最新高三教案-第21讲几何概型及随机模拟 精品

合集下载

高考数学几何概型PPT教学课件

高考数学几何概型PPT教学课件

中后便可以,试 离求 开两个人会面. 的概
y
60 以x轴 和y轴 分 别 表 示 甲、 乙
两 人 到 达 约 定 地 点 的间时,
5
则 两 人 能 会 面 的 充 要件条是
| x y | 20.
20
9
规范解答请参考金榜P252 例42020/12/10
0 20 60 x 12
会面问题是利用数形结合转化成 面积问题的几何概型.难点是把时 间分别用x,y两个坐标表示,构成 平面内的点(x,y),从而把时间是一 段长度的问题转化为平面图形的 二维面积问题,转化成面积型几何 概型.
乙觉得他只是这两天玩,而且每次都不超过10分钟,但 每次都刚好被抓住而已,所以对班主任说他经常玩手机 这句话很反感,觉得这是在针对他,所以很不服气,于是 关系就弄得比较僵.
请同学们从概率这个角度出发,判断一下“甲说乙经常 玩手机”这种说法合不合理?
2020/12/10
16
3.如图所示,在等腰直角三角形ABC中,在 斜边BC上任取一点M,求BM的长小于AB 的长的概率.
我们如何比 较小球落在 黄色和紫色 区域概率的 大小?
2020/12/10
3
1.几何概型
定义:如果每个事件发生的概率只与构成该 事件区域的长度(面积或体积)成比例,则 称这样的概率模型为几何概率模型
2.几何概型的特点
➢试验中所有可能出现的结果(基本事件) 有无限多个;
➢每个基本事件出现的可能性相等.
2020/12/10
4
3.几何概型的概率公式
P(A)试
构成A 事 的件 区域 (面 长积 度或 ) 体 验 的 全 部的 结区 果域 所 (面 长 构 积 度 成 或 )
2020/12/10

高三数学复习之几何概型(共18张PPT)

高三数学复习之几何概型(共18张PPT)

1 ABCD<6.
∴h<21,则点
M
在正方体的下半部分, 1
故所求事件的概率 P=2VV正正方方体体=12.
M
B
C
A
D
此时 VM-ABCD=16
思考:
如图,四边形ABCD为矩形,AB= 3,BC=1, 以A为圆心,1为半径作四分之一个圆弧 DE,在 ∠DAB内任作射线AP,则射线AP与线段BC有公共点 的概率为________.
飞行过程中始终保持与正方体 6 个表面的距离均大于 1,称其为“安全飞行”,则
蜜蜂“安全飞行”的概率为(
11 1 3 ) A.8 B.6 C.27 D.8
解析
1.审题,定模型
2.定测度,求测度 3.求比例,下结论
[训练 1] (1)(2017·江苏卷)记函数 f(x)= 6+x-x2的定义域为 D.在区间[-4,5]上
厦门市杏南中学 高三第一轮总复习
甲、乙两人玩数字游戏,先由甲心中任想一个 数字记为a,再由乙猜甲刚才想的数字,把乙想 的数字记为b,
且 aa,、b b∈1{,16,2,3,4,5,6}。
若|a-b|≤1,则称“甲乙心有灵犀”, 现任意找两个人玩这个游戏, 得出他们“心有灵犀”的概率为________.
5
可知 a-2≥0,即 a≥2,
解析 那么 p=4-(4--21)=25.
–1 O 1 2 3 4 x 2
例2.若张三每天的工作时间在6小时至9小时 之间随机均匀分布,则张三连续两天平均 工作时间不少于7小时的概率是 .
1.确定是几何概型
2.确定面积为研究的测度
6 x 9 6 y 9

--------课课堂堂小小结结1--------

辽宁省沈阳市第二十一中学高三数学总复习课件 几何概型

辽宁省沈阳市第二十一中学高三数学总复习课件 几何概型
第十七页,编辑于星期日:二十点 五十五分。
解析:由f(x0)≥0,得log2x0≥0, ∴x0≥1,即使f(x0)≥0的区域为[1,2], 故所求概率为P=22- -112=23. 答案:23
第十八页,编辑于星期日:二十点 五十五分。
要点点拨
1.几何概型的特点 几何概型与古典概型的区别是几何概型试验中的可能结 果不是有限个,它的特点是试验结果在一个区域内均匀分 布,故随机事件的概率大小与随机事件所在区域的形状位置 无关,只与该区域的大小有关.
第二十六页,编辑于星期日:二十点 五十五分。
变式训练1
在集合A={m|关于x的方程x2+mx+
3 4
m+1=0无实根}
中随机地取一元素m,恰使式子lgm有意义的概率为
________.
[思路点拨] 转化条件与结论,用几何概型求解.
第二十七页,编辑于星期日:二十点 五十五分。
[解析] 由Δ=m2-4(34m+1)<0得-1<m<4. 即A={m|-1<m<4}. 由lgm有意义知m>0,即使lgm有意义的范围是(0,4)故所 求概率为P=4-4--01=45.
第四十三页,编辑于星期日:二十点 五十五分。
[解] 以x轴和y轴分别表示甲、乙两人到达约定地点的
时间,则两人能够会面的充要条件是|x-y|≤15.
在如图所示平面直角坐标系下,(x,y)的所有可能结果
是边长为60的正方形区域,而事件A“两人能够会面”的可
能结果由图中的阴影部分表示.
由几何概型的概率公式得
第三十八页,编辑于星期日:二十点 五十五分。
[规律总结] 1.本题中砂粒在球内部的分布是空间区 域,故应用体积表示区域的测度,常见的错误是用小球半 径与大球半径的比作为所求概率.

2021版高考数学(文)(全国通用版)课件:几何概型

2021版高考数学(文)(全国通用版)课件:几何概型

∴23≤x≤1 或-1≤x≤-23.
设事件 A
为“cos
π 2x
的值介于 0 到12之间”,则事件 A 发生对应的区域长度为23.
2 ∴P(A)=32=13.
5 3.在区间[-2,2]上随机取一个数 x,使x+1-x-1≤1 成立的概率为__8_____.
解析 在区间[-2,2]上随机取一个数 x,则-2≤x≤2,而满足不等式|x+1|-|x -1|≤1 的 x 的取值为 x≤12.又因为-2≤x≤2,故-2≤x≤12,所以使不等式成立的概 率为 P=122- -- -22=58.
解析 (1)这是一个与长度有关的几何概型问题,在 AB 上截取 AC′=AC,于是
P(AM<AC)=P(AM<AC′)=AACB′=AACB=
2 2.
(2)这是一个与角度有关的几何概型问题,在 AB 上截取 AC′=AC,则∠ACC′
=180°-2 45°=67.5°,而∠ACB=90°,于是 P(AM<AC)=P(AM<AC′)=6970.5=34.
答案
(1)
2 2
(2)34
【跟踪训练 1】 在区间[0,1]上随机取两个数 x,y,记 p1 为事件“x+y≤12”的概
率,p2 为事件“xy≤12”的概率,则( D )
A.p1<p2<12
B.p2<12<p1
C.12<p2<p1
D.p1<12<p2
解析 (x,y)构成的区域是边长为 1 的正方形及其内部,其中满足 x+y≤12的区 域如图(1)中阴影部分所示,所以 p1=12×1×12×1 12=18,满足 xy≤12的区域如图(2)中阴影部 分所示,所以 p2=S11×+1S2=12+1S2>12,所以 p1<12<p2.故选 D.

