2018年高考数学总复习第九章平面解析几何第4讲直线与圆、圆与圆的位置关系!
浙江高考数学第九章解析几何9.4直线与圆、圆与圆的位置关系课件

3
关闭
-15答案
考点一
考点二
考点三
圆与圆的位置关系及其应用(考点难度★★) 【例2】 已知圆C1:(x-a)2+(y+2)2=4与圆C2:(x+b)2+(y+2)2=1外切, 则ab的最大值为( )
A.
6 2
B.
3 2
C.
9
4
D.2 3
关闭
由圆 C1 与圆 C2 外切,可得 (������ + ������)2 + (-2 + 2)2 =2+1=3,即(a+b)2=9, 根据基本不等式可知 ab≤ ab 的最大值为4. C
解析
9 ������ +������ 2
2=9,当且仅当
4
a=b 时等号成立.故
关闭
-16答案
考点一
考点二
考点三
方法总结1.判断两圆的位置关系,通常是用几何法,从圆心距d与 两圆半径长的和、差的关系入手.如果用代数法,从交点个数也就 是方程组解的个数来判断,但有时不能得到准确结论. 2.两圆位置关系中的含参问题有时需要将问题进行化归,一般需 要运用数形结合思想.
考点一
考点二
考点三
直线与圆的位置关系及应用(考点难度★★) 【例1】 圆x2+y2-2x+4y=0与直线2tx-y-2-2t=0(t∈R)的位置关系 为( ) A.相离 B.相切 C.相交 D.以上都有可能
关闭
∵直线2tx-y-2-2t=0恒过点(1,-2),
又12+(-2)2-2×1+4×(-2)=-5<0,
5 |3-2������ | ������ 2 +1
超实用高考数学专题复习:第九章平面解析几何 第4节直线与圆圆与圆的位置关系

规律方法 判断直线与圆的位置关系的常见方法 (1)几何法:利用d与r的关系. (2)代数法:联立方程之后利用Δ判断. (3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.
角度 2 弦长问题 【例 1-2】 (2020·中原名校联盟联考)设圆 x2+y2-2x-2y-2=0 的圆心为 C,直
心(1,0)到直线 y=k(x-3)的距离应小于等于半径 1,即
1|2+k| k2≤1,解得-
3 3
≤k≤
3 3.
(2)由题意知圆的方程为 x2+(y+1)2=4,所以圆心坐标为(0,-1),半径为 2,则圆
心到直线 y=x+1 的距离 d=|1+21|= 2,所以|AB|=2 22-( 2)2=2 2.
当直线 l 的斜率存在时,设直线 l 的方程为 y=kx+3,由已知可得圆的标准方程为 (x-1)2+(y-1)2=4,其圆心为 C(1,1),半径 r=2,∴圆心 C(1,1)到直线 kx-y +3=0 的距离 d=|k-k21++13|= |kk+2+2|1,∵d2=r2-|A2B|2,∴(kk+2+21)2=4-22 32, 即(k+2)2=k2+1,解得 k=-34,∴直线 l 的方程为 y=-34x+3,即 3x+4y-12= 0.综上,满足题意的直线 l 的方程为 x=0 或 3x+4y-12=0,故选 D. 答案 D
A.(- 3, 3)
B.[- 3, 3]
C.(-
33,
3 3)
D.-
33,
3 3
(2)(角度 2)(2018·全国Ⅰ卷)直线 y=x+1 与圆 x2+y2+2y-3=0 交于 A,B 两点,则
高三数学一轮复习第九章平面解析几何第四节直线与圆圆与圆的位置关系课件理

2
=4,所以圆的面积S=πr2=4π.
2
2
方法技巧
(1)求过某点的圆的切线问题时,应首先确定点与圆的位置关系,再求切
线方程.若点在圆上(即为切点),则过该点的切线只有一条;若点在圆外,
则过该点的切线有两条,此时应注意斜率不存在的切线.
(2)求直线被圆所截得的弦长时,通常考虑构造直角三角形,利用勾股定
解析 (1)解法一:由 mx2x消(去yyy11,整)2m理5得0,(1+m2)x2-2m2x+m2-5=0,
则Δ=4m4-4(1+m2)(m2-5)=16m2+20>0, 所以直线l与圆C相交.故选A.
解法二:因为圆心(0,1)到直线l的距离d= | <m1|< ,故直5 线l与圆相交, m2 1
⑤ 搁置问题抓住老师的思路。碰到自己还没有完全理解老师所讲内容的时候,最好是做个记号,姑且先把这个问题放在一边,继续听老师讲后面的 内容,以免顾此失彼。来自:学习方法网
⑥ 利用笔记抓住老师的思路。记笔记不仅有利于理解和记忆,而且有利于抓住老师的思路。
2019/7/10
最新中小学教学课件
17
谢谢欣赏!
知 | a +221 =| (2a-1)2,解得a=3或a=-1,又因为圆心在x轴的正半轴上,所以
a=3,故圆心坐标为(3,0).因为圆心(3,0)在所求的直线上,所以3+0+m=0,即 m=-3,故所求的直线方程为x+y-3=0.
考点三 圆与圆的位置关系 典例3 已知两圆C1:x2+y2-2x-6y-1=0和C2:x2+y2-10x-12y+45=0. (1)求证:圆C1和圆C2相交; (2)求圆C1和圆C2的公共弦所在直线的方程和公共弦长. 解析 (1)证明:圆C1的圆心为C1(1,3),半径r1= 1,圆1 C2的圆心为C2(5,6), 半径r2=4,两圆圆心距d=|C1C2|=5,r1+r2= 1+1 4,|r1-r2|=4- ,∴1 1 |r1-r2|<d<r1+r 2,∴圆C1和C2相交. (2)圆C1和圆C2的方程左、右两边分别相减,得4x+3y-23=0, ∴两圆的公共弦所在直线的方程为4x+3y-23=0.
第九章第四节 直线与圆、圆与圆的位置关系

_一__组__实__数__解__ 两组不同的
实数解 __一__组__实__数__解___
无__解__
1.与圆的切线有关的结论 (1)过圆 x2+y2=r2 上一点 P(x0,y0)的切线方程为 x0x+y0y=r2; (2)过圆(x-a)2+(y-b)2=r2 上一点 P(x0,y0)的切线方程为(x0-a)(x-a) +(y0-b)(y-b)=r2; (3)过圆 x2+y2=r2 外一点 P(x0,y0)作圆的两条切线,切点为 A,B,则过 A,B 两点的直线方程为 x0x+y0y=r2.
2.(必修 2P127 例 1 改编)直线 y=x+1 与圆 x2+y2=1 的位置关系为( )
A.相切
B.Hale Waihona Puke 交但直线不过圆心C.直线过圆心
D.相离
B
[圆心为(0,0),到直线 y=x+1 即 x-y+1=0 的距离 d=
1 2
=
2 2
,
而 0<
2 2
<1,但是圆心不在直线 y=x+1 上,所以直线与圆相交,但直线不
过圆心.]
3.(必修 2P129 例 3 改编)两圆 x2+y2-2y=0 与 x2+y2-4=0 的位置关
系是( )
A.相交
B.内切
C.外切
D.内含
B [两圆方程可化为 x2+(y-1)2=1,x2+y2=4,两圆圆心分别为 O1(0, 1),O2(0,0),半径分别为 r1=1,r2=2.因为|O1O2|=1=r2-r1,所以两圆内 切.]
