚数时, ?不存在实数a 使Z 为纯虚数. 总结升华:由于a ∈ R ,所以复数Z 的实部与虚部分为 a : 7a 6 与a 2 - 5a - 6. a 2 -1 ① 求解第(1)小题时,仅注重虚部等于零是不够的,还需考虑它的实部是否有意义, 否则本小题将出现增解; ② 求解第(2)小题时,同样要注意实部有意义的问题; ③ 求解第(3)小题时,既要考虑实数为0(当然也要考虑分母不为 0),还需虚部不为0, 两者缺一不可. 例1已知复数 2 a —7a +6 丄 / 2 Z 2 (a - 5a - 6)i (a - R), 试求实数a 分别取什么值时, a 2 _5a _6 = 0 a 2 -7a 6 .a 2-1 -0 a =二 _1^且 a ~^ 6 a =6

举一反三:

【变式1】设复数z=a+bi (a 、b ∈ R ),贝U Z 为纯虚数的必要不充分条件是( ) A . a=0 B . a=0 且 b ≠ 0 C . a ≠0 且 b=0 D . a ≠0 且 b ≠ 0 【答案】A ;由纯虚数概念可知: a=0且b ≠ 0是复数z=a+bi (a 、b ∈ R )为纯虚数的充 要条件?而题中要选择的是必要不充分条件,对照各选择支的情况,应选择 A. - - .> , 2 【变式2】若复数(a -3a ? 2) ? (a -1)i 是纯虚数,则实数 a 的值为( ) A.1 B.2 C.1 或 2 D.-1 2 2 【答案】B ; ?/ (a 2 C 1 i 是纯虚数,??? a -3a ?2=0且a-1 = 0 ,即 a = 2. 【变式3】如果复数(m 2 ?i)(1 ?mi)是实数,则实数 m=( ) A . 1 B . - 1 C . 、. 2 D . . 2 【答案】B ; 【变式4】求当实数m 取何值时,复数z = (m 2 - m - 2) ? (m 2 -3m 2)i 分别是: 解析: 同理可得: (1)实数; (2)虚数; (3)纯虚数. 【答案】 (1) 2 m -3m 2 =0 即 m=1 或 m=2 时, 复数Z 为实数; (2) 2 m -3m 2=0 即 m 1 且 m = 2 时, 复数Z 为虚数; (3) 2 m - m -2 = 0 2 即m =—1时,复数 m —3m 2 = 0 Z 为纯虚数. 类型 :复数的代数形式的四则运算 例2. 计算: (1) i n (n N .); (1 i)8 ⑶(1 2i)P-2i); (1 - 4i)(1 i) 2 4i 3 4i ⑴??? i 2 ?1 , ? i 3 =i 2 i i 4 =i 2 i 2 =1,

相关文档
最新文档