高中数学 几何概型

高中数学   几何概型

第三节几何概型最新考纲考向预测1.了解随机数的意义,能运用模拟方法估计概率.2.了解几何概型的意义.考情分析:与长度、面积有关的几何概型仍是高考考查的热点,题型仍将是选择题或填空题.学科素养:数学建模、直观想象1.几何概型(1)定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.(2)特点①无限性:试验中所有可能出现的结果(基本事件)有无限多个.②等可能性:每个基本事件出现的可能性相等.2.几何概型的概率公式P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).几何概型中的几何度量形式的判断方法(1)当题干是双重变量问题,一般与面积有关系.(2)当题干是单变量问题,要看变量可以等可能到达的区域:若变量在线段上移动,则几何度量是长度;若变量在平面区域(空间区域)内移动,则几何度量是面积(体积),即一个几何度量的形式取决于该度量可以等可能变化的区域.1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)随机模拟方法是以事件发生的频率估计概率.()(2)从区间[1,10]内任取一个数,取到1的概率是110.()(3)在几何概型定义中的区域可以是线段、平面图形、立体图形.()2.在区间[-3,4]内随机取一个实数x,则满足2x≥2的概率是()A.27B.37C.47D.573.(必修3P142T1改编)如图,矩形的长为6,宽为4,在矩形内随机撒300颗黄豆,数得落在椭圆外的黄豆数为96,以此试验数据为依据可以估计出椭圆的面积为()A.16.32B.15.32C.8.68D.7.684.有一杯2升的水,其中含一个细菌,用一个小杯从水中取0.1升水,则此小杯中含有这个细菌的概率是________.5.某单位试行上班刷卡制度,规定每天8∶30上班,有15分钟的有效刷卡时间(即8∶15~8∶30),一名职工在7∶50到8∶30之间到达单位且到达单位的时刻是随机的,则他能有效刷卡上班的概率是________.与长度有关的几何概型[题组练透]1.某人午觉醒来,发现表停了,他打开收音机,想听电台的整点报时,则他等待的时间不多于5分钟的概率为()A .120B .112C .16D .152.若正方形ABCD 的边长为4,E 为四边上任意一点,则AE 的长度大于5的概率等于()A .132B .78C .38D .183.(2020·四省八校第二次质量检测)若任取k ∈[-5,5],则直线y =k (x +1)与曲线y =4-(x -2)2有两个交点的概率为()A .15B .310C .25D .45A [直线y =k (x +1)过定点(-1,0),曲线y =4-(x -2)2,即(x -2)2+y 2=4(y ≥0),表示以(2,0)为圆心,2为半径的圆的上半部分,直线y =k (x +1)与该曲线相切时,k =255,因为直线y =k (x +1)与曲线y =4-(x -2)2有两个交点,所以0≤k <255,所以所求概率P =255-05-(-5)=15,故选A .]与长度有关的几何概型(1)如果试验的结果构成的区域的几何度量可用长度表示,则其概率的计算公式为P (A )=构成事件A 的区域长度试验的全部结果所构成的区域长度.(2)与时间、不等式等有关的概率问题可转化为几何概型,利用几何概型概率公式进行求解.与体积有关的几何概型一个多面体的直观图和三视图如图所示,点M 是AB 的中点,一只蝴蝶在几何体ADF ­BCE 内自由飞翔,则它飞入几何体F ­AMCD 内的概率为()A .34B .23C .13D .12D [因为V F ­AMCD =13×S AMCD ×DF =14a 3,V ADF ­BCE =12a 3,所以它飞入几何体F ­AMCD 内的概率为14a312a 3=12.]与体积有关的几何概型的求法对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件求解.已知四棱锥P ­ABCD 的所有顶点都在球O 的球面上,PA ⊥底面ABCD ,底面ABCD 为正方形,PA =AB =2.现在球O 的内部任取一点,则该点取自四棱锥P ABCD 的内部的概率为________.解析:把四棱锥P ABCD 扩展为正方体,则正方体的体对角线的长是外接球的直径R ,即23=2R ,R =3,则四棱锥的体积为13×2×2×2=83,球的体积为43×π(3)3=43π,则该点取自四棱锥PABCD 的内部的概率P =8343π=239π.答案:239π与面积有关的几何概型(1)(2020·广州市调研检测)如图所示的风车图案中,黑色部分和白色部分分别由全等的等腰直角三角形构成,在图案内随机取一点,则此点取自黑色部分的概率是()A .14B .13C .23D .34(2)一天,某人要去公安局办理护照,已知公安局的工作时间为9:00至17:00,设此人在当天13:00至18:00之间任何时间去公安局的可能性相同,那么此人去公安局恰好能办理护照的概率是()A .13B .34C .58D .45(1)B (2)D [(1)设一个黑色等腰直角三角形的一条直角边长为a ,则一个大白色等腰直角三角形的一条直角边长为2a ,黑色等腰直角三角形的面积为4×12a 2=2a 2,大白色等腰直角三角形的面积为4×12×2a 2=4a 2,在图案内随机取一点,则此点取自黑色部分的概率是2a 22a 2+4a 2=13,故选B .(2)设公安局的工作时间为x ,某人去公安局的时间为y ,以横坐标表示公安局的工作时间,以纵坐标表示某人去公安局的时间,建立平面直角坐标系(如图).阴影部分表示能办理护照的区域,易得直线y =x 与y =13和x =17的交点分别为(13,13),(17,17),由几何概型中的面积型可得此人去公安局恰好能办理护照的概率P =S 阴影S 矩形=(17-9)×(18-13)-12×(17-13)2(17-9)×(18-13)=45.故选D .]求解与面积有关的几何概型的方法求解与面积有关的几何概型时,关键是弄清某事件对应的面积,所求面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解.1.如图所示,矩形ABCD 中,点E 为边AB 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△AED 或△BEC 内部的概率等于()A .12B .13C .14D .232.(2020·长沙市统一模拟考试)在如图所示的正方形内任取一点M ,其中图中的圆为该正方形的内切圆,图中的圆弧为以正方形的顶点为圆心,正方形边长的一半为半径的圆弧,则点M 恰好取自阴影部分的概率为()A .12B .π2C .π2-1D .2-π2C [设正方形的边长为2,则题图中阴影部分的面积S =4×2×(14π×12-12×1×1)=2π-4,故点M 恰好取自阴影部分的概率P =2π-44=π2-1,故选C .]微专题系列42[交汇创新]几何概型与一些知识的交汇已知实数m ∈[0,1],n ∈[0,2],则关于x 的一元二次方程4x 2+4mx -n 2+2n =0有实数根的概率是()A .1-π4B .π4C .π-32D .π2-1A [方程有实数根,即Δ=16m 2-16(-n 2+2n )≥0,m 2+n 2-2n ≥0,m 2+(n -1)2≥1,画出不等式组≤m ≤1,≤n ≤2,2+(n -1)2≥1表示的平面区域如图中阴影部分所示,故所求概率为2-π22=1-π4.](1)本例是方程、不等式与概率的交汇,先将方程解的问题转化为不等式组,从而转化可行域.(2)几何概型还常与平面向量、三角函数、定积分等知识交汇.1.在区间[0,2]上任取两个数m ,n 若向量a =(m ,n ),b =(1,1),则|a -b |≤1的概率是()A .π2B .π4C .π3D .π8B [a -b =(m -1,n -1),故由|a -b |≤1可得(m -1)2+(n -1)2≤1,依据几何概型的概率公式可得P =π2×2=π4.故选B .]2.(2020·贵阳市第一学期监测考试)函数f(x)=(12)x,x∈(0,+∞)的值域为D,在区间(-1,2)上随机取一个数x,则x∈D的概率是()A.12B.13C.14D.1B[当x>0时,0<(12)x<1,即函数f(x)的值域D=(0,1).设“在区间(-1,2)上随机取一个数x,则x∈D”为事件A,由几何概型的概率计算公式可得P(A)=1-02-(-1)=13,故选B.]。

高中数学 第三节 几 何 概 型

高中数学  第三节  几 何 概 型

课前·双基落实
课堂·考点突
课后·三维演
几 何 概 型
结 束
2.(教材习题改编)在长为 3 m 的线段 AB 上任取一点 P,则点 P 与线段 AB 两端点的距离都大于 1 m 的概率等于________.
解析:将线段 AB 平均分成 3 段,设中间的两点分别为 C, D,∴当点 P 在线段 CD 上时,符合题意,线段 CD 的长度 1 为 1,∴所求概率 P= . 3 1 答案: 3
结 束
几 何 概 型
结 束
[由题悟法] 与体积有关的几何概型求法的关键点 对于与体积有关的几何概型问题, 关键是计算问 题的总体积(总空间)以及事件的体积(事件空间),对 于某些较复杂的也可利用其对立事件去求.
课前·双基落实
课堂·考点突
课前·双基落实
课堂·考点突
课后·三维演
几 何 概 型
结 束
易混淆几何概型与古典概型,两者共同点是试验中每 个结果的发生是等可能的,不同之处是几何概型的试验结 果的个数是无限的,古典概型中试验结果的个数是有限的.
课前·双基落实
课堂·考点突
课后·三维演
几 何 概 型
[小题纠偏]
的概率为 1 A. 5 2 B. 5 ( )
3 1- 4 1 3 解得 <x≤1,所以所求概率 P= = . 4 1-0 4 答案:D
课前·双基落实 课堂·考点突 课后·三维演
(
)
几 何 概 型
结 束
2.如图所示,在直角坐标系内,射线 OT 落在 30° 角的终边上,任作一条射线 OA,则射 线 OA 落在∠yOT 内的概率为________.
几 何 概 型
结 束
此ppt下载后可自行编辑