第九章 平面解析几何
第四节 直线与圆、圆与圆的位置关系
教育最新K12课标通用2018年高考数学一轮复习第九章解析几何9.4直线与圆圆与圆的位置关系学案理

§9.4直线与圆、圆与圆的位置关系考纲展示►1.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.2.能用直线和圆的方程解决一些简单的问题.3.初步了解用代数方法处理几何问题的思想.考点1 直线与圆的位置关系直线与圆的位置关系(1)三种位置关系:________、________、________.(2)两种研究方法:(3)圆的切线方程常用结论:①过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.②过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2.③过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2.答案:(1)相交相切相离(2)①相交相切相离②相交2r2-d2相切 相离(1)[教材习题改编]圆(x -1)2+(y +2)2=6与直线2x +y -5=0的位置关系是( ) A .相切B .相交但直线不过圆心C .相交过圆心D .相离 答案:B解析:由题意知,圆心(1,-2)到直线2x +y -5=0的距离d =|2×1-2-5|22+1=5<6,且2×1+(-2)-5≠0,所以直线与圆相交但不过圆心.(2)[教材习题改编]圆x 2+y 2-4x =0在点P (1,3)处的切线方程为________. 答案:x -3y +2=0解析: 圆的方程为(x -2)2+y 2=4,圆心坐标为(2,0),半径为2,点P 在圆上. 易知切线的斜率存在,设切线方程为y -3=k (x -1),即kx -y -k +3=0, ∴|2k -k +3|k 2+1=2,解得k =33, ∴切线方程为y -3=33(x -1), 即x -3y +2=0.圆的切线:注意切线的条数.过点(2,3)作圆x 2+y 2=4的切线,则切线方程为________. 答案:5x -12y +26=0或x -2=0解析:当切线斜率不存在时,可得切线方程为x -2=0. 当切线斜率存在时,设切线方程为y -3=k (x -2), 即kx -y +3-2k =0,由圆心到切线的距离等于半径得|3-2k |k 2+1=2,解得k =512,所以切线方程为y -3=512(x -2),即5x -12y +26=0.综上可知,切线方程为5x -12y +26=0或x -2=0.[典题1] (1)[2017·湖北七市联考]将直线x +y -1=0绕点(1,0)沿逆时针方向旋转15°得到直线l ,则直线l 与圆(x +3)2+y 2=4的位置关系是( )A .相交B .相切C .相离D .相交或相切 [答案] B[解析] 依题意得,直线l 的方程是y =tan 150°(x -1),即x +3y -1=0,圆心(-3,0)到直线l 的距离d =|-3-1|3+1=2,因此该直线与圆相切.(2)[2017·陕西西安一模]直线(a +1)x +(a -1)y +2a =0(a ∈R )与圆x 2+y 2-2x +2y -7=0的位置关系是( )A .相切B .相交C .相离D .不确定[答案] B[解析] 解法一:x 2+y 2-2x +2y -7=0化为圆的标准方程为(x -1)2+(y +1)2=9, 故圆心坐标为(1,-1),半径r =3, 圆心到直线的距离d =a +-a -+2a |a +2+a -2=|2a +2|2a 2+2. 再根据r 2-d 2=9-4a 2+8a +42a 2+2=7a 2-4a +7a 2+1, 而7a 2-4a +7=0的判别式Δ=16-196=-180<0, 故有r 2>d 2,即d <r ,故直线与圆相交. 解法二:由(a +1)x +(a -1)y +2a =0(a ∈R ), 整理得x -y +a (x +y +2)=0, 则由⎩⎪⎨⎪⎧x -y =0,x +y +2=0,解得⎩⎪⎨⎪⎧x =-1,y =-1,即直线(a +1)x +(a -1)y +2a =0(a ∈R )过定点(-1,-1),又(-1)2+(-1)2-2×(-1)+2×(-1)-7=-5<0,则点(-1,-1)在圆x 2+y 2-2x +2y -7=0的内部,故直线(a +1)x +(a -1)y +2a =0(a∈R )与圆x 2+y 2-2x +2y -7=0相交.(3)已知直线l :y =kx +1,圆C :(x -1)2+(y +1)2=12. ①求证:不论k 为何实数,直线l 和圆C 总有两个交点; ②求直线l 被圆C 截得的最短弦长. 解法一:①[证明] 由⎩⎪⎨⎪⎧y =kx +1,x -2+y +2=12消去y ,得(k 2+1)x 2-(2-4k )x -7=0, 因为Δ=(2-4k )2+28(k 2+1)>0,所以不论k 为何实数,直线l 和圆C 总有两个交点. ②[解] 设直线与圆交于A (x 1,y 1),B (x 2,y 2)两点, 则直线l 被圆C 截得的弦长|AB |=1+k 2|x 1-x 2| =28-4k +11k21+k2=2 11-4k +31+k2,令t =4k +31+k 2,则tk 2-4k +(t -3)=0,当t =0时,k =-34;当t ≠0时,因为k ∈R , 所以Δ=16-4t (t -3)≥0, 解得-1≤t ≤4,且t ≠0,故t =4k +31+k 2的最大值为4,此时|AB |最小为27.则直线l 被圆C 截得的最短弦长为27.解法二:①[证明] 因为不论k 为何实数,直线l 总过点P (0,1),而|PC |=5<23=r ,所以点P (0,1)在圆C 的内部,即不论k 为何实数,直线l 总经过圆C 内部的定点P .所以不论k 为何实数,直线l 和圆C 总有两个交点.②[解] 由平面几何知识知,过圆内定点P (0,1)的弦,只有与PC (C 为圆心)垂直时才最短,而此时点P (0,1)为弦AB 的中点, 由勾股定理知,|AB |=212-5=27, 即直线l 被圆C 截得的最短弦长为27.[点石成金] 判断直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.能用几何法,尽量不用代数法.考点2 切线、弦长问题[教材习题改编]过点P (1,0)的直线l 被圆O :(x -1)2+(y -1)2=1截得的弦长为2,则直线l 的斜率为________.答案:1或-1解析:点P (1,0)在圆O 上,而圆O 的半径为1,由图(图略)可知直线l 的斜率为1或-1.1.圆的弦长问题:几何法.直线x +3y -2=0与圆x 2+y 2=4相交于A ,B 两点,则弦AB 的长度等于________. 答案:2 3解析:由题意可知,圆心(0,0)到直线x +3y -2=0的距离为|0+3×0-2|12+32=1, 则|AB |=222-12=2 3.2.圆的切线方程问题:代数法或数形结合法.过点P (-1,0)作圆(x -1)2+y 2=1的切线,则切线方程是________. 答案:y =±33(x +1) 解析:作出图形(图略),可知过点P (-1,0)的圆的切线的倾斜角为30°或150°, 所以切线方程为y =±33(x +1).[典题2] (1)已知圆C 过点(-1,0),且圆心在 x 轴的负半轴上,直线l :y =x +1被该圆所截得的弦长为22,则过圆心且与直线l 平行的直线方程为________.[答案] x -y +3=0[解析] 设圆心为(a,0)(a <0),则圆的半径 r =|a +1|, 圆心(a,0)到y =x +1的距离为|a +1|2,由截得的弦长为22,得|a +1|2=⎝ ⎛⎭⎪⎫|a +1|22+2,解得a =-3,所以过圆心且与 l 平行的直线为 y -0=x +3,即x -y +3=0. (2)已知点P (2+1,2-2),点M (3,1),圆C :(x -1)2+(y -2)2=4. ①求过点P 的圆C 的切线方程;②求过点M 的圆C 的切线方程,并求出切线长. [解] 由题意,得圆心C (1,2),半径r =2. ①∵(2+1-1)2+(2-2-2)2=4, ∴点P 在圆C 上. 又k PC =2-2-22-1-1=-1,∴切线的斜率k =-1k PC=1.∴过点P 的圆C 的切线方程是y -(2-2)=1×[x -(2+1)],即x -y +1-22=0. ②∵(3-1)2+(1-2)2=5>4, ∴点M 在圆C 外部.当过点M 的直线斜率不存在时, 直线方程为x =3,即x -3=0.又点C (1,2)到直线x -3=0的距离d =3-1=2=r , 即此时满足题意,所以直线x =3是圆的切线.