2021年高中数学《3.3.1几何概型》教案设计新人教A版必修3

2021年高中数学《3.3.1几何概型》教案设计新人教A版必修3教学分析这部分是新增加的内容.介绍几何概型主要是为了更广泛地满足随机模拟的需要,但是对几何概型的要求仅限于初步体会几何概型的意义,所以教科书中选的例题都是比较简单的.随机模拟部分是本节的重点内容.几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果不是有限个,利用几何概型可以很容易举出概率为0的事件不是不可能事件的例子,概率为1的事件不是必然事件的例子.利用古典概型产生的随机数是取整数值的随机数,是离散型随机变量的一个样本;利用几何概型产生的随机数是取值在一个区间的随机数,是连续型随机变量的一个样本.比如[0,1]区间上的均匀随机数,是服从[0,1]区间上均匀分布的随机变量的一个样本.随机模拟中的统计思想是用频率估计概率.本节的教学需要一些实物模型为教具,如教科书中的转盘模型、例3中的随机撒豆子的模型等.教学中应当注意让学生实际动手操作,以使学生相信模拟结果的真实性,然后再通过计算机或计算器产生均匀随机数进行模拟试验,得到模拟的结果.在这个过程中,要让学生体会结果的随机性与规律性,体会随着试验次数的增加,结果的精度会越来越高.随机数的产生与随机模拟的教学中要充分使用信息技术,让学生亲自动手产生随机数,进行模拟活动.几何概型也是一种概率模型,它与古典概型的区别是试验的可能结果不是有限个.它的特点是在一个区域内均匀分布,所以随机事件的概率大小与随机事件所在区域的形状、位置无关,只与该区域的大小有关.如果随机事件所在区域是一个单点,由于单点的长度、面积、体积均为0,则它出现的概率为0,但它不是不可能事件;如果一个随机事件所在区域是全部区域扣除一个单点,则它出现的概率为1,但它不是必然事件.均匀分布是一种常用的连续型分布,它来源于几何概型.由于没有讲随机变量的定义,教科书中均匀分布的定义仅是描述性的,不是严格的数学定义,要求学生体会如果X 落到[0,1]区间内任何一点是等可能的,则称X 为[0,1]区间上的均匀随机数. 三维目标1.通过师生共同探究,体会数学知识的形成,正确理解几何概型的概念;掌握几何概型的概率公式:P (A )=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A ,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力.2.本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯,会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型,会进行简单的几何概率计算,培养学生从有限向无限探究的意识.重点难点教学重点:理解几何概型的定义、特点,会用公式计算几何概率.教学难点:等可能性的判断与几何概型和古典概型的区别.课时安排1课时教学过程导入新课思路1复习古典概型的两个基本特点:(1)所有的基本事件只有有限个;(2)每个基本事件发生都是等可能的.那么对于有无限多个试验结果的情况相应的概率应如何求呢?为此我们学习几何概型,教师板书本节课题几何概型.思路2下图中有两个转盘,甲、乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜.在两种情况下分别求甲获胜的概率是多少?为解决这个问题,我们学习几何概型.思路3在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况.例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个.这就是我们要学习的几何概型.推进新课新知探究提出问题(1)随意抛掷一枚均匀硬币两次,求两次出现相同面的概率?(2)试验1.取一根长度为3 m的绳子,拉直后在任意位置剪断.问剪得两段的长都不小于1 m 的概率有多大?试验 2.射箭比赛的箭靶涂有五个彩色得分环.从外向内为白色,黑色,蓝色,红色,靶心是金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm,靶心直径为12.2 cm.运动员在70 m外射箭.假设射箭都能射中靶面内任何一点都是等可能的.问射中黄心的概率为多少?(3)问题(1)(2)中的基本事件有什么特点?两事件的本质区别是什么?(4)什么是几何概型?它有什么特点?(5)如何计算几何概型的概率?有什么样的公式?(6)古典概型和几何概型有什么区别和联系?活动:学生根据问题思考讨论,回顾古典概型的特点,把问题转化为学过的知识解决,教师引导学生比较概括.讨论结果:(1)硬币落地后会出现四种结果:分别记作(正,正)、(正,反)、(反,正)、(反,反).每种结果出现的概率相等,P(正,正)=P(正,反)=P(反,正)=P(反,反)=1/4.两次出现相同面的概率为.(2)经分析,第一个试验,从每一个位置剪断都是一个基本事件,剪断位置可以是长度为 3 m 的绳子上的任意一点.第二个试验中,射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为122 cm 的大圆内的任意一点.在这两个问题中,基本事件有无限多个,虽然类似于古典概型的“等可能性”,但是显然不能用古典概型的方法求解.考虑第一个问题,如右图,记“剪得两段的长都不小于1 m”为事件A.把绳子三等分,于是当剪断位置处在中间一段上时,事件A发生.由于中间一段的长度等于绳长的, 于是事件A发生的概率P(A)=.第二个问题,如右图,记“射中黄心”为事件B,由于中靶心随机地落在面积为×π×1222 cm2的大圆内,而当中靶点落在面积为×π×12.22 cm2的黄心内时,事件B发生,于是事件B 发生的概率P(B)=22122412.1241⨯⨯⨯⨯ππ=0.01.(3)硬币落地后会出现四种结果(正,正)、(正,反)、(反,正)、(反,反)是等可能的,绳子从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3 m 的绳子上的任意一点,也是等可能的,射中靶面内任何一点都是等可能的,但是硬币落地后只出现四种结果,是有限的;而剪断绳子的点和射中靶面的点是无限的;即一个基本事件是有限的,而另一个基本事件是无限的.(4)几何概型.对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型(geometric models of probability ),简称几何概型. 几何概型的基本特点:a.试验中所有可能出现的结果(基本事件)有无限多个;b.每个基本事件出现的可能性相等.(5)几何概型的概率公式:P (A )=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A . (6)古典概型和几何概型的联系是每个基本事件的发生都是等可能的;区别是古典概型的基本事件是有限的,而几何概型的基本事件是无限的,另外两种概型的概率计算公式的含义也不同.应用示例思路1例1 判断下列试验中事件A 发生的概率是古典概型,还是几何概型.(1)抛掷两颗骰子,求出现两个“4点”的概率;(2)如下图所示,图中有一个转盘,甲、乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜,求甲获胜的概率.活动:学生紧紧抓住古典概型和几何概型的区别和联系,然后判断.解:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;(2)游戏中指针指向B 区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域长度有关,因此属于几何概型.点评:本题考查的是几何概型与古典概型的特点,古典概型具有有限性和等可能性.而几何概型则是在试验中出现无限多个结果,且与事件的区域长度有关.例2 某人午休醒来,发觉表停了,他打开收音机想听电台整点报时,求他等待的时间短于10分钟的概率.活动:学生分析,教师引导,假设他在0—60之间的任一时刻,打开收音机是等可能的,但0—60之间有无数个时刻,不能用古典概型的公式来计算随机事件发生的概率,因为他在0—60之间的任一时刻打开收音机是等可能的,所以他在哪个时间段打开收音机的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件,所以可用几何概型的概率计算公式计算.解:记“等待的时间小于10分钟”为事件A,打开收音机的时刻位于[50,60]时间段内则事件A发生.由几何概型的求概率公式得P(A)=(60-50)/60=1/6,即“等待报时的时间不超过10分钟”的概率为1/6.打开收音机的时刻X是随机的,可以是0—60之间的任何时刻,且是等可能的.我们称X服从[0,60]上的均匀分布,X称为[0,60]上的均匀随机数.变式训练某路公共汽车5分钟一班准时到达某车站,求任一人在该车站等车时间少于3分钟的概率(假定车到来后每人都能上).解:可以认为人在任一时刻到站是等可能的.设上一班车离站时刻为a,则某人到站的一切可能时刻为Ω=(a,a+5),记A g={等车时间少于3分钟},则他到站的时刻只能为g=(a+2,a+5)中的任一时刻,故P(A g)=.点评:通过实例初步体会几何概型的意义.思路2例 1 某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,求此人等车时间不多于20分钟的概率.活动:假设他在0—60分钟之间任何一个时刻到车站等车是等可能的,但在0到60分钟之间有无穷多个时刻,不能用古典概型公式计算随机事件发生的概率.可以通过几何概型的求概率公式得到事件发生的概率.因为客车每小时一班,他在0到60分钟之间任何一个时刻到站等车是等可能的,所以他在哪个时间段到站等车的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件.解:设A={等待的时间不多于10分钟},我们所关心的事件A恰好是到站等车的时刻位于[40,60]这一时间段内,因此由几何概型的概率公式,得P(A)=(60-40)/60=1/3.即此人等车时间不多于10分钟的概率为1/3.点评:在本例中,到站等车的时刻X是随机的,可以是0到60之间的任何一刻,并且是等可能的,我们称X服从[0,60]上的均匀分布,X为[0,60]上的均匀随机数.变式训练在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?分析:石油在1万平方千米的海域大陆架的分布可以看作是随机的,而40平方千米可看作构成事件的区域面积,由几何概型公式可以求得概率.解:记“钻到油层面”为事件A,则P(A)=0.004.答:钻到油层面的概率是0.004.例2 小明家的晚报在下午5:30—6:30之间任何一个时间随机地被送到,小明一家人在下午6:00—7:00之间的任何一个时间随机地开始晚餐.则晚报在晚餐开始之前被送到的概率是多少?活动:学生读题,设法利用几何概型公式求得概率.解:建立平面直角坐标系,如右图中x=6,x=7,y=5.5,y=6.5围成一个正方形区域G.设晚餐在x(6≤x≤7)时开始,晚报在y(5.5≤y≤6.5)时被送到,这个结果与平面上的点(x,y)对应.于是试验的所有可能结果就与G中的所有点一一对应.由题意知,每一个试验结果出现的可能性是相同的,因此,试验属于几何概型.晚报在晚餐开始之前被送到,当且仅当y<x,因此图中的阴影区域g就表示“晚报在晚餐开始之前被送到”.容易求得g的面积为,G的面积为1.由几何概型的概率公式,“晚报在晚餐开始之前被送到”的概率为P(A)=.变式训练在1升高产小麦种子中混入了一种带麦锈病的种子,从中随机取出10毫升,则取出的种子中含有麦锈病的种子的概率是多少?分析:病种子在这1升中的分布可以看作是随机的,取得的10毫升种子可视作构成事件的区域,1升种子可视作试验的所有结果构成的区域,可用“体积比”公式计算其概率.解:取出10毫升种子,其中“含有病种子”这一事件记为A,则P(A)=0.01.所以取出的种子中含有麦锈病的种子的概率是0.01.知能训练1.已知地铁列车每10 min一班,在车站停1 min,求乘客到达站台立即乘上车的概率.解:由几何概型知,所求事件A的概率为P(A)=.2.两根相距6 m的木杆上系一根绳子,并在绳子上挂一盏灯,求灯与两端距离都大于2 m的概率.解:记“灯与两端距离都大于2 m”为事件A,则P(A)==.3.在500 mL的水中有一个草履虫,现从中随机取出2 mL水样放到显微镜下观察,则发现草履虫的概率是()A.0.5B.0.4C.0.004D.不能确定解析:由于取水样的随机性,所求事件A:“在取出2 mL的水样中有草履虫”的概率等于水样的体积与总体积之比=0.004.答案:C4.平面上画了一些彼此相距2a 的平行线,把一枚半径r<a 的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率.解:把“硬币不与任一条平行线相碰”的事件记为事件A,为了确定硬币的位置,由硬币中心O 向靠得最近的平行线引垂线OM,垂足为M,如右图所示,这样线段OM 长度(记作OM )的取值范围就是[0,a ],只有当r <OM≤a 时硬币不与平行线相碰,所以所求事件A 的概率就是P (A )=.拓展提升1.约会问题两人相约8点到9点在某地会面,先到者等候另一人20分钟,过时就可离去,试求这两人能会面的概率.解:因为两人谁也没有讲好确切的时间,故样本点由两个数(甲、乙两人各自到达的时刻)组成.以8点钟作为计算时间的起点,设甲、乙各在第x 分钟和第y 分钟到达,则样本空间为Ω:{(x,y)|0≤x≤60,0≤y≤60},画成图为一正方形.以x,y 分别表示两人的到达时刻,则两人能会面的充要条件为|x-y|≤20.这是一个几何概率问题,可能的结果全体是边长为60的正方形里的点,能会面的点的区域用阴影标出(如下图).所求概率为P=95604060222=-=的面积的面积G g .2.(蒲丰(Buffon)投针问题)平面上画很多平行线,间距为a.向此平面投掷长为l(l<a)的针,求此针与任一平行线相交的概率.解:以针的任一位置为样本点,它可以由两个数决定:针的中点与最接近的平行线之间的距离x,针与平行线的交角φ(见下图左).样本空间为Ω:{(φ,x),0≤φ≤π,0≤x≤a/2},为一矩形.针与平行线相交的充要条件是g :x≤sinφ(见下图右).所求概率是P= ππφφπa l a d l 22/sin )2/(0=••=⎰.注:因为概率P 可以用多次重复试验的频率来近似,由此可以得到π的近似值.方法是重复投针N次,(或一次投针若干枚,总计N枚),统计与平行线相交的次数n,则P≈n/N.又因a 与l都可精确测量,故从2l/aπ≈n/N,可解得π≈2lN/an.历史上有不少人做过这个试验.做得最好的一位投掷了3 408次,算得π≈3.141 592 9,其精确度已经达到小数点后第六位. 设计一个随机试验,通过大量重复试验得到某种结果,以确定我们感兴趣的某个量,由此而发展的蒙特卡洛(Monte-Carlo)方法为这种计算提供了一种途径.课堂小结几何概型是区别于古典概型的又一概率模型,使用几何概型的概率计算公式时,一定要注意其适用条件:每个事件发生的概率只与构成该事件区域的长度成比例.作业课本习题3.3A组1、2、3.设计感想本节课首先对古典概型进行了复习,使学生掌握古典概型的适用条件,巩固了古典概型的概率计算公式,接着设计了多个试验,从课题的引入,到问题的提出都非常有针对性,引人入胜,接着从求概率不能问题引出几何概型这一不同于古典概型的又一概率模型,并通过探究,归纳出几何概型的概率计算公式,同时比较了古典概型和几何概型的区别和联系,通过思路1和思路2两种不同的例题类型和层次,加深理解和运用,由于它们与实际生活联系密切,所以要反复练习,达到为我们的工作与生活服务,然而这部分内容高考是新内容,因此同学们要高度重视,全面把握,争取好成绩.。

2021届全国新高考数学精品备考 几何概型


的面积小于S2.∴概率为 p=S四S边△形AEBFCCB=34.
图D105
考点 1 与长度(角度)有关的几何概型
例 1:(1)(2016 年新课标Ⅰ)某公司的班车在 7:30,8:00,
8:30 发车,小明在 7:50 至 8:30 之间到达发车站乘坐班车,且
到达发车站的时刻是随机的,则他等车时间不超过 10 分钟的概
的距离为
|2k| k2+1 .
要使直线 y=k(x-2)与圆 x2+y2=1 有两个交点,则需
k|22+k| 1<1,解得-
3 3 <k<
33,
∴在区间[-1,1]上随机取一个数 k,
使直线 y=k(x-2)与圆 x2+y2=1 有两个交点的概率 p=
313--(--13)3= 33.故选 D.
答案:D
2.通过阅读材料,了解人类认识
随机现象的过程
域( 长度或面积) 是解决几何概
型问题的关键
1.几何概型 如果每个事件发生的概率只与构成该事件区域的长度(面 积或体积)成比例,那么称这样的概率模型为几何概率模型,简 称为__几__何__概__型__. 2.几何概型中,事件 A 的概率计算公式 P(A)=全构部成结事果件所构A 成的的区区域域长长度度(面(面积积或或体体积积) )
1.一只蚂蚁在如图 9-3-1 所示的地板砖(除颜色不同外,其 余全部相同)上爬来爬去,它最后随意停留在灰色地板砖上的概 率是( B )
图 9-3-1
A.14
B.13
C.15
D.12
2.取一根长度为 4 m 的绳子,拉直后在任意位置剪断,那
么剪得的两段都不少于 1 m 的概率是( C )
A.14
率是( )

高中数学 专题1.12 几何概型教案 新人教A版必修3(2021年整理)

2016-2017学年高中数学专题1.12 几何概型教案新人教A版必修3 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学专题1.12 几何概型教案新人教A版必修3)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学专题1.12 几何概型教案新人教A版必修3的全部内容。

几何概型【教学目标】1.了解几何概型与古典概型的区别.2.理解几何概型的定义及其特点.3.会用几何概型的概率计算公式求几何概型的概率.【教法指导】本节重点是几何概型的特点及概念;难点是应用几何概型的概率公式求概率;本节知识的主要学习方法是:动手与观察,思考与交流,归纳与总结。