当切线的斜率存在时,设切线方程为y -1=k (x -3),即kx -y +1-3k =0, 则圆心C 到切线的距离d =|k -2+1-3k |k 2+1=r =2,解得k =34.∴切线方程为y -1=34(x -3),即3x -4y -5=0.综上可得,过点M 的圆C 的切线方程为x -3=0或3x -4y -5=0. ∵|MC |=-2+-2= 5,∴过点M 的圆C 的切线长为|MC |2-r 2=5-4=1. [点石成金] 1.圆的切线方程的两种求法(1)代数法:设切线方程为y -y 0=k (x -x 0),与圆的方程组成方程组,消元后得到一个一元二次方程,然后令判别式Δ=0进而求得k .(2)几何法:设切线方程为y -y 0=k (x -x 0),利用点到直线的距离公式表示出圆心到切线的距离d ,然后令d =r ,进而求出k .[提醒] 若点M (x 0,y 0)在圆x 2+y 2=r 2上,则过点M 的圆的切线方程为x 0x +y 0y =r 2. 2.弦长的两种求法(1)代数方法:将直线和圆的方程联立方程组,消元后得到一个一元二次方程.在判别式Δ>0的前提下,利用根与系数的关系,根据弦长公式求弦长.(2)几何方法:若弦心距为d ,圆的半径长为r ,则弦长l =2r 2-d 2. [提醒] 代数法计算量较大,我们一般选用几何法.1.[2017·重庆调研]过点(-2,3)的直线l 与圆x 2+y 2+2x -4y =0相交于A ,B 两点,则|AB |取得最小值时l 的方程为( )A .x -y +5=0B .x +y -1=0C .x -y -5=0D .2x +y +1=0 答案:A解析:由题意,得圆的标准方程为(x +1)2+(y -2)2=5,则圆心C (-1,2). 过圆心与点(-2,3)的直线l 1的斜率为k =3-2-2--=-1.当直线l 与l 1垂直时,|AB |取得最小值,故直线l 的斜率为1, 所以直线l 的方程为y -3=x -(-2),即x -y +5=0.2.过原点O 作圆x 2+y 2-6x -8y +20=0的两条切线,设切点分别为P ,Q ,则线段PQ 的长为________.答案:4解析:将圆的方程化为标准方程(x -3)2+(y -4)2=5,则圆心为(3,4),半径为 5. 由题意可设切线方程为y =kx ,则圆心(3,4)到直线y =kx 的距离等于半径, 即|3k -4|k 2+1=5,解得k =12或k =112,则切线方程为y =12x 或y =112x .联立切线方程与圆的方程,解得两切点P ,Q 的坐标分别为(4,2),⎝ ⎛⎭⎪⎫45,225,由两点间的距离公式得|PQ |=4.考点3 圆与圆的位置关系圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0),圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).12121212d =|r 1-r 2|(r 1≠r 2) 一组实数解 0≤d <|r 1-r 2|(r 1≠r 2) 无解(1)[教材习题改编]圆O 1:(x +2)2+y 2=4与圆O 2:(x -2)2+(y -1)2=9的位置关系为________.答案:相交解析:两圆圆心分别为O 1(-2,0),O 2(2,1), 半径长分别为r 1=2,r 2=3. ∵|O 1O 2|=[2--2+-2=17,3-2<17<3+2,∴两圆相交.(2)[教材习题改编]圆x 2+y 2-4=0与圆x 2+y 2-4x +4y -12=0的公共弦长为________. 答案:2 2解析:由 ⎩⎪⎨⎪⎧x 2+y 2-4=0,x 2+y 2-4x +4y -12=0,得x -y +2=0.又圆x 2+y 2=4的圆心到直线x -y +2=0的距离为22= 2.由勾股定理得弦长的一半为4-2=2, 所以所求弦长为2 2.两圆相切:注意是内切还是外切.若两圆x 2+y 2=1与(x -a )2+(y +a )2=4(a >0)相切,则a =________.答案:22或322解析:两圆的圆心距为2a ,半径分别为r 1=1,r 2=2. 当两圆内切时, 2a =2-1=1,得a =22; 当两圆外切时, 2a =2+1=3,得a =322.[典题3] 已知圆C 1:(x -a )2+(y +2)2=4与圆C 2:(x +b )2+(y +2)2=1相外切,则ab 的最大值为( )A.62B.32C.94 D .2 3[答案] C[解析] 由圆C 1与圆C 2相外切,可得a +b2+-2+2=2+1=3,即(a +b )2=9,根据基本(均值)不等式可知,ab ≤⎝⎛⎭⎪⎫a +b 22=94,当且仅当a =b 时等号成立.故选C.[题点发散1] 把本例中的“外切”变为“内切”,求ab 的最大值. 解:由C 1与C 2内切,得a +b2+-2+2=1.即(a +b )2=1,又ab ≤⎝⎛⎭⎪⎫a +b 22=14,当且仅当a =b 时等号成立, 故ab 的最大值为14.[题点发散2] 把本例条件“外切”变为“相交”,求公共弦所在的直线方程. 解:由题意得,把圆C 1,圆C 2的方程都化为一般方程. 圆C 1:x 2+y 2-2ax +4y +a 2=0,① 圆C 2:x 2+y 2+2bx +4y +b 2+3=0,② 由②-①,得(2a +2b )x +3+b 2-a 2=0,即(2a +2b )x +3+b 2-a 2=0为所求公共弦所在直线方程.[题点发散3] 将本例条件“外切”变为“若两圆有四条公切线”,试判断直线x +y -1=0与圆(x -a )2+(y -b )2=1的位置关系.解:由两圆存在四条公切线,故两圆外离, 故a +b2+-2+2>3.∴(a +b )2>9,即a +b >3或a +b <-3.∴圆心(a ,b )到直线x +y -1=0的距离d =|a +b -1|2>1,∴直线x +y -1=0与圆(x -a )2+(y -b )2=1相离.[点石成金] 1.处理两圆位置关系多用圆心距与半径和或差的关系判断,一般不采用代数法.2.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差得到.1.圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( ) A .内切 B .相交 C .外切 D .相离 答案:B解析:两圆圆心分别为(-2,0)和(2,1),半径分别为2和3,圆心距d =42+1=17. ∵3-2<d <3+2,∴两圆相交.2.过两圆x 2+y 2+4x +y =-1,x 2+y 2+2x +2y +1=0的交点的圆中面积最小的圆的方程为________.答案:⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=45解析:由⎩⎪⎨⎪⎧x 2+y 2+4x +y =-1,①x 2+y 2+2x +2y +1=0,②①-②得2x -y =0,代入①得x =-15或-1,∴两圆两个交点为⎝ ⎛⎭⎪⎫-15,-25,(-1,-2).过两交点的圆中,以⎝ ⎛⎭⎪⎫-15,-25,(-1,-2)为端点的线段为直径的圆时,面积最小.∴该圆圆心为⎝ ⎛⎭⎪⎫-35,-65,半径为⎝ ⎛⎭⎪⎫-15+12+⎝ ⎛⎭⎪⎫-25+222=255,圆的方程为⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=45.[方法技巧] 1.圆的弦长的常用求法(1)几何法:求圆的半径为r ,弦心距为d ,弦长为l ,则⎝ ⎛⎭⎪⎫l 22=r 2-d 2;(2)代数方法:运用根与系数的关系及弦长公式: |AB |=1+k 2|x 1-x 2|=+k2x 1+x 22-4x 1x 2].2.两圆的位置关系与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.3.当两圆相交时,两圆方程(x 2,y 2项系数相同)相减便可得公共弦所在直线的方程. [易错防范] 1.求过一点的圆的切线方程时,首先要判断此点是否在圆上,然后设出切线方程.注意:斜率不存在的情形.2.过圆上一点作圆的切线有且只有一条;过圆外一点作圆的切线有且只有两条,若仅求得一条,除了考虑运算过程是否正确外,还要考虑斜率不存在的情况,以防漏解.真题演练集训1.[2016·新课标全国卷Ⅱ]圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( )A .-43B .-34C. 3 D .2答案:A解析:由已知可得,圆的标准方程为(x -1)2+(y -4)2=4,故该圆的圆心为(1,4),由点到直线的距离公式得d =|a +4-1|a 2+1=1,解得a =-43,故选A. 2.[2015·新课标全国卷Ⅱ]过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M ,N 两点,则|MN |=( )A .2 6B .8C .4 6D .10答案:C解析:设圆的方程为x 2+y 2+Dx +Ey +F =0,则⎩⎪⎨⎪⎧D +3E +F +10=0,4D +2E +F +20=0,D -7E +F +50=0,解得⎩⎪⎨⎪⎧D =-2,E =4,F =-20.∴ 圆的方程为x 2+y 2-2x +4y -20=0. 令x =0,得y =-2+26或y =-2-26,∴ M (0,-2+26),N (0,-2-26)或M (0,-2-26),N (0,-2+26),∴ |MN |=46,故选C.3.[2015·重庆卷]已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |=( )A .2B .4 2C .6D .210答案:C解析:∵直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴, ∴ 圆心C (2,1)在直线x +ay -1=0上, ∴ 2+a -1=0,∴ a =-1, ∴ A (-4,-1). ∴ |AC |2=36+4=40.又r =2,∴ |AB |2=40-4=36. ∴ |AB |=6.4.[2016·新课标全国卷Ⅲ]已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点.若|AB |=23,则|CD |=________.答案:4解析:设圆心到直线l :mx +y +3m -3=0的距离为d ,则弦长|AB |=212-d 2=23,得d =3,即|3m -3|m 2+1=3,解得m =-33,则直线l :x -3y +6=0,数形结合可得|CD |=|AB |cos 30°=4.5.[2015·江苏卷]在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为__________________.答案:(x -1)2+y 2=2解析:直线mx -y -2m -1=0经过定点(2,-1).当圆与直线相切于点(2,-1)时,圆的半径最大,此时半径r 满足r 2=(1-2)2+(0+1)2=2.课外拓展阅读 圆与线性规划的综合应用[典例] 如果点P 在平面区域⎩⎪⎨⎪⎧2x -y +2≥0,x -2y +1≤0,x +y -2≤0上,点Q 在曲线x 2+(y +2)2=1上,那么|PQ |的最小值为________.[审题视角] 求解本题应先画出点P 所在的平面区域,再画出点Q 所在的圆,最后利用几何意义将问题转化为圆上的点到定直线的距离的最值问题,即可求出|PQ |的最小值.[解析] 由点P 在平面区域⎩⎪⎨⎪⎧2x -y +2≥0,x -2y +1≤0,x +y -2≤0上,画出点P 所在的平面区域.由点Q 在圆x 2+(y +2)2=1上,画出点Q 所在的圆,如图所示.由题意,得|PQ |的最小值为圆心(0,-2)到直线x -2y +1=0的距离减去半径1.又圆心(0,-2)到直线x -2y +1=0的距离为 |0--+1|12+22=5,此时垂足(-1,0)在满足条件的平面区域内, 故|PQ |的最小值为5-1. [答案] 5-1方法点睛本题考查线性规划及圆、点到直线的距离等知识,并考查考生综合应用知识解决问题的能力.本题的突出特点就是将圆与线性规划问题有机地结合起来,为我们展现了数学知识相互交汇的新天地,求解时既要注意使用线性规划的基本思想,又要利用圆上各点的特殊性,实际上是对数形结合思想的提升,即利用线性或非线性函数的几何意义,通过作图来解决最值问题.。
江苏专用2018高考数学一轮复习第九章平面解析几何第46课直线与圆圆与圆的位置关系教师用书

第46课直线与圆、圆与圆的位置关系[最新考纲]1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d和圆半径r的大小关系:d<r⇔相交;d=r⇔相切;d>r⇔相离.(2)代数法:联立直线l与圆C的方程,消去y(或x),得一元二次方程,计算判别式Δ=b2-4ac,Δ>0⇔相交,Δ=0⇔相切,Δ<0⇔相离.2.圆与圆的位置关系设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),圆O2:(x-a2)2+(y-b2)2=r22(r2>0).1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“³”)(1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的必要不充分条件.( )(2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( )(3)如果两圆的圆心距小于两半径之和,则两圆相交.( )(4)若两圆相交,则两圆方程相减消去二次项后得到的二元一次方程是公共弦所在直线的方程.( )[解析] 依据直线与圆、圆与圆的位置关系,只有(4)正确.[答案] (1)³ (2)³ (3)³ (4)√2.(教材改编)圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为________. 相交 [两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d =42+1=17. ∵3-2<d <3+2,∴两圆相交.]3.(2017²南京模拟)若直线3x +4y -m =0与圆x 2+y 2+2x -4y +4=0始终有公共点,则实数m 的取值范围是________.[0,10] [因为(x +1)2+(y -2)2=1,所以由题意得|-3+4³2-m |5≤1⇒|m -5|≤5⇒0≤m ≤10.]4.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为__________.2555[圆心为(2,-1),半径r =2. 圆心到直线的距离d =|2+2³ -1 -3|1+4=355,所以弦长为2r 2-d 2=222-⎝⎛⎭⎪⎫3552=2555.] 5.(2016²全国卷Ⅰ)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若AB =23,则圆C 的面积为________.4π [圆C :x 2+y 2-2ay -2=0化为标准方程是C :x 2+(y -a )2=a 2+2,所以圆心C (0,a ),半径r =a 2+2.AB =23,点C 到直线y =x +2a 即x -y +2a =0的距离d =|0-a +2a |2,由勾股定理得⎝ ⎛⎭⎪⎫2322+⎝ ⎛⎭⎪⎫|0-a +2a |22=a 2+2,解得a 2=2,所以r=2,所以圆C 的面积为π³22=4π.]________. (2)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则AB =________.(1)相交 (2)6 [(1)法一:∵圆心(0,1)到直线l 的距离d =|m |m 2+1<1< 5.故直线l 与圆相交.法二:直线l :mx -y +1-m =0过定点(1,1),∵点(1,1)在圆C :x 2+(y -1)2=5的内部,∴直线l 与圆C 相交.(2)由圆C 的标准方程为(x -2)2+(y -1)2=4. ∴圆心为C (2,1),半径r =2,由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴,∴圆心C (2,1)在直线x +ay -1=0上,∴2+a -1=0,∴a =-1,∴A (-4,-1).于是AB 2=AC 2-r 2=40-4=36,则AB =6.][规律方法] 1.(1)利用圆心到直线的距离可判断直线与圆的位置关系,也可利用直线的方程与圆的方程联立后得到的一元二次方程的判别式来判断直线与圆的位置关系;(2)注意灵活运用圆的几何性质,联系圆的几何特征,数形结合,简化运算.如“切线与过切点的半径垂直”等.2.与弦长有关的问题常用几何法,即利用弦心距、半径和弦长的一半构成直角三角形进行求解.[变式训练1] (1)(2017²山西忻州模拟)过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为________. 