加强新旧知识之间的联系,培养自己分析问题、解决问题的能力,从而获得学习数学的方法。

【教学过程】一、知识回顾:1.几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.概率公式在几何概型中,事件A的概率计算公式如下:想一想:几何概型的概率计算与构成事件的区域形状有关吗?概念理解:(1)几何概型也可以如下理解:对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段,平面图形,立体图形等.用这种方法处理随机试验,称为几何概型.()(2)在一个正方形区域内任取一点的概率是零.()(3)[2012·昆明模拟] 在线段[0,3]上任投一点,则此点坐标小于1的概率为错误!.( )几何概型概率的适用情况和计算步骤(1)适用情况:几何概型用来计算事件发生的概率适用于有无限多个试验结果的情况,每种结果的出现也要求必须是等可能的.而且事件发生在一个有明确范围的区域中,其概率与构成该事件区域的长度(面积或体积)成比例.(2)计算步骤:①判断是否是几何概型,尤其是判断等可能性,比古典概型更难于判断.②计算基本事件空间与事件A所含的基本事件对应的区域的几何度量(长度、面积或体积).这是计算的难点.③利用概率公式计算.特别提示:在使用几何概型中,事件A的概率计算公式P(A)=错误!时,公式中分子和分母涉及的几何度量一定要对等.即若一个是长度,则另一个也是长度.一个若是面积,则另一个也必然是面积,同样,一个若是体积,另一个也必然是体积.题型一与长度有关的几何概型例、(1)如图A,B两盏路灯之间的距离是30米,由于光线较暗,想在其间再随意安装两盏路灯C、D,问A与C,B与D之间的距离都不小于10米的概率是多少?(2)[2012·辽宁卷] 在长为12 cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积小于32 cm2的概率为()A。