【导学号:62172250】(2)(2016²全国卷Ⅲ)已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则CD =__________.(1)2x +y -7=0 (2)4 [(1)依题意知,点(3,1)在圆(x -1)2+y 2=r 2上,且为切点. ∴圆心(1,0)与切点(3,1)连线的斜率为12.因此切线的斜率k =-2.故圆的切线方程为y -1=-2(x -3),即2x +y -7=0. (2)由圆x 2+y 2=12知圆心O (0,0),半径r =2 3.∴圆心(0,0)到直线x -3y +6=0的 距离d =61+3=3,AB =212-32=2 3.过C 作CE ⊥BD 于E . 如图所示,则CE =AB =2 3. ∵直线l 的方程为x -3y +6=0, ∴k AB =33,则∠BPD =30°,从而∠BDP =60°.∴CD =CEsin 60°=AB sin 60°=2332=4.]x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是________.(2)(2017²南京三模)在平面直角坐标系xOy 中,圆M :(x -a )2+(y +a -3)2=1(a >0),点N 为圆M 上任意一点.若以N 为圆心,ON 为半径的圆与圆M 至多有一个公共点,则a 的最小值为________.(1)相交 (2)3 [(1)法一:由⎩⎪⎨⎪⎧x 2+y 2-2ay =0,x +y =0得两交点为(0,0),(-a ,a ).∵圆M 截直线所得线段长度为22, ∴a 2+ -a 2=2 2.又a >0,∴a =2.∴圆M 的方程为x 2+y 2-4y =0,即x 2+(y -2)2=4,圆心M (0,2),半径r 1=2. 又圆N :(x -1)2+(y -1)2=1,圆心N (1,1),半径r 2=1, ∴MN = 0-1 2+ 2-1 2= 2.∵r 1-r 2=1,r 1+r 2=3,1<MN <3,∴两圆相交. 法二:∵x 2+y 2-2ay =0(a >0)⇔x 2+(y -a )2=a 2(a >0), ∴M (0,a ),r 1=a .∵圆M 截直线x +y =0所得线段的长度为22,∴圆心M 到直线x +y =0的距离d =a2=a 2-2,解得a =2.以下同法一.(2)由题意得圆N 与圆M 内切或内含,即MN ≤ON -1⇒ON ≥2,又ON ≥OM -1,所以OM ≥3.a 2+ a -3 2≥3⇒a ≥3或a ≤0(舍).因此a 的最小值为3.][规律方法] 1.圆与圆的位置关系取决于圆心距与两个半径的和与差的大小关系. 2.若两圆相交,则两圆的公共弦所在直线的方程可由两圆的方程作差消去x 2,y 2项得到.3.若两圆相交,则两圆心的连线垂直平分公共弦.[变式训练2] 若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是__________.4 [由题意⊙O 1与⊙O 在A 处的切线互相垂直,则两切线分别过另一圆的圆心,∴O 1A ⊥OA .又∵OA =5,O 1A =25, ∴OO 1=5.又A ,B 关于OO 1对称,∴AB 为Rt △OAO 1斜边上高的2倍. 又∵12²OA ²O 1A =12OO 1²AC ,得AC =2.∴AB =4.]已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC =OA ,求直线l 的方程.图461[解] 圆M 的标准方程为(x -6)2+(y -7)2=25, 所以圆心M (6,7),半径为5.(1)由圆心N 在直线x =6上,可设N (6,y 0). 因为圆N 与x 轴相切,与圆M 外切,所以0<y 0<7,圆N 的半径为y 0,从而7-y 0=5+y 0,解得y 0=1. 因此,圆N 的标准方程为(x -6)2+(y -1)2=1.(2)因为直线l ∥OA , 所以直线l 的斜率为4-02-0=2.设直线l 的方程为y =2x +m , 即2x -y +m =0, 则圆心M 到直线l 的距离d =|2³6-7+m |5=|m +5|5. 因为BC =OA =22+42=25, 而MC 2=d 2+⎝ ⎛⎭⎪⎫BC 22, 所以25= m +525+5,解得m =5或m =-15.故直线l 的方程为2x -y +5=0或2x -y -15=0.[规律方法] 1.(1)设出圆N 的圆心N (6,y 0),由条件圆M 与圆N 外切,求得圆心与半径,从而确定圆的标准方程.(2)依据平行直线,设出直线l 的方程,根据点到直线的距离公式及勾股定理求解.2.求弦长常用的方法:①弦长公式;②半弦长、半径、弦心距构成直角三角形,利用勾股定理求解(几何法).[变式训练3] 在平面直角坐标系xOy 中,圆C :x 2+y 2+4x -2y +m =0与直线x -3y +3-2=0相切.(1)求圆C 的方程;(2)若圆C 上有两点M ,N 关于直线x +2y =0对称,且MN =23,求直线MN 的方程. 【导学号:62172251】[解] (1)将圆C :x 2+y 2+4x -2y +m =0化为(x +2)2+(y -1)2=5-m . ∵圆C :x 2+y 2+4x -2y +m =0与直线x -3y +3-2=0相切, ∴圆心(-2,1)到直线x -3y +3-2=0的距离d =41+3=2=r , ∴圆C 的方程为(x +2)2+(y -1)2=4.(2)若圆C 上有两点M ,N 关于直线x +2y =0对称,则可设直线MN 的方程为2x -y +c =0.∵MN =23,半径r =2,∴圆心(-2,1)到直线MN 的距离为22- 3 2=1. 则|-4-1+c |5=1,∴c =5± 5. ∴直线MN 的方程为2x -y +5±5=0.[思想与方法]1.直线与圆的位置关系体现了圆的几何性质和代数方程的结合,解题时要抓住圆的几何性质,重视数形结合思想方法的应用.2.计算直线被圆截得的弦长的常用方法:(1)几何方法:运用弦心距(即圆心到直线的距离)、弦长的一半及半径构成直角三角形计算.(2)代数方法:弦长公式AB=1+k2|x A-x B|= 1+k2 [ x A+x B 2-4x A x B].[易错与防范]1.求圆的弦长问题,注意应用圆的性质解题,即用圆心与弦中点连线与弦垂直的性质,可以用勾股定理或斜率之积为“-1”列方程来简化运算.2.过圆上一点作圆的切线有且只有一条;过圆外一点作圆的切线有且只有两条,若仅求得一条,除了考虑运算过程是否正确外,还要考虑斜率不存在的情况,以防漏解.课时分层训练(四十六)A组基础达标(建议用时:30分钟)一、填空题1.已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是________.相交[由题意知点在圆外,则a2+b2>1,圆心到直线的距离d=1a2+b2<1,故直线与圆相交.]2.若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m=________.【导学号:62172252】9 [圆C 1的圆心为C 1(0,0),半径r 1=1,因为圆C 2的方程可化为(x -3)2+(y -4)2=25-m ,所以圆C 2的圆心为C 2(3,4),半径r 2=25-m (m <25).从而C 1C 2=32+42=5.两圆外切得C 1C 2=r 1+r 2,即1+25-m =5,解得m =9.]3.已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是________.-4 [由x 2+y 2+2x -2y +a =0, 得(x +1)2+(y -1)2=2-a ,所以圆心坐标为(-1,1),半径r =2-a ,圆心到直线x +y +2=0的距离为|-1+1+2|2=2,所以22+(2)2=2-a ,解得a =-4.]4.过点P (4,2)作圆x 2+y 2=4的两条切线,切点分别为A ,B ,O 为坐标原点,则△OAB 外接圆的方程是________.(x -2)2+(y -1)2=5 [由题意知,O ,A ,B ,P 四点共圆,所以所求圆的圆心为线段OP 的中点(2,1).又圆的半径r =12OP =5,所以所求圆的方程为(x -2)2+(y -1)2=5.]5.已知圆C :(x -1)2+y 2=25,则过点P (2,-1)的圆C 的所有弦中,以最长弦和最短弦为对角线的四边形的面积是________. 【导学号:62172253】1023 [易知最长弦为圆的直径10.又最短弦所在直线与最长弦垂直,且PC =2,∴最短弦的长为2r 2-PC 2=225-2=223.故所求四边形的面积S =12³10³223=1023].6.已知圆C 1:x 2+y 2-6x -7=0与圆C 2:x 2+y 2-6y -27=0相交于A ,B 两点,则线段AB 的中垂线方程为________________.x +y -3=0 [∵圆C 1的圆心C 1(3,0),圆C 2的圆心C 2(0,3),∴直线C 1C 2的方程为x +y-3=0,AB 的中垂线即直线C 1C 2,故其方程为x +y -3=0.]7.若直线3x -4y +5=0与圆x 2+y 2=r 2(r >0)相交于A ,B 两点,且∠AOB =120°(O 为坐标原点),则r =__________.2 [如图,过点O 作OD ⊥AB 于点D ,则OD =532+ -42=1.∵∠AOB =120°,OA =OB , ∴∠OBD =30°, ∴OB =2OD =2,即r =2.]8.(2017²南通模拟)过点(1,-2)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为________. 【导学号:62172254】y =-12[圆(x -1)2+y 2=1的圆心为(1,0),半径为1,以 1-1 2+ -2-0 2=2为直径的圆的方程为(x -1)2+(y +1)2=1, 将两圆的方程相减得AB 所在直线的方程为2y +1=0,即y =-12.]9.(2017²南京模拟)直线l 1:y =x +a 和l 2:y =x +b 将单位圆C :x 2+y 2=1分成长度相等的四段弧,则a 2+b 2=__________.2 [依题意,不妨设直线y =x +a 与单位圆相交于A ,B 两点,则∠AOB =90°.如图,此时a =1,b =-1,满足题意,所以a 2+b 2=2.]10.(2017²徐州联考)已知圆C :(x +2)2+y 2=4,直线l :kx -y -2k =0(k ∈R ),若直线l 与圆C 恒有公共点,则实数k 的最小值是__________.-33[圆心C (-2,0),半径r =2. 又圆C 与直线l 恒有公共点.所以圆心C (-2,0)到直线l 的距离d ≤r . 因此|-2k -2k |k 2+1≤2,解得-33≤k ≤33.所以实数k 的最小值为-33.] 二、解答题11.(2017²徐州模拟)在平面直角坐标系xOy 中,已知圆M 经过点A (1,0),B (3,0),C (0,1).(1)求圆M 的方程;(2)若直线l :mx -2y -(2m +1)=0与圆M 交于点P ,Q ,且MP →²MQ →=0,求实数m 的值. [解] (1)法一:设圆M 的方程为x 2+y 2+Dx +Ey +F =0,则⎩⎪⎨⎪⎧D +F +1=0,3D +F +9=0,E +F +1=0,解得⎩⎪⎨⎪⎧D =-4,E =-4,F =3.所以圆M 的方程x 2+y 2-4x -4y +3=0.法二:线段AC 的垂直平分线的方程为y =x ,线段AB 的垂直平分线的方程为x =2,由⎩⎪⎨⎪⎧y =x ,x =2,解得M (2,2).所以圆M 的半径r =AM =5,所以圆M 的方程为(x -2)2+(y -2)2=5. (2)因为MP →²MQ →=0,所以∠PMQ =π2.又由(1)得MP =MQ =r =5, 所以点M 到直线l 的距离d =102. 由点到直线的距离公式可知,|2m -4-2m -1|m 2+4=102,解得m =± 6.12.已知圆C :x 2+y 2-4x -6y +12=0,点A (3,5). (1)求过点A 的圆的切线方程;(2)O 点是坐标原点,连结OA ,OC ,求△AOC 的面积S . [解] (1)由圆C :x 2+y 2-4x -6y +12=0,得(x -2)2+(y -3)2=1,圆心C (2,3).当斜率存在时,设过点A 的圆的切线方程为y -5=k (x -3),即kx -y +5-3k =0.由d =|2k -3+5-3k |k 2+1=1,得k =34.又斜率不存在时直线x =3也与圆相切, 故所求切线方程为x =3或3x -4y +11=0. (2)直线OA 的方程为y =53x ,即5x -3y =0,又点C 到OA 的距离d =|5³2-3³3|52+ -3 2=134. 又OA =32+52=34.所以S =12OAd =12.B 组 能力提升 (建议用时:15分钟)1.(2017²南通调研一)在平面直角坐标系xOy 中,点A (1,0),B (4,0).若直线x -y +m =0上存在点P ,使得PA =12PB ,则实数m 的取值范围是________.[-22,22] [法一:设满足条件PB =2PA 的P 点坐标为(x ,y ),则(x -4)2+y 2=4(x -1)2+4y 2,化简得x 2+y 2=4.要使直线x -y +m =0有交点,则|m |2≤2.即-22≤m ≤2 2.法二:设直线x -y +m =0有一点(x ,x +m )满足PB =2PA ,则 (x -4)2+(x +m )2=4(x -1)2+4(x +m )2. 整理得2x 2+2mx +m 2-4=0(*)方程(*)有解,则△=4m 2-8(m 2-4)≥0, 解之得:-22≤m ≤2 2.]2.(2017²泰州模拟)已知圆C 1:x 2+y 2+4ax +4a 2-4=0和圆C 2:x 2+y 2-2by +b 2-1=0只有一条公切线,若a ,b ∈R 且ab ≠0,则1a +1b的最小值为________.9 [圆C 1的标准方程为(x +2a )2+y 2=4,其圆心为(-2a,0),半径为2;圆C 2的标准方程为x 2+(y -b )2=1,其圆心为(0,b ),半径为1.因为圆C 1和圆C 2只有一条公切线,所以圆C 1与圆C 2相内切,所以 -2a -0 2+ 0-b 2=2-1,得4a 2+b 2=1,所以1a +1b=⎝ ⎛⎭⎪⎫1a 2+1b 2(4a 2+b 2)=5+b 2a 2+4a 2b 2≥5+2b 2a 2²4a 2b 2=9,当且仅当b 2a 2=4a 2b2,且4a 2+b 2=1,即a 2=16,b 2=13时等号成立.所以1a 2+1b2的最小值为9.]3.如图462,已知以点A (-1,2)为圆心的圆与直线l 1:x +2y +7=0相切.过点B (-2,0)的动直线l 与圆A 相交于M ,N 两点,Q 是MN 的中点,直线l 与l 1相交于点P .图462(1)求圆A 的方程;(2)当MN =219时, 求直线l 的方程. [解] (1)设圆A 的半径为R .由于圆A 与直线l 1:x +2y +7=0相切, ∴R =|-1+4+7|5=2 5.∴圆A 的方程为(x +1)2+(y -2)2=20.(2)①当直线l 与x 轴垂直时,易知x =-2符合题意;②当直线l 的斜率存在时,设直线l 的方程为y =k (x +2). 即kx -y +2k =0. 连结AQ ,则AQ ⊥MN∵MN =219,∴AQ =20-19=1, 则由AQ =|k -2|k 2+1=1,得k =34,∴直线l :3x -4y +6=0.故直线l 的方程为x =-2或3x -4y +6=0.4.(2013²江苏高考)如图463,在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上.图463(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MA =2MO ,求圆心C 的横坐标a 的取值范围.[解] (1)由题设,圆心C 是直线y =2x -4和y =x -1的交点,解得点C (3,2),于是切线的斜率必存在.设过A (0,3)的圆C 的切线方程为y =kx +3.由题意,得|3k +1|k 2+1=1,解得k =0或k =-34,故所求切线方程为y =3或3x +4y -12=0. (2)因为圆心在直线y =2x -4上,所以圆C 的方程为(x -a )2+[y -2(a -2)]2=1. 设点M (x ,y ),因为MA =2MO ,所以x 2+ y -3 2=2x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4,所以点M 在以D (0,-1)为圆心,2为半径的圆上.由题意,点M (x ,y )在圆C 上,所以圆C 与圆D 有公共点, 则|2-1|≤CD ≤2+1,即1≤a 2+ 2a -3 2≤3. 整理,得-8≤5a 2-12a ≤0. 由5a 2-12a +8≥0,得a ∈R ; 由5a 2-12a ≤0,得0≤a ≤125. 所以点C 的横坐标a 的取值范围为⎣⎢⎡⎦⎥⎤0,125.。
高考备考指南理科数学课件第9章第4讲直线与圆、圆与圆的位置关系
以要使直线与圆在第一象限内有两个不同的交点,则
1<m<2
3
3 .