2020届高三复习经典教案:随机事件的概率、古典概型与几何概型

第三节 随机事件的概率、古典概型与几何概型[最新考纲] 1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义及频率与概率的区别.2.了解两个互斥事件的概率加法公式.3.理解古典概型及其概率计算公式.4.会计算一些随机事件所包含的基本事件数及事件发生的概率.5.了解随机数的意义,能运用随机模拟的方法估计概率.6.了解几何概型的意义.1.频率与概率的关系在相同的条件下,大量重复进行同一试验时,随机事件A 发生的频率f n (A )=n A n 会在某个常数附近摆动,则把这个常数记作P (A ),称为事件A 的概率,简称为A 的概率.2(1)任何事件A 的概率都在[0,1]内,即0≤P (A )≤1,不可能事件∅的概率为0,必然事件Ω的概率为1.(2)如果事件A ,B 互斥,则P (A ∪B )=P (A )+P (B ).(3)事件A 与它的对立事件–A 的概率满足P (A )+P (–A )=1.12n 12A n )=P (A 1)+P (A 2)+…+P (A n ).[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)随机模拟方法是以事件发生的频率估计概率. ( )(2)在大量的重复实验中,概率是频率的稳定值. ( )(3)对立事件一定是互斥事件,互斥事件不一定是对立事件. ( )(4)概率为0的事件一定为不可能事件. ( )[答案] (1)√ (2)√ (3)√ (4)×2A .0.80B .0.85C .0.90D .0.99C [由题意,该射手击中靶心的频率大约在0.9附近上下波动,故其概率约为0.90.故选C.]3.(教材改编)投掷两枚均匀的硬币,则两枚硬币均正面朝上的概率是( )A.14B.13C.12D.34A [P =12×12=14,故选A.]4.(教材改编)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )A [P (A )=38,P (B )=28,P (C )=26,P (D )=13, ∴P (A )>P (C )=P (D )>P (B ).]5.对飞机连续射击两次,每次发射一枚炮弹,设A ={两次都击中飞机},B ={两次都没击中飞机},C ={恰有一次击中飞机},D ={至少有一次击中飞机},其中彼此互斥的事件是________,互为对立事件的是________.A 与B ,A 与C ,B 与C ,B 与D B 与D [设I 为对飞机连续射击两次所发生的所有情况,因为A ∩B =∅,A ∩C =∅,B ∩C =∅,B ∩D =∅,故A 与B ,A 与C ,B 与C ,B 与D 为互斥事件.而B ∩D =∅,B ∪D =I ,故B 与D 互为对立事件.]【例1】 (2017·4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y (单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.[解] (1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为2+16+3690=0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y =6×450-4×450=900;若最高气温位于区间[20,25),则Y =6×300+2×(450-300)-4×450=300;若最高气温低于20,则Y =6×200+2×(450-200)-4×450=-100.所以,Y 的所有可能值为900,300,-100.Y 大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为36+25+7+490润50元,若供大于求,剩余商品全部退回,但每件退回商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获得利润30元.(1)若商店一天购进该商品10件,求当天的利润y (单位:元)关于当天的需求量n (单位:件,n ∈N *)的函数解析式;(2)((ⅱ)若商店一天购进10件该商品,以50天记录的各日需求量的频率作为各日需求量的概率,求当天的利润大于500元的概率.[解] (1)当日需求量n ≥10时,利润y =50×10+(n -10)×30=30n +200;当日需求量n <10时,利润y =50×n -(10-n )×10=60n -100.所以日利润y 关于日需求量n 的函数解析式为y =⎩⎨⎧30n +200(n ≥10,n ∈N *),60n -100(n <10,n ∈N *). (2)(ⅰ)由(1)及表格可知,这50天中有9天的日利润为380元,有11天的日利润为440元,有15天的日利润为500元,有10天的日利润为530元,有5天的日利润为560元,所以这50天的日利润的平均数为150×(380×9+440×11+500×15+530×10+560×5)=477.2(元).(ⅱ)若当天的利润大于500元,则日需求量大于10件,则当天的利润大于500元的概率P =10+550=310.【例2】 (1)(2018·果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A.112B.114C.115D.118(2)(2017·全国卷Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )105C.310 D.25(1)C (2)D [(1)不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,从中随机选取两个不同的数有C 210种不同的取法,这10个数中两个不同的数的和等于30的有3对,所以所求概率P =3C 210=115,故选C.(2)从5张卡片中随机抽取1张,放回后再随机抽取1张的情况如图:基本事件总数为25,第一张卡片上的数大于第二张卡片上的数的事件数为10,∴所求概率P =1025=25.盒中至少有1个小球,那么甲盒中恰好有3个小球的概率为( )A.310B.25C.320D.14(2)(2018·石家庄一模)用1,2,3,4,5组成无重复数字的五位数,若用a 1,a 2,a 3,a 4,a 5分别表示五位数的万位、千位、百位、十位、个位,则出现a 1<a 2<a 3>a 4>a 5特征的五位数的概率为________.(1)C (2)120 [(1)将7个相同的小球投入甲、乙、丙、丁4个不同的小盒中,每个小盒中至少有1个小球有C 36种放法,甲盒中恰好有3个小球有C 23种放法,结合古典概型的概率计算公式得所求概率为C 23C 36=320.故选C. (2)1,2,3,4,5可组成A 55=120个不同的五位数,其中满足题目条件的五位数中,最大的5必须排在中间,左、右各两个数字只要选出,则排列位置就随之而定,满足条件的五位数有C 24C 22=6个,故出现a 1<a 2<a 3>a 4>a 5特征的五位数的概率为6120=120.]【例3】 (1)(2016·全国卷7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.13B.12C.23D.34(2)(2018·合肥二模)小李从网上购买了一件商品,快递员计划在下午5:00到6:00之间送货上门,已知小李下班到家的时间在下午5:30到6:00之间.快递员到小李家时,如果小李未到家,则快递员会电话联系小李.若小李能在10分钟之内到家,则快递员等小李回来;否则,就将商品存放在快递柜中.则小李需要去快递柜领取商品的概率为( )A.19B.891212(3)已知在四棱锥P -ABCD 中,P A ⊥底面ABCD ,底面ABCD 是正方形,P A =AB =2,现在该四棱锥内部或表面任取一点O ,则四棱锥O -ABCD 的体积不小于23的概率为________.(1)B (2)D (3)2764[(1)这是几何概型问题,总的基本事件空间如图所示,共40分钟,等车时间不超过10分钟的时间段为:7:50至8:00和8:20至8:30,共20分钟,故他等车时间不超过10分钟的概率为2040=12,故选B.(2)如图,设快递员和小李分别在下午5点后过了x 分钟和y 分钟到小李家,则所有结果构成的区域为{(x ,y )|0≤x ≤60,30≤y ≤60},这是一个矩形区域,y -x >10表示小李比快递员晚到超过10分钟,事件M 表示小李需要去快递柜领取商品,其所构成的区域是如图所示的直角梯形ABCD 的内部区域及边界(不包含AB ),由⎩⎨⎧ y =60,y =x +10,可得⎩⎨⎧ x =50,y =60,即A (50,60),由⎩⎨⎧ y =30,y =x +10,可得⎩⎨⎧x =20,y =30,即B (20,30),所以由几何概型的概率计算公式可知P (M )=12×(50+20)×3060×30=712,故选D.(3)当四棱锥O -ABCD 的体积为23时,设O 到平面ABCD 的距离为h ,则13×22×h =23,解得h =12. 如图所示,在四棱锥P -ABCD 内作平面EFGH 平行于底面ABCD ,且平面EFGH 与底面ABCD 的距离为12.因为P A ⊥底面ABCD ,且P A =2,所以PH P A =34, 所以四棱锥O -ABCD 的体积不小于23的概率P =V 四棱锥P -EFGH V 四棱锥P -ABCD =⎝⎛⎭⎫PH P A 3=⎝⎛⎭⎫343=2764.]A.13B.2344(2)如图所示,在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部任作一条射线CM ,与AB 交于点M ,则AM <AC 的概率为________.(1)B (2)34 [(1)满足x ∈[-1,1],y ∈[0,1]的区域为矩形区域(包括边界)(图略),面积为2,满足y ≥x 2的区域的面积S =⎠⎛1-1(1-x 2)dx =⎝⎛⎭⎫x -13x 31-1=43,故所求概率P =432=23.故选B. (2)在AB 上取A C ′=A C(图略),则∠A CC ′=180°-45°2=67.5°, 记A ={在∠A C B 内部任作一射线CM 与线段AB 交于点M ,A M <A C},则所有可能结果的区域为∠A C B ,事件A 构成的区域为∠A CC ′.又∠A C B =90°,∠A CC ′=67.5°,∴P (A )=67.5°90°=34.]1.(2018·全国卷Ⅰ)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形AB C 的斜边B C ,直角边AB ,A C.△AB C 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则()A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 3A [设直角三角形ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,则区域Ⅰ的面积即△ABC 的面积,为S 1=12bc ,区域Ⅱ的面积S 2=12π×⎝⎛⎭⎫c 22+12π×⎝⎛⎭⎫b 22-⎣⎢⎢⎡⎦⎥⎥⎤π×⎝⎛⎭⎫a 222-12bc =18π(c 2+b 2-a 2)+12bc =12bc ,所以S 1=S 2,由几何概型的知识知p 1=p 2,故选A.]2.(2017·全国卷Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.14B.π8C.12D.π4 B [不妨设正方形ABCD 的边长为2,则正方形内切圆的半径为1,可得S 正方形=4.由圆中的黑色部分和白色部分关于正方形的中心成中心对称,得S 黑=S 白=12S 圆=π2,所以由几何概型知所求概率P =S 黑S 正方形=π24=π8. 故选B.]3.(2016·全国卷Ⅱ)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )A.4n mB.2n mC.4m nD.2m nC [因为x 1,x 2,…,x n ,y 1,y 2,…,y n 都在区间[0,1]内随机抽取,所以构成的n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n )都在正方形OABC 内(包括边界),如图所示.若两数的平方和小于1,则对应的数对在扇形OAC 内(不包括扇形圆弧上的点所对应的数对),故在扇形OAC 内的数对有m 个.用随机模拟的方法可得S 扇形S 正方形=m n ,即π4=m n ,所以π=4m n.] 4.(2014·全国卷Ⅰ)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )A.18B.38C.58D.78D [4名同学各自在周六、周日两天中任选一天参加公益活动的情况有24=16(种),其中仅在周六(周日)参加的各有1种,∴所求概率为1-1+116=78.]课后限时集训(五十五)(建议用时:60分钟)A 组 基础达标一、选择题1.(2019·辽宁联考)某商场举行有奖促销活动,抽奖规则如下:从装有形状、大小完全相同的2个红球、3个蓝球的箱子中,任意取出两球,若取出的两球颜色相同则中奖,否则不中奖.则中奖的概率为( )A.15B.310C.25D.35C [设事件A 为“中奖”,则P (A )=C 22+C 23C 25=410=25.故选C.] 2.从装有两个白球和两个黄球的口袋中任取2个球,以下给出了四组事件:①至少有1个白球与至少有1个黄球;②至少有1个黄球与都是黄球;③恰有1个白球与恰有1个黄球;④恰有1个白球与都是黄球.其中互斥而不对立的事件共有( )A .0组B .1组C .2组D .3组B [①中“至少有1个白球”与“至少有1个黄球”可以同时发生,如恰有1个白球和1个黄球,①中的两个事件不是互斥事件.②中“至少有1个黄球”说明可以是1个白球和1个黄球或2个黄球,则两个事件不互斥.③中“恰有1个白球”与“恰有1个黄球”,都是指有1个白球和1个黄球,因此两个事件是同一事件.④中两事件不能同时发生,也可能都不发生,因此两事件是互斥事件,但不是对立事件,故选B.]3.已知a ∈{-2,0,1,2,3},b ∈{3,5},则函数f (x )=(a 2-2)e x +b 为减函数的概率是( )A.310B.35C.25D.15C [函数f (x )=(a 2-2)e x +b 为减函数,则a 2-2<0,又a ∈{-2,0,1,2,3},故只有a =0,a =1满足题意,又b ∈{3,5},所以函数f (x )=(a 2-2)e x +b 为减函数的概率P =2×25×2=25.故选C.] 4.在区间[0,π]上随机取一个数x ,使cos x 的值介于-32与32之间的概率为( ) A.13 B.23 C.38 D .58B [cos x 的值介于-32与32之间的区间长度为5π6-π6=2π3.由几何概型概率计算公式,得P =2π3π-0=23.故选B.] 5.