第九章 平面解析几何
高考备考指南
理科数学
【规律方法】判断直线与圆的位置关系常见的方法: (1)几何法:利用d与r的关系. (2)代数法:联立方程,再利用Δ判断. (3) 点 与 圆 的 位 置 关 系 法 : 若 直 线 恒 过 定 点 且 定 点 在 圆 内 , 可 判 断 直 线 与 圆 相 交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.
栏目索引
第九章 平面解析几何
高考备考指南
理科数学
2.圆与圆的位置关系 设圆O1:(x-a1)2+(y-b1)2=r(r1>0),圆O2:(x-a2)2+(y-b2)2=r(r2>0).
代数法:两圆方程联立组成方程组
位置关系 几何法:圆心距d与r1,r2的关系
的解的情况
外离 外切 相交 内切 内含
___d_>__r1_+__r_2 __ __d_=__r_1_+__r2___
由弦长及切线问题求参数
已知圆 C:(x-1)2+(y-2)2=2 截 y 轴所得线段与截直线 y=2x+b
所得线段的长度相等,则 b=( )
A.- 6
B.± 6
C.- 5 【答案】D
D.± 5
【解析】记圆 C 与 y 轴的两个交点分别是 A,B,由圆心 C 到 y 轴的距离为 1,
|CA|=|CB|= 2可知,圆心 C(1,2)到直线 2x-y+b=0 的距离也等于 1栏目才索符引 合题意, 于是|2×1-52+b|=1,解得 b=± 5.故选 D.
相切 相离
2
r2-d2
栏目索引
第九章 平面解析几何
高考备考课件 数学 第9章 第4讲 直线与圆、圆与圆的位置关系
平面解析几何
第4讲 直线与圆、圆与圆的位置关系
高考备考指南
数学 系统复习用书
高考要求
考情分析
1.能根据给定直线、圆的方程判断直线与圆的位 直线与圆的位置关系经常与圆锥 置关系;能根据给定两个圆的方程判断两圆的位
曲线结合在一起考查,圆与圆的 置关系.
位置关系常常以选择题的形式出 2.能用直线和圆的方程解决一些简单的问题. 现,考查直观想象的核心素养 3.初步了解用代数方法处理几何问题的思想
栏目索引
第九章 平面解析几何
栏目导航
01 基础整合 自测纠偏 02 重难突破 能力提升
03 追踪命题 直击高考 04
配套训练
高考备考指南
数学 系统复习用书
1
第九章 平面解析几何
基础整合 自测纠偏
栏目索引
高考备考指南
数学 系统复习用书
1.直线与圆的位置关系 (1)三种位置关系:___相__交_____、____相__切____、____相__离____.
栏目索引
第九章 平面解析几何
高考备考指南
数学 系统复习用书
判断下面结论是否正确(请在括号中打“√”或“×”): (1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的必要不充分条件.( ) (2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( ) (3)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( ) (4)圆x2+y2-2x-8=0和圆x2+y2+2x-4y-4=0的公共弦所在的直线方程是x- y+1=0.( ) (5)过圆O:x2+y2=r2上一点P(x0,y0)的圆的切线方程是x0x+y0y=栏r目2.索(引 ) (6)过点P(1,2)且与圆x2+y2=5相切的直线方程是x+2y-5=0.( ) 【答案】(1)× (2)× (3)× (4)√ (5)√ (6)√
4 第4讲 直线与圆、圆与圆的位置关系
3,圆心 O 到直线 l 的距离 d=
|c| a2+b2
= 3,所以直线 l 被圆 O 所截得的弦长为 2 r2-d2=2 (2 3)2-( 3)2=6,故选
C.
上一页
返回导航
下一页
第九章 平面解析几何
24
(2)由于直线 x+ay-1=0 是圆 C:x2+y2-4x-2y+1=0 的对称轴,所以圆心 C(2,1) 在直线 x+ay-1=0 上,所以 2+a-1=0,所以 a=-1,所以 A(-4,-1). 所以|AC|2=36+4=40.又 r=2,所以|AB|2=40-4=36.所以|AB|=6.
上一页
返回导航
下一页
第九章 平面解析几何
位置关系
方法
相交 相切 相离
几何法
d__<__r d_=__r d__>_r
3
代数法 Δ__>_0 Δ_=__0 Δ_<__0
上一页
返回导航
下一页
第九章 平面解析几何
2.圆与圆的位置关系
设圆 O1:(x-a1)2+(y-b1)2=r21(r1>0), 圆 O2:(x-a2)2+(y-b2)2=r22(r2>0).
方法 位置关系
几何法:圆心距 d 与 r1,r2 的关系
外离 外切 相交
_d__>_r1_+__r_2_ d_=___r1_+__r_2_ |_r_1-__r_2_|<_d__<_r1_+__r_2_
内切
d=|r1-r2|(r1≠r2)
内含
0≤d<|r1-r2|(r1≠r2)
4
代数法:两圆方程联立组 成方程组的解的情况 _无__解___ 一组实数解 两组不同的实数解 _一__组__实__数__解___ _无__解___
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- 1 - 第4讲 直线与圆、圆与圆的位置关系 基础巩固题组 (建议用时:40分钟) 一、选择题 1.(2016·全国Ⅱ卷)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=( )
A.-43 B.-34 C.3 D.2 解析 由圆的方程x2+y2-2x-8y+13=0得圆心坐标为(1,4),由点到直线的距离公式得d=|1×a+4-1|1+a2=1,解之得a=-43. 答案 A 2.(2017·金华调研)过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,则该切线的方程为( ) A.2x+y-5=0 B.2x+y-7=0 C.x-2y-5=0 D.x-2y-7=0 解析 ∵过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,∴点(3,1)在圆(x-1)2+y2=r2上,
∵圆心与切点连线的斜率k=1-03-1=12, ∴切线的斜率为-2, 则圆的切线方程为y-1=-2(x-3),即2x+y-7=0.故选B. 答案 B 3.已知圆x2+y2+2x-2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是( ) A.-2 B.-4 C.-6 D.-8 解析 将圆的方程化为标准方程为(x+1)2+(y-1)2=2-a,所以圆心为(-1,1),半径r=
2-a,圆心到直线x+y+2=0的距离d=|-1+1+2|2=2,故r2-d2=4,即2-a-2=4,所以a=-4,故选B. 答案 B 4.圆x2+2x+y2+4y-3=0上到直线x+y+1=0的距离为2的点共有( ) A.1个 B.2个 C.3个 D.4个
解析 圆的方程化为(x+1)2+(y+2)2=8,圆心(-1,-2)到直线距离d=|-1-2+1|2=2,- 2 -
半径是22,结合图形可知有3个符合条件的点. 答案 C 5.(2017·温州调研)过点P(1,-2)作圆C:(x-1)2+y2=1的两条切线,切点分别为A,B,则AB所在直线的方程为( )
A.y=-34 B.y=-12 C.y=-32 D.y=-14 解析 圆(x-1)2+y2=1的圆心为(1,0),半径为1,以|PC|=(1-1)2+(-2-0)2=2为直径的圆的方程为(x-1)2+(y+1)2=1,
将两圆的方程相减得AB所在直线的方程为2y+1=0,即y=-12. 故选B. 答案 B 二、填空题 6.(2016·全国Ⅲ卷) 已知直线l:x-3y+6=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,则|CD|=________.
解析 设A(x1,y1),B(x2,y2),由x-3y+6=0,x2+y2=12, 得y2-33y+6=0,解得y1=3,y2=23, ∴A(-3,3),B(0,23). 过A,B作l的垂线方程分别为 y-3=-3(x+3),y-23=-3x,令y=0,
得xC=-2,xD=2,∴|CD|=2-(-2)=4. 答案 4 7.(2017·宁波调研)点P在圆C1:x2+y2-8x-4y+11=0上,点Q在圆C2:x2+y2+4x+2y+1=0上,则|PQ|的最小值是________;|PQ|的最大值是________. 解析 把圆C1、圆C2的方程都化成标准形式,得 (x-4)2+(y-2)2=9,(x+2)2+(y+1)2=4. 圆C1的圆心坐标是(4,2),半径长是3;圆C2的圆心坐标是(-2,-1),半径是2. 圆心距d=(4+2)2+(2+1)2=35. 所以,|PQ|的最小值是35-5,|PQ|的最大值为35+5. 答案 35-5 35+5 8.(2017·贵阳一模)由直线y=x+1上的一点向圆(x-3)2+y2=1引切线,则切线长的最小值为________. 解析 设直线上一点为P,切点为Q,圆心为M,则|PQ|即切线长,MQ为圆M的半径,长度为1,|PQ|=|PM|2-|MQ|2=|PM|2-1. - 3 -
要使|PQ|最小,即求|PM|的最小值,此题转化为求直线y=x+1上的点到圆心M的最小距离. 设圆心到直线y=x+1的距离为d,则d=|3-0+1|12+(-1)2=22.所以|PM|的最小值为22.所
以|PQ|=|PM|2-1≥(22)2-1=7. 答案 7 三、解答题 9.(2015·全国Ⅰ卷)已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.
(1)求k的取值范围;
(2)若OM→·ON→=12,其中O为坐标原点,求|MN|. 解 (1)易知圆心坐标为(2,3),半径r=1, 由题设,可知直线l的方程为y=kx+1,
因为l与C交于两点,所以|2k-3+1|1+k2<1.
解得4-73所以k的取值范围为4-73,4+73. (2)设M(x1,y1),N(x2,y2). 将y=kx+1代入方程(x-2)2+(y-3)2=1,整理得 (1+k2)x2-4(1+k)x+7=0.
所以x1+x2=4(1+k)1+k2,x1x2=71+k2. OM→·ON→=x1x2+y1y2
=(1+k2)x1x2+k(x1+x2)+1=4k(1+k)1+k2+8.
由题设可得4k(1+k)1+k2+8=12, 解得k=1,所以l的方程为y=x+1. 故圆心C在l上,所以|MN|=2. 10.已知直线l:y=kx+1,圆C:(x-1)2+(y+1)2=12. (1)试证明:不论k为何实数,直线l和圆C总有两个交点; (2)求直线l被圆C截得的最短弦长.
法一 (1)证明 由y=kx+1,(x-1)2+(y+1)2=12, - 4 -
消去y得(k2+1)x2-(2-4k)x-7=0, 因为Δ=(2-4k)2+28(k2+1)>0, 所以不论k为何实数,直线l和圆C总有两个交点. (2)解 设直线与圆交于A(x1,y1),B(x2,y2)两点, 则直线l被圆C截得的弦长|AB|=1+k2|x1-x2|
=28-4k+11k21+k2=2 11-4k+31+k2, 令t=4k+31+k2,则tk2-4k+(t-3)=0, 当t=0时,k=-34,当t≠0时,因为k∈R, 所以Δ=16-4t(t-3)≥0,解得-1≤t≤4,且t≠0, 故t=4k+31+k2的最大值为4,此时|AB|最小为27. 法二 (1)证明 因为不论k为何实数,直线l总过点P(0,1),而|PC|=5<23=R,所以点P(0,1)在圆C的内部,即不论k为何实数,直线l总经过圆C内部的定点P.所以不论k为何实数,直线l和圆C总有两个交点. (2)解 由平面几何知识知过圆内定点P(0,1)的弦,只有与PC(C为圆心)垂直时才最短,而此时点P(0,1)为弦AB的中点,由勾股定理,知|AB|=212-5=27,即直线l被圆C截得的最短弦长为27. 能力提升题组 (建议用时:25分钟) 11.(2017·衡水中学月考)两圆x2+y2+2ax+a2-4=0 和x2+y2-4by-1+4b2=0恰有三条公
切线,若a∈R,b∈R且ab≠0,则1a2+1b2的最小值为( )
A.1 B.3 C.19 D.49 解析 x2+y2+2ax+a2-4=0,即(x+a)2+y2=4,x2+y2-4by-1+4b2=0,即x2+(y-2b)2=1.依题意可得,两圆外切,则两圆圆心距离等于两圆的半径之和, 则a2+(2b)2=1+2=3,即a2+4b2=9,
所以1a2+1b2=1a2+1b2a2+4b29=195+a2b2+4b2a2≥195+2a2b2·4b2a2=1,当且仅当a2b2=4b2a2,即a=±2b时取等号. 答案 A 12.(2015·山东卷)一条光线从点(-2,-3)射出,经y轴反射后与圆(x+3)2+(y-2)2=1相- 5 -
切,则反射光线所在直线的斜率为( ) A.-53或-35 B.-32或-23
C.-54或-45 D.-43或-34 解析 由已知,得点(-2,-3)关于y轴的对称点为(2,-3),由入射光线与反射光线的对称性,知反射光线一定过点(2,-3).设反射光线所在直线的斜率为k,则反射光线所在直线的方程为y+3=k(x-2),即kx-y-2k-3=0.由反射光线与圆相切,则有d=|-3k-2-2k-3|k2+1=1,解得k=-43或k=-34,故选D.
答案 D 13.已知曲线C:x=-4-y2,直线l:x=6,若对于点A(m,0),存在C上的点P和l上的点Q使得AP→+AQ→=0,则m的取值范围为________. 解析 曲线C:x=-4-y2,是以原点为圆心,2为半径的半圆,并且xP∈[-2,0],对于点A(m,0),存在C上的点P和l上的点Q使得AP→+AQ→=0, 说明A是PQ的中点,Q的横坐标x=6,
∴m=6+xP2∈[2,3]. 答案 [2,3] 14.已知圆O:x2+y2=4和点M(1,a). (1)若过点M有且只有一条直线与圆O相切,求实数a的值,并求出切线方程. (2)若a=2,过点M作圆O的两条弦AC,BD互相垂直,求|AC|+|BD|的最大值. 解 (1)由条件知点M在圆O上, 所以1+a2=4,则a=±3.
当a=3时,点M为(1,3),kOM=3,k切=-33,
此时切线方程为y-3=-33(x-1). 即x+3y-4=0, 当a=-3时,点M为(1,-3),kOM=-3,k切=33.
此时切线方程为y+3=33(x-1). 即x-3y-4=0. 所以所求的切线方程为x+3y-4=0或x-3y-4=0.