在如图所示的正方形中随机投掷10 000个点,则落在阴影部分(曲线C 的方程为x 2-y =0)的点的个数约为()A .3 333B .6 667C .7 500D .7 854 B [题图中阴影部分的面积为⎠⎛01(1-x 2)=,正方形的面积为1,设落在阴影部分的点的个数为n ,由几何概型的概率计算公式可知,231=n 10 000,n ≈6 667,故选B.]二、填空题6.从3名男同学,2名女同学中任选2人参加知识竞赛,则选到的2名同学中至少有1名男同学的概率是________.910 [所求概率为P =1-C 22C 25=910.]7.(2018·湖北四校联考)如图所示的图案是由两个等边三角形构成的六角星,其中这两个等边三角形的三边分别对应平行,且各边都被交点三等分,若往该图案内投掷一点,则该点落在图中阴影部分内的概率为________.12 [设六角星的中心为点O ,分别将点O 与两个等边三角形的六个交点连接起来,则将阴影部分分成了六个全等的小等边三角形,并且与其余六个小三角形也是全等的,所以所求的概率P =12.] 8.若采用随机模拟的方法估计某运动员射击击中目标的概率.先由计算器给出0到9之间取整数的随机数,指定0,1,2,3表示没有击中目标,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组如下的随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 46980371 6233 2616 8045 6011 3661 9597 7424 7610 4281根据以上数据估计该运动员射击4次至少击中3次的概率为________.0.4 [根据数据得该运动员射击4次至少击中3次的数据分别为7527 9857 8636 6947 4698 80459597 7424,所以该运动员射击4次至少击中3次的概率为820=0.4.]三、解答题9.(2016·全国卷Ⅱ)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续(2)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P (B )的估计值;(3)求续保人本年度平均保费的估计值.[解] (1)事件A 发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P (A )的估计值为0.55. (2)事件B 发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3,故P (B )的估计值为0.3.0.10+2a ×0.05=1.192 5a.因此,续保人本年度平均保费的估计值为1.192 5a.10.(2018·天津高考)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.①试用所给字母列举出所有可能的抽取结果;②设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率.[解] (1)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(2)①从抽取的7名同学中随机抽取2名同学的所有可能结果为{A ,B },{A ,C},{A ,D},{A ,E},{A ,F },{A ,G},{B ,C},{B ,D},{B ,E},{B ,F },{B ,G},{C ,D},{C ,E},{C ,F },{C ,G},{D ,E},{D ,F },{D ,G},{E ,F },{E ,G},{F ,G},共21种.②由①,不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A ,B },{A ,C},{B ,C},{D ,E},{F ,G},共5种.所以,事件M 发生的概率P (M)=512. B 组 能力提升1.(2019·武汉模拟)一张储蓄卡的密码共有6位数字组成,每位数字都可以是0~9中的任意一个.某人在银行自动取款机上取钱时,忘记了密码的最后一位数字,如果任意按最后一位数字,不超过2次就按对的概率为( )A.25B.310C.15D.110C [依题意知,最后一位数字是0~9这10个数字中的任意一个,则按1次按对的概率为110;按2次按对的概率为910×19=110.由互斥事件的概率计算公式得所求的概率P =110+110=15,故选C.] 2.(2019·济南模拟)七巧板是一种古老的中国传统智力游戏,被誉为“东方魔板”.如图,这是一个用七巧板拼成的正方形,其中1号板与2号板为两个全等的等腰直角三角形,3号板与5号板为两个全等的等腰直角三角形,7号板为一个等腰直角三角形,4号板为一个正方形,6号板为一个平行四边形.现从这个大正方形内任取一点,则此点取自阴影部分的概率是( )A.18B.14C.316D.38C [设大正方形的面积为4S ,则5号板与7号板的面积之和为34S ,所以从这个大正方形内任取一点,则此点取自阴影部分的概率是34S 4S =316.]3.(2018·太原一模)某人在微信群中发了一个7元的“拼手气”红包,被甲、乙、丙三人抢完,若三人均领到整数元,且每人至少领到1元,则甲领到的钱数不少于乙、丙分别领到的钱数的概率是________.25[利用隔板法将7元分成3个红包,共有C 26=15种领法.甲领3元不少于乙、丙分别领到的钱数的分法有3元,3元,1元与3元,2元,2元两种情况,共有A 22+1=3种领法;甲领4元不少于乙、丙分别领到的钱数的分法有4元,2元,1元一种情况,共有A 22=2种领法;甲领5元不少于乙、丙分别领到的钱数的分法有5元,1元,1元一种情况,共有1种领法,所以甲领到的钱数不少于乙、丙分别领到的钱数的概率是3+2+115=25.]4.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y (单位:k g)与它的“相近”作物株数X 之间的关系如表所示:米.(1)(2)[解] (1)所种作物的总株数为1+2+3+4+5=15,其中“相近”作物株数为1的作物有2株,“相近”作物株数为2的作物有4株,“相近”作物株数为3的作物有6株,“相近”作物株数为4的作物有351×2+48×4+45×6+42×315=69015=46.(2)由(1)知,P(Y=51)=215,P(Y=48)=415.故在所种作物中随机选取一株,它的年收获量至少为48 k g的概率为P(Y≥48)=P(Y=51)+P(Y=48)=215+415=2 5.第三节 随机事件的概率、古典概型与几何概型[考纲传真] 1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义及频率与概率的区别.2.了解两个互斥事件的概率加法公式.3.理解古典概型及其概率计算公式.4.会计算一些随机事件所包含的基本事件数及事件发生的概率.5.了解随机数的意义,能运用随机模拟的方法估计概率.6.了解几何概型的意义.1.频率与概率的关系在相同的条件下,大量重复进行同一试验时,随机事件A 发生的频率f n (A )=n An会在某个常数附近摆动,则把这个常数记作P (A ),称为事件A 的概率,简称为A 的概率.2(1)任何事件A 的概率都在[0,1]内,即0≤P (A )≤1,不可能事件∅的概率为0,必然事件Ω的概率为1.(2)如果事件A,B互斥,则P(A∪B)=P(A)+P(B).(3)事件A与它的对立事件–A的概率满足P(A)+P(–A)=1.12n12A n)=P(A1)+P(A2)+…+P(A n).[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)随机模拟方法是以事件发生的频率估计概率.( )(2)在大量的重复实验中,概率是频率的稳定值.( )(3)对立事件一定是互斥事件,互斥事件不一定是对立事件.( )(4)概率为0的事件一定为不可能事件.( )2A.0.80 B.0.85 C.0.90 D.0.993.(教材改编)投掷两枚均匀的硬币,则两枚硬币均正面朝上的概率是( )A.14 B.13 C.12 D.344.(教材改编)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )5.对飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞机},B={两次都没击中飞机},C={恰有一次击中飞机},D={至少有一次击中飞机},其中彼此互斥的事件是________,互为对立事件的是________.【例1】(全国卷4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.润50元,若供大于求,剩余商品全部退回,但每件退回商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获得利润30元.(1)若商店一天购进该商品10件,求当天的利润y(单位:元)关于当天的需求量n(单位:件,n∈N*)的函数解析式;(2)((ⅱ)若商店一天购进10件该商品,以50天记录的各日需求量的频率作为各日需求量的概率,求当天的利润大于500元的概率.【例2】(1)(全国卷Ⅱ)哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A.112 B.114C.115 D.118(2)(全国卷Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )A.110 B.15C.310 D.25盒中至少有1个小球,那么甲盒中恰好有3个小球的概率为( )A.310 B.25C.320 D.14(2)(石家庄一模)用1,2,3,4,5组成无重复数字的五位数,若用a1,a2,a3,a4,a5分别表示五位数的万位、千位、百位、十位、个位,则出现a1<a2<a3>a4>a5特征的五位数的概率为________.【例3】(1)(全国卷Ⅰ)7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.13B.12C.23D.34(2)(2018·合肥二模)小李从网上购买了一件商品,快递员计划在下午5:00到6:00之间送货上门,已知小李下班到家的时间在下午5:30到6:00之间.快递员到小李家时,如果小李未到家,则快递员会电话联系小李.若小李能在10分钟之内到家,则快递员等小李回来;否则,就将商品存放在快递柜中.则小李需要去快递柜领取商品的概率为( )A.19B.89C.512D.712 (3)已知在四棱锥P -ABCD 中,P A ⊥底面ABCD ,底面ABCD 是正方形,P A =AB =2,现在该四棱锥内部或表面任取一点O ,则四棱锥O -ABCD 的体积不小于23的概率为________.A.13B.23C.14D.34(2)如图所示,在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部任作一条射线CM ,与AB 交于点M ,则AM <AC 的概率为________.1.(全国卷Ⅰ)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形AB C 的斜边B C ,直角边AB ,A C.△AB C 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则( )A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p32.(全国卷Ⅰ)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.14 B.π8C.12 D.π43.(·全国卷Ⅱ)从区间[0,1]随机抽取2n个数x1,x2,…,x n,y1,y2,…,y n,构成n个数对(x1,y1),(x2,y2),…,(x n,y n),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为( )A.4nm B.2nmC.4mn D.2mn4.(全国卷Ⅰ)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )A.18 B.38C.58 D.78课后限时集训(五十五)(建议用时:60分钟)A组基础达标一、选择题1.(2019·辽宁联考)某商场举行有奖促销活动,抽奖规则如下:从装有形状、大小完全相同的2个红球、3个蓝球的箱子中,任意取出两球,若取出的两球颜色相同则中奖,否则不中奖.则中奖的概率为( )A.15 B.310 C.25 D.352.从装有两个白球和两个黄球的口袋中任取2个球,以下给出了四组事件:①至少有1个白球与至少有1个黄球;②至少有1个黄球与都是黄球;③恰有1个白球与恰有1个黄球;④恰有1个白球与都是黄球.其中互斥而不对立的事件共有( )A.0组B.1组C.2组D.3组3.已知a∈{-2,0,1,2,3},b∈{3,5},则函数f(x)=(a2-2)e x+b为减函数的概率是( )A.310 B.35 C.25 D.154.在区间[0,π]上随机取一个数x,使cos x的值介于-32与32之间的概率为( )A.13 B.23 C.38D.585.在如图所示的正方形中随机投掷10 000个点,则落在阴影部分(曲线C的方程为x2-y=0)的点的个数约为( )A.3 333 B.6 667C.7 500 D.7 854二、填空题6.从3名男同学,2名女同学中任选2人参加知识竞赛,则选到的2名同学中至少有1名男同学的概率是________.7.(湖北四校联考)如图所示的图案是由两个等边三角形构成的六角星,其中这两个等边三角形的三边分别对应平行,且各边都被交点三等分,若往该图案内投掷一点,则该点落在图中阴影部分内的概率为________.8.若采用随机模拟的方法估计某运动员射击击中目标的概率.先由计算器给出0到9之间取整数的随机数,指定0,1,2,3表示没有击中目标,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组如下的随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 46980371 6233 2616 8045 6011 3661 9597 7424 7610 4281根据以上数据估计该运动员射击4次至少击中3次的概率为________.三、解答题9.(全国卷Ⅱ)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本上年度出险次数0 1 2 3 4 ≥5保费0.85a a 1.25a 1.5a 1.75a2a(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;(3)求续保人本年度平均保费的估计值.10.(天津高考)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.①试用所给字母列举出所有可能的抽取结果;②设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

普通高中课程标准实验教科书—数学 [人教版] 高三新数学第一轮复习教案(讲座21)—几何概型及随机模拟 一.课标要求: 1.了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义; 2.通过阅读材料,了解人类认识随机现象的过程。 二.命题走向 本讲内容在高考中所占比较轻,纵贯近几年的高考对概率要求降低,但本讲内容使新加内容,考试涉及的可能性较大。 预测07年高考: (1)题目类型多以选择题、填空题形式出现,; (2)本建考试的重点内容几何概型的求值问题,我们要善于将实际问题转化为概率模型处理。 三.要点精讲 1.随机数的概念 随机数是在一定范围内随机产生的数,并且得到这个范围内任何一个数的机会是均等的。 2.随机数的产生方法 (1)利用函数计算器可以得到0~1之间的随机数; (2)在Scilab语言中,应用不同的函数可产生0~1或a~b之间的随机数。 3.几何概型的概念 如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型; 4.几何概型的概率公式:

P(A)=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A。 5.几种常见的几何概型 (1)设线段l是线段L的一部分,向线段L上任投一点.若落在线段l上的点数与线段L的长度成正比,而与线段l在线段l上的相对位置无关,则点落在线段l上的概率为: P=l的长度/L的长度 (2)设平面区域g是平面区域G的一部分,向区域G上任投一点,若落在区域g上的点数与区域g的面积成正比,而与区域g在区域G上的相对位置无关,则点落在区域g上概率为: P=g的面积/G的面积 (3)设空间区域上v是空间区域V的一部分,向区域V上任投一点.若落在区域v上的点数与区域v的体积成正比,而与区域v在区域v上的相对位置无关,则点落在区域V上的概率为: P=v的体积/V的体积 四.典例解析 题型1:线长问题 例1.一个实验是这样做的,将一条5米长的绳子随机地切断成两条,事件T表示所切两段绳子都不短于1米的事件,考虑事件T发生的概率。 分析:类似于古典概型,我们希望先找到基本事件组,既找到其中每一个基本事件。注意到每一个基本事件都与唯一一个断点一一对应,故引例中的实验所对应的基本事件组中的基本事件就与线段AB上的点一一对应,若把离绳AB首尾两端1的点记作M、N,则显然事件T所对应的基本事件所对应的点在线段MN上。由于在古典概型中事件T的概率为T包含的基本事件个数/总的基本事件个数,但这两个数字(T包含的基本事件个数、总的基本事件个数)在引例1中是无法找到的,不过用线段MN的长除以线段AB的长表示事件T的概率似乎也是合理的。 解:P(T)=3/5。 例2.(磁带问题)乔和摩进行了一次关于他们前一天夜里进行的活动的谈话。然而谈话却被监听录音机记录了下来,联邦调查局拿到磁带并发现其中有10秒钟长的一段内容包含有他们俩犯罪的信息 然而后来发现,这段谈话的一部分被联邦调查局的一名工作人员擦掉了,该工作人员声称她完全是无意中按错了键,并从即刻起往后的所有内容都被榛掉了试问如果这10秒钟长的谈话记录开始于磁带记录后的半分钟处,那么含有犯罪内容的谈话被部分或全部偶然擦掉的概率将是多大? 解析:将3O分钟的磁带表示为长度为3O的线段R,则代表10秒钟与犯罪活动有关的谈话的区间为 r,如右图所示,10秒钟的谈话被偶然擦掉部分或全部的事件仅在擦掉开始的时间位于该区间内或始于该区间左边的任何

点。 因此事件r是始于R线段的左端点且长度为326121的事件。因

此,02.09023032)(的面积的面积Rrrp。 例3.假设车站每隔 10 分钟发一班车,随机到达车站,问等车时间不超过 3 分钟的概率 ? 解:以两班车出发间隔 ( 0,10 ) 区间作为样本空间 S,乘客随机地到达,即在这个长度是 10 的区间里任何一个点都是等可能地发生,因此是几何概率问题。 要使得等车的时间不超过 3 分钟,即到达的时刻应该是图中 A 包含的样本点,

0← S →10 p=的长度的长度Sa=103= 0.3 。 题型2:面积问题 例4.投镖游戏中的靶子由边长为1米的四方板构成,并将此板分成四个边长为1/2米的小方块。实验是向板中投镖,事件A表示投中阴影部分为成功,考虑事件A发生的概率。 分析与解答:类似于引例1的解释,完全可以把此引例中的实验所对应的基本事件组与大的正方形区域联系在一起,既事件组中的每一个基本事件与大正方形区域中的每一个点一一对应,则事件A所包含的基本事件就与阴影正方形中的点一一对应,这样我们用阴影正方形的面积除以大正方形的面积表示事件A的概率是合理的。这一点我们完全可以用引例1的方法验证其正确性。 解析:P(A)=(1/2)2/12=1/4。

例5.(CB对讲机问题)(CB即CitizenBand市民波段的英文缩写)两个CB对讲机持有者,莉莉和霍伊都为卡尔货运公司工作,他们的对讲机的接收范围为25公里,在下午3:0O时莉莉正在基地正东距基地30公里以内的某处向基地行驶,而霍伊在下午3:00时正在基地正北距基地40公里以内的某地向基地行驶,试问在下午3:0O时他们能够通过对讲机交谈的概率有多大? 解:设x和y分别代表莉莉和霍伊距某地的距离,

于是400,300yx 则他俩所有可能的距离的数据构成有序点对(x,y),这里x,y都在它们各自的限制范围内,则所有这样的有序数对构成的集合即为基本事件组对应的几何区域,每一个几何区域中的点都代表莉莉和霍伊的一个特定的位置, 他们可以通过对讲机交谈的事件仅当他们之间的距离不超过25公里时发生(如右图)因此构成该事件的点由满足不等式

2522yx 的数对组成,此不等式等价于62522yx 右图中的方形区域代表基本事件组,阴影部分代表所求事件,方形区域的面积为1200平方米公里,而事件的面积为 4625254

12





,

于是有41.0902480062512004/625p。 例6.(意大利馅饼问题)山姆的意大利馅饼屋中设有一个投镖靶 该靶为正方形板.边长为18厘米,挂于前门附近的墙上,顾客花两角伍分的硬币便可投一镖并可有机会赢得一种意大利馅饼中的一个,投镖靶中画有三个同心圆,圆心在靶的中心,当投镖击中半径为1厘米的最内层圆域时.可得到一个大馅饼;当击中半径为1厘米到2厘米之间的环域时,可得到一个中馅饼;如果击中半径为2厘米到3厘米之间的环域时,可得到一个小馅饼,如果击中靶上的其他部分,则得不到谄饼,我们假设每一个顾客都能投镖中靶,并假设每个圆的周边线没有宽度,即每个投镖不会击中线上,试求一顾客将嬴得: (a)一张大馅饼, (b)一张中馅饼, (c)一张小馅饼, (d)没得到馅饼的概率 解析:我们实验的样本空间可由一个边长为18的正方形表示。右图表明R和子区域r1、r2、r3和r,它们分别表示得大馅饼、中馅饼、小馅饼或没得到馅饼的事件。

01.032418)1()()(2211的面积的面积Rrrpa;

03.0324318)1()2()()(22222的面积的面积Rrrpb;

05.0324518)2()3()()(22233的面积的面积Rrrpc;

91.0324318)3(324)()(2244的面积的面积Rrrpd。

题型3:体积问题 例7.(1)在400毫升自来水中有一个大肠杆菌,今从中随机取出2毫升水样放到显微镜下观察,求发现大肠杆菌的概率。 解析:由于取水样的随机性,所求事件的概率等于水样的体积与总体积之比,即2/400=0.005。 (2)如果在一个5万平方公里的海域里有表面积达40平方公里的大陆架贮藏着石油,假如在这海领域里随意选定一点钻探,问钻到石油的概率是多少? 解析:由于选点的随机性,可以认为该海域中各点被选中的可能性是一样的,因而所求概率自然认为等于贮油海域的面积与整个海域面积之比,即等于40/50000=0.0008。 例8.在线段[0,1]上任意投三个点,问由0至三点的三线段,能构成三角形与不能构成三角形这两个事件中哪一个事件的概率大。 解析:设0到三点的三线段长分别为x,y,z,即相应的 z

右端点坐标为x,y,z,显然1,,0zyx。这三条线 1 C

段构成三角形的充要条件是: A D xzyyzxzyx,,。

在线段[0,1]上任意投三点x,y,z。与立方体 0 1 y

10x,10y,10z中的点),,(zyx 1

一一对应,可见所求“构成三角形”的概率,等价于x B 边长为1的立方体T中均匀地掷点,而点落在 xzyyzxzyx,,区域中的概率;这也就是落在图中由ΔADC,ΔADB,ΔBDC,

ΔAOC,ΔAOB,ΔBOC所围成的区域G中的概率。由于,1)(TV

211213131)(33GV,

21)(/)(TVGVp

由此得,能与不能构成三角形两事件的概率一样大。 题型4:随机模拟

例9.随机地向半圆202yaxx(a为正常数)内掷一点,点落在园内任何区域的概率与区域的面积成正比,求原点与该点的连线与x轴的夹角小于/4的概率. 解析:半圆域如图 设A‘原点与该点连线与x轴夹角小于/4’ 由几何概率的定义 22

2

11

42()12aaAPAa

的面积

半园的面积11

2。

例10.随机地取两个正数x和y,这两个数中的每一个都不超过1,试求x与y之和不超过1,积不小于0.09的概率. 解析:01,01xy,不等式确定平面域S。 A‘1,0.09xyxy’则A发生的充要条件为01,10.09xyxy不

0yx

a /4 x

相关文档